-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain.py
48 lines (42 loc) · 2.15 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
from model import SRCNN
import tensorflow as tf
import os
"""1.configuration"""
flags = tf.app.flags
flags.DEFINE_integer("epoch", 1500, "Number of epoch [100]")
flags.DEFINE_integer("batch_size", 128, "The size of batch images [128]")
flags.DEFINE_integer("test_batch_size", 128, "The size of batch images for testing")
flags.DEFINE_integer("image_size", 33, "The size of image to use [33]")
flags.DEFINE_integer("label_size", 33, "The size of label to produce [33]")
flags.DEFINE_integer("model_label_size", 33, "for model loading [33]")
flags.DEFINE_integer("patience", 30, "The steps for early stop [10]")
flags.DEFINE_float("learning_rate", 5e-4, "The learning rate of gradient descent algorithm [1e-4]")
#flags.DEFINE_float("momentum",0.9,"The momentum of SGD [0.9]")###add momentum for better training performance
flags.DEFINE_integer("c_dim", 9, "Dimension of image color. [9]")
flags.DEFINE_integer("scale", 3, "The size of scale factor for preprocessing input image [3]")
flags.DEFINE_integer("stride", 14, "The size of stride to apply input image [14]")
flags.DEFINE_string("checkpoint_dir", "checkpoint/General", "Name of checkpoint directory [checkpoint]")
flags.DEFINE_string("summary_dir", "tensorboard", "Name of tensorboard directory [checkpoint]")
flags.DEFINE_string("trn_folderpath", "Train", "Name of sample directory [sample]")
flags.DEFINE_string("tst_folderpath", "Test", "Name of sample directory [sample]")
flags.DEFINE_boolean("is_train", True, "True for training, False for testing [True]")
flags.DEFINE_string("new_image_path","Test","Path of your image to test")
flags.DEFINE_boolean("make_patch",True,"generate patches even if h5 already exists [True]")
FLAGS = flags.FLAGS
def main(_):
"""3.print configurations"""
print('tf version:',tf.__version__)
print('tf setup:')
#os.makedirs(FLAGS.checkpoint_dir)
"""5.begin tf session"""
with tf.Session() as sess:
"""6.init srcnn model"""
srcnn = SRCNN(sess, FLAGS)
"""7.start to train/test"""
if(FLAGS.is_train):
srcnn.train()
else:
srcnn.test()
if __name__ == '__main__':
"""2.call main function"""
tf.app.run()