-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtest_metric_func.py
87 lines (75 loc) · 4.16 KB
/
test_metric_func.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
import numpy as np
from sklearn.metrics import f1_score, recall_score
# Lane Detection:
# Calculate the F1 score between two 480*640*1 label map
# 1. extend the centered points to circles and get the circle labeled map
# 2. compare predicted pixels with circle labeled map
# 3. TP: Predict pos, label pos
# 4. FP: Predict pos, label neg
# 5. FN: Predict neg, label pos
# (TP: predict in circles; FN: remain pixels not in circles; FP: predict not in circle)
def create_circular_mask(h, w, center=None, radius=None):
# Create a circular mask from center on an (h,w) map with euclidean distance radius
if center is None: # use the middle of the image
center = (int(h/2), int(w/2))
if radius is None: # use the smallest distance between the center and image walls
radius = min(center[0], center[1], h-center[0], w-center[1])
X, Y = np.ogrid[:h, :w]
dist_from_center = np.sqrt((X - center[0])**2 + (Y-center[1])**2)
mask = dist_from_center <= radius
return mask
def vpg_lane_f1(map1, map2, mask_R = 4):
# For single class metric, calculate two map1,2 whose label are binary (0 for no, and !0 for label)
# Input:
# map1: (h,w,1) size label predicted map
# map2: (h,w,1) size label groundtruth map, every 8*8 pixels an grid with same label
# mask_R: euclidean distance of radius R, default 4
# Return:
# single_class_f1: f1 score for map1 and map2 described in VPGNet Sec5.3
# First extend the grid-labeled map2 to circle-labeled map extend_mask with boundary R
map1_mask = map1 > 0
map2_mask = map2 > 0 # Assume map1,2 only have one class
extend_mask = np.zeros((480, 640), dtype=bool) # extended groundtruth (from 8*8 square grid to radius R circle)
for i in range(0, 480):
for j in range(0, 640):
if map2_mask[i,j] == True: # if this pixel have label, this 8*8 grid should have same label
area_mask = create_circular_mask(480, 640, center = (i,j), radius = mask_R)
extend_mask = extend_mask + area_mask # add the area_mask to blank mask
# Compare map1 and the extended mask for f1 score
single_class_f1 = f1_score(extend_mask.flatten(), map1_mask.flatten())
return single_class_f1
# Road Markings:
# Calculate the Recall Score between two 480*640*1 label map
# 1. use precise groundtruth labeled map
# 2. compare predicted pixels with labeled map
# 3. TP: Predict pos, label pos
# 4. FN: Predict neg, label pos
# (TP: predict in circles; FN: remain pixels not in label map pos area)
def vpg_rm_recall(map1, map2):
# For single class metric, calculate two map1,2 whose label are binary (0 for no, and !0 for label)
# Input:
# map1: (h,w,1) size label predicted map
# map2: (h,w,1) size label groundtruth map, every 8*8 pixels an grid with same label
# Return:
# single_class_recall: recall score for map1 and map2
map1_mask = map1 > 0
map2_mask = map2 > 0 # Assume map1,2 only have one class
single_class_recall = recall_score(map2_mask.flatten(), map1_mask.flatten())
return single_class_recall
# Vanishing Point:
# Calculate the Recall Score between two 480*640*1 label map
def vpg_VP_recall(map1, map2, mask_R = 4):
# For single class metric, calculate two map1,2 whose label are binary (0 for no, and !0 for label)
# Input:
# map1: (h,w,1) size label predicted map
# map2: (h,w,1) size label groundtruth map, every 8*8 pixels an grid with same label, with only 1 pixel as vanishing point
# mask_R: euclidean distance of radius R, default 4
# Return:
# single_class_recall: recall score for map1 and map2
map1_mask = map1 > 0
map2_mask = map2 > 0 # Assume map1,2 only have one class, and map2 only have 1 positive value
extend_mask = numpy.ones((480, 640), dtype=bool) # extended groundtruth (from 8*8 square grid to radius R circle)
vp_point_pos = np. where(map2_mask)
VP_circle_mask = create_circular_mask(480, 640, center = vp_point_pos, radius = mask_R)
VP_recall = recall_score(VP_circle_mask.flatten(), map1_mask.flatten())
return VP_recall