forked from AstraZeneca-NGS/Seq2C
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlr2gene.pl
executable file
·435 lines (390 loc) · 17.5 KB
/
lr2gene.pl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
#!/usr/bin/env perl
# Normalize the coverage from targeted sequencing to CNV log2 ratio. The algorithm assumes the medium
# is diploid, thus not suitable for homogeneous samples (e.g. parent-child).
use FindBin;
use lib "$FindBin::RealBin/libraries/";
use Stat::Basic;
use Statistics::TTest;
use Getopt::Std;
use strict;
our ($opt_c, $opt_s, $opt_A, $opt_D, $opt_M, $opt_d, $opt_p, $opt_H, $opt_R, $opt_N, $opt_t, $opt_P, $opt_y, $opt_E, $opt_e);
getopts( 'HcyF:s:A:D:d:M:p:R:N:t:P:E:e:' ) || USAGE();
$opt_H && USAGE();
#For whole gene
my $AMP = defined($opt_A) ? $opt_A : 1.5;
my $DEL = defined($opt_D) ? $opt_D : -2.00;
#For < 3 exons
my $EXONDIFF = defined($opt_E) ? $opt_E : 1.25;
my $MINMAD = defined($opt_M) ? $opt_M : 10;
my $DUPMAD = 8; # MAD for duplications
my $DUPDIFF = 0.6; # Diff for duplications
#For >= 3 exons
my $MINDIFF = defined($opt_d) ? $opt_d : 0.5;
my $PVALUE = defined($opt_p) ? $opt_p : 0.00001;
#For break point analysis
my $MINBPEXONS = defined($opt_e) ? $opt_e : 5;
my $MINTTDIFF = defined($opt_t) ? $opt_t : 0.4;
my $TTPVALUE = defined($opt_P) ? $opt_P : 0.000001;
#For Cohort
my $MAXRATE = defined($opt_R) ? $opt_R : 0.03; # maximum
my $MAXCNT = defined($opt_N) ? $opt_N : 5;
my $MINSEGS = $opt_s ? $opt_s : 1; #The minimum consecutive amplicons to look for deletions and amplifications.
#print join("\t", qw(Sample Gene Chr Start Stop Length Log2Ratio Significance Breakpoint Type Aff_segs Total_segs Aff_segs_lr)), "\n";
my %g2amp; #hash, key: sample; value: hash of key:gene; value:(data from cov2lr.pl split by TABs)
my $stat = new Stat::Basic;
my $ttest = new Statistics::TTest;
my %loc; #hash, key: gene; value: (chr, start, end, len)
my %geneloc; #hash, key: gene-start-end; value: boolean (used)
#Fill gene data: chromosome, start, end, length and update data about already added genes.
while( <> ) {
s/\r//g;
chomp;
next if ( /^Sample/ ); #skip headers
my @a = split(/\t/);
my ($sample, $gene, $chr, $s, $e, $desc, $len, $depth) = @a;
$loc{ $gene }->{ chr } = $chr;
$loc{ $gene }->{ start } = $s unless( $loc{ $gene }->{ start } && $loc{ $gene }->{ start } < $s );
$loc{ $gene }->{ end } = $e unless( $loc{ $gene }->{ end } && $loc{ $gene }->{ end } > $e );
$loc{ $gene }->{ len } += $e - $s + 1 unless( $geneloc{ "$gene-$s-$e" } );
$geneloc{ "$gene-$s-$e" } = 1;
push(@{ $g2amp{ $sample }->{ $gene } }, \@a);
}
my @results =(); # array of lists with results (sample, gene data, sig, breakpoint, sigseg, etc.)
my %callcnt; # hash of key:gene-breakpoint-sigseg; value: count (only breakpoints with BP)
# FIll the results: sig (significance), breakpoint, sigseg, etc. for each sample
while(my ($s, $v) = each %g2amp) {
while(my ($g, $vv) = each %$v) {
my @segs = sort { $a->[3] <=> $b->[3] } @$vv; # sort by gene length
#print STDERR "@segs[0] @segs[1] @segs[2] @segs[3]\n";
my @lr = map { $opt_c ? $_->[11] : $_->[10]; } @segs; # if opt_c, take normalized depth median by control sample (log2 ratio)
my $lr = @lr > 1 ? $stat->median(\@lr) : $lr[0];
my ($sig, $bp, $type, $affected, $total, $siglr, $sigseg, $sigdiff) = checkBP(\@segs);
$sig = "" if ( $sig == -1 );
$sigdiff = sprintf("%.3g", $sigdiff) if ( $sigdiff);
$lr = sprintf("%.3g", $lr) if ( $lr);
if ( $sigseg && $sigseg =~ /\d/ ) {
my @exons = split(/,/, $sigseg);
my $estart = $segs[$exons[0]-1]->[3];
my $eend = $segs[$exons[$#exons]-1]->[4];
$sigseg .= "($estart-$eend)";
}
push(@results, [$s, $g, $loc{$g}->{chr}, $loc{$g}->{start}, $loc{$g}->{end}, $loc{$g}->{len}, $lr, $sig, $bp, $type, $affected, $total, $siglr, $sigdiff, $sigseg]); # if ( $sig ne "-1" );
$callcnt{ "$g:$bp:$sigseg" }++ if ( $sigseg && $bp eq "BP" );
}
}
my @samples = keys %g2amp;
# Print results
print join("\t", qw(Sample Gene Chr Start End Length Log2ratio Sig BP_Whole Amp_Del Ab_Seg Total_Seg Ab_log2ratio Log2r_Diff Ab_Seg_Loc Ab_Samples Ab_Samples_Pcnt)), "\n";
foreach my $r (@results) {
my ($g, $bp, $sigseg) = ($r->[1], $r->[8], $r->[14]);
my ($cnt, $pcnt) = $callcnt{ "$g:$bp:$sigseg" } ? ($callcnt{ "$g:$bp:$sigseg" }, sprintf("%.3g", $callcnt{ "$g:$bp:$sigseg" }/(@samples+0))) : ("", "");
my @tmp = @$r;
if ( $pcnt && $pcnt > $MAXRATE && $cnt > $MAXCNT ) { # remove frequent breakpoints, likely due to systematic sequencing yields
@tmp = (@tmp[0..6], "", "", "", "", $r->[10], "", "", "");
}
unless( $tmp[8] eq "BP" ) {
if ( $tmp[6] >= $AMP ) { #considered amplified
@tmp = (@tmp[0..6], "0", "Whole", "Amp", $r->[11], $r->[11], $tmp[6], $tmp[6], "ALL"); #TODO: is it ok the r->11 for Ab_seg? Maybe r->10 must be?
} elsif ( $tmp[6] <= $DEL ) { #considered deleted
@tmp = (@tmp[0..6], "0", "Whole", "Del", $r->[11], $r->[11], $tmp[6], $tmp[6], "ALL");
}
}
print join("\t", @tmp, $cnt, $pcnt), "\n";
}
# Check breakpoints in gene
sub checkBP {
my $ref = shift;
return (-1, "", "", "", @$ref+0, "", "", "") if ( @$ref < 4 ); # return empty if there are less than 4 segments for the gene
#fill with start and normalized depth median skaling log 2 for each segment (if opt_c take the value for sample)
my @a = map { $opt_c ? [$_->[3], $_->[11]] : [$_->[3], $_->[10]]; } @$ref; #
my @lr = map { $_->[1]; } @a; #fill with normalized depth median skaling log 2
for(my $i = 0; $i < @a; $i++) {
$a[$i]->[2] = $i+1; #numerate starts of segments
}
my $max = $stat->max(\@lr);
my $min = $stat->min(\@lr);
my $mid = ($max + $min)/2;
#print STDERR join(" ", (map { $stat->prctile(\@lr, $_); } (20, 40, 60, 80))), "\n";
my @bps = getBPS(\@lr); #candidate breakpoint values
print STDERR "BPS: @bps\n" if ( $opt_y );
my @sigbp = ();
my @sigmd = ();
my $minbp = 1;
my $maxmd = 1;
my $maxdiff = "";
foreach my $bp (@bps) {
my @up = (); # array: (start, normalized depth median skaling log 2, number) for non-zero breakpoints
my @bm = (); # array: (start, normalized depth median skaling log 2, number) for zero breakpoints
my @lrup = (); # array: (number of segment in gene) for non-zero breakpoints
my @lrbm = ();# array: (number of segment in gene) for zero breakpoints
my @upseg = ();
my @bmseg = ();
for(my $i = 0; $i < @a; $i++) {
my $a = $a[$i];
$a->[1] > $bp ? push(@up, $a) : push(@bm, $a);
$a->[1] > $bp ? push(@lrup, $a->[1]) : push(@lrbm, $a->[1]);
$a->[1] > $bp ? push(@upseg, $i+1) : push(@bmseg, $i+1);
}
my $upseg = join(",", @upseg);
my $bmseg = join(",", @bmseg);
my $lrupm = $stat->median(\@lrup);
my $lrbmm = $stat->median(\@lrbm);
my $cn = "NA";
if ( @bmseg < @upseg ) {
$cn = "Del" if ( $lrbmm < -0.25 );
} else {
$cn = "Dup" if ( $lrupm - $lrbmm > 0.55 );
}
if ( $cn eq "NA" ) {
$cn = "Amp" if ( $lrupm > 0.75 );
$cn = "Del" if ( $lrbmm < -0.5 );
}
print STDERR "Lower part median: $lrbmm(@bmseg) Upper part median: $lrupm(@upseg) at BP: $bp Call: $cn\n" if ( $opt_y );
next if ($cn eq "NA");
my @calls = ();
my ($bmisc, $bmi, $bmii);
my ($upisc, $upi, $upii);
#check arrays on consecutive numeration
if ( @up > 1 ) {
($bmisc, $bmi, $bmii) = isConsecutive(\@bm);
} else {
($upisc, $upi, $upii) = (1, -1, -1);
}
if ( @bm > 1 ) {
($upisc, $upi, $upii) = isConsecutive(\@up);
} else {
($bmisc, $bmi, $bmii) = (1, -1, -1);
}
if ( $bmisc && $cn eq "Del" ) {
if ( $bmi != -1 ) {
my $ti;
for(my $i = 0; $i < @up; $i++) {
$ti = $i if ( $up[$i]->[2] == $bmi );
}
splice(@bm, $bmii, 0, splice(@up, $ti, 1));
}
#@calls = ("BP", getCalls(\@bm, \@up, $cn));
@calls = ("BP", $cn, @bm+0, @a+0, $lrbmm, $bmseg);
my ($sig, $sdiff) = isSig(\@bm, \@up, $cn);
if ( $sig >= 0 && $sig < $minbp ) {
@sigbp = ($sig, @calls, $sdiff);
$minbp = $sig;
} elsif ( $sig > $maxmd ) {
@sigmd = ($sig, @calls, $sdiff);
$maxmd = $sig;
}
} elsif ( $upisc && $cn ne "Del" ) {
if ( $upi != -1 ) {
my $ti;
for(my $i = 0; $i < @bm; $i++) {
$ti = $i if ( $bm[$i]->[2] == $upi );
}
splice(@up, $upii, 0, splice(@bm, $ti, 1));
}
#@calls = ("BP", getCalls(\@up, \@bm, $cn));
@calls = ("BP", $cn, @up+0, @a+0, $lrupm, $upseg);
my ($sig, $sdiff) = isSig(\@up, \@bm, $cn);
if ( $sig >= 0 && $sig < $minbp ) {
@sigbp = ($sig, @calls, $sdiff);
$minbp = $sig;
} elsif ($sig > $maxmd ) {
@sigmd = ($sig, @calls, $sdiff);
$maxmd = $sig;
}
}
}
return @sigbp if ( @sigbp );
return @sigmd if ( @sigmd );
my ($sig, $bpi, $cn, $siglr, $sigdiff, $sigseg) = findBP(\@lr);
if ($sig != -1 ) {
return (sprintf("%.3g", $sig), "BP", $cn, $bpi, @a+0, sprintf("%.3g", $siglr), $sigseg, $sigdiff);
}
return ("-1", "", "", "", @a+0, "", "", "");
}
#not used
sub getCalls {
my ($ref1, $ref2, $cn) = @_;
my @tlr1 = map { $_->[1]; } @$ref1;
my @ti1 = map { $_->[2]; } @$ref1;
my @tlr2 = map { $_->[1]; } @$ref2;
my @ti2 = map { $_->[2]; } @$ref2;
my $mean1 = sprintf("%.3g", $stat->mean(\@tlr1));
my $mean2 = sprintf("%.3g", $stat->mean(\@tlr2));
my $segs = "";
my $mean;
my $ti = "";
if ( $cn == "Del" ) {
$cn = $mean1 < -0.35 ? "Del" : ($mean1 > 0.35 ? "Amp" : "NA");
$segs = @tlr1+0;
$mean = $mean1;
$ti = join(",", @ti1);
} else {
$cn = $mean2 < -0.35 ? "Del" : ($mean2 > 0.35 ? "Amp" : "NA");
$segs = @tlr2+0;
$mean = $mean2;
$ti = join(",", @ti2);
}
return ($cn, $segs, @$ref1+@$ref2, $mean, $ti);
}
# Find the candidate breakpoint values. If the biggest distance is bad quality (<0.02), return empty.
sub getBPS {
my $lr = shift;
my @lrs = sort {$a <=> $b} @$lr; #sort by median depths
my @dis = (); # distance between median depths
for(my $i = 1; $i < @lrs; $i++) {
push(@dis, [$lrs[$i] - $lrs[$i-1], $lrs[$i], $lrs[$i-1]]);
}
@dis = sort {$b->[0] <=> $a->[0]} @dis; #sort by distance
my @bps = ();
my $bpmax = $dis[0]->[0];
foreach my $bp (@dis) {
last if ( $bp->[0] < 0.02 );
last if ( $bp->[0] < $bpmax/2);
push(@bps, ($bp->[1]+$bp->[2])/2);
}
return @bps;
}
# Find the breakpoint in the middle, assuming resulting in two significant segments, where each
# segment has at least 4 amplicons/exons
sub findBP {
my $lr = shift;
return (-1, "", "", "", "", "") if (@$lr < 15);
my ($minp, $bpi, $siglr, $cn, $mindiff, $sigseg) = (1, 0, 0, "NA", 0, "");
for(my $i = $MINBPEXONS; $i < @$lr - $MINBPEXONS; $i++) {
my @x = sort { $a <=> $b } (map { $lr->[$_]; } (0 .. ($i-1)));
my @y = sort { $a <=> $b } (map { $lr->[$_]; } ($i .. (@$lr-1)));
my $bpleft = $stat->mean(\@x);
my $bpright = $stat->mean(\@y);
next if ( $bpleft > $bpright && $x[1] < $y[$#y-1] );
next if ( $bpleft < $bpright && $y[1] < $x[$#x-1] );
$ttest->load_data(\@x, \@y);
my $p = $ttest->{ t_prob };
my $diff = $ttest->mean_difference();
print STDERR "FindBP: $i $p $diff $bpleft $bpright\n" if ( $opt_y );
if (($p < $minp || ( ($p > 0 && $minp/$p < 10 && abs($diff) > $mindiff ) || ($p == 0 && abs($diff) > $mindiff) )) && (($p < $TTPVALUE && abs($diff) > $MINTTDIFF) || ($p < 0.001 && abs($diff) >= $MINTTDIFF && (abs($bpleft) > 0.80 || abs($bpright) > 0.80 )))) {
$minp = $p;
$bpi = abs($bpleft) > abs($bpright) ? $i : (@$lr - $i + 1);
$siglr = abs($bpleft) > abs($bpright) ? $bpleft : $bpright;
$sigseg = abs($bpleft) > abs($bpright) ? join(",", (1 .. $i)) : join(",", (($i+1) .. (@$lr+0)));
$cn = abs($bpleft) > abs($bpright) ? ($bpleft < -0.5 ? "Del" : ($bpleft > 0.5 ? "Amp" : "NA") ) : ($bpright < -0.5 ? "Del" : ($bpright > 0.5 ? "Amp" : "NA" ));
$mindiff = abs($diff);
}
}
if ($minp < 1) {
return ($minp, $bpi, $cn, $siglr, $mindiff, $sigseg);
}
return (-1, "", "", "", "", "");
}
#Calculate sig (significance) and sig diff between means of
sub isSig {
my ($a, $b, $cn) = @_;
my @x = map { $_->[1]; } @$a;
my @y = map { $_->[1]; } @$b;
if (@$a >= 3 && @$b >= 3) {
$ttest->load_data(\@x, \@y);
my $p = $ttest->{ t_prob };
my $diff = $ttest->mean_difference();
print STDERR "p: $p $diff ", @x+0, " CN: $cn\n" if ( $opt_y );
return (sprintf("%.3g", $p), abs($diff)) if ( ($p < $PVALUE && abs($diff) >= $MINDIFF ) || ($p < 0.001 && abs($diff) >= $MINDIFF && (abs($stat->mean(\@x)) > 0.80 || abs($stat->mean(\@y)) > 0.80 )) );
return (sprintf("%.3g", $p), abs($diff)) if ( $cn eq "Dup" && ($p < $PVALUE && abs($diff) >= $DUPDIFF ) || ($p < 0.001 && abs($diff) >= $DUPDIFF && (abs($stat->mean(\@x)) > 0.80 || abs($stat->mean(\@y)) > 0.80 )) );
} elsif( @$a >= $MINSEGS && @$b >= 3 ) {
my $med = $stat->median(\@y);
my $mad = $stat->mad(\@y, 1);
$mad += 0.1 unless($mad);
my @t = map { ($_->[1]-$med)/$mad; } @$a;
my $mean = $stat->mean(\@t);
#my $sum = $stat->sum(\@t);
my $sum = $mean * sqrt(@t+0);
my $diff = abs($stat->mean(\@x)-$stat->mean(\@y));
print STDERR "MAD: A Mean: $mean Sum: $sum Diff: $diff Cnt: ", @t+0, " CN: $cn\n" if ( $opt_y );
return (sprintf("%.3g", abs($sum)), $diff) if ( abs($sum) > $MINMAD && $diff > $EXONDIFF ); # || abs($stat->mean(\@x)-$stat->mean(\@y)) > 1.0 );
return (sprintf("%.3g", abs($sum)), $diff) if ( $cn eq "Dup" && abs($sum) > $DUPMAD && $diff > $DUPDIFF ); # || abs($stat->mean(\@x)-$stat->mean(\@y)) > 1.0 );
} elsif( @$b >= $MINSEGS && @$a >= 3 ) {
my $med = $stat->median(\@x);
my $mad = $stat->mad(\@x, 1);
#print STDERR join("\t", @x, $mad), "\n" unless($mad);
$mad += 0.1 unless($mad);
my @t = map { ($_->[1]-$med)/$mad; } @$b;
my $mean = $stat->mean(\@t);
#my $sum = $stat->sum(\@t);
my $sum = $mean * sqrt(@t+0);
my $diff = abs($stat->mean(\@x)-$stat->mean(\@y));
print STDERR "MAD: B Mean: $mean Sum: $sum Diff: $diff Cnt: ", @t+0, " CN: $cn\n" if ( $opt_y );
return (sprintf("%.3g", abs($sum)), $diff) if ( abs($sum) > $MINMAD && $diff > $EXONDIFF ); # || abs($stat->mean(\@x)-$stat->mean(\@y)) > 1.0 );
return (sprintf("%.3g", abs($sum)), $diff) if ( $cn eq "Dup" && abs($sum) > $DUPMAD && $diff > $DUPDIFF ); # || abs($stat->mean(\@x)-$stat->mean(\@y)) > 1.0 );
}
return (-1, ""); # Either too few to tell or not sig
}
#Determine if arrays elements numeration is consecutive (one outlier allowed for arrays >= 10 elements)
sub isConsecutive {
my $ref = shift;
my $skip = 0;
my ($si, $sii) = (-1, -1);
for(my $i = 1; $i < @$ref; $i++) {
$skip += $ref->[$i]->[2] - $ref->[$i-1]->[2] - 1;
# if numeration differs on two positions, return its number and order in array for post-adjusting
($si, $sii) = ($ref->[$i]->[2] - 1, $i) if ( $ref->[$i]->[2] - $ref->[$i-1]->[2] == 2 );
}
return (1, $si, $sii) if ( $skip == 0 );
if ( $skip == 1 && @$ref >=10 ) { # one outlier allowed
return (1, $si, $sii);
}
return (0, $si, $sii);
}
sub USAGE {
getopts( 'aPc:F:s:A:D:' );
print <<USAGE;
Usage: $0 [-aPH] [-cy] [-F float] [-s min_amplicon_#] [-A float] [-D float] cov2lr.txt
The $0 program will convert a coverage file to copy number profile. The default parameters are designed for
detecting such aberrations for high tumor purity samples, such as cancer cell lines. For clinical samples,
many parameters need to be adjusted.
Arguments are:
cov2lr.txt: The coverage output file from cov2lr.pl script. Can also take from standard in or more than
one file.
Options are:
-c Indidate that control sample is used for normalization
-y Debugging mode
-s int
The minimum consecutive amplicons to look for deletions and amplifications. Default: 1. Use with caution
when it is less than 3. There might be more false positives. Though it has been successfully applied with
option "-s 1" and identified one-exon deletion of PTEN and TP53 that were confirmed by RNA-seq.
For whole gene:
-A float
Minimum log2 ratio for a whole gene to be considered amplified. Default: 1.50
-D float
Minimum log2 ratio for a whole gene to be considered deleted. Default: -2.00
For < 3 exons:
-E float
Minimum mean log2 ratio difference for <3 exon deletion/amplification to be called. Default: 1.25
-M float
When considering partial deletions less than 3 exons/amplicons, the minimum MAD value, in addition to -E,
before considering it to be amplified or deleted. Default: 10
-d float
When considering >=3 exons deletion/amplification within a gene, the minimum differences between the log2 of two segments.
Default: 0.5
-p float (0-1)
The p-value for t-test when consecutive exons/amplicons are >= 3. Default: 0.00001
For break point in the middle of the gene:
-e float
When considering breakpoint in the middle of a gene, the minimum number of exons. Default: 5
-t float
When considering breakpoint in the middle of a gene, the minimum differences between the log2 of two segments.
Default: 0.4
-P float (0-1)
The p-value for t-test when the breakpoint is in the middle with min exons/amplicons >= [-e]. Default: 0.000001
For cohort level aberrations:
-R float (0-1)
If a breakpoint has been detected more than "float" fraction of samples, it is considered false positive and removed.
Default: 0.03, or 3%. Use in combination with -N
-N int
If a breakpoint has been detected more than "int" samples, it is considered false positives and removed.
Default: 5. Use in combination with -R.
AUTHOR
Written by Zhongwu Lai, AstraZeneca, Boston, USA
REPORTING BUGS
Report bugs to zhongwu\@yahoo.com
COPYRIGHT
This is free software: you are free to change and redistribute it. There is NO WARRANTY, to the extent permitted by law.
USAGE
exit(0);
}