-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathphenix-table-reader.py
executable file
·130 lines (117 loc) · 4.1 KB
/
phenix-table-reader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
#!/usr/bin/env python
import sys
import re
import os
import glob
import pandas as pd
renamer = {
'hum-pko': 'Digitonin',
'hum-pko-nd': 'Nanodisc',
'hum-pko-deg': 'Difab',
'hum-pko-deg_monofab': 'Monofab',
'jan-mouse-31': 'Uncleaved',
'mouse-tryp': 'Trypsin'
}
def parse_phenix_table(path):
print(path)
separated_path = path.split(os.path.sep)
mb_root = separated_path.index('model-building')
construct = separated_path[mb_root + 1]
construct = renamer[construct]
try:
with open(path, 'r') as f:
lines = [re.split(r'\s{2,}', x.rstrip()) for x in f]
except FileNotFoundError:
return None
# drop empty entries
lines = [[y for y in x if y] for x in lines]
lines = [x for x in lines if x]
while lines:
line = lines.pop(0)
if line[0] == 'Atoms':
num_atoms = f'{int(line[1].split(" ")[0]):,}'
elif line[0] == 'Residues':
num_residues = int(line[1].split(' ')[1])
elif line[0] == 'Ligands':
line[0] = line[1]
is_ligand = True
num_ligands = 0
while is_ligand:
ligand, number = line[0].split(': ')
if ligand == 'UNK':
num_residues += int(number)
else:
num_ligands += int(number)
line = lines.pop(0)
if line[0].split(' ')[0] == 'Bonds':
is_ligand = False
num_ligands = f'{num_ligands:,}'
num_residues = f'{num_residues:,}'
elif line[0] == 'Length (Å) (# > 4σ)':
length_rmsd = line[1].split(' ')[0]
elif line[0] == 'Angles (°) (# > 4σ)':
angle_rmsd = line[1].split(' ')[0]
elif line[0] == 'MolProbity score':
molprob_score = line[1]
elif line[0] == 'Clash score':
clash_score = line[1]
elif line[0] == 'Ramachandran plot (%)':
line = lines.pop(0)
rama_outliers = line[1]
line = lines.pop(0)
rama_allowed = line[1]
line = lines.pop(0)
rama_favored = line[1]
line = lines.pop(0)
elif line[0] == 'Rotamer outliers (%)':
rot_outliers = line[1]
elif line[0] == 'Cβ outliers (%)':
cbeta_outliers = line[1]
elif line[0] == 'CaBLAM outliers (%)':
cablam_outliers = line[1]
elif line[0] == 'd FSC model (0/0.143/0.5)':
fsc_res = line[1].split('/')[1]
elif line[0] == 'CC (mask)':
cc_mask = line[1]
to_write = [
construct,
num_atoms, num_residues, num_ligands,
length_rmsd, angle_rmsd, molprob_score,
clash_score, rama_outliers, rama_allowed,
rama_favored, rot_outliers, cbeta_outliers,
cablam_outliers, fsc_res, cc_mask
]
return to_write
if __name__ == '__main__':
if len(sys.argv) != 2:
print('Give path to model building root. Each model should be in a subdir, and symlinked to the phenix project.')
sys.exit(1)
mb_root = sys.argv[1]
latest_models = glob.glob(os.path.join(mb_root, '*', '*latest.pdb'))
phenix_tables = [os.path.join(os.path.dirname(os.path.realpath(x)), 'table_one.txt') for x in latest_models]
print(*phenix_tables, sep='\n')
columns = [parse_phenix_table(x) for x in phenix_tables]
columns = [x for x in columns if x]
df = {
'Section': ['Model Building'] * (len(columns[0]) - 1),
'Parameter': [
"No. non-H atoms",
"No. residues",
"No. ligands",
"Bond length RMSD",
"Bond angle RMSD",
'Molprobity score',
'Clash score',
'Rama. outliers (%)',
'Rama. allowed (%)',
'Rama. favored (%)',
'Rotamer outliers',
'Cβ outliers',
'CaBLAM outliers',
"Resolution (0.143 FSC)",
"CC (mask)"
]
}
for column in columns:
df[column[0]] = column[1:]
pd.DataFrame(df).to_csv('processed_tables.csv', index=False)