diff --git a/CHANGELOG.md b/CHANGELOG.md index d39af8d57..19d182520 100644 --- a/CHANGELOG.md +++ b/CHANGELOG.md @@ -1,11 +1,15 @@ Changelog ========= -New Feature +New Features +- Bounce integral methods with ``desc.integrals.Bounce2D``. +- Effective ripple ``desc.objectives.EffectiveRipple`` and Gamma_c ``desc.objectives.Gamma_c`` optimization objectives. +- See GitHub pull requests [#1003](https://github.com/PlasmaControl/DESC/pull/1003), [#1042](https://github.com/PlasmaControl/DESC/pull/1042), [#1119](https://github.com/PlasmaControl/DESC/pull/1119), and [#1290](https://github.com/PlasmaControl/DESC/pull/1290) for more details. +- Many new compute quantities for partial derivatives in different coordinate systems. - Adds a new profile class ``PowerProfile`` for raising profiles to a power. - Add ``desc.objectives.LinkingCurrentConsistency`` for ensuring that coils in a stage 2 or single stage optimization provide the required linking current for a given equilibrium. -- Adds an option ``scaled_termination`` (defaults to True) to all of the desc optimizers to measure the norms for ``xtol`` and ``gtol`` in the scaled norm provided by ``x_scale`` (which defaults to using an adaptive scaling based on the Jacobian or Hessian). This should make things more robust when optimizing parameters with widely different magnitudes. The old behavior can be recovered by passing ``options={"scaled_termination": False}``. +- Adds an option ``scaled_termination`` (defaults to True) to all the desc optimizers to measure the norms for ``xtol`` and ``gtol`` in the scaled norm provided by ``x_scale`` (which defaults to using an adaptive scaling based on the Jacobian or Hessian). This should make things more robust when optimizing parameters with widely different magnitudes. The old behavior can be recovered by passing ``options={"scaled_termination": False}``. - ``desc.objectives.Omnigenity`` is now vectorized and able to optimize multiple surfaces at the same time. Previously it was required to use a different objective for each surface. - Adds a new objective ``desc.objectives.MirrorRatio`` for targeting a particular mirror ratio on each flux surface, for either an ``Equilibrium`` or ``OmnigenousField``. - Adds the output quantities ``wb`` and ``wp`` to ``VMECIO.save``. @@ -14,11 +18,14 @@ Bug Fixes - Small bug fix to use the correct normalization length ``a`` in the BallooningStability objective. - Fixed I/O bug when saving/loading ``_Profile`` classes that do not have a ``_params`` attribute. +- Minor bugs described in [#1323](https://github.com/PlasmaControl/DESC/pull/1323). +- Corrects basis vectors computations made on surface objects [#1175](https://github.com/PlasmaControl/DESC/pull/1175). v0.13.0 ------- New Features + - Adds ``from_input_file`` method to ``Equilibrium`` class to generate an ``Equilibrium`` object with boundary, profiles, resolution and flux specified in a given DESC or VMEC input file - Adds function ``solve_regularized_surface_current`` to ``desc.magnetic_fields`` module that implements the REGCOIL algorithm (Landreman, (2017)) for surface current normal field optimization * Can specify the tuple ``current_helicity=(M_coil, N_coil)`` to determine if resulting contours correspond to helical topology (both ``(M_coil, N_coil)`` not equal to 0), modular (``N_coil`` equal to 0 and ``M_coil`` nonzero) or windowpane/saddle (``M_coil`` and ``N_coil`` both zero) diff --git a/desc/batching.py b/desc/batching.py index ec45b29aa..8c0a37ccb 100644 --- a/desc/batching.py +++ b/desc/batching.py @@ -174,6 +174,15 @@ def _chunk_vmapped_function( return functools.partial(_eval_fun_in_chunks, vmapped_fun, chunk_size, argnums) +def batch_map(fun, fun_input, batch_size): + """Compute vectorized ``fun`` in batches.""" + return ( + fun(fun_input) + if batch_size is None + else _eval_fun_in_chunks(fun, batch_size, (0,), fun_input) + ) + + def _parse_in_axes(in_axes): if isinstance(in_axes, int): in_axes = (in_axes,) diff --git a/desc/compute/__init__.py b/desc/compute/__init__.py index c926e891b..d39c292c8 100644 --- a/desc/compute/__init__.py +++ b/desc/compute/__init__.py @@ -31,6 +31,7 @@ _bootstrap, _core, _curve, + _deprecated, _equil, _field, _geometry, diff --git a/desc/compute/_deprecated.py b/desc/compute/_deprecated.py new file mode 100644 index 000000000..0c49d55ac --- /dev/null +++ b/desc/compute/_deprecated.py @@ -0,0 +1,382 @@ +"""Deprecated compute functions. + +These are kept for verification purposes. They do not +appear in the public documentation under the list of variables. +""" + +from functools import partial + +from orthax.legendre import leggauss + +from desc.backend import imap, jit, jnp + +from ..integrals.bounce_integral import Bounce1D +from ..integrals.quad_utils import ( + automorphism_sin, + chebgauss2, + get_quadrature, + grad_automorphism_sin, +) +from ..utils import cross, dot, safediv +from ._fast_ion import _cvdrift0, _drift1, _drift2, _v_tau +from ._neoclassical import _bounce_doc, _dH, _dI +from .data_index import register_compute_fun + +_bounce1D_doc = { + "num_well": _bounce_doc["num_well"], + "num_quad": _bounce_doc["num_quad"], + "num_pitch": _bounce_doc["num_pitch"], + "quad": _bounce_doc["quad"], +} + + +def _compute(fun, fun_data, data, grid, num_pitch, simp=False, reduce=True): + """Compute ``fun`` for each α and ρ value iteratively. + + Parameters + ---------- + fun : callable + Function to compute. + fun_data : dict[str, jnp.ndarray] + Data to provide to ``fun``. This dict will be modified. + data : dict[str, jnp.ndarray] + DESC data dict. + simp : bool + Whether to use an open Simpson rule instead of uniform weights. + reduce : bool + Whether to compute mean over α and expand to grid. + Default is true. + + """ + pitch_inv, pitch_inv_weight = Bounce1D.get_pitch_inv_quad( + grid.compress(data["min_tz |B|"]), + grid.compress(data["max_tz |B|"]), + num_pitch, + simp=simp, + ) + + def foreach_rho(x): + # using same λ values for every field line α on flux surface ρ + x["pitch_inv"] = pitch_inv + x["pitch_inv weight"] = pitch_inv_weight + return imap(fun, x) + + for name in Bounce1D.required_names: + fun_data[name] = data[name] + for name in fun_data: + fun_data[name] = Bounce1D.reshape(grid, fun_data[name]) + out = imap(foreach_rho, fun_data) + # Simple mean over α rather than integrating over α and dividing by 2π + # (i.e. f.T.dot(dα) / dα.sum()), because when the toroidal angle extends + # beyond one transit we need to weight all field lines uniformly, regardless + # of their spacing wrt α. + return grid.expand(out.mean(axis=0)) if reduce else out + + +@register_compute_fun( + name="deprecated(effective ripple 3/2)", + label=( + # ε¹ᐧ⁵ = π/(8√2) R₀²〈|∇ψ|〉⁻² B₀⁻¹ ∫dλ λ⁻² 〈 ∑ⱼ Hⱼ²/Iⱼ 〉 + "\\epsilon_{\\mathrm{eff}}^{3/2} = \\frac{\\pi}{8 \\sqrt{2}} " + "R_0^2 \\langle \\vert\\nabla \\psi\\vert \\rangle^{-2} " + "B_0^{-1} \\int d\\lambda \\lambda^{-2} " + "\\langle \\sum_j H_j^2 / I_j \\rangle" + ), + units="~", + units_long="None", + description="Effective ripple modulation amplitude to 3/2 power", + dim=1, + params=[], + transforms={"grid": []}, + profiles=[], + coordinates="r", + data=[ + "min_tz |B|", + "max_tz |B|", + "kappa_g", + "R0", + "|grad(rho)|", + "<|grad(rho)|>", + "fieldline length", + ] + + Bounce1D.required_names, + resolution_requirement="z", + source_grid_requirement={"coordinates": "raz", "is_meshgrid": True}, + **_bounce1D_doc, +) +@partial(jit, static_argnames=["num_well", "num_quad", "num_pitch"]) +def _epsilon_32_1D(params, transforms, profiles, data, **kwargs): + """Effective ripple modulation amplitude to 3/2 power. + + Evaluation of 1/ν neoclassical transport in stellarators. + V. V. Nemov, S. V. Kasilov, W. Kernbichler, M. F. Heyn. + https://doi.org/10.1063/1.873749. + Phys. Plasmas 1 December 1999; 6 (12): 4622–4632. + """ + # noqa: unused dependency + num_well = kwargs.get("num_well", None) + num_pitch = kwargs.get("num_pitch", 51) + quad = ( + kwargs["quad"] if "quad" in kwargs else chebgauss2(kwargs.get("num_quad", 32)) + ) + + def eps_32(data): + """(∂ψ/∂ρ)⁻² B₀⁻³ ∫ dλ λ⁻² ∑ⱼ Hⱼ²/Iⱼ.""" + # B₀ has units of λ⁻¹. + # Nemov's ∑ⱼ Hⱼ²/Iⱼ = (∂ψ/∂ρ)² (λB₀)³ ``(H**2 / I).sum(axis=-1)``. + # (λB₀)³ d(λB₀)⁻¹ = B₀² λ³ d(λ⁻¹) = -B₀² λ dλ. + bounce = Bounce1D(grid, data, quad, is_reshaped=True) + H, I = bounce.integrate( + [_dH, _dI], + data["pitch_inv"], + data, + "|grad(rho)|*kappa_g", + bounce.points(data["pitch_inv"], num_well=num_well), + ) + return jnp.sum( + safediv(H**2, I).sum(axis=-1) + * data["pitch_inv weight"] + / data["pitch_inv"] ** 3, + axis=-1, + ) + + grid = transforms["grid"].source_grid + B0 = data["max_tz |B|"] + data["deprecated(effective ripple 3/2)"] = ( + _compute( + eps_32, + fun_data={"|grad(rho)|*kappa_g": data["|grad(rho)|"] * data["kappa_g"]}, + data=data, + grid=grid, + num_pitch=num_pitch, + simp=True, + ) + / data["fieldline length"] + * (B0 * data["R0"] / data["<|grad(rho)|>"]) ** 2 + * jnp.pi + / (8 * 2**0.5) + ) + return data + + +@register_compute_fun( + name="deprecated(effective ripple)", + label="\\epsilon_{\\mathrm{eff}}", + units="~", + units_long="None", + description="Neoclassical transport in the banana regime", + dim=1, + params=[], + transforms={}, + profiles=[], + coordinates="r", + data=["deprecated(effective ripple 3/2)"], +) +def _effective_ripple_1D(params, transforms, profiles, data, **kwargs): + """Proxy for neoclassical transport in the banana regime. + + A 3D stellarator magnetic field admits ripple wells that lead to enhanced + radial drift of trapped particles. In the banana regime, neoclassical (thermal) + transport from ripple wells can become the dominant transport channel. + The effective ripple (ε) proxy estimates the neoclassical transport + coefficients in the banana regime. + """ + data["deprecated(effective ripple)"] = data["deprecated(effective ripple 3/2)"] ** ( + 2 / 3 + ) + return data + + +@register_compute_fun( + name="deprecated(Gamma_c)", + label=( + # Γ_c = π/(8√2) ∫ dλ 〈 ∑ⱼ [v τ γ_c²]ⱼ 〉 + "\\Gamma_c = \\frac{\\pi}{8 \\sqrt{2}} " + "\\int d\\lambda \\langle \\sum_j (v \\tau \\gamma_c^2)_j \\rangle" + ), + units="~", + units_long="None", + description="Fast ion confinement proxy", + dim=1, + params=[], + transforms={"grid": []}, + profiles=[], + coordinates="r", + data=[ + "min_tz |B|", + "max_tz |B|", + "B^phi", + "B^phi_r|v,p", + "|B|_r|v,p", + "b", + "grad(phi)", + "grad(psi)", + "|grad(psi)|", + "|grad(rho)|", + "|e_alpha|r,p|", + "kappa_g", + "iota_r", + "fieldline length", + ] + + Bounce1D.required_names, + source_grid_requirement={"coordinates": "raz", "is_meshgrid": True}, + **_bounce1D_doc, +) +@partial(jit, static_argnames=["num_well", "num_quad", "num_pitch"]) +def _Gamma_c_1D(params, transforms, profiles, data, **kwargs): + """Fast ion confinement proxy as defined by Nemov et al. + + Poloidal motion of trapped particle orbits in real-space coordinates. + V. V. Nemov, S. V. Kasilov, W. Kernbichler, G. O. Leitold. + Phys. Plasmas 1 May 2008; 15 (5): 052501. + https://doi.org/10.1063/1.2912456. + Equation 61. + + A 3D stellarator magnetic field admits ripple wells that lead to enhanced + radial drift of trapped particles. The energetic particle confinement + metric γ_c quantifies whether the contours of the second adiabatic invariant + close on the flux surfaces. In the limit where the poloidal drift velocity + majorizes the radial drift velocity, the contours lie parallel to flux + surfaces. The optimization metric Γ_c averages γ_c² over the distribution + of trapped particles on each flux surface. + + The radial electric field has a negligible effect, since fast particles + have high energy with collisionless orbits, so it is assumed to be zero. + """ + # noqa: unused dependency + num_pitch = kwargs.get("num_pitch", 64) + num_well = kwargs.get("num_well", None) + quad = ( + kwargs["quad"] + if "quad" in kwargs + else get_quadrature( + leggauss(kwargs.get("num_quad", 32)), + (automorphism_sin, grad_automorphism_sin), + ) + ) + + def Gamma_c(data): + """∫ dλ ∑ⱼ [v τ γ_c²]ⱼ π²/4.""" + bounce = Bounce1D(grid, data, quad, is_reshaped=True) + points = bounce.points(data["pitch_inv"], num_well=num_well) + v_tau, drift1, drift2 = bounce.integrate( + [_v_tau, _drift1, _drift2], + data["pitch_inv"], + data, + ["|grad(psi)|*kappa_g", "|B|_r|v,p", "K"], + points, + ) + # This is γ_c π/2. + gamma_c = jnp.arctan( + safediv( + drift1, + drift2 + * bounce.interp_to_argmin(data["|grad(rho)|*|e_alpha|r,p|"], points), + ) + ) + return jnp.sum( + jnp.sum(v_tau * gamma_c**2, axis=-1) + * data["pitch_inv weight"] + / data["pitch_inv"] ** 2, + axis=-1, + ) + + grid = transforms["grid"].source_grid + data["deprecated(Gamma_c)"] = _compute( + Gamma_c, + fun_data={ + "|grad(psi)|*kappa_g": data["|grad(psi)|"] * data["kappa_g"], + "|grad(rho)|*|e_alpha|r,p|": data["|grad(rho)|"] * data["|e_alpha|r,p|"], + "|B|_r|v,p": data["|B|_r|v,p"], + "K": data["iota_r"] + * dot(cross(data["grad(psi)"], data["b"]), data["grad(phi)"]) + - ( + 2 * data["|B|_r|v,p"] + - data["|B|"] * data["B^phi_r|v,p"] / data["B^phi"] + ), + }, + data=data, + grid=grid, + num_pitch=num_pitch, + simp=False, + ) / (data["fieldline length"] * 2**1.5 * jnp.pi) + return data + + +def _gbdrift(data, B, pitch): + return safediv( + data["gbdrift"] * (1 - 0.5 * pitch * B), jnp.sqrt(jnp.abs(1 - pitch * B)) + ) + + +@register_compute_fun( + name="deprecated(Gamma_c Velasco)", + label=( + # Γ_c = π/(8√2) ∫ dλ 〈 ∑ⱼ [v τ γ_c²]ⱼ 〉 + "\\Gamma_c = \\frac{\\pi}{8 \\sqrt{2}} " + "\\int d\\lambda \\langle \\sum_j (v \\tau \\gamma_c^2)_j \\rangle" + ), + units="~", + units_long="None", + description="Fast ion confinement proxy " + "as defined by Velasco et al. (doi:10.1088/1741-4326/ac2994)", + dim=1, + params=[], + transforms={"grid": []}, + profiles=[], + coordinates="r", + data=["min_tz |B|", "max_tz |B|", "cvdrift0", "gbdrift", "fieldline length"] + + Bounce1D.required_names, + source_grid_requirement={"coordinates": "raz", "is_meshgrid": True}, + **_bounce1D_doc, +) +@partial(jit, static_argnames=["num_well", "num_quad", "num_pitch"]) +def _Gamma_c_Velasco_1D(params, transforms, profiles, data, **kwargs): + """Fast ion confinement proxy as defined by Velasco et al. + + A model for the fast evaluation of prompt losses of energetic ions in stellarators. + J.L. Velasco et al. 2021 Nucl. Fusion 61 116059. + https://doi.org/10.1088/1741-4326/ac2994. + Equation 16. + """ + # noqa: unused dependency + num_well = kwargs.get("num_well", None) + num_pitch = kwargs.get("num_pitch", 64) + quad = ( + kwargs["quad"] + if "quad" in kwargs + else get_quadrature( + leggauss(kwargs.get("num_quad", 32)), + (automorphism_sin, grad_automorphism_sin), + ) + ) + + def Gamma_c(data): + """∫ dλ ∑ⱼ [v τ γ_c²]ⱼ π²/4.""" + bounce = Bounce1D(grid, data, quad, is_reshaped=True) + points = bounce.points(data["pitch_inv"], num_well=num_well) + v_tau, cvdrift0, gbdrift = bounce.integrate( + [_v_tau, _cvdrift0, _gbdrift], + data["pitch_inv"], + data, + ["cvdrift0", "gbdrift"], + points, + ) + gamma_c = jnp.arctan(safediv(cvdrift0, gbdrift)) # This is γ_c π/2. + return jnp.sum( + jnp.sum(v_tau * gamma_c**2, axis=-1) + * data["pitch_inv weight"] + / data["pitch_inv"] ** 2, + axis=-1, + ) + + grid = transforms["grid"].source_grid + data["deprecated(Gamma_c Velasco)"] = _compute( + Gamma_c, + fun_data={"cvdrift0": data["cvdrift0"], "gbdrift": data["gbdrift"]}, + data=data, + grid=grid, + num_pitch=num_pitch, + simp=False, + ) / (data["fieldline length"] * 2**1.5 * jnp.pi) + return data diff --git a/desc/compute/_fast_ion.py b/desc/compute/_fast_ion.py new file mode 100644 index 000000000..a260d5a6f --- /dev/null +++ b/desc/compute/_fast_ion.py @@ -0,0 +1,355 @@ +"""Compute functions for fast ion confinement.""" + +from functools import partial + +from orthax.legendre import leggauss + +from desc.backend import jit, jnp + +from ..batching import batch_map +from ..integrals.bounce_integral import Bounce2D +from ..integrals.quad_utils import ( + automorphism_sin, + get_quadrature, + grad_automorphism_sin, +) +from ..utils import cross, dot, safediv +from ._neoclassical import _bounce_doc, _compute +from .data_index import register_compute_fun + +# We rewrite equivalents of Nemov et al.'s expressions (21, 22) to resolve +# the indeterminate form of the limit and using single-valued maps of a +# physical coordinates. This avoids the computational issues of multivalued +# maps. +# The derivative (∂/∂ψ)|ϑ,ϕ belongs to flux coordinates which satisfy +# α = ϑ − χ(ψ) ϕ where α is the poloidal label of ψ,α Clebsch coordinates. +# Choosing χ = ι implies ϑ, ϕ are PEST angles. +# ∂G/∂((λB₀)⁻¹) = λ²B₀ ∫ dℓ (1 − λ|B|/2) / √(1 − λ|B|) ∂|B|/∂ψ / |B| +# ∂V/∂((λB₀)⁻¹) = 3/2 λ²B₀ ∫ dℓ √(1 − λ|B|) R / |B| +# ∂g/∂((λB₀)⁻¹) = λ²B₀² ∫ dℓ (1 − λ|B|/2) / √(1 − λ|B|) |∇ψ| κ_g / |B| +# K ≝ R dψ/dρ +# tan(π/2 γ_c) = +# ∫ dℓ (1 − λ|B|/2) / √(1 − λ|B|) |∇ψ| κ_g / |B| +# ---------------------------------------------- +# (|∇ρ| ‖e_α|ρ,ϕ‖)ᵢ ∫ dℓ [ (1 − λ|B|/2)/√(1 − λ|B|) ∂|B|/∂ρ + √(1 − λ|B|) K ] / |B| + + +def _v_tau(data, B, pitch): + # Note v τ = 4λ⁻²B₀⁻¹ ∂I/∂((λB₀)⁻¹) where v is the particle velocity, + # τ is the bounce time, and I is defined in Nemov eq. 36. + return safediv(2.0, jnp.sqrt(jnp.abs(1 - pitch * B))) + + +def _drift1(data, B, pitch): + return ( + safediv(1 - 0.5 * pitch * B, jnp.sqrt(jnp.abs(1 - pitch * B))) + * data["|grad(psi)|*kappa_g"] + / B + ) + + +def _drift2(data, B, pitch): + return ( + safediv(1 - 0.5 * pitch * B, jnp.sqrt(jnp.abs(1 - pitch * B))) + * data["|B|_r|v,p"] + + jnp.sqrt(jnp.abs(1 - pitch * B)) * data["K"] + ) / B + + +@register_compute_fun( + name="Gamma_c", + label=( + # Γ_c = π/(8√2) ∫ dλ 〈 ∑ⱼ [v τ γ_c²]ⱼ 〉 + "\\Gamma_c = \\frac{\\pi}{8 \\sqrt{2}} " + "\\int d\\lambda \\langle \\sum_j (v \\tau \\gamma_c^2)_j \\rangle" + ), + units="~", + units_long="None", + description="Fast ion confinement proxy", + dim=1, + params=[], + transforms={"grid": []}, + profiles=[], + coordinates="r", + data=[ + "min_tz |B|", + "max_tz |B|", + "B^phi", + "B^phi_r|v,p", + "|B|_r|v,p", + "b", + "grad(phi)", + "grad(psi)", + "|grad(psi)|", + "|grad(rho)|", + "|e_alpha|r,p|", + "kappa_g", + "iota_r", + ] + + Bounce2D.required_names, + resolution_requirement="tz", + grid_requirement={"can_fft2": True}, + **_bounce_doc, +) +@partial( + jit, + static_argnames=[ + "Y_B", + "num_transit", + "num_well", + "num_quad", + "num_pitch", + "pitch_batch_size", + "surf_batch_size", + "spline", + ], +) +def _Gamma_c(params, transforms, profiles, data, **kwargs): + """Fast ion confinement proxy as defined by Nemov et al. + + Poloidal motion of trapped particle orbits in real-space coordinates. + V. V. Nemov, S. V. Kasilov, W. Kernbichler, G. O. Leitold. + Phys. Plasmas 1 May 2008; 15 (5): 052501. + https://doi.org/10.1063/1.2912456. + Equation 61. + + A 3D stellarator magnetic field admits ripple wells that lead to enhanced + radial drift of trapped particles. The energetic particle confinement + metric γ_c quantifies whether the contours of the second adiabatic invariant + close on the flux surfaces. In the limit where the poloidal drift velocity + majorizes the radial drift velocity, the contours lie parallel to flux + surfaces. The optimization metric Γ_c averages γ_c² over the distribution + of trapped particles on each flux surface. + + The radial electric field has a negligible effect, since fast particles + have high energy with collisionless orbits, so it is assumed to be zero. + """ + # noqa: unused dependency + theta = kwargs["theta"] + Y_B = kwargs.get("Y_B", theta.shape[-1] * 2) + num_transit = kwargs.get("num_transit", 20) + num_pitch = kwargs.get("num_pitch", 64) + num_well = kwargs.get("num_well", Y_B * num_transit) + pitch_batch_size = kwargs.get("pitch_batch_size", None) + surf_batch_size = kwargs.get("surf_batch_size", 1) + assert ( + surf_batch_size == 1 or pitch_batch_size is None + ), f"Expected pitch_batch_size to be None, got {pitch_batch_size}." + spline = kwargs.get("spline", True) + fieldline_quad = ( + kwargs["fieldline_quad"] if "fieldline_quad" in kwargs else leggauss(Y_B // 2) + ) + quad = ( + kwargs["quad"] + if "quad" in kwargs + else get_quadrature( + leggauss(kwargs.get("num_quad", 32)), + (automorphism_sin, grad_automorphism_sin), + ) + ) + + def Gamma_c(data): + bounce = Bounce2D( + grid, + data, + data["theta"], + Y_B, + num_transit, + quad=quad, + is_fourier=True, + spline=spline, + ) + + def fun(pitch_inv): + points = bounce.points(pitch_inv, num_well=num_well) + v_tau, drift1, drift2 = bounce.integrate( + [_v_tau, _drift1, _drift2], + pitch_inv, + data, + ["|grad(psi)|*kappa_g", "|B|_r|v,p", "K"], + points, + is_fourier=True, + ) + # This is γ_c π/2. + gamma_c = jnp.arctan( + safediv( + drift1, + drift2 + * bounce.interp_to_argmin( + data["|grad(rho)|*|e_alpha|r,p|"], points, is_fourier=True + ), + ) + ) + return jnp.sum(v_tau * gamma_c**2, axis=-1) + + return jnp.sum( + batch_map(fun, data["pitch_inv"], pitch_batch_size) + * data["pitch_inv weight"] + / data["pitch_inv"] ** 2, + axis=-1, + ) / (bounce.compute_fieldline_length(fieldline_quad) * 2**1.5 * jnp.pi) + + grid = transforms["grid"] + # It is assumed the grid is sufficiently dense to reconstruct |B|, + # so anything smoother than |B| may be captured accurately as a single + # Fourier series rather than transforming each component. + # Last term in K behaves as ∂log(|B|²/B^ϕ)/∂ρ |B| if one ignores the issue + # of a log argument with units. Smoothness determined by positive lower bound + # of log argument, and hence behaves as ∂log(|B|)/∂ρ |B| = ∂|B|/∂ρ. + data["Gamma_c"] = _compute( + Gamma_c, + fun_data={ + "|grad(psi)|*kappa_g": data["|grad(psi)|"] * data["kappa_g"], + "|grad(rho)|*|e_alpha|r,p|": data["|grad(rho)|"] * data["|e_alpha|r,p|"], + "|B|_r|v,p": data["|B|_r|v,p"], + "K": data["iota_r"] + * dot(cross(data["grad(psi)"], data["b"]), data["grad(phi)"]) + - ( + 2 * data["|B|_r|v,p"] + - data["|B|"] * data["B^phi_r|v,p"] / data["B^phi"] + ), + }, + data=data, + theta=theta, + grid=grid, + num_pitch=num_pitch, + simp=False, + surf_batch_size=surf_batch_size, + ) + return data + + +def _cvdrift0(data, B, pitch): + return safediv( + data["cvdrift0"] * (1 - 0.5 * pitch * B), jnp.sqrt(jnp.abs(1 - pitch * B)) + ) + + +def _gbdrift(data, B, pitch): + return safediv( + (data["gbdrift (periodic)"] + data["gbdrift (secular)/phi"] * data["zeta"]) + * (1 - 0.5 * pitch * B), + jnp.sqrt(jnp.abs(1 - pitch * B)), + ) + + +@register_compute_fun( + name="Gamma_c Velasco", + label=( + # Γ_c = π/(8√2) ∫ dλ 〈 ∑ⱼ [v τ γ_c²]ⱼ 〉 + "\\Gamma_c = \\frac{\\pi}{8 \\sqrt{2}} " + "\\int d\\lambda \\langle \\sum_j (v \\tau \\gamma_c^2)_j \\rangle" + ), + units="~", + units_long="None", + description="Fast ion confinement proxy " + "as defined by Velasco et al. (doi:10.1088/1741-4326/ac2994)", + dim=1, + params=[], + transforms={"grid": []}, + profiles=[], + coordinates="r", + data=[ + "min_tz |B|", + "max_tz |B|", + "cvdrift0", + "gbdrift (periodic)", + "gbdrift (secular)/phi", + ] + + Bounce2D.required_names, + resolution_requirement="tz", + grid_requirement={"can_fft2": True}, + **_bounce_doc, +) +@partial( + jit, + static_argnames=[ + "Y_B", + "num_transit", + "num_well", + "num_quad", + "num_pitch", + "pitch_batch_size", + "surf_batch_size", + "spline", + ], +) +def _Gamma_c_Velasco(params, transforms, profiles, data, **kwargs): + """Fast ion confinement proxy as defined by Velasco et al. + + A model for the fast evaluation of prompt losses of energetic ions in stellarators. + J.L. Velasco et al. 2021 Nucl. Fusion 61 116059. + https://doi.org/10.1088/1741-4326/ac2994. + Equation 16. + """ + # noqa: unused dependency + theta = kwargs["theta"] + Y_B = kwargs.get("Y_B", theta.shape[-1] * 2) + num_transit = kwargs.get("num_transit", 20) + num_pitch = kwargs.get("num_pitch", 64) + num_well = kwargs.get("num_well", Y_B * num_transit) + pitch_batch_size = kwargs.get("pitch_batch_size", None) + surf_batch_size = kwargs.get("surf_batch_size", 1) + assert ( + surf_batch_size == 1 or pitch_batch_size is None + ), f"Expected pitch_batch_size to be None, got {pitch_batch_size}." + spline = kwargs.get("spline", True) + fieldline_quad = ( + kwargs["fieldline_quad"] if "fieldline_quad" in kwargs else leggauss(Y_B // 2) + ) + quad = ( + kwargs["quad"] + if "quad" in kwargs + else get_quadrature( + leggauss(kwargs.get("num_quad", 32)), + (automorphism_sin, grad_automorphism_sin), + ) + ) + + def Gamma_c(data): + bounce = Bounce2D( + grid, + data, + data["theta"], + Y_B, + num_transit, + quad=quad, + is_fourier=True, + spline=spline, + ) + + def fun(pitch_inv): + v_tau, cvdrift0, gbdrift = bounce.integrate( + [_v_tau, _cvdrift0, _gbdrift], + pitch_inv, + data, + ["cvdrift0", "gbdrift (periodic)", "gbdrift (secular)/phi"], + bounce.points(pitch_inv, num_well=num_well), + is_fourier=True, + ) + gamma_c = jnp.arctan(safediv(cvdrift0, gbdrift)) # This is γ_c π/2. + return jnp.sum(v_tau * gamma_c**2, axis=-1) + + return jnp.sum( + batch_map(fun, data["pitch_inv"], pitch_batch_size) + * data["pitch_inv weight"] + / data["pitch_inv"] ** 2, + axis=-1, + ) / (bounce.compute_fieldline_length(fieldline_quad) * 2**1.5 * jnp.pi) + + grid = transforms["grid"] + data["Gamma_c Velasco"] = _compute( + Gamma_c, + fun_data={ + "cvdrift0": data["cvdrift0"], + "gbdrift (periodic)": data["gbdrift (periodic)"], + "gbdrift (secular)/phi": data["gbdrift (secular)/phi"], + }, + data=data, + theta=theta, + grid=grid, + num_pitch=num_pitch, + simp=False, + surf_batch_size=surf_batch_size, + ) + return data diff --git a/desc/compute/_geometry.py b/desc/compute/_geometry.py index 1884f3e67..766d81f2f 100644 --- a/desc/compute/_geometry.py +++ b/desc/compute/_geometry.py @@ -9,6 +9,8 @@ expensive computations. """ +from quadax import simpson + from desc.backend import jnp from ..integrals.surface_integral import line_integrals, surface_integrals @@ -1015,3 +1017,63 @@ def _curvature_H_zeta(params, transforms, profiles, data, **kwargs): data["curvature_k1_zeta"] + data["curvature_k2_zeta"] ) / 2 return data + + +@register_compute_fun( + name="fieldline length", + label="\\int_{\\zeta_{\\mathrm{min}}}^{\\zeta_{\\mathrm{max}}}" + " \\frac{d\\zeta}{|B^{\\zeta}|}", + units="m / T", + units_long="Meter / tesla", + description="(Mean) proper length of field line(s)", + dim=1, + params=[], + transforms={"grid": []}, + profiles=[], + coordinates="r", + data=["B^zeta"], + resolution_requirement="z", + source_grid_requirement={"coordinates": "raz", "is_meshgrid": True}, +) +def _fieldline_length(data, transforms, profiles, **kwargs): + grid = transforms["grid"].source_grid + data["fieldline length"] = grid.expand( + jnp.abs( + simpson( + y=grid.meshgrid_reshape(1 / data["B^zeta"], "arz"), + x=grid.compress(grid.nodes[:, 2], surface_label="zeta"), + axis=-1, + ).mean(axis=0) + ) + ) + return data + + +@register_compute_fun( + name="fieldline length/volume", + label="\\int_{\\zeta_{\\mathrm{min}}}^{\\zeta_{\\mathrm{max}}}" + " \\frac{d\\zeta}{|B^{\\zeta} \\sqrt g|}", + units="1 / Wb", + units_long="Inverse webers", + description="(Mean) proper length over volume of field line(s)", + dim=1, + params=[], + transforms={"grid": []}, + profiles=[], + coordinates="r", + data=["B^zeta", "sqrt(g)"], + resolution_requirement="z", + source_grid_requirement={"coordinates": "raz", "is_meshgrid": True}, +) +def _fieldline_length_over_volume(data, transforms, profiles, **kwargs): + grid = transforms["grid"].source_grid + data["fieldline length/volume"] = grid.expand( + jnp.abs( + simpson( + y=grid.meshgrid_reshape(1 / (data["B^zeta"] * data["sqrt(g)"]), "arz"), + x=grid.compress(grid.nodes[:, 2], surface_label="zeta"), + axis=-1, + ).mean(axis=0) + ) + ) + return data diff --git a/desc/compute/_neoclassical.py b/desc/compute/_neoclassical.py index ea3ba46fb..010d1964a 100644 --- a/desc/compute/_neoclassical.py +++ b/desc/compute/_neoclassical.py @@ -1,64 +1,82 @@ -"""Compute functions for neoclassical transport. - -Notes ------ -Some quantities require additional work to compute at the magnetic axis. -A Python lambda function is used to lazily compute the magnetic axis limits -of these quantities. These lambda functions are evaluated only when the -computational grid has a node on the magnetic axis to avoid potentially -expensive computations. -""" +"""Compute functions for neoclassical transport.""" from functools import partial from orthax.legendre import leggauss -from quadax import simpson -from desc.backend import imap, jit, jnp +from desc.backend import jit, jnp -from ..integrals.bounce_integral import Bounce1D -from ..integrals.quad_utils import ( - automorphism_sin, - chebgauss2, - get_quadrature, - grad_automorphism_sin, -) -from ..utils import cross, dot, safediv +from ..batching import batch_map +from ..integrals.bounce_integral import Bounce2D +from ..integrals.quad_utils import chebgauss2 +from ..utils import safediv from .data_index import register_compute_fun _bounce_doc = { - "quad": ( - "tuple[jnp.ndarray] : Quadrature points and weights for bounce integrals. " - "Default option is well tested." - ), - "num_quad": ( - "int : Resolution for quadrature of bounce integrals. " - "Default is 32. This option is ignored if given ``quad``." - ), + "theta": """jnp.ndarray : + Shape (num rho, X, Y). + DESC coordinates θ sourced from the Clebsch coordinates + ``FourierChebyshevSeries.nodes(X,Y,rho,domain=(0,2*jnp.pi))``. + Use the ``Bounce2D.compute_theta`` method to obtain this. + """, + "Y_B": """int : + Desired resolution for algorithm to compute bounce points. + Default is double ``Y``. + """, + "num_transit": """int : + Number of toroidal transits to follow field line. + For axisymmetric devices, one poloidal transit is sufficient. Otherwise, + assuming the surface is not near rational, more transits will + approximate surface averages better, with diminishing returns. + """, + "num_well": """int : + Maximum number of wells to detect for each pitch and field line. + Giving ``None`` will detect all wells but due to current limitations in + JAX this will have worse performance. + Specifying a number that tightly upper bounds the number of wells will + increase performance. In general, an upper bound on the number of wells + per toroidal transit is ``Aι+B`` where ``A``, ``B`` are the poloidal and + toroidal Fourier resolution of B, respectively, in straight-field line + PEST coordinates, and ι is the rotational transform normalized by 2π. + A tighter upper bound than ``num_well=(Aι+B)*num_transit`` is preferable. + The ``check_points`` or ``plot`` methods in ``desc.integrals.Bounce2D`` + are useful to select a reasonable value. + """, + "num_quad": """int : + Resolution for quadrature of bounce integrals. + Default is 32. This parameter is ignored if given ``quad``. + """, "num_pitch": "int : Resolution for quadrature over velocity coordinate.", - "num_well": ( - "int : Maximum number of wells to detect for each pitch and field line. " - "Default is to detect all wells, but due to limitations in JAX this option " - "may consume more memory. Specifying a number that tightly upper bounds " - "the number of wells will increase performance." - ), - "batch": "bool : Whether to vectorize part of the computation. Default is true.", + "pitch_batch_size": """int : + Number of pitch values with which to compute simultaneously. + If given ``None``, then ``pitch_batch_size`` is ``num_pitch``. + Default is ``num_pitch``. + """, + "surf_batch_size": """int : + Number of flux surfaces with which to compute simultaneously. + If given ``None``, then ``surf_batch_size`` is ``grid.num_rho``. + Default is ``1``. Only consider increasing if ``pitch_batch_size`` is ``None``. + """, + "fieldline_quad": """tuple[jnp.ndarray] : + Used to compute the proper length of the field line ∫ dℓ / B. + Quadrature points xₖ and weights wₖ for the + approximate evaluation of the integral ∫₋₁¹ f(x) dx ≈ ∑ₖ wₖ f(xₖ). + Default is Gauss-Legendre quadrature at resolution ``Y_B//2`` + on each toroidal transit. + """, + "quad": """tuple[jnp.ndarray] : + Used to compute bounce integrals. + Quadrature points xₖ and weights wₖ for the + approximate evaluation of the integral ∫₋₁¹ f(x) dx ≈ ∑ₖ wₖ f(xₖ). + """, + "spline": "bool : Whether to use cubic splines to compute bounce points.", } -def _alpha_mean(f): - """Simple mean over field lines. - - Simple mean rather than integrating over α and dividing by 2π - (i.e. f.T.dot(dα) / dα.sum()), because when the toroidal angle extends - beyond one transit we need to weight all field lines uniformly, regardless - of their spacing wrt α. - """ - return f.mean(axis=0) - - -def _compute(fun, fun_data, data, grid, num_pitch, simp=False, reduce=True): - """Compute ``fun`` for each α and ρ value iteratively to reduce memory usage. +def _compute( + fun, fun_data, data, theta, grid, num_pitch, simp=False, surf_batch_size=1 +): + """Compute ``fun`` for each ρ value iteratively. Parameters ---------- @@ -68,85 +86,46 @@ def _compute(fun, fun_data, data, grid, num_pitch, simp=False, reduce=True): Data to provide to ``fun``. This dict will be modified. data : dict[str, jnp.ndarray] DESC data dict. + theta : jnp.ndarray + Shape (num rho, X, Y). + DESC coordinates θ sourced from the Clebsch coordinates + ``FourierChebyshevSeries.nodes(X,Y,rho,domain=(0,2*jnp.pi))``. simp : bool Whether to use an open Simpson rule instead of uniform weights. - reduce : bool - Whether to compute mean over α and expand to grid. - Default is true. + surf_batch_size : int + Number of flux surfaces with which to compute simultaneously. + Default is ``1``. + """ - pitch_inv, pitch_inv_weight = Bounce1D.get_pitch_inv_quad( + for name in Bounce2D.required_names: + fun_data[name] = data[name] + fun_data.pop("iota", None) + for name in fun_data: + fun_data[name] = Bounce2D.fourier(Bounce2D.reshape(grid, fun_data[name])) + fun_data["iota"] = grid.compress(data["iota"]) + fun_data["theta"] = theta + fun_data["pitch_inv"], fun_data["pitch_inv weight"] = Bounce2D.get_pitch_inv_quad( grid.compress(data["min_tz |B|"]), grid.compress(data["max_tz |B|"]), num_pitch, simp=simp, ) - - def foreach_rho(x): - # using same λ values for every field line α on flux surface ρ - x["pitch_inv"] = pitch_inv - x["pitch_inv weight"] = pitch_inv_weight - return imap(fun, x) - - for name in Bounce1D.required_names: - fun_data[name] = data[name] - for name in fun_data: - fun_data[name] = Bounce1D.reshape_data(grid, fun_data[name]) - out = imap(foreach_rho, fun_data) - return grid.expand(_alpha_mean(out)) if reduce else out + return grid.expand(batch_map(fun, fun_data, surf_batch_size)) -@register_compute_fun( - name="fieldline length", - label="\\int_{\\zeta_{\\mathrm{min}}}^{\\zeta_{\\mathrm{max}}}" - " \\frac{d\\zeta}{|B^{\\zeta}|}", - units="m / T", - units_long="Meter / tesla", - description="(Mean) proper length of field line(s)", - dim=1, - params=[], - transforms={"grid": []}, - profiles=[], - coordinates="r", - data=["B^zeta"], - resolution_requirement="z", - source_grid_requirement={"coordinates": "raz", "is_meshgrid": True}, -) -def _fieldline_length(data, transforms, profiles, **kwargs): - grid = transforms["grid"].source_grid - L_ra = simpson( - y=grid.meshgrid_reshape(1 / data["B^zeta"], "arz"), - x=grid.compress(grid.nodes[:, 2], surface_label="zeta"), - axis=-1, +def _dH(data, B, pitch): + """Integrand of Nemov eq. 30 with |∂ψ/∂ρ| (λB₀)¹ᐧ⁵ removed.""" + return ( + jnp.sqrt(jnp.abs(1 - pitch * B)) + * (4 / (pitch * B) - 1) + * data["|grad(rho)|*kappa_g"] + / B ) - data["fieldline length"] = grid.expand(jnp.abs(_alpha_mean(L_ra))) - return data -@register_compute_fun( - name="fieldline length/volume", - label="\\int_{\\zeta_{\\mathrm{min}}}^{\\zeta_{\\mathrm{max}}}" - " \\frac{d\\zeta}{|B^{\\zeta} \\sqrt g|}", - units="1 / Wb", - units_long="Inverse webers", - description="(Mean) proper length over volume of field line(s)", - dim=1, - params=[], - transforms={"grid": []}, - profiles=[], - coordinates="r", - data=["B^zeta", "sqrt(g)"], - resolution_requirement="z", - source_grid_requirement={"coordinates": "raz", "is_meshgrid": True}, -) -def _fieldline_length_over_volume(data, transforms, profiles, **kwargs): - grid = transforms["grid"].source_grid - G_ra = simpson( - y=grid.meshgrid_reshape(1 / (data["B^zeta"] * data["sqrt(g)"]), "arz"), - x=grid.compress(grid.nodes[:, 2], surface_label="zeta"), - axis=-1, - ) - data["fieldline length/volume"] = grid.expand(jnp.abs(_alpha_mean(G_ra))) - return data +def _dI(data, B, pitch): + """Integrand of Nemov eq. 31.""" + return jnp.sqrt(jnp.abs(1 - pitch * B)) / B @register_compute_fun( @@ -166,98 +145,102 @@ def _fieldline_length_over_volume(data, transforms, profiles, **kwargs): transforms={"grid": []}, profiles=[], coordinates="r", - data=[ - "min_tz |B|", - "max_tz |B|", - "kappa_g", - "R0", - "|grad(rho)|", - "<|grad(rho)|>", - "fieldline length", - ] - + Bounce1D.required_names, - resolution_requirement="z", - source_grid_requirement={"coordinates": "raz", "is_meshgrid": True}, + data=["min_tz |B|", "max_tz |B|", "kappa_g", "R0", "|grad(rho)|", "<|grad(rho)|>"] + + Bounce2D.required_names, + resolution_requirement="tz", + grid_requirement={"can_fft2": True}, **_bounce_doc, - # Some notes on choosing the resolution hyperparameters: - # The default settings were chosen such that the effective ripple profile on - # the W7-X stellarator looks similar to the profile computed at higher resolution, - # indicating convergence. The parameters ``num_transit`` and ``knots_per_transit`` - # have a stronger effect on the result. As a reference for W7-X, when computing the - # effective ripple by tracing a single field line on each flux surface, a density of - # 100 knots per toroidal transit accurately reconstructs the ripples along the field - # line. After 10 toroidal transits convergence is apparent (after 15 the returns - # diminish). Dips in the resulting profile indicates insufficient ``num_transit``. - # Unreasonably high values indicates insufficient ``knots_per_transit``. - # One can plot the field line with ``Bounce1D.plot`` to see if the number of knots - # was sufficient to reconstruct the field line. - # TODO: Improve performance... see GitHub issue #1045. - # Need more efficient function approximation of |B|(α, ζ). ) -@partial(jit, static_argnames=["num_quad", "num_pitch", "num_well", "batch"]) +@partial( + jit, + static_argnames=[ + "Y_B", + "num_transit", + "num_well", + "num_quad", + "num_pitch", + "pitch_batch_size", + "surf_batch_size", + "spline", + ], +) def _epsilon_32(params, transforms, profiles, data, **kwargs): - """https://doi.org/10.1063/1.873749. + """Effective ripple modulation amplitude to 3/2 power. Evaluation of 1/ν neoclassical transport in stellarators. V. V. Nemov, S. V. Kasilov, W. Kernbichler, M. F. Heyn. + https://doi.org/10.1063/1.873749. Phys. Plasmas 1 December 1999; 6 (12): 4622–4632. """ # noqa: unused dependency - if "quad" in kwargs: - quad = kwargs["quad"] - else: - quad = chebgauss2(kwargs.get("num_quad", 32)) - num_well = kwargs.get("num_well", None) - batch = kwargs.get("batch", True) - grid = transforms["grid"].source_grid - - def dH(data, B, pitch): - # Integrand of Nemov eq. 30 with |∂ψ/∂ρ| (λB₀)¹ᐧ⁵ removed. - return ( - jnp.sqrt(jnp.abs(1 - pitch * B)) - * (4 / (pitch * B) - 1) - * data["|grad(rho)|*kappa_g"] - / B - ) - - def dI(data, B, pitch): - # Integrand of Nemov eq. 31. - return jnp.sqrt(jnp.abs(1 - pitch * B)) / B + theta = kwargs["theta"] + Y_B = kwargs.get("Y_B", theta.shape[-1] * 2) + num_transit = kwargs.get("num_transit", 20) + num_pitch = kwargs.get("num_pitch", 51) + num_well = kwargs.get("num_well", Y_B * num_transit) + pitch_batch_size = kwargs.get("pitch_batch_size", None) + surf_batch_size = kwargs.get("surf_batch_size", 1) + assert ( + surf_batch_size == 1 or pitch_batch_size is None + ), f"Expected pitch_batch_size to be None, got {pitch_batch_size}." + spline = kwargs.get("spline", True) + fieldline_quad = ( + kwargs["fieldline_quad"] if "fieldline_quad" in kwargs else leggauss(Y_B // 2) + ) + quad = ( + kwargs["quad"] if "quad" in kwargs else chebgauss2(kwargs.get("num_quad", 32)) + ) def eps_32(data): - """(∂ψ/∂ρ)⁻² B₀⁻² ∫ dλ λ⁻² ∑ⱼ Hⱼ²/Iⱼ.""" + """(∂ψ/∂ρ)⁻² B₀⁻³ ∫ dλ λ⁻² 〈 ∑ⱼ Hⱼ²/Iⱼ 〉.""" # B₀ has units of λ⁻¹. # Nemov's ∑ⱼ Hⱼ²/Iⱼ = (∂ψ/∂ρ)² (λB₀)³ ``(H**2 / I).sum(axis=-1)``. # (λB₀)³ d(λB₀)⁻¹ = B₀² λ³ d(λ⁻¹) = -B₀² λ dλ. - bounce = Bounce1D(grid, data, quad, automorphism=None, is_reshaped=True) - H, I = bounce.integrate( - [dH, dI], - data["pitch_inv"], + bounce = Bounce2D( + grid, data, - "|grad(rho)|*kappa_g", - points=bounce.points(data["pitch_inv"], num_well=num_well), - batch=batch, + data["theta"], + Y_B, + num_transit, + quad=quad, + is_fourier=True, + spline=spline, ) - return ( - safediv(H**2, I).sum(axis=-1) - * data["pitch_inv"] ** (-3) + + def fun(pitch_inv): + H, I = bounce.integrate( + [_dH, _dI], + pitch_inv, + data, + "|grad(rho)|*kappa_g", + bounce.points(pitch_inv, num_well=num_well), + is_fourier=True, + ) + return safediv(H**2, I).sum(axis=-1) + + return jnp.sum( + batch_map(fun, data["pitch_inv"], pitch_batch_size) * data["pitch_inv weight"] - ).sum(axis=-1) + / data["pitch_inv"] ** 3, + axis=-1, + ) / bounce.compute_fieldline_length(fieldline_quad) - # Interpolate |∇ρ| κ_g since it is smoother than κ_g alone. + grid = transforms["grid"] B0 = data["max_tz |B|"] data["effective ripple 3/2"] = ( - jnp.pi - / (8 * 2**0.5) - * (B0 * data["R0"] / data["<|grad(rho)|>"]) ** 2 - * _compute( + _compute( eps_32, - {"|grad(rho)|*kappa_g": data["|grad(rho)|"] * data["kappa_g"]}, - data, - grid, - kwargs.get("num_pitch", 50), + fun_data={"|grad(rho)|*kappa_g": data["|grad(rho)|"] * data["kappa_g"]}, + data=data, + theta=theta, + grid=grid, + num_pitch=num_pitch, + simp=True, + surf_batch_size=surf_batch_size, ) - / data["fieldline length"] + * (B0 * data["R0"] / data["<|grad(rho)|>"]) ** 2 + * jnp.pi + / (8 * 2**0.5) ) return data @@ -267,7 +250,7 @@ def eps_32(data): label="\\epsilon_{\\mathrm{eff}}", units="~", units_long="None", - description="Effective ripple modulation amplitude", + description="Neoclassical transport in the banana regime", dim=1, params=[], transforms={}, @@ -276,254 +259,13 @@ def eps_32(data): data=["effective ripple 3/2"], ) def _effective_ripple(params, transforms, profiles, data, **kwargs): - data["effective ripple"] = data["effective ripple 3/2"] ** (2 / 3) - return data - - -@register_compute_fun( - name="Gamma_c Velasco", - label=( - # Γ_c = π/(8√2) ∫dλ 〈 ∑ⱼ [v τ γ_c²]ⱼ 〉 - "\\Gamma_c = \\frac{\\pi}{8 \\sqrt{2}} " - "\\int d\\lambda \\langle \\sum_j (v \\tau \\gamma_c^2)_j \\rangle" - ), - units="~", - units_long="None", - description="Energetic ion confinement proxy " - "as defined by Velasco et al. (doi:10.1088/1741-4326/ac2994)", - dim=1, - params=[], - transforms={"grid": []}, - profiles=[], - coordinates="r", - data=["min_tz |B|", "max_tz |B|", "cvdrift0", "gbdrift", "fieldline length"] - + Bounce1D.required_names, - source_grid_requirement={"coordinates": "raz", "is_meshgrid": True}, - **_bounce_doc, -) -@partial(jit, static_argnames=["num_quad", "num_pitch", "num_well", "batch"]) -def _Gamma_c_Velasco(params, transforms, profiles, data, **kwargs): - """Energetic ion confinement proxy as defined by Velasco et al. - - A model for the fast evaluation of prompt losses of energetic ions in stellarators. - J.L. Velasco et al. 2021 Nucl. Fusion 61 116059. - https://doi.org/10.1088/1741-4326/ac2994. - Equation 16. - """ - # noqa: unused dependency - if "quad" in kwargs: - quad = kwargs["quad"] - else: - quad = get_quadrature( - leggauss(kwargs.get("num_quad", 32)), - (automorphism_sin, grad_automorphism_sin), - ) - num_well = kwargs.get("num_well", None) - batch = kwargs.get("batch", True) - grid = transforms["grid"].source_grid - - def d_v_tau(data, B, pitch): - return safediv(2.0, jnp.sqrt(jnp.abs(1 - pitch * B))) - - def _cvdrift0(data, B, pitch): - return safediv( - data["cvdrift0"] * (1 - 0.5 * pitch * B), jnp.sqrt(jnp.abs(1 - pitch * B)) - ) - - def _gbdrift(data, B, pitch): - return safediv( - data["gbdrift"] * (1 - 0.5 * pitch * B), jnp.sqrt(jnp.abs(1 - pitch * B)) - ) - - def Gamma_c_Velasco(data): - """∫ dλ ∑ⱼ [v τ γ_c²]ⱼ.""" - bounce = Bounce1D(grid, data, quad, automorphism=None, is_reshaped=True) - points = bounce.points(data["pitch_inv"], num_well=num_well) - v_tau, cvdrift0, gbdrift = bounce.integrate( - [d_v_tau, _cvdrift0, _gbdrift], - data["pitch_inv"], - data, - ["cvdrift0", "gbdrift"], - points=points, - batch=batch, - ) - gamma_c = jnp.arctan(safediv(cvdrift0, gbdrift)) - return (4 / jnp.pi**2) * ( - (v_tau * gamma_c**2).sum(axis=-1) - * data["pitch_inv"] ** (-2) - * data["pitch_inv weight"] - ).sum(axis=-1) - - data["Gamma_c Velasco"] = ( - jnp.pi - / (8 * 2**0.5) - * _compute( - Gamma_c_Velasco, - {"cvdrift0": data["cvdrift0"], "gbdrift": data["gbdrift"]}, - data, - grid, - kwargs.get("num_pitch", 64), - ) - / data["fieldline length"] - ) - return data - - -@register_compute_fun( - name="Gamma_c", - label=( - # Γ_c = π/(8√2) ∫dλ 〈 ∑ⱼ [v τ γ_c²]ⱼ 〉 - "\\Gamma_c = \\frac{\\pi}{8 \\sqrt{2}} " - "\\int d\\lambda \\langle \\sum_j (v \\tau \\gamma_c^2)_j \\rangle" - ), - units="~", - units_long="None", - description="Energetic ion confinement proxy, Nemov et al.", - dim=1, - params=[], - transforms={"grid": []}, - profiles=[], - coordinates="r", - data=[ - "min_tz |B|", - "max_tz |B|", - "B^phi", - "B^phi_r|v,p", - "b", - "|B|_r|v,p", - "iota_r", - "grad(phi)", - "e^rho", - "|grad(rho)|", - "|e_alpha|r,p|", - "kappa_g", - "psi_r", - "fieldline length", - ] - + Bounce1D.required_names, - source_grid_requirement={"coordinates": "raz", "is_meshgrid": True}, - **_bounce_doc, - quad2="Same as ``quad`` for the weak singular integrals in particular.", -) -@partial(jit, static_argnames=["num_quad", "num_pitch", "num_well", "batch"]) -def _Gamma_c(params, transforms, profiles, data, **kwargs): - """Energetic ion confinement proxy as defined by Nemov et al. - - Poloidal motion of trapped particle orbits in real-space coordinates. - V. V. Nemov, S. V. Kasilov, W. Kernbichler, G. O. Leitold. - Phys. Plasmas 1 May 2008; 15 (5): 052501. - https://doi.org/10.1063/1.2912456. - Equation 61. + """Proxy for neoclassical transport in the banana regime. - The radial electric field has a negligible effect on alpha particle confinement, - so it is assumed to be zero. + A 3D stellarator magnetic field admits ripple wells that lead to enhanced + radial drift of trapped particles. In the banana regime, neoclassical (thermal) + transport from ripple wells can become the dominant transport channel. + The effective ripple (ε) proxy estimates the neoclassical transport + coefficients in the banana regime. """ - # noqa: unused dependency - if "quad" in kwargs: - quad = kwargs["quad"] - else: - quad = get_quadrature( - leggauss(kwargs.get("num_quad", 32)), - (automorphism_sin, grad_automorphism_sin), - ) - quad2 = kwargs["quad2"] if "quad2" in kwargs else chebgauss2(quad[0].size) - num_well = kwargs.get("num_well", None) - batch = kwargs.get("batch", True) - grid = transforms["grid"].source_grid - - # The derivative (∂/∂ψ)|ϑ,ϕ belongs to flux coordinates which satisfy - # α = ϑ − χ(ψ) ϕ where α is the poloidal label of ψ,α Clebsch coordinates. - # Choosing χ = ι implies ϑ, ϕ are PEST angles. - # ∂G/∂((λB₀)⁻¹) = λ²B₀ ∫ dℓ (1 − λ|B|/2) / √(1 − λ|B|) ∂|B|/∂ψ / |B| - # ∂V/∂((λB₀)⁻¹) = 3/2 λ²B₀ ∫ dℓ √(1 − λ|B|) K / |B| - # ∂g/∂((λB₀)⁻¹) = λ²B₀² ∫ dℓ (1 − λ|B|/2) / √(1 − λ|B|) |∇ψ| κ_g / |B| - # tan(π/2 γ_c) = - # ∫ dℓ (1 − λ|B|/2) / √(1 − λ|B|) |∇ρ| κ_g / |B| - # ---------------------------------------------- - # (|∇ρ| ‖e_α|ρ,ϕ‖)ᵢ ∫ dℓ [ (1 − λ|B|/2)/√(1 − λ|B|) ∂|B|/∂ψ + √(1 − λ|B|) K ] / |B| - - def d_v_tau(data, B, pitch): - return safediv(2.0, jnp.sqrt(jnp.abs(1 - pitch * B))) - - def drift1(data, B, pitch): - return ( - safediv(1 - 0.5 * pitch * B, jnp.sqrt(jnp.abs(1 - pitch * B))) - * data["|grad(rho)|*kappa_g"] - / B - ) - - def drift2(data, B, pitch): - return ( - safediv(1 - 0.5 * pitch * B, jnp.sqrt(jnp.abs(1 - pitch * B))) - * data["|B|_psi|v,p"] - / B - ) - - def drift3(data, B, pitch): - return jnp.sqrt(jnp.abs(1 - pitch * B)) * data["K"] / B - - def Gamma_c(data): - """∫ dλ ∑ⱼ [v τ γ_c²]ⱼ.""" - # Note v τ = 4λ⁻²B₀⁻¹ ∂I/∂((λB₀)⁻¹) where v is the particle velocity, - # τ is the bounce time, and I is defined in Nemov eq. 36. - bounce = Bounce1D(grid, data, quad, automorphism=None, is_reshaped=True) - points = bounce.points(data["pitch_inv"], num_well=num_well) - v_tau, f1, f2 = bounce.integrate( - [d_v_tau, drift1, drift2], - data["pitch_inv"], - data, - ["|grad(rho)|*kappa_g", "|B|_psi|v,p"], - points=points, - batch=batch, - ) - gamma_c = jnp.arctan( - safediv( - f1, - ( - f2 - + bounce.integrate( - drift3, - data["pitch_inv"], - data, - "K", - points=points, - batch=batch, - quad=quad2, - ) - ) - * bounce.interp_to_argmin(data["|grad(rho)|*|e_alpha|r,p|"], points), - ) - ) - return (4 / jnp.pi**2) * ( - (v_tau * gamma_c**2).sum(axis=-1) - * data["pitch_inv"] ** (-2) - * data["pitch_inv weight"] - ).sum(axis=-1) - - # We rewrite equivalents of Nemov et al.'s expression's using single-valued - # maps of a physical coordinates. This avoids the computational issues of - # multivalued maps. It further enables use of more efficient methods, such as - # fast transforms and fixed computational grids throughout optimization, which - # are used in the ``Bounce2D`` operator on a developer branch. - - # It is assumed the grid is sufficiently dense to reconstruct |B|, - # so anything smoother than |B| may be captured accurately as a single - # spline rather than splining each component. - fun_data = { - "|grad(rho)|*kappa_g": data["|grad(rho)|"] * data["kappa_g"], - "|grad(rho)|*|e_alpha|r,p|": data["|grad(rho)|"] * data["|e_alpha|r,p|"], - "|B|_psi|v,p": data["|B|_r|v,p"] / data["psi_r"], - "K": data["iota_r"] * dot(cross(data["e^rho"], data["b"]), data["grad(phi)"]) - # Behaves as ∂log(|B|²/B^ϕ)/∂ψ |B| if one ignores the issue of a log argument - # with units. Smoothness determined by positive lower bound of log argument, - # and hence behaves as ∂log(|B|)/∂ψ |B| = ∂|B|/∂ψ. - - (2 * data["|B|_r|v,p"] - data["|B|"] * data["B^phi_r|v,p"] / data["B^phi"]) - / data["psi_r"], - } - data["Gamma_c"] = ( - jnp.pi - / (8 * 2**0.5) - * _compute(Gamma_c, fun_data, data, grid, kwargs.get("num_pitch", 64)) - / data["fieldline length"] - ) + data["effective ripple"] = data["effective ripple 3/2"] ** (2 / 3) return data diff --git a/desc/equilibrium/coords.py b/desc/equilibrium/coords.py index 31e164ace..018104a5d 100644 --- a/desc/equilibrium/coords.py +++ b/desc/equilibrium/coords.py @@ -105,7 +105,11 @@ def map_coordinates( # noqa: C901 f"don't have recipe to compute partial derivative {key}", ) - profiles = get_profiles(inbasis + basis_derivs, eq) + profiles = ( + kwargs["profiles"] + if "profiles" in kwargs + else get_profiles(inbasis + basis_derivs, eq) + ) # TODO (#1382): make this work for permutations of in/out basis if outbasis == ("rho", "theta", "zeta"): @@ -114,7 +118,9 @@ def map_coordinates( # noqa: C901 iota = kwargs.pop("iota") else: if profiles["iota"] is None: - profiles["iota"] = eq.get_profile(["iota", "iota_r"], params=params) + profiles["iota"] = eq.get_profile( + ["iota", "iota_r"], params=params, **kwargs + ) iota = profiles["iota"].compute(Grid(coords, sort=False, jitable=True)) return _map_clebsch_coordinates( coords=coords, @@ -143,7 +149,7 @@ def map_coordinates( # noqa: C901 # do surface average to get iota once if "iota" in profiles and profiles["iota"] is None: - profiles["iota"] = eq.get_profile(["iota", "iota_r"], params=params) + profiles["iota"] = eq.get_profile(["iota", "iota_r"], params=params, **kwargs) params["i_l"] = profiles["iota"].params rhomin = kwargs.pop("rhomin", tol / 10) @@ -729,7 +735,10 @@ def get_rtz_grid( """ grid = Grid.create_meshgrid( - [radial, poloidal, toroidal], coordinates=coordinates, period=period + [radial, poloidal, toroidal], + coordinates=coordinates, + period=period, + jitable=jitable, ) if "iota" in kwargs: kwargs["iota"] = grid.expand(jnp.atleast_1d(kwargs["iota"])) diff --git a/desc/grid.py b/desc/grid.py index b3757ea37..e6ebbb683 100644 --- a/desc/grid.py +++ b/desc/grid.py @@ -706,8 +706,8 @@ class Grid(_Grid): nodes.reshape((num_poloidal, num_radial, num_toroidal, 3), order="F"). jitable : bool Whether to skip certain checks and conditionals that don't work under jit. - Allows grid to be created on the fly with custom nodes, but weights, symmetry - etc. may be wrong if grid contains duplicate nodes. + Allows grid to be created on the fly with custom nodes, but weights, + symmetry etc. may be wrong if grid contains duplicate nodes. """ def __init__( @@ -793,6 +793,7 @@ def create_meshgrid( coordinates="rtz", period=(np.inf, 2 * np.pi, 2 * np.pi), NFP=1, + jitable=True, **kwargs, ): """Create a tensor-product grid from the given coordinates in a jitable manner. @@ -819,6 +820,10 @@ def create_meshgrid( Only makes sense to change from 1 if last coordinate is periodic with some constant divided by ``NFP`` and the nodes are placed within one field period. + jitable : bool + Whether to skip certain checks and conditionals that don't work under jit. + Allows grid to be created on the fly with custom nodes, but weights, + symmetry etc. may be wrong if grid contains duplicate nodes. Returns ------- @@ -861,10 +866,7 @@ def create_meshgrid( repeat(unique_a_idx // b.size, b.size, total_repeat_length=a.size * b.size), c.size, ) - inverse_b_idx = jnp.tile( - unique_b_idx, - a.size * c.size, - ) + inverse_b_idx = jnp.tile(unique_b_idx, a.size * c.size) inverse_c_idx = repeat(unique_c_idx // (a.size * b.size), (a.size * b.size)) return Grid( nodes=nodes, @@ -875,7 +877,7 @@ def create_meshgrid( NFP=NFP, sort=False, is_meshgrid=True, - jitable=True, + jitable=jitable, _unique_rho_idx=unique_a_idx, _unique_poloidal_idx=unique_b_idx, _unique_zeta_idx=unique_c_idx, diff --git a/desc/integrals/_bounce_utils.py b/desc/integrals/_bounce_utils.py index 3c3fa99e2..06018fc74 100644 --- a/desc/integrals/_bounce_utils.py +++ b/desc/integrals/_bounce_utils.py @@ -4,7 +4,7 @@ from interpax import CubicSpline, PPoly from matplotlib import pyplot as plt -from desc.backend import dct, imap, jnp, softargmax +from desc.backend import dct, imap, jnp from desc.integrals._interp_utils import ( cheb_from_dct, cheb_pts, @@ -45,9 +45,9 @@ def get_pitch_inv_quad(min_B, max_B, num_pitch, simp=False): Parameters ---------- min_B : jnp.ndarray - Minimum |B| value. + Minimum B value. max_B : jnp.ndarray - Maximum |B| value. + Maximum B value. num_pitch : int Number of values. simp : bool @@ -56,7 +56,7 @@ def get_pitch_inv_quad(min_B, max_B, num_pitch, simp=False): Returns ------- x, w : tuple[jnp.ndarray] - Shape (*min_B.shape, num pitch). + Shape (min_B.shape, num pitch). 1/λ values and weights. """ @@ -126,7 +126,7 @@ def _check_spline_shape(knots, g, dg_dz, pitch_inv=None): def bounce_points( pitch_inv, knots, B, dB_dz, num_well=None, check=False, plot=True, **kwargs ): - """Compute the bounce points given spline of |B| and pitch λ. + """Compute the bounce points given spline of B and pitch λ. Parameters ---------- @@ -138,12 +138,12 @@ def bounce_points( ζ coordinates of spline knots. Must be strictly increasing. B : jnp.ndarray Shape (..., N - 1, B.shape[-1]). - Polynomial coefficients of the spline of |B| in local power basis. + Polynomial coefficients of the spline of B in local power basis. Last axis enumerates the coefficients of power series. Second to last axis enumerates the polynomials that compose a particular spline. dB_dz : jnp.ndarray Shape (..., N - 1, B.shape[-1] - 1). - Polynomial coefficients of the spline of (∂|B|/∂ζ)|(ρ,α) in local power basis. + Polynomial coefficients of the spline of (∂B/∂ζ)|(ρ,α) in local power basis. Last axis enumerates the coefficients of power series. Second to last axis enumerates the polynomials that compose a particular spline. num_well : int or None @@ -152,8 +152,8 @@ def bounce_points( but due to current limitations in JAX this will have worse performance. Specifying a number that tightly upper bounds the number of wells will increase performance. In general, an upper bound on the number of wells - per toroidal transit is ``Aι+B`` where ``A``,``B`` are the poloidal and - toroidal Fourier resolution of |B|, respectively, in straight-field line + per toroidal transit is ``Aι+B`` where ``A``, ``B`` are the poloidal and + toroidal Fourier resolution of B, respectively, in straight-field line PEST coordinates, and ι is the rotational transform normalized by 2π. A tighter upper bound than ``num_well=(Aι+B)*num_transit`` is preferable. @@ -172,7 +172,7 @@ def bounce_points( Shape (..., num pitch, num well). ζ coordinates of bounce points. The points are ordered and grouped such that the straight line path between ``z1`` and ``z2`` resides in the - epigraph of |B|. + epigraph of B. If there were less than ``num_well`` wells detected along a field line, then the last axis, which enumerates bounce points for a particular field @@ -210,7 +210,7 @@ def bounce_points( # Transform out of local power basis expansion. intersect = flatten_matrix(intersect + knots[:-1, jnp.newaxis]) # New versions of JAX only like static sentinels. - sentinel = -10000000.0 # instead of knots[0] - 1 + sentinel = -100000.0 # instead of knots[0] - 1 z1 = take_mask(intersect, is_z1, size=num_well, fill_value=sentinel) z2 = take_mask(intersect, is_z2, size=num_well, fill_value=sentinel) @@ -220,6 +220,7 @@ def bounce_points( z2 = jnp.where(mask, z2, 0.0) if check: + errorif(knots[0] <= sentinel, msg="Decrease sentinel.") _check_bounce_points(z1, z2, pitch_inv, knots, B, plot, **kwargs) return z1, z2 @@ -330,9 +331,9 @@ def _bounce_quadrature( Shape (N, ). Unique ζ coordinates where the arrays in ``data`` and ``f`` were evaluated. integrand : callable or list[callable] - The composition operator on the set of functions in ``data`` that - maps that determines ``f`` in ∫ f(ρ,α,λ,ℓ) dℓ. It should accept a dictionary - which stores the interpolated data and the keyword argument ``pitch``. + The composition operator on the set of functions in ``data`` + that determines ``f`` in ∫ f(ρ,α,λ,ℓ) dℓ. It should accept a dictionary + which stores the interpolated data and the arguments ``B`` and ``pitch``. pitch_inv : jnp.ndarray Shape (num alpha, num rho, num pitch). 1/λ values to compute the bounce integrals. 1/λ(α,ρ) is specified by @@ -342,7 +343,7 @@ def _bounce_quadrature( Shape (num alpha, num rho, num zeta). Real scalar-valued periodic functions in (θ, ζ) ∈ [0, 2π) × [0, 2π/NFP) evaluated on the ``grid`` supplied to construct this object. - Use the method ``Bounce1D.reshape_data`` to reshape the data into the + Use the method ``Bounce1D.reshape`` to reshape the data into the expected shape. names : str or list[str] Names in ``data`` to interpolate. Default is all keys in ``data``. @@ -351,7 +352,7 @@ def _bounce_quadrature( Optional, output of method ``self.points``. Tuple of length two (z1, z2) that stores ζ coordinates of bounce points. The points are ordered and grouped such that the straight line path - between ``z1`` and ``z2`` resides in the epigraph of |B|. + between ``z1`` and ``z2`` resides in the epigraph of B. method : str Method of interpolation. See https://interpax.readthedocs.io/en/latest/_api/interpax.interp1d.html. @@ -710,46 +711,16 @@ def _get_extrema(knots, g, dg_dz, sentinel=jnp.nan): return ext, g_ext -def _where_for_argmin(points, ext, g_ext, upper_sentinel): - z1, z2 = points - assert z1.ndim > 1 and z2.ndim > 1 - # Given - # z1 and z2 with shape (..., num pitch, num well) - # and ext, g_ext with shape (..., num extrema), - # add dims to broadcast - # z1 and z2 with shape (..., num pitch, num well, 1). - # and ext, g_ext with shape (..., 1, 1, num extrema). - return jnp.where( - (z1[..., jnp.newaxis] < ext[..., jnp.newaxis, jnp.newaxis, :]) - & (ext[..., jnp.newaxis, jnp.newaxis, :] < z2[..., jnp.newaxis]), - g_ext[..., jnp.newaxis, jnp.newaxis, :], - upper_sentinel, - ) +# We can use the non-differentiable argmin because we actually want the gradients +# to accumulate through only the minimum since we are differentiating how our +# physics objective changes wrt equilibrium perturbations not wrt which of the +# extrema get interpolated to. -def _where_for_fft_argmin(points, ext, g_ext, upper_sentinel): - z1, z2 = points - assert z1.ndim >= 1 and z2.ndim >= 1 - # Given - # z1 and z2 with shape (..., num well) - # and ext, g_ext with shape (..., num extrema), - # add dims to broadcast - # z1 and z2 with shape (..., num well, 1). - # and ext, g_ext with shape (..., 1, num extrema). - return jnp.where( - (z1[..., jnp.newaxis] < ext[..., jnp.newaxis, :]) - & (ext[..., jnp.newaxis, :] < z2[..., jnp.newaxis]), - g_ext[..., jnp.newaxis, :], - upper_sentinel, - ) - - -def interp_to_argmin( - h, points, knots, g, dg_dz, method="cubic", beta=-100, upper_sentinel=1e2 -): +def interp_to_argmin(h, points, knots, g, dg_dz, method="cubic"): """Interpolate ``h`` to the deepest point of ``g`` between ``z1`` and ``z2``. - Let E = {ζ ∣ ζ₁ < ζ < ζ₂} and A = argmin_E g(ζ). Returns mean_A h(ζ). + Let E = {ζ ∣ ζ₁ < ζ < ζ₂} and A ∈ argmin_E g(ζ). Returns h(A). Parameters ---------- @@ -777,20 +748,6 @@ def interp_to_argmin( Method of interpolation. See https://interpax.readthedocs.io/en/latest/_api/interpax.interp1d.html. Default is cubic C1 local spline. - beta : float - More negative gives exponentially better approximation at the - expense of noisier gradients - noisier in the physics sense (unrelated - to the automatic differentiation). - upper_sentinel : float - Something larger than g. Choose value such that - exp(max(g)) << exp(``upper_sentinel``). Don't make too large or numerical - resolution is lost. - - Warnings - -------- - Recall that if g is small then the effect of β is reduced. - If the intention is to use this function as argmax, be sure to supply - a lower sentinel for ``upper_sentinel``. Returns ------- @@ -799,109 +756,43 @@ def interp_to_argmin( """ ext, g_ext = _get_extrema(knots, g, dg_dz, sentinel=0) - # Our softargmax(x) does the proper shift to compute softargmax(x - max(x)), - # but it's still not a good idea to compute over a large length scale, so we - # warn in docstring to choose upper sentinel properly. - argmin = softargmax( - beta * _where_for_argmin(points, ext, g_ext, upper_sentinel), - axis=-1, + + z1, z2 = points + assert z1.ndim > 1 and z2.ndim > 1 + # Given + # z1 and z2 with shape (..., num pitch, num well) + # and ext, g_ext with shape (..., num extrema), + # add dims to broadcast + # z1 and z2 with shape (..., num pitch, num well, 1). + # and ext, g_ext with shape (..., 1, 1, num extrema). + where = jnp.where( + (z1[..., jnp.newaxis] < ext[..., jnp.newaxis, jnp.newaxis, :]) + & (ext[..., jnp.newaxis, jnp.newaxis, :] < z2[..., jnp.newaxis]), + g_ext[..., jnp.newaxis, jnp.newaxis, :], + jnp.inf, ) - return jnp.linalg.vecdot( - argmin, # shape is (..., num pitch, num well, num extrema) + # shape is (..., num pitch, num well, 1) + argmin = jnp.argmin(where, axis=-1, keepdims=True) + + return jnp.take_along_axis( # adding axes to broadcast with num pitch and num well axes interp1d_vec(ext, knots, h, method=method)[..., jnp.newaxis, jnp.newaxis, :], - ) - - -def interp_to_argmin_hard(h, points, knots, g, dg_dz, method="cubic"): - """Interpolate ``h`` to the deepest point of ``g`` between ``z1`` and ``z2``. - - Let E = {ζ ∣ ζ₁ < ζ < ζ₂} and A ∈ argmin_E g(ζ). Returns h(A). - - The argmax operation is defined as the expected value under the softmax - probability distribution. - s : x ∈ ℝⁿ, β ∈ ℝ ↦ [eᵝˣ⁽¹⁾, …, eᵝˣ⁽ⁿ⁾] / ∑ₖ₌₁ⁿ eᵝˣ⁽ᵏ⁾ - - See Also - -------- - interp_to_argmin - Accomplishes the same task, but handles the case of non-unique global minima - more correctly. It is also more efficient if num pitch >> 1. - - Parameters - ---------- - h : jnp.ndarray - Shape (..., knots.size). - Values evaluated on ``knots`` to interpolate. - points : jnp.ndarray - Shape (..., num pitch, num well). - Boundaries to detect argmin between. - First (second) element stores left (right) boundaries. - knots : jnp.ndarray - Shape (knots.size, ). - z coordinates of spline knots. Must be strictly increasing. - g : jnp.ndarray - Shape (..., knots.size - 1, g.shape[-1]). - Polynomial coefficients of the spline of g in local power basis. - Last axis enumerates the coefficients of power series. Second to - last axis enumerates the polynomials that compose a particular spline. - dg_dz : jnp.ndarray - Shape (..., knots.size - 1, g.shape[-1] - 1). - Polynomial coefficients of the spline of ∂g/∂z in local power basis. - Last axis enumerates the coefficients of power series. Second to - last axis enumerates the polynomials that compose a particular spline. - method : str - Method of interpolation. - See https://interpax.readthedocs.io/en/latest/_api/interpax.interp1d.html. - Default is cubic C1 local spline. - - Returns - ------- - h : jnp.ndarray - Shape (..., num pitch, num well). - - """ - ext, g_ext = _get_extrema(knots, g, dg_dz, sentinel=0) - # We can use the non-differentiable max because we actually want the gradients - # to accumulate through only the minimum since we are differentiating how our - # physics objective changes wrt equilibrium perturbations not wrt which of the - # extrema get interpolated to. - argmin = jnp.argmin( - _where_for_argmin(points, ext, g_ext, jnp.max(g_ext) + 1), + argmin, axis=-1, - ) - return interp1d_vec( - jnp.take_along_axis(ext[jnp.newaxis], argmin, axis=-1), - knots, - h[..., jnp.newaxis, :], - method=method, - ) + ).squeeze(axis=-1) def interp_fft_to_argmin( - NFP, - T, - h, - points, - knots, - g, - dg_dz, - beta=-100, - upper_sentinel=1e2, - is_fourier=False, - M=None, - N=None, + NFP, T, h, points, knots, g, dg_dz, is_fourier=False, M=None, N=None ): """Interpolate ``h`` to the deepest point of ``g`` between ``z1`` and ``z2``. - Let E = {ζ ∣ ζ₁ < ζ < ζ₂} and A = argmin_E g(ζ). Returns mean_A h(ζ). - - The argmax operation is defined as the expected value under the softmax - probability distribution. - s : x ∈ ℝⁿ, β ∈ ℝ ↦ [eᵝˣ⁽¹⁾, …, eᵝˣ⁽ⁿ⁾] / ∑ₖ₌₁ⁿ eᵝˣ⁽ᵏ⁾ + Let E = {ζ ∣ ζ₁ < ζ < ζ₂} and A ∈ argmin_E g(ζ). Returns h(A). Parameters ---------- + NFP : int + Number of field periods. T : PiecewiseChebyshevSeries Set of 1D Chebyshev spectral coefficients of θ along field line. {θ_α : ζ ↦ θ(α, ζ) | α ∈ A} where A = (α₀, α₁, …, αₘ₋₁) is the same @@ -929,26 +820,12 @@ def interp_fft_to_argmin( Polynomial coefficients of the spline of ∂g/∂z in local power basis. Last axis enumerates the coefficients of power series. Second to last axis enumerates the polynomials that compose a particular spline. - beta : float - More negative gives exponentially better approximation at the - expense of noisier gradients - noisier in the physics sense (unrelated - to the automatic differentiation). - upper_sentinel : float - Something larger than g. Choose value such that - exp(max(g)) << exp(``upper_sentinel``). Don't make too large or numerical - resolution is lost. is_fourier : bool If true, then it is assumed that ``h`` is the Fourier transform as returned by ``Bounce2D.fourier``. M, N : int Fourier resolution. - Warnings - -------- - Recall that if g is small then the effect of β is reduced. - If the intention is to use this function as argmax, be sure to supply - a lower sentinel for ``upper_sentinel``. - Returns ------- h : jnp.ndarray @@ -956,13 +833,24 @@ def interp_fft_to_argmin( """ ext, g_ext = _get_extrema(knots, g, dg_dz, sentinel=0) - # Our softargmax(x) does the proper shift to compute softargmax(x - max(x)), - # but it's still not a good idea to compute over a large length scale, so we - # warn in docstring to choose upper sentinel properly. - argmin = softargmax( - beta * _where_for_fft_argmin(points, ext, g_ext, upper_sentinel), - axis=-1, + + z1, z2 = points + assert z1.ndim >= 1 and z2.ndim >= 1 + # Given + # z1 and z2 with shape (..., num well) + # and ext, g_ext with shape (..., num extrema), + # add dims to broadcast + # z1 and z2 with shape (..., num well, 1). + # and ext, g_ext with shape (..., 1, num extrema). + where = jnp.where( + (z1[..., jnp.newaxis] < ext[..., jnp.newaxis, :]) + & (ext[..., jnp.newaxis, :] < z2[..., jnp.newaxis]), + g_ext[..., jnp.newaxis, :], + jnp.inf, ) + # shape is (..., num well, 1) + argmin = jnp.argmin(where, axis=-1, keepdims=True) + theta = T.eval1d(ext) if is_fourier: h = irfft2_non_uniform( @@ -982,9 +870,10 @@ def interp_fft_to_argmin( domain1=(0, 2 * jnp.pi / NFP), axes=(-1, -2), ) - # argmin shape is (..., num well, num extrema) - # adding axis to broadcast with num well axis - return jnp.linalg.vecdot(argmin, h[..., jnp.newaxis, :]) + if z1.ndim == h.ndim + 1: + h = h[jnp.newaxis] # to broadcast with num pitch axis + # add axis to broadcast with num well axis + return jnp.take_along_axis(h[..., jnp.newaxis, :], argmin, axis=-1).squeeze(axis=-1) # TODO (#568): Generalize this beyond ζ = ϕ or just map to Clebsch with ϕ. @@ -1102,6 +991,8 @@ def chebyshev(n0, n1, NFP, T, f, Y): Parameters ---------- + NFP : int + Number of field periods. T : PiecewiseChebyshevSeries Set of 1D Chebyshev spectral coefficients of θ along field line. {θ_α : ζ ↦ θ(α, ζ) | α ∈ A} where A = (α₀, α₁, …, αₘ₋₁) is the same @@ -1148,6 +1039,8 @@ def cubic_spline(n0, n1, NFP, T, f, Y, check=False): Parameters ---------- + NFP : int + Number of field periods. T : PiecewiseChebyshevSeries Set of 1D Chebyshev spectral coefficients of θ along field line. {θ_α : ζ ↦ θ(α, ζ) | α ∈ A} where A = (α₀, α₁, …, αₘ₋₁) is the same diff --git a/desc/integrals/bounce_integral.py b/desc/integrals/bounce_integral.py index b18d60715..db943f338 100644 --- a/desc/integrals/bounce_integral.py +++ b/desc/integrals/bounce_integral.py @@ -69,17 +69,23 @@ def _swap_pl(f): return jnp.swapaxes(f, 0, -2) +default_quad = get_quadrature( + leggauss(32), + (automorphism_sin, grad_automorphism_sin), +) + + class Bounce2D(Bounce): - """Computes bounce integrals using two-dimensional pseudo-spectral methods. + """Computes bounce integrals using pseudo-spectral methods. The bounce integral is defined as ∫ f(ρ,α,λ,ℓ) dℓ where * dℓ parameterizes the distance along the field line in meters. * f(ρ,α,λ,ℓ) is the quantity to integrate along the field line. - * The boundaries of the integral are bounce points ℓ₁, ℓ₂ s.t. λ|B|(ρ,α,ℓᵢ) = 1. + * The boundaries of the integral are bounce points ℓ₁, ℓ₂ s.t. λB(ρ,α,ℓᵢ) = 1. * λ is a constant defining the integral proportional to the magnetic moment over energy. - * |B| is the norm of the magnetic field. + * B is the norm of the magnetic field. For a particle with fixed λ, bounce points are defined to be the location on the field line such that the particle's velocity parallel to the magnetic field is zero. @@ -87,146 +93,184 @@ class Bounce2D(Bounce): the particle's guiding center trajectory traveling in the direction of increasing field-line-following coordinate ζ. - - Overview - -------- - Magnetic field line with label α, defined by B = ∇ρ × ∇α, is determined from + Notes + ----- + Magnetic field line with label α, defined by B = ∇ψ × ∇α, is determined from α : ρ, θ, ζ ↦ θ + λ(ρ,θ,ζ) − ι(ρ) [ζ + ω(ρ,θ,ζ)] Interpolate Fourier-Chebyshev series to DESC poloidal coordinate. - θ : α, ζ ↦ tₘₙ exp(jmα) Tₙ(ζ) - Compute |B| along field lines. - |B| : α, ζ ↦ bₙ(θ(α, ζ)) Tₙ(ζ) + θ : ρ, α, ζ ↦ tₘₙ(ρ) exp(jmα) Tₙ(ζ) Compute bounce points. - r(ζₖ) = |B|(ζₖ) − 1/λ = 0 - Interpolate smooth components of integrand with FFTs. - G : α, ζ ↦ gₘₙ exp(j [m θ(α,ζ) + n ζ] ) + r(ζₖ) = B(ζₖ) − 1/λ = 0 + Interpolate smooth periodic components of integrand with FFTs. + G : ρ, α, ζ ↦ gₘₙ(ρ) exp(j [m θ(ρ,α,ζ) + n ζ]) Perform Gaussian quadrature after removing singularities. Fᵢ : ρ, α, λ, ζ₁, ζ₂ ↦ ∫ᵢ f(ρ,α,λ,ζ,{Gⱼ}) dζ If the map G is multivalued at a physical location, then it is still - permissible if separable into single valued and multivalued parts. - In that case, supply the single valued parts, which will be interpolated + permissible if separable into periodic and secular components. + In that case, supply the periodic component, which will be interpolated with FFTs, and use the provided coordinates θ,ζ ∈ ℝ to compose G. - Notes - ----- - For applications which reduce to computing a nonlinear function of distance - along field lines between bounce points, it is required to identify these - points with field-line-following coordinates. (In the special case of a linear - function summing integrals between bounce points over a flux surface, arbitrary - coordinate systems may be used as that task reduces to a surface integral, - which is invariant to the order of summation). - - The DESC coordinate system is related to field-line-following coordinate - systems by a relation whose solution is best found with Newton iteration - since this solution is unique. Newton iteration is not a globally - convergent algorithm to find the real roots of r : ζ ↦ |B|(ζ) − 1/λ where - ζ is a field-line-following coordinate. For this, function approximation - of |B| is necessary. - - Therefore, to compute bounce points {(ζ₁, ζ₂)}, we approximate |B| by a - series expansion of basis functions parameterized by a single variable ζ, - restricting the class of basis functions to low order (e.g. n = 2ᵏ where - k is small) algebraic or trigonometric polynomial with integer frequencies. - These are the two classes useful for function approximation and for which - there exists globally convergent root-finding algorithms. We require low - order because the computation expenses grow with the number of potential - roots, and the theorem of algebra states that number is n (2n) for algebraic - (trigonometric) polynomials of degree n. - - The frequency transform of a map under the chosen basis must be concentrated - at low frequencies for the series to converge fast. For periodic - (non-periodic) maps, the standard choice for the basis is a Fourier (Chebyshev) - series. Both converge exponentially, but the larger region of convergence in the - complex plane of Fourier series makes it preferable to choose coordinate - systems such that the function to approximate is periodic. One reason Chebyshev - polynomials are preferred to other orthogonal polynomial series is - fast discrete polynomial transforms (DPT) are implemented via fast transform - to Chebyshev then DCT. Therefore, a Fourier-Chebyshev series is chosen - to interpolate θ(α,ζ) and a piecewise Chebyshev series interpolates |B|(ζ). - - * An alternative to Chebyshev series is - [filtered Fourier series](doi.org/10.1016/j.aml.2006.10.001). - We did not implement or benchmark against that. - * θ is not interpolated with a double Fourier series θ(ϑ, ζ) because - it is impossible to approximate an unbounded function with a finite Fourier - series. Due to Gibbs effects, this statement holds even when the goal is to - approximate θ over one branch cut. The proof uses analytic continuation. - * The advantage of Fourier series in DESC coordinates is that they may use the - spectrally condensed variable ζ* = NFP ζ. This cannot be done in any other - coordinate system, regardless of whether the basis functions are periodic. - The strategy of parameterizing |B| along field lines with a single variable - in Clebsch coordinates (as opposed to two variables in straight-field line - coordinates) also serves to minimize this penalty since evaluation of |B| - when computing bounce points will be less expensive (assuming the 2D - Fourier resolution of |B|(ϑ, ϕ) is larger than the 1D Chebyshev resolution). - - Computing accurate series expansions in (α, ζ) coordinates demands - particular interpolation points in that coordinate system. Newton iteration - is used to compute θ at these points. Note that interpolation is necessary - because there is no transformation that converts series coefficients in - periodic coordinates, e.g. (ϑ, ϕ), to a low order polynomial basis in - non-periodic coordinates. For example, one can obtain series coefficients in - (α, ϕ) coordinates from those in (ϑ, ϕ) as follows - g : ϑ, ϕ ↦ ∑ₘₙ aₘₙ exp(j [mϑ + nϕ]) - - g : α, ϕ ↦ ∑ₘₙ aₘₙ exp(j [mα + (m ι + n)ϕ]) - However, the basis for the latter are trigonometric functions with - irrational frequencies, courtesy of the irrational rotational transform. - Globally convergent root-finding schemes for that basis (at fixed α) are - not known. The denominator of a close rational could be absorbed into the - coordinate ϕ, but this balloons the frequency, and hence the degree of the - series. - - After computing the bounce points, the supplied quadrature is performed. - By default, this is a Gauss quadrature after removing the singularity. - Fast fourier transforms interpolate smooth functions in the integrand to the - quadrature nodes. Quadrature is chosen over Runge-Kutta methods of the form - ∂Fᵢ/∂ζ = f(ρ,α,λ,ζ,{Gⱼ}) subject to Fᵢ(ζ₁) = 0 - A fourth order Runge-Kutta method is equivalent to a quadrature - with Simpson's rule. The quadratures resolve these integrals more efficiently. - - Fast transforms are used where possible. Fast multipoint methods are not - implemented. For non-uniform interpolation, MMTs are used. It will be - worthwhile to use the inverse non-uniform fast transforms. - Examples -------- See ``tests/test_integrals.py::TestBounce2D::test_bounce2d_checks``. See Also -------- - Bounce1D : Uses one-dimensional local spline methods for the same task. - - - Comparison to Bounce1D - ---------------------- - ``Bounce2D`` solves the dominant cost of optimization objectives relying on - ``Bounce1D``: interpolating DESC's 3D transforms to an optimization-step - dependent grid that is dense enough for function approximation with local - splines. This is sometimes referred to as off-grid interpolation in literature; - it is often a bottleneck. - - * The function approximation done here requires DESC transforms on a fixed - grid with typical resolution, using FFTs to compute the map α,ζ ↦ θ(α,ζ) - between coordinate systems. This enables evaluating functions along - field lines without root-finding. - * The faster convergence of spectral interpolation requires a less dense - grid to interpolate onto from DESC's 3D transforms. - * Spectral approximation is more accurate than cubic splines. - * 2D interpolation enables tracing the field line for many toroidal transits. - * The drawback is that evaluating a Fourier series with resolution F at Q - non-uniform quadrature points takes 𝒪([F+Q] log[F] log[1/ε]) time - whereas cubic splines take 𝒪(C Q) time. However, as NFP increases, - F decreases whereas C increases. Also, Q >> F and Q >> C. - - Attributes + Bounce1D + ``Bounce1D`` uses one-dimensional splines for the same task. + ``Bounce2D`` solves the dominant cost of optimization objectives in DESC + relying on ``Bounce1D``: interpolating FourierZernike transforms to an + optimization-step dependent grid that is dense enough for function + approximation with local splines. + The function approximation done here requires FourierZernike transforms on a + fixed grid with typical resolution, using FFTs to compute the map between + coordinate systems. + The faster convergence of spectral methods requires a less dense + grid to interpolate onto from FourierZernike transforms. + 2D interpolation enables tracing the field line for many toroidal transits. + The drawback is that evaluating a Fourier series with resolution F at Q + non-uniform quadrature points takes 𝒪(-(F+Q) log(F) log(ε)) time + whereas cubic splines take 𝒪(C Q) time. However, as NFP increases, + F decreases whereas C increases. Also, Q >> F and Q >> C. + + Parameters ---------- - required_names : list - Names in ``data_index`` required to compute bounce integrals. + grid : Grid + Tensor-product grid in (ρ, θ, ζ) with uniformly spaced nodes + (θ, ζ) ∈ [0, 2π) × [0, 2π/NFP). The ζ coordinates (the unique values prior + to taking the tensor-product) must be strictly increasing. + Below shape notation defines ``M=grid.num_theta`` and ``N=grid.num_zeta``. + ``M`` and ``N`` are preferably powers of two. + data : dict[str, jnp.ndarray] + Data evaluated on ``grid``. + Must include names in ``Bounce2D.required_names``. + theta : jnp.ndarray + Shape (num rho, X, Y). + DESC coordinates θ sourced from the Clebsch coordinates + ``FourierChebyshevSeries.nodes(X,Y,rho,domain=(0,2*jnp.pi))``. + Use the ``Bounce2D.compute_theta`` method to obtain this. + ``X`` and ``Y`` are preferably powers of two. + Y_B : int + Desired resolution for algorithm to compute bounce points. + Default is double ``Y``. + alpha : float + Starting field line poloidal label. + num_transit : int + Number of toroidal transits to follow field line. + quad : tuple[jnp.ndarray] + Quadrature points xₖ and weights wₖ for the approximate evaluation of an + integral ∫₋₁¹ g(x) dx = ∑ₖ wₖ g(xₖ). Default is 32 points. + automorphism : tuple[Callable] or None + The first callable should be an automorphism of the real interval [-1, 1]. + The second callable should be the derivative of the first. This map defines + a change of variable for the bounce integral. The choice made for the + automorphism will affect the performance of the quadrature. + Bref : float + Optional. Reference magnetic field strength for normalization. + Lref : float + Optional. Reference length scale for normalization. + is_reshaped : bool + Whether the arrays in ``data`` are already reshaped to the expected form of + shape (..., M, N) or (num rho, M, N). This option can be used to iteratively + compute bounce integrals one flux surface at a time, reducing memory usage + To do so, set to true and provide only those axes of the reshaped data. + Default is false. + is_fourier : bool + If true, then it is assumed that ``data`` holds Fourier transforms + as returned by ``Bounce2D.fourier``. Default is false. + check : bool + Flag for debugging. Must be false for JAX transformations. + spline : bool + Whether to use cubic splines to compute bounce points. + Default is true, because the algorithm for efficient root-finding on + Chebyshev series algorithm is not yet implemented. + When using splines, it is recommended to reduce the ``num_well`` + parameter in the ``points`` method from ``3*Y_B*num_transit`` to + at most ``Y_B*num_transit``. """ + # For applications which reduce to computing a nonlinear function of distance + # along field lines between bounce points, it is required to identify these + # points with field-line-following coordinates. (In the special case of a linear + # function summing integrals between bounce points over a flux surface, arbitrary + # coordinate systems may be used as that task reduces to a surface integral, + # which is invariant to the order of summation). + # + # The DESC coordinate system is related to field-line-following coordinate + # systems by a relation whose solution is best found with Newton iteration + # since this solution is unique. Newton iteration is not a globally + # convergent algorithm to find the real roots of r : ζ ↦ B(ζ) − 1/λ where + # ζ is a field-line-following coordinate. For this, function approximation + # of B is necessary. + # + # Therefore, to compute bounce points {(ζ₁, ζ₂)}, we approximate B by a + # series expansion of basis functions parameterized by a single variable ζ, + # restricting the class of basis functions to low order (e.g. n = 2ᵏ where + # k is small) algebraic or trigonometric polynomial with integer frequencies. + # These are the two classes useful for function approximation and for which + # there exists globally convergent root-finding algorithms. We require low + # order because the computation expenses grow with the number of potential + # roots, and the theorem of algebra states that number is n (2n) for algebraic + # (trigonometric) polynomials of degree n. + # + # The frequency transform of a map under the chosen basis must be concentrated + # at low frequencies for the series to converge fast. For periodic + # (non-periodic) maps, the standard choice for the basis is a Fourier (Chebyshev) + # series. Both converge exponentially, but the larger region of convergence in the + # complex plane of Fourier series makes it preferable to choose coordinate + # systems such that the function to approximate is periodic. One reason Chebyshev + # polynomials are preferred to other orthogonal polynomial series is + # fast discrete polynomial transforms (DPT) are implemented via fast transform + # to Chebyshev then DCT. Therefore, a Fourier-Chebyshev series is chosen + # to interpolate θ(α,ζ) and a piecewise Chebyshev series interpolates B(ζ). + # + # * An alternative to Chebyshev series is + # [filtered Fourier series](doi.org/10.1016/j.aml.2006.10.001). + # We did not implement or benchmark against that. + # * θ is not interpolated with a double Fourier series θ(ϑ, ζ) because + # it is impossible to approximate an unbounded function with a finite Fourier + # series. Due to Gibbs effects, this statement holds even when the goal is to + # approximate θ over one branch cut. The proof uses analytic continuation. + # * The advantage of Fourier series in DESC coordinates is that they may use the + # spectrally condensed variable ζ* = NFP ζ. This cannot be done in any other + # coordinate system, regardless of whether the basis functions are periodic. + # The strategy of parameterizing B along field lines with a single variable + # in Clebsch coordinates (as opposed to two variables in straight-field line + # coordinates) also serves to minimize this penalty since evaluation of B + # when computing bounce points will be less expensive (assuming the 2D + # Fourier resolution of B(ϑ, ϕ) is larger than the 1D Chebyshev resolution). + # + # Computing accurate series expansions in (α, ζ) coordinates demands + # particular interpolation points in that coordinate system. Newton iteration + # is used to compute θ at these points. Note that interpolation is necessary + # because there is no transformation that converts series coefficients in + # periodic coordinates, e.g. (ϑ, ϕ), to a low order polynomial basis in + # non-periodic coordinates. For example, one can obtain series coefficients in + # (α, ϕ) coordinates from those in (ϑ, ϕ) as follows + # g : ϑ, ϕ ↦ ∑ₘₙ aₘₙ exp(j [mϑ + nϕ]) + # + # g : α, ϕ ↦ ∑ₘₙ aₘₙ exp(j [mα + (m ι + n)ϕ]) + # However, the basis for the latter are trigonometric functions with + # irrational frequencies, courtesy of the irrational rotational transform. + # Globally convergent root-finding schemes for that basis (at fixed α) are + # not known. The denominator of a close rational could be absorbed into the + # coordinate ϕ, but this balloons the frequency, and hence the degree of the + # series. + # + # After computing the bounce points, the supplied quadrature is performed. + # By default, this is a Gauss quadrature after removing the singularity. + # Fast fourier transforms interpolate smooth functions in the integrand to the + # quadrature nodes. Quadrature is chosen over Runge-Kutta methods of the form + # ∂Fᵢ/∂ζ = f(ρ,α,λ,ζ,{Gⱼ}) subject to Fᵢ(ζ₁) = 0 + # A fourth order Runge-Kutta method is equivalent to a quadrature + # with Simpson's rule. The quadratures resolve these integrals more efficiently. + # + # Fast transforms are used where possible. Fast multipoint methods are not + # implemented. For non-uniform interpolation, MMTs are used. It will be + # worthwhile to use the inverse non-uniform fast transforms. + required_names = ["B^zeta", "|B|", "iota"] def __init__( @@ -235,12 +279,12 @@ def __init__( data, theta, Y_B=None, - num_transit=32, + num_transit=20, # TODO (#1309): Allow multiple starting labels for near-rational surfaces. # Can just add axis for piecewise chebyshev stuff cheb. alpha=0.0, - quad=leggauss(32), - automorphism=(automorphism_sin, grad_automorphism_sin), + quad=default_quad, + automorphism=None, *, Bref=1.0, Lref=1.0, @@ -249,66 +293,7 @@ def __init__( check=False, spline=True, ): - """Returns an object to compute bounce integrals. - - Notes - ----- - Performance may improve if ``M``,``N``,``X``,``Y``,``Y_B`` are powers of two. - - Parameters - ---------- - grid : Grid - Tensor-product grid in (ρ, θ, ζ) with uniformly spaced nodes - (θ, ζ) ∈ [0, 2π) × [0, 2π/NFP). The ζ coordinates (the unique values prior - to taking the tensor-product) must be strictly increasing. - Below shape notation defines ``M=grid.num_theta`` and ``N=grid.num_zeta``. - data : dict[str, jnp.ndarray] - Data evaluated on ``grid``. - Must include names in ``Bounce2D.required_names``. - theta : jnp.ndarray - Shape (num rho, X, Y). - DESC coordinates θ sourced from the Clebsch coordinates - ``FourierChebyshevSeries.nodes(X,Y,rho,domain=(0,2*jnp.pi))``. - Use the ``Bounce2D.compute_theta`` method to obtain this. - Y_B : int - Desired resolution for |B| along field lines to compute bounce points. - Default is double ``Y``. - alpha : float - Starting field line poloidal label. - num_transit : int - Number of toroidal transits to follow field line. - quad : tuple[jnp.ndarray] - Quadrature points xₖ and weights wₖ for the approximate evaluation of an - integral ∫₋₁¹ g(x) dx = ∑ₖ wₖ g(xₖ). Default is 32 points. - automorphism : tuple[Callable] or None - The first callable should be an automorphism of the real interval [-1, 1]. - The second callable should be the derivative of the first. This map defines - a change of variable for the bounce integral. The choice made for the - automorphism will affect the performance of the quadrature method. - Bref : float - Optional. Reference magnetic field strength for normalization. - Lref : float - Optional. Reference length scale for normalization. - is_reshaped : bool - Whether the arrays in ``data`` are already reshaped to the expected form of - shape (..., M, N) or (num rho, M, N). This option can be used to iteratively - compute bounce integrals one flux surface at a time, reducing memory usage - To do so, set to true and provide only those axes of the reshaped data. - Default is false. - is_fourier : bool - If true, then it is assumed that ``data`` holds Fourier transforms - as returned by ``Bounce2D.fourier``. Default is false. - check : bool - Flag for debugging. Must be false for JAX transformations. - spline : bool - Whether to use cubic splines to compute bounce points. - Default is true, because the algorithm for efficient root-finding on - Chebyshev series algorithm is not yet implemented. - When using splines, it is recommended to reduce the ``num_well`` - parameter in the ``points`` method from ``3*Y_B*num_transit`` to - at most ``Y_B*num_transit``. - - """ + """Returns an object to compute bounce integrals.""" is_reshaped = is_reshaped or is_fourier assert grid.can_fft2 self._M = grid.num_theta @@ -328,8 +313,8 @@ def __init__( ), } if not is_reshaped: - self._c["|B|"] = Bounce2D.reshape_data(grid, self._c["|B|"]) - self._c["B^zeta"] = Bounce2D.reshape_data(grid, self._c["B^zeta"]) + self._c["|B|"] = Bounce2D.reshape(grid, self._c["|B|"]) + self._c["B^zeta"] = Bounce2D.reshape(grid, self._c["B^zeta"]) if not is_fourier: self._c["|B|"] = Bounce2D.fourier(self._c["|B|"]) self._c["B^zeta"] = Bounce2D.fourier(self._c["B^zeta"]) @@ -356,8 +341,8 @@ def __init__( ) @staticmethod - def reshape_data(grid, f): - """Reshape ``data`` arrays for acceptable input to ``integrate``. + def reshape(grid, f): + """Reshape arrays for acceptable input to ``integrate``. Parameters ---------- @@ -409,11 +394,11 @@ def compute_theta(eq, X=16, Y=32, rho=1.0, iota=None, clebsch=None, **kwargs): eq : Equilibrium Equilibrium to use defining the coordinate mapping. X : int - Grid resolution in poloidal direction for Clebsch coordinate grid. - Preferably power of 2. + Poloidal Fourier grid resolution to interpolate the poloidal coordinate. + Preferably rounded down to power of 2. Y : int - Grid resolution in toroidal direction for Clebsch coordinate grid. - Preferably power of 2. + Toroidal Chebyshev grid resolution to interpolate the poloidal coordinate. + Preferably rounded down to power of 2. rho : float or jnp.ndarray Shape (num rho, ). Flux surfaces labels in [0, 1] on which to compute. @@ -467,8 +452,8 @@ def points(self, pitch_inv, *, num_well=None): but due to current limitations in JAX this will have worse performance. Specifying a number that tightly upper bounds the number of wells will increase performance. In general, an upper bound on the number of wells - per toroidal transit is ``Aι+B`` where ``A``,``B`` are the poloidal and - toroidal Fourier resolution of |B|, respectively, in straight-field line + per toroidal transit is ``Aι+B`` where ``A``, ``B`` are the poloidal and + toroidal Fourier resolution of B, respectively, in straight-field line PEST coordinates, and ι is the rotational transform normalized by 2π. A tighter upper bound than ``num_well=(Aι+B)*num_transit`` is preferable. The ``check_points`` or ``plot`` method is useful to select a reasonable @@ -483,7 +468,7 @@ def points(self, pitch_inv, *, num_well=None): Shape (num rho, num pitch, num well). Tuple of length two (z1, z2) that stores ζ coordinates of bounce points. The points are ordered and grouped such that the straight line path - between ``z1`` and ``z2`` resides in the epigraph of |B|. + between ``z1`` and ``z2`` resides in the epigraph of B. If there were less than ``num_well`` wells detected along a field line, then the last axis, which enumerates bounce points for a particular field @@ -510,7 +495,7 @@ def points(self, pitch_inv, *, num_well=None): return z1, z2 def _polish_points(self, points, pitch_inv): - # TODO (#1154): One application of secant on Fourier series |B| - 1/λ. + # TODO (#1154): One application of secant on Fourier series B - 1/λ. raise NotImplementedError def check_points(self, points, pitch_inv, *, plot=True, **kwargs): @@ -523,7 +508,7 @@ def check_points(self, points, pitch_inv, *, plot=True, **kwargs): Output of method ``self.points``. Tuple of length two (z1, z2) that stores ζ coordinates of bounce points. The points are ordered and grouped such that the straight line path - between ``z1`` and ``z2`` resides in the epigraph of |B|. + between ``z1`` and ``z2`` resides in the epigraph of B. pitch_inv : jnp.ndarray Shape (num rho, num pitch). 1/λ values to compute the bounce integrals. 1/λ(ρ) is specified by @@ -585,14 +570,14 @@ def integrate( Notes ----- - Make sure to replace √(1−λ|B|) with √|1−λ|B|| in ``integrand`` to account + Make sure to replace √(1−λB) with √|1−λB| in ``integrand`` to account for imperfect computation of bounce points. Parameters ---------- integrand : callable or list[callable] - The composition operator on the set of functions in ``data`` that - maps that determines ``f`` in ∫ f(ρ,α,λ,ℓ) dℓ. It should accept a dictionary + The composition operator on the set of functions in ``data`` + that determines ``f`` in ∫ f(ρ,α,λ,ℓ) dℓ. It should accept a dictionary which stores the interpolated data and the arguments ``B`` and ``pitch``. pitch_inv : jnp.ndarray Shape (num rho, num pitch). @@ -603,7 +588,7 @@ def integrate( Shape (num rho, M, N). Real scalar-valued periodic functions in (θ, ζ) ∈ [0, 2π) × [0, 2π/NFP) evaluated on the ``grid`` supplied to construct this object. - Use the method ``Bounce2D.reshape_data`` to reshape the data into the + Use the method ``Bounce2D.reshape`` to reshape the data into the expected shape. names : str or list[str] Names in ``data`` to interpolate. Default is all keys in ``data``. @@ -612,7 +597,7 @@ def integrate( Optional, output of method ``self.points``. Tuple of length two (z1, z2) that stores ζ coordinates of bounce points. The points are ordered and grouped such that the straight line path - between ``z1`` and ``z2`` resides in the epigraph of |B|. + between ``z1`` and ``z2`` resides in the epigraph of B. is_fourier : bool If true, then it is assumed that ``data`` holds Fourier transforms as returned by ``Bounce2D.fourier``. Default is false. @@ -629,8 +614,8 @@ def integrate( ------- result : jnp.ndarray Shape (num rho, num pitch, num well). - Last axis enumerates the bounce integrals for a given field line, - flux surface, and pitch value. + Last axis enumerates the bounce integrals for a given + flux surface and pitch value. """ if not isinstance(integrand, (list, tuple)): @@ -767,14 +752,14 @@ def interp_to_argmin(self, f, points, *, is_fourier=False): Shape (num rho, M, N). Real scalar-valued periodic function in (θ, ζ) ∈ [0, 2π) × [0, 2π/NFP) evaluated on the ``grid`` supplied to construct this object. - Use the method ``Bounce2D.reshape_data`` to reshape the data into the + Use the method ``Bounce2D.reshape`` to reshape the data into the expected shape. points : tuple[jnp.ndarray] Shape (num rho, num pitch, num well). Optional, output of method ``self.points``. Tuple of length two (z1, z2) that stores ζ coordinates of bounce points. The points are ordered and grouped such that the straight line path - between ``z1`` and ``z2`` resides in the epigraph of |B|. + between ``z1`` and ``z2`` resides in the epigraph of B. is_fourier : bool If true, then it is assumed that ``f`` is the Fourier transforms as returned by ``Bounce2D.fourier``. Default is false. @@ -794,21 +779,23 @@ def interp_to_argmin(self, f, points, *, is_fourier=False): # We move num pitch axis to front so that the num rho axis broadcasts # with the spectral coefficients (whose first axis is also num rho), # assuming this axis exists. - return interp_fft_to_argmin( - self._NFP, - self._c["T(z)"], - f, - map(_swap_pl, points), - self._c["knots"], - self._c["B(z)"], - polyder_vec(self._c["B(z)"]), - is_fourier=is_fourier, - M=self._M, - N=self._N, + return _swap_pl( + interp_fft_to_argmin( + self._NFP, + self._c["T(z)"], + f, + map(_swap_pl, points), + self._c["knots"], + self._c["B(z)"], + polyder_vec(self._c["B(z)"]), + is_fourier=is_fourier, + M=self._M, + N=self._N, + ) ) def compute_fieldline_length(self, quad=None): - """Compute the proper length of the field line ∫ dℓ / |B|. + """Compute the proper length of the field line ∫ dℓ / B. Parameters ---------- @@ -953,10 +940,10 @@ class Bounce1D(Bounce): * dℓ parameterizes the distance along the field line in meters. * f(ρ,α,λ,ℓ) is the quantity to integrate along the field line. - * The boundaries of the integral are bounce points ℓ₁, ℓ₂ s.t. λ|B|(ρ,α,ℓᵢ) = 1. + * The boundaries of the integral are bounce points ℓ₁, ℓ₂ s.t. λB(ρ,α,ℓᵢ) = 1. * λ is a constant defining the integral proportional to the magnetic moment over energy. - * |B| is the norm of the magnetic field. + * B is the norm of the magnetic field. For a particle with fixed λ, bounce points are defined to be the location on the field line such that the particle's velocity parallel to the magnetic field is zero. @@ -964,59 +951,55 @@ class Bounce1D(Bounce): the particle's guiding center trajectory traveling in the direction of increasing field-line-following coordinate ζ. - Notes - ----- - For applications which reduce to computing a nonlinear function of distance - along field lines between bounce points, it is required to identify these - points with field-line-following coordinates. (In the special case of a linear - function summing integrals between bounce points over a flux surface, arbitrary - coordinate systems may be used as that task reduces to a surface integral, - which is invariant to the order of summation). - - The DESC coordinate system is related to field-line-following coordinate - systems by a relation whose solution is best found with Newton iteration - since this solution is unique. Newton iteration is not a globally - convergent algorithm to find the real roots of r : ζ ↦ |B|(ζ) − 1/λ where - ζ is a field-line-following coordinate. For this, function approximation - of |B| is necessary. - - The function approximation in ``Bounce1D`` is ignorant that the objects to - approximate are defined on a bounded subset of ℝ². Instead, the domain is - projected to ℝ, where information sampled about the function at infinity - cannot support reconstruction of the function near the origin. As the - functions of interest do not vanish at infinity, pseudo-spectral techniques - are not used. Instead, function approximation is done with local splines. - This is useful if one can efficiently obtain data along field lines and the - number of toroidal transits to follow a field line is not large. - - After computing the bounce points, the supplied quadrature is performed. - By default, this is a Gauss quadrature after removing the singularity. - Local splines interpolate smooth functions in the integrand to the quadrature - nodes. Quadrature is chosen over Runge-Kutta methods of the form - ∂Fᵢ/∂ζ = f(λ,ζ,{Gⱼ}) subject to Fᵢ(ζ₁) = 0 - A fourth order Runge-Kutta method is equivalent to a quadrature - with Simpson's rule. The quadratures resolve these integrals more efficiently. - - See Also - -------- - Bounce2D : Uses two-dimensional pseudo-spectral techniques for the same task. - Examples -------- See ``tests/test_integrals.py::TestBounce::test_bounce1d_checks``. - Attributes + See Also + -------- + Bounce2D + ``Bounce2D`` uses 2D pseudo-spectral methods for the same task. + The function approximation in ``Bounce1D`` is ignorant + that the objects to approximate are defined on a bounded subset of ℝ². + The domain is projected to ℝ, where information sampled about the function + at infinity cannot support reconstruction of the function near the origin. + As the functions of interest do not vanish at infinity, pseudo-spectral + techniques are not used. Instead, function approximation is done with local + splines. This is useful if one can efficiently obtain data along field lines + and the number of toroidal transits to follow a field line is not large. + + Parameters ---------- - required_names : list - Names in ``data_index`` required to compute bounce integrals. - B : jnp.ndarray - Shape (num alpha, num rho, N - 1, B.shape[-1]). - Polynomial coefficients of the spline of |B| in local power basis. - Last axis enumerates the coefficients of power series. For a polynomial - given by ∑ᵢⁿ cᵢ xⁱ, coefficient cᵢ is stored at ``B[...,n-i]``. - Third axis enumerates the polynomials that compose a particular spline. - Second axis enumerates flux surfaces. - First axis enumerates field lines of a particular flux surface. + grid : Grid + Tensor-product grid in (ρ, α, ζ) Clebsch coordinates. + The ζ coordinates (the unique values prior to taking the tensor-product) + must be strictly increasing and preferably uniformly spaced. These are used + as knots to construct splines. A reference knot density is 100 knots per + toroidal transit. + data : dict[str, jnp.ndarray] + Data evaluated on ``grid``. + Must include names in ``Bounce1D.required_names``. + quad : tuple[jnp.ndarray] + Quadrature points xₖ and weights wₖ for the approximate evaluation of an + integral ∫₋₁¹ g(x) dx = ∑ₖ wₖ g(xₖ). Default is 32 points. + automorphism : tuple[Callable] or None + The first callable should be an automorphism of the real interval [-1, 1]. + The second callable should be the derivative of the first. This map defines + a change of variable for the bounce integral. The choice made for the + automorphism will affect the performance of the quadrature. + Bref : float + Optional. Reference magnetic field strength for normalization. + Lref : float + Optional. Reference length scale for normalization. + is_reshaped : bool + Whether the arrays in ``data`` are already reshaped to the expected form of + shape (..., num zeta) or (..., num rho, num zeta) or + (num alpha, num rho, num zeta). This option can be used to iteratively + compute bounce integrals one field line or one flux surface at a time, + respectively, reducing memory usage. To do so, set to true and provide + only those axes of the reshaped data. Default is false. + check : bool + Flag for debugging. Must be false for JAX transformations. """ @@ -1026,50 +1009,15 @@ def __init__( self, grid, data, - quad=leggauss(32), - automorphism=(automorphism_sin, grad_automorphism_sin), + quad=default_quad, + automorphism=None, *, Bref=1.0, Lref=1.0, is_reshaped=False, check=False, ): - """Returns an object to compute bounce integrals. - - Parameters - ---------- - grid : Grid - Tensor-product grid in (ρ, α, ζ) Clebsch coordinates. - The ζ coordinates (the unique values prior to taking the tensor-product) - must be strictly increasing and preferably uniformly spaced. These are used - as knots to construct splines. A reference knot density is 100 knots per - toroidal transit. - data : dict[str, jnp.ndarray] - Data evaluated on ``grid``. - Must include names in ``Bounce1D.required_names``. - quad : tuple[jnp.ndarray] - Quadrature points xₖ and weights wₖ for the approximate evaluation of an - integral ∫₋₁¹ g(x) dx = ∑ₖ wₖ g(xₖ). Default is 32 points. - automorphism : tuple[Callable] or None - The first callable should be an automorphism of the real interval [-1, 1]. - The second callable should be the derivative of the first. This map defines - a change of variable for the bounce integral. The choice made for the - automorphism will affect the performance of the quadrature method. - Bref : float - Optional. Reference magnetic field strength for normalization. - Lref : float - Optional. Reference length scale for normalization. - is_reshaped : bool - Whether the arrays in ``data`` are already reshaped to the expected form of - shape (..., num zeta) or (..., num rho, num zeta) or - (num alpha, num rho, num zeta). This option can be used to iteratively - compute bounce integrals one field line or one flux surface at a time, - respectively, reducing memory usage. To do so, set to true and provide - only those axes of the reshaped data. Default is false. - check : bool - Flag for debugging. Must be false for JAX transformations. - - """ + """Returns an object to compute bounce integrals.""" assert grid.is_meshgrid self._data = { # Strictly increasing zeta knots enforces dζ > 0. @@ -1086,12 +1034,17 @@ def __init__( } if not is_reshaped: for name in self._data: - self._data[name] = Bounce1D.reshape_data(grid, self._data[name]) + self._data[name] = Bounce1D.reshape(grid, self._data[name]) self._x, self._w = get_quadrature(quad, automorphism) # Compute local splines. + # Note it is simple to do FFT across field line axis, and spline + # Fourier coefficients across ζ to obtain Fourier-CubicSpline of functions. + # The point of Bounce2D is to do such a 2D interpolation without + # rebuilding DESC transforms each time an objective is computed. self._zeta = grid.compress(grid.nodes[:, 2], surface_label="zeta") - self.B = jnp.moveaxis( + # Shape is (num alpha, num rho, N - 1, -1). + self._B = jnp.moveaxis( CubicHermiteSpline( x=self._zeta, y=self._data["|B|"], @@ -1102,14 +1055,10 @@ def __init__( source=(0, 1), destination=(-1, -2), ) - self._dB_dz = polyder_vec(self.B) - # Note it is simple to do FFT across field line axis, and spline - # Fourier coefficients across ζ to obtain Fourier-CubicSpline of functions. - # The point of Bounce2D is to do such a 2D interpolation but also do so - # without rebuilding DESC transforms each time an objective is computed. + self._dB_dz = polyder_vec(self._B) @staticmethod - def reshape_data(grid, f): + def reshape(grid, f): """Reshape arrays for acceptable input to ``integrate``. Parameters @@ -1144,8 +1093,8 @@ def points(self, pitch_inv, *, num_well=None): but due to current limitations in JAX this will have worse performance. Specifying a number that tightly upper bounds the number of wells will increase performance. In general, an upper bound on the number of wells - per toroidal transit is ``Aι+B`` where ``A``,``B`` are the poloidal and - toroidal Fourier resolution of |B|, respectively, in straight-field line + per toroidal transit is ``Aι+B`` where ``A``, ``B`` are the poloidal and + toroidal Fourier resolution of B, respectively, in straight-field line PEST coordinates, and ι is the rotational transform normalized by 2π. A tighter upper bound than ``num_well=(Aι+B)*num_transit`` is preferable. The ``check_points`` or ``plot`` method is useful to select a reasonable @@ -1160,14 +1109,14 @@ def points(self, pitch_inv, *, num_well=None): Shape (num alpha, num rho, num pitch, num well). Tuple of length two (z1, z2) that stores ζ coordinates of bounce points. The points are ordered and grouped such that the straight line path - between ``z1`` and ``z2`` resides in the epigraph of |B|. + between ``z1`` and ``z2`` resides in the epigraph of B. If there were less than ``num_well`` wells detected along a field line, then the last axis, which enumerates bounce points for a particular field line and pitch, is padded with zero. """ - return bounce_points(pitch_inv, self._zeta, self.B, self._dB_dz, num_well) + return bounce_points(pitch_inv, self._zeta, self._B, self._dB_dz, num_well) def check_points(self, points, pitch_inv, *, plot=True, **kwargs): """Check that bounce points are computed correctly. @@ -1179,7 +1128,7 @@ def check_points(self, points, pitch_inv, *, plot=True, **kwargs): Output of method ``self.points``. Tuple of length two (z1, z2) that stores ζ coordinates of bounce points. The points are ordered and grouped such that the straight line path - between ``z1`` and ``z2`` resides in the epigraph of |B|. + between ``z1`` and ``z2`` resides in the epigraph of B. pitch_inv : jnp.ndarray Shape (num alpha, num rho, num pitch). 1/λ values to compute the bounce points at each field line. 1/λ(α,ρ) is @@ -1201,7 +1150,7 @@ def check_points(self, points, pitch_inv, *, plot=True, **kwargs): z2=points[1], pitch_inv=pitch_inv, knots=self._zeta, - B=self.B, + B=self._B, plot=plot, **kwargs, ) @@ -1230,8 +1179,8 @@ def integrate( Parameters ---------- integrand : callable or list[callable] - The composition operator on the set of functions in ``data`` that - maps that determines ``f`` in ∫ f(ρ,α,λ,ℓ) dℓ. It should accept a dictionary + The composition operator on the set of functions in ``data`` + that determines ``f`` in ∫ f(ρ,α,λ,ℓ) dℓ. It should accept a dictionary which stores the interpolated data and the arguments ``B`` and ``pitch``. pitch_inv : jnp.ndarray Shape (num alpha, num rho, num pitch). @@ -1242,7 +1191,7 @@ def integrate( Shape (num alpha, num rho, num zeta). Real scalar-valued periodic functions in (θ, ζ) ∈ [0, 2π) × [0, 2π/NFP) evaluated on the ``grid`` supplied to construct this object. - Use the method ``Bounce1D.reshape_data`` to reshape the data into the + Use the method ``Bounce1D.reshape`` to reshape the data into the expected shape. names : str or list[str] Names in ``data`` to interpolate. Default is all keys in ``data``. @@ -1251,7 +1200,7 @@ def integrate( Optional, output of method ``self.points``. Tuple of length two (z1, z2) that stores ζ coordinates of bounce points. The points are ordered and grouped such that the straight line path - between ``z1`` and ``z2`` resides in the epigraph of |B|. + between ``z1`` and ``z2`` resides in the epigraph of B. method : str Method of interpolation. See https://interpax.readthedocs.io/en/latest/_api/interpax.interp1d.html. @@ -1309,14 +1258,14 @@ def interp_to_argmin(self, f, points, *, method="cubic"): f : jnp.ndarray Shape (num alpha, num rho, num zeta). Real scalar-valued functions evaluated on the ``grid`` supplied to - construct this object. Use the method ``Bounce1D.reshape_data`` to + construct this object. Use the method ``Bounce1D.reshape`` to reshape the data into the expected shape. points : tuple[jnp.ndarray] Shape (num alpha, num rho, num pitch, num well). Optional, output of method ``self.points``. Tuple of length two (z1, z2) that stores ζ coordinates of bounce points. The points are ordered and grouped such that the straight line path - between ``z1`` and ``z2`` resides in the epigraph of |B|. + between ``z1`` and ``z2`` resides in the epigraph of B. method : str Method of interpolation. See https://interpax.readthedocs.io/en/latest/_api/interpax.interp1d.html. @@ -1329,7 +1278,7 @@ def interp_to_argmin(self, f, points, *, method="cubic"): ``f`` interpolated to the deepest point between ``points``. """ - return interp_to_argmin(f, points, self._zeta, self.B, self._dB_dz, method) + return interp_to_argmin(f, points, self._zeta, self._B, self._dB_dz, method) def plot(self, m, l, pitch_inv=None, **kwargs): """Plot the field line and bounce points of the given pitch angles. @@ -1338,7 +1287,7 @@ def plot(self, m, l, pitch_inv=None, **kwargs): ---------- m, l : int, int Indices into the nodes of the grid supplied to make this object. - ``alpha,rho=Bounce1D.reshape_data(grid,grid.nodes[:,:2])[m,l,0]``. + ``alpha,rho=Bounce1D.reshape(grid,grid.nodes[:,:2])[m,l,0]``. pitch_inv : jnp.ndarray Shape (num pitch, ). Optional, 1/λ values whose corresponding bounce points on the field line @@ -1352,7 +1301,7 @@ def plot(self, m, l, pitch_inv=None, **kwargs): Matplotlib (fig, ax) tuple. """ - B, dB_dz = self.B, self._dB_dz + B, dB_dz = self._B, self._dB_dz if B.ndim == 4: B = B[m] dB_dz = dB_dz[m] diff --git a/desc/integrals/quad_utils.py b/desc/integrals/quad_utils.py index 1ba4c86b9..723fd3c72 100644 --- a/desc/integrals/quad_utils.py +++ b/desc/integrals/quad_utils.py @@ -2,13 +2,13 @@ Notes ----- -Bounce integrals with bounce points where the derivative of |B| does not vanish +Bounce integrals with bounce points where the derivative of B does not vanish have 1/2 power law singularities. However, strongly singular integrals where the -domain of the integral ends at the local extrema of |B| are not integrable. +domain of the integral ends at the local extrema of B are not integrable. Hence, everywhere except for the extrema, an implicit Chebyshev (``chebgauss1`` or ``chebgauss2`` or modified Legendre quadrature (with ``automorphism_sin``) -captures the integral because √(1−ζ²) / √ (1−λ|B|) ∼ k(λ, ζ) is smooth in ζ. +captures the integral because √(1−ζ²) / √ (1−λB) ∼ k(λ, ζ) is smooth in ζ. The clustering of the nodes near the singularities is sufficient to estimate k(ζ, λ). """ @@ -22,12 +22,12 @@ def bijection_to_disc(x, a, b): """[a, b] ∋ x ↦ y ∈ [−1, 1].""" - return 2.0 * (x - a) / (b - a) - 1.0 + return 2 * (x - a) / (b - a) - 1 def bijection_from_disc(x, a, b): """[−1, 1] ∋ x ↦ y ∈ [a, b].""" - return 0.5 * (b - a) * (x + 1.0) + a + return 0.5 * (b - a) * (x + 1) + a def grad_bijection_from_disc(a, b): diff --git a/desc/objectives/__init__.py b/desc/objectives/__init__.py index 680b4f083..0cf250169 100644 --- a/desc/objectives/__init__.py +++ b/desc/objectives/__init__.py @@ -24,6 +24,7 @@ HelicalForceBalance, RadialForceBalance, ) +from ._fast_ion import GammaC from ._free_boundary import BoundaryError, VacuumBoundaryError from ._generic import GenericObjective, LinearObjectiveFromUser, ObjectiveFromUser from ._geometry import ( @@ -37,7 +38,7 @@ PrincipalCurvature, Volume, ) -from ._neoclassical import EffectiveRipple, GammaC +from ._neoclassical import EffectiveRipple from ._omnigenity import ( Isodynamicity, Omnigenity, diff --git a/desc/objectives/_coils.py b/desc/objectives/_coils.py index a4ef477a3..68507d947 100644 --- a/desc/objectives/_coils.py +++ b/desc/objectives/_coils.py @@ -2118,7 +2118,7 @@ class SurfaceCurrentRegularization(_Objective): weight_str = ( "weight : {float, ndarray}, optional" "\n\tWeighting to apply to the Objective, relative to other Objectives." - "\n\tMust be broadcastable to to Objective.dim_f" + "\n\tMust be broadcastable to to ``Objective.dim_f``" "\n\tWhen used with QuadraticFlux objective, this acts as the regularization" "\n\tparameter (with w^2 = lambda), with 0 corresponding to no regularization." "\n\tThe larger this parameter is, the less complex the surface current will " diff --git a/desc/objectives/_fast_ion.py b/desc/objectives/_fast_ion.py new file mode 100644 index 000000000..980f1a033 --- /dev/null +++ b/desc/objectives/_fast_ion.py @@ -0,0 +1,287 @@ +"""Objectives for fast ion confinement.""" + +import numpy as np +from orthax.legendre import leggauss + +from desc.compute import get_profiles, get_transforms +from desc.compute.utils import _compute as compute_fun +from desc.grid import LinearGrid +from desc.utils import Timer, setdefault + +from ..integrals import Bounce2D +from ..integrals.basis import FourierChebyshevSeries +from ..integrals.quad_utils import ( + automorphism_sin, + get_quadrature, + grad_automorphism_sin, +) +from ._neoclassical import _bounce_overwrite +from .objective_funs import _Objective, collect_docs +from .utils import _parse_callable_target_bounds + + +class GammaC(_Objective): + """Proxy for fast ion confinement. + + A 3D stellarator magnetic field admits ripple wells that lead to enhanced + radial drift of trapped particles. The energetic particle confinement + metric γ_c quantifies whether the contours of the second adiabatic invariant + close on the flux surfaces. In the limit where the poloidal drift velocity + majorizes the radial drift velocity, the contours lie parallel to flux + surfaces. The optimization metric Γ_c averages γ_c² over the distribution + of trapped particles on each flux surface. + + The radial electric field has a negligible effect, since fast particles + have high energy with collisionless orbits, so it is assumed to be zero. + + References + ---------- + Poloidal motion of trapped particle orbits in real-space coordinates. + V. V. Nemov, S. V. Kasilov, W. Kernbichler, G. O. Leitold. + Phys. Plasmas 1 May 2008; 15 (5): 052501. + https://doi.org/10.1063/1.2912456. + Equation 61. + + A model for the fast evaluation of prompt losses of energetic ions in stellarators. + J.L. Velasco et al. 2021 Nucl. Fusion 61 116059. + https://doi.org/10.1088/1741-4326/ac2994. + Equation 16. + + Notes + ----- + Performance will improve significantly by resolving these GitHub issues. + * ``1154`` Improve coordinate mapping performance + * ``1294`` Nonuniform fast transforms + * ``1303`` Patch for differentiable code with dynamic shapes + * ``1206`` Upsample data above midplane to full grid assuming stellarator symmetry + * ``1034`` Optimizers/objectives with auxiliary output + + Parameters + ---------- + eq : Equilibrium + ``Equilibrium`` to be optimized. + grid : Grid + Optional, tensor-product grid in (ρ, θ, ζ) with uniformly spaced nodes + (θ, ζ) ∈ [0, 2π) × [0, 2π/NFP). Powers of two are preferable. + Determines the flux surfaces to compute on and resolution of FFTs. + Default grid samples the boundary surface at ρ=1. + X : int + Poloidal Fourier grid resolution to interpolate the poloidal coordinate. + Preferably rounded down to power of 2. + Y : int + Toroidal Chebyshev grid resolution to interpolate the poloidal coordinate. + Preferably rounded down to power of 2. + Y_B : int + Desired resolution for algorithm to compute bounce points. + Default is double ``Y``. Something like 100 is usually sufficient. + Currently, this is the number of knots per toroidal transit over + to approximate B with cubic splines. + num_transit : int + Number of toroidal transits to follow field line. + For axisymmetric devices, one poloidal transit is sufficient. Otherwise, + assuming the surface is not near rational, more transits will + approximate surface averages better, with diminishing returns. + num_well : int + Maximum number of wells to detect for each pitch and field line. + Giving ``None`` will detect all wells but due to current limitations in + JAX this will have worse performance. + Specifying a number that tightly upper bounds the number of wells will + increase performance. In general, an upper bound on the number of wells + per toroidal transit is ``Aι+B`` where ``A``, ``B`` are the poloidal and + toroidal Fourier resolution of B, respectively, in straight-field line + PEST coordinates, and ι is the rotational transform normalized by 2π. + A tighter upper bound than ``num_well=(Aι+B)*num_transit`` is preferable. + The ``check_points`` or ``plot`` methods in ``desc.integrals.Bounce2D`` + are useful to select a reasonable value. + num_quad : int + Resolution for quadrature of bounce integrals. Default is 32. + num_pitch : int + Resolution for quadrature over velocity coordinate. Default is 64. + pitch_batch_size : int + Number of pitch values with which to compute simultaneously. + If given ``None``, then ``pitch_batch_size`` is ``num_pitch``. + Default is ``num_pitch``. + surf_batch_size : int + Number of flux surfaces with which to compute simultaneously. + If given ``None``, then ``surf_batch_size`` is ``grid.num_rho``. + Default is ``1``. Only consider increasing if ``pitch_batch_size`` is ``None``. + Nemov : bool + Whether to use the Γ_c as defined by Nemov et al. or Velasco et al. + Default is Nemov. Set to ``False`` to use Velascos's. + + Nemov's Γ_c converges to a finite nonzero value in the infinity limit + of the number of toroidal transits. Velasco's expression has a secular + term that drives the result to zero as the number of toroidal transits + increases if the secular term is not averaged out from the singular + integrals. Currently, an optimization using Velasco's metric may need + to be evaluated by measuring decrease in Γ_c at a fixed number of toroidal + transits. + + """ + + __doc__ = __doc__.rstrip() + collect_docs( + target_default="``target=0``.", + bounds_default="``target=0``.", + normalize_detail=" Note: Has no effect for this objective.", + normalize_target_detail=" Note: Has no effect for this objective.", + overwrite=_bounce_overwrite, + ) + + _coordinates = "r" + _units = "~" + _print_value_fmt = "Γ_c: " + + def __init__( + self, + eq, + *, + target=None, + bounds=None, + weight=1, + normalize=True, + normalize_target=True, + loss_function=None, + deriv_mode="fwd", + jac_chunk_size=None, + name="Gamma_c", + grid=None, + X=16, + Y=32, + # Y_B is expensive to increase if one does not fix num well per transit. + Y_B=None, + num_transit=20, + num_well=None, + num_quad=32, + num_pitch=64, + pitch_batch_size=None, + surf_batch_size=1, + Nemov=True, + ): + if target is None and bounds is None: + target = 0.0 + + self._grid = grid + self._constants = {"quad_weights": 1.0} + self._X = X + self._Y = Y + Y_B = setdefault(Y_B, 2 * Y) + self._hyperparam = { + "Y_B": Y_B, + "num_transit": num_transit, + "num_well": setdefault(num_well, Y_B * num_transit), + "num_quad": num_quad, + "num_pitch": num_pitch, + "pitch_batch_size": pitch_batch_size, + "surf_batch_size": surf_batch_size, + } + self._key = "Gamma_c" if Nemov else "Gamma_c Velasco" + if deriv_mode == "rev" and jac_chunk_size is None: + # Reverse mode is bottlenecked by coordinate mapping. + # Compute Jacobian one flux surface at a time. + jac_chunk_size = 1 + + super().__init__( + things=eq, + target=target, + bounds=bounds, + weight=weight, + normalize=normalize, + normalize_target=normalize_target, + loss_function=loss_function, + deriv_mode=deriv_mode, + name=name, + jac_chunk_size=jac_chunk_size, + ) + + def build(self, use_jit=True, verbose=1): + """Build constant arrays. + + Parameters + ---------- + use_jit : bool, optional + Whether to just-in-time compile the objective and derivatives. + verbose : int, optional + Level of output. + + """ + eq = self.things[0] + if self._grid is None: + self._grid = LinearGrid(M=eq.M_grid, N=eq.N_grid, NFP=eq.NFP, sym=False) + assert self._grid.can_fft2 + self._constants["clebsch"] = FourierChebyshevSeries.nodes( + self._X, + self._Y, + self._grid.compress(self._grid.nodes[:, 0]), + domain=(0, 2 * np.pi), + ) + self._constants["fieldline quad"] = leggauss(self._hyperparam["Y_B"] // 2) + self._constants["quad"] = get_quadrature( + leggauss(self._hyperparam.pop("num_quad")), + (automorphism_sin, grad_automorphism_sin), + ) + + self._dim_f = self._grid.num_rho + self._target, self._bounds = _parse_callable_target_bounds( + self._target, self._bounds, self._grid.compress(self._grid.nodes[:, 0]) + ) + + timer = Timer() + if verbose > 0: + print("Precomputing transforms") + timer.start("Precomputing transforms") + self._constants["transforms"] = get_transforms(self._key, eq, grid=self._grid) + self._constants["profiles"] = get_profiles(self._key, eq, grid=self._grid) + timer.stop("Precomputing transforms") + if verbose > 1: + timer.disp("Precomputing transforms") + + super().build(use_jit=use_jit, verbose=verbose) + + def compute(self, params, constants=None): + """Compute Γ_c. + + Parameters + ---------- + params : dict + Dictionary of equilibrium degrees of freedom, e.g. + ``Equilibrium.params_dict``. + constants : dict + Dictionary of constant data, e.g. transforms, profiles etc. + Defaults to ``self.constants``. + + Returns + ------- + Gamma_c : ndarray + Γ_c as a function of the flux surface label. + + """ + if constants is None: + constants = self.constants + eq = self.things[0] + data = compute_fun( + eq, "iota", params, constants["transforms"], constants["profiles"] + ) + # TODO (#1034): Use old theta values as initial guess. + theta = Bounce2D.compute_theta( + eq, + self._X, + self._Y, + iota=constants["transforms"]["grid"].compress(data["iota"]), + clebsch=constants["clebsch"], + # Pass in params so that root finding is done with the new + # perturbed λ coefficients and not the original equilibrium's. + params=params, + ) + data = compute_fun( + eq, + self._key, + params, + constants["transforms"], + constants["profiles"], + data, + theta=theta, + fieldline_quad=constants["fieldline quad"], + quad=constants["quad"], + **self._hyperparam, + ) + return constants["transforms"]["grid"].compress(data[self._key]) diff --git a/desc/objectives/_neoclassical.py b/desc/objectives/_neoclassical.py index a2fb53951..c6666c13e 100644 --- a/desc/objectives/_neoclassical.py +++ b/desc/objectives/_neoclassical.py @@ -1,4 +1,4 @@ -"""Objectives for targeting neoclassical transport.""" +"""Objectives for neoclassical transport.""" import numpy as np from orthax.legendre import leggauss @@ -6,14 +6,11 @@ from desc.compute import get_profiles, get_transforms from desc.compute.utils import _compute as compute_fun from desc.grid import LinearGrid -from desc.utils import Timer +from desc.utils import Timer, setdefault -from ..integrals.quad_utils import ( - automorphism_sin, - chebgauss2, - get_quadrature, - grad_automorphism_sin, -) +from ..integrals import Bounce2D +from ..integrals.basis import FourierChebyshevSeries +from ..integrals.quad_utils import chebgauss2 from .objective_funs import _Objective, collect_docs from .utils import _parse_callable_target_bounds @@ -33,15 +30,14 @@ class EffectiveRipple(_Objective): - """The effective ripple is a proxy for neoclassical transport. + """Proxy for neoclassical transport in the banana regime. - The 3D geometry of the magnetic field in stellarators produces local magnetic - wells that lead to bad confinement properties with enhanced radial drift, - especially for trapped particles. Neoclassical (thermal) transport can become the - dominant transport channel in stellarators which are not optimized to reduce it. - The effective ripple is a proxy, measuring the effective modulation amplitude of the - magnetic field averaged along a magnetic surface, which can be used to optimize for - stellarators with improved confinement. It is targeted as a flux surface function. + A 3D stellarator magnetic field admits ripple wells that lead to enhanced + radial drift of trapped particles. In the banana regime, neoclassical (thermal) + transport from ripple wells can become the dominant transport channel. + The effective ripple (ε) proxy estimates the neoclassical transport + coefficients in the banana regime. To ensure low neoclassical transport, + a stellarator is typically optimized so that ε < 0.02. References ---------- @@ -50,21 +46,35 @@ class EffectiveRipple(_Objective): V. V. Nemov, S. V. Kasilov, W. Kernbichler, M. F. Heyn. Phys. Plasmas 1 December 1999; 6 (12): 4622–4632. + Notes + ----- + Performance will improve significantly by resolving these GitHub issues. + * ``1154`` Improve coordinate mapping performance + * ``1294`` Nonuniform fast transforms + * ``1303`` Patch for differentiable code with dynamic shapes + * ``1206`` Upsample data above midplane to full grid assuming stellarator symmetry + * ``1034`` Optimizers/objectives with auxiliary output + Parameters ---------- eq : Equilibrium ``Equilibrium`` to be optimized. - rho : ndarray - Unique coordinate values specifying flux surfaces to compute on. - alpha : ndarray - Unique coordinate values specifying field line labels to compute on. - batch : bool - Whether to vectorize part of the computation. Default is true. + grid : Grid + Optional, tensor-product grid in (ρ, θ, ζ) with uniformly spaced nodes + (θ, ζ) ∈ [0, 2π) × [0, 2π/NFP). Powers of two are preferable. + Determines the flux surfaces to compute on and resolution of FFTs. + Default grid samples the boundary surface at ρ=1. + X : int + Poloidal Fourier grid resolution to interpolate the poloidal coordinate. + Preferably rounded down to power of 2. + Y : int + Toroidal Chebyshev grid resolution to interpolate the poloidal coordinate. + Preferably rounded down to power of 2. Y_B : int Desired resolution for algorithm to compute bounce points. Default is double ``Y``. Something like 100 is usually sufficient. Currently, this is the number of knots per toroidal transit over - to approximate |B| with cubic splines. + to approximate B with cubic splines. num_transit : int Number of toroidal transits to follow field line. For axisymmetric devices, one poloidal transit is sufficient. Otherwise, @@ -76,8 +86,8 @@ class EffectiveRipple(_Objective): JAX this will have worse performance. Specifying a number that tightly upper bounds the number of wells will increase performance. In general, an upper bound on the number of wells - per toroidal transit is ``Aι+B`` where ``A``,``B`` are the poloidal and - toroidal Fourier resolution of |B|, respectively, in straight-field line + per toroidal transit is ``Aι+B`` where ``A``, ``B`` are the poloidal and + toroidal Fourier resolution of B, respectively, in straight-field line PEST coordinates, and ι is the rotational transform normalized by 2π. A tighter upper bound than ``num_well=(Aι+B)*num_transit`` is preferable. The ``check_points`` or ``plot`` methods in ``desc.integrals.Bounce2D`` @@ -85,7 +95,15 @@ class EffectiveRipple(_Objective): num_quad : int Resolution for quadrature of bounce integrals. Default is 32. num_pitch : int - Resolution for quadrature over velocity coordinate. Default is 50. + Resolution for quadrature over velocity coordinate. Default is 51. + pitch_batch_size : int + Number of pitch values with which to compute simultaneously. + If given ``None``, then ``pitch_batch_size`` is ``num_pitch``. + Default is ``num_pitch``. + surf_batch_size : int + Number of flux surfaces with which to compute simultaneously. + If given ``None``, then ``surf_batch_size`` is ``grid.num_rho``. + Default is ``1``. Only consider increasing if ``pitch_batch_size`` is ``None``. """ @@ -111,43 +129,42 @@ def __init__( normalize=True, normalize_target=True, loss_function=None, - deriv_mode="auto", - rho=1.0, - alpha=0.0, - batch=True, - Y_B=100, - num_transit=10, - num_quad=32, - num_pitch=50, - num_well=None, - name="Effective ripple", + deriv_mode="fwd", jac_chunk_size=None, + name="Effective ripple", + grid=None, + X=16, + Y=32, + # Y_B is expensive to increase if one does not fix num well per transit. + Y_B=None, + num_transit=20, + num_well=None, + num_quad=32, + num_pitch=51, + pitch_batch_size=None, + surf_batch_size=1, ): if target is None and bounds is None: target = 0.0 - rho, alpha = np.atleast_1d(rho, alpha) - self._dim_f = rho.size - self._keys_1dr = [ - "iota", - "iota_r", - "<|grad(rho)|>", - "min_tz |B|", - "max_tz |B|", - "R0", # TODO: GitHub PR #1094 - ] - self._constants = { - "quad_weights": 1.0, - "rho": rho, - "alpha": alpha, - "zeta": np.linspace(0, 2 * np.pi * num_transit, Y_B * num_transit), - "quad": chebgauss2(num_quad), - } - self._hyperparameters = { + self._grid = grid + self._constants = {"quad_weights": 1.0} + self._X = X + self._Y = Y + Y_B = setdefault(Y_B, 2 * Y) + self._hyperparam = { + "Y_B": Y_B, + "num_transit": num_transit, + "num_well": setdefault(num_well, Y_B * num_transit), + "num_quad": num_quad, "num_pitch": num_pitch, - "batch": batch, - "num_well": num_well, + "pitch_batch_size": pitch_batch_size, + "surf_batch_size": surf_batch_size, } + if deriv_mode == "rev" and jac_chunk_size is None: + # Reverse mode is bottlenecked by coordinate mapping. + # Compute Jacobian one flux surface at a time. + jac_chunk_size = 1 super().__init__( things=eq, @@ -174,25 +191,33 @@ def build(self, use_jit=True, verbose=1): """ eq = self.things[0] - self._grid_1dr = LinearGrid( - rho=self._constants["rho"], M=eq.M_grid, N=eq.N_grid, NFP=eq.NFP, sym=eq.sym + if self._grid is None: + self._grid = LinearGrid(M=eq.M_grid, N=eq.N_grid, NFP=eq.NFP, sym=False) + assert self._grid.can_fft2 + self._constants["clebsch"] = FourierChebyshevSeries.nodes( + self._X, + self._Y, + self._grid.compress(self._grid.nodes[:, 0]), + domain=(0, 2 * np.pi), ) + self._constants["fieldline quad"] = leggauss(self._hyperparam["Y_B"] // 2) + self._constants["quad"] = chebgauss2(self._hyperparam.pop("num_quad")) + + self._dim_f = self._grid.num_rho self._target, self._bounds = _parse_callable_target_bounds( - self._target, self._bounds, self._constants["rho"] + self._target, self._bounds, self._grid.compress(self._grid.nodes[:, 0]) ) timer = Timer() if verbose > 0: print("Precomputing transforms") timer.start("Precomputing transforms") - - self._constants["transforms_1dr"] = get_transforms( - self._keys_1dr, eq, self._grid_1dr + self._constants["transforms"] = get_transforms( + "effective ripple", eq, grid=self._grid ) self._constants["profiles"] = get_profiles( - self._keys_1dr + ["effective ripple"], eq, self._grid_1dr + "effective ripple", eq, grid=self._grid ) - timer.stop("Precomputing transforms") if verbose > 1: timer.disp("Precomputing transforms") @@ -206,286 +231,45 @@ def compute(self, params, constants=None): ---------- params : dict Dictionary of equilibrium degrees of freedom, e.g. - ``Equilibrium.params_dict`` + ``Equilibrium.params_dict``. constants : dict Dictionary of constant data, e.g. transforms, profiles etc. Defaults to ``self.constants``. Returns ------- - result : ndarray + epsilon : ndarray Effective ripple as a function of the flux surface label. """ + # TODO (#1094) if constants is None: constants = self.constants eq = self.things[0] data = compute_fun( - eq, - self._keys_1dr, - params, - constants["transforms_1dr"], - constants["profiles"], - ) - grid = eq._get_rtz_grid( - constants["rho"], - constants["alpha"], - constants["zeta"], - coordinates="raz", - iota=self._grid_1dr.compress(data["iota"]), - params=params, + eq, "iota", params, constants["transforms"], constants["profiles"] ) - data = { - key: ( - grid.copy_data_from_other(data[key], self._grid_1dr) - if key != "R0" - else data[key] - ) - for key in self._keys_1dr - } - data = compute_fun( + # TODO (#1034): Use old theta values as initial guess. + theta = Bounce2D.compute_theta( eq, - "effective ripple", - params, - get_transforms("effective ripple", eq, grid, jitable=True), - constants["profiles"], - data=data, - quad=constants["quad"], - **self._hyperparameters, - ) - return grid.compress(data["effective ripple"]) - - -class GammaC(_Objective): - """Γ_c is a proxy for measuring energetic ion confinement. - - References - ---------- - Poloidal motion of trapped particle orbits in real-space coordinates. - V. V. Nemov, S. V. Kasilov, W. Kernbichler, G. O. Leitold. - Phys. Plasmas 1 May 2008; 15 (5): 052501. - https://doi.org/10.1063/1.2912456. - Equation 61. - - A model for the fast evaluation of prompt losses of energetic ions in stellarators. - J.L. Velasco et al. 2021 Nucl. Fusion 61 116059. - https://doi.org/10.1088/1741-4326/ac2994. - Equation 16. - - Parameters - ---------- - eq : Equilibrium - ``Equilibrium`` to be optimized. - rho : ndarray - Unique coordinate values specifying flux surfaces to compute on. - alpha : ndarray - Unique coordinate values specifying field line labels to compute on. - batch : bool - Whether to vectorize part of the computation. Default is true. - Y_B : int - Desired resolution for algorithm to compute bounce points. - Default is double ``Y``. Something like 100 is usually sufficient. - Currently, this is the number of knots per toroidal transit over - to approximate |B| with cubic splines. - num_transit : int - Number of toroidal transits to follow field line. - For axisymmetric devices, one poloidal transit is sufficient. Otherwise, - assuming the surface is not near rational, more transits will - approximate surface averages better, with diminishing returns. - num_well : int - Maximum number of wells to detect for each pitch and field line. - Giving ``None`` will detect all wells but due to current limitations in - JAX this will have worse performance. - Specifying a number that tightly upper bounds the number of wells will - increase performance. In general, an upper bound on the number of wells - per toroidal transit is ``Aι+B`` where ``A``,``B`` are the poloidal and - toroidal Fourier resolution of |B|, respectively, in straight-field line - PEST coordinates, and ι is the rotational transform normalized by 2π. - A tighter upper bound than ``num_well=(Aι+B)*num_transit`` is preferable. - The ``check_points`` or ``plot`` methods in ``desc.integrals.Bounce2D`` - are useful to select a reasonable value. - num_quad : int - Resolution for quadrature of bounce integrals. Default is 32. - num_pitch : int - Resolution for quadrature over velocity coordinate. Default is 64. - Nemov : bool - Whether to use the Γ_c as defined by Nemov et al. or Velasco et al. - Default is Nemov. Set to ``False`` to use Velascos's. - - Nemov's Γ_c converges to a finite nonzero value in the infinity limit - of the number of toroidal transits. Velasco's expression has a secular - term that drives the result to zero as the number of toroidal transits - increases if the secular term is not averaged out from the singular - integrals. Currently, an optimization using Velasco's metric may need - to be evaluated by measuring decrease in Γ_c at a fixed number of toroidal - transits. - - """ - - __doc__ = __doc__.rstrip() + collect_docs( - target_default="``target=0``.", - bounds_default="``target=0``.", - normalize_detail=" Note: Has no effect for this objective.", - normalize_target_detail=" Note: Has no effect for this objective.", - overwrite=_bounce_overwrite, - ) - - _coordinates = "r" - _units = "~" - _print_value_fmt = "Γ_c: " - - def __init__( - self, - eq, - *, - target=None, - bounds=None, - weight=1, - normalize=True, - normalize_target=True, - loss_function=None, - deriv_mode="auto", - rho=np.linspace(0.5, 1, 3), - alpha=np.array([0]), - batch=True, - num_transit=10, - Y_B=100, - num_quad=32, - num_pitch=64, - num_well=None, - Nemov=True, - name="Gamma_c", - jac_chunk_size=None, - ): - if target is None and bounds is None: - target = 0.0 - - rho, alpha = np.atleast_1d(rho, alpha) - self._dim_f = rho.size - self._constants = { - "quad_weights": 1.0, - "rho": rho, - "alpha": alpha, - "zeta": np.linspace(0, 2 * np.pi * num_transit, Y_B * num_transit), - } - self._hyperparameters = { - "num_quad": num_quad, - "num_pitch": num_pitch, - "batch": batch, - "num_well": num_well, - } - self._keys_1dr = ["iota", "iota_r", "min_tz |B|", "max_tz |B|"] - self._key = "Gamma_c" if Nemov else "Gamma_c Velasco" - - super().__init__( - things=eq, - target=target, - bounds=bounds, - weight=weight, - normalize=normalize, - normalize_target=normalize_target, - loss_function=loss_function, - deriv_mode=deriv_mode, - name=name, - jac_chunk_size=jac_chunk_size, - ) - - def build(self, use_jit=True, verbose=1): - """Build constant arrays. - - Parameters - ---------- - use_jit : bool, optional - Whether to just-in-time compile the objective and derivatives. - verbose : int, optional - Level of output. - - """ - eq = self.things[0] - self._grid_1dr = LinearGrid( - rho=self._constants["rho"], M=eq.M_grid, N=eq.N_grid, NFP=eq.NFP, sym=eq.sym - ) - num_quad = self._hyperparameters.pop("num_quad") - self._constants["quad"] = get_quadrature( - leggauss(num_quad), - (automorphism_sin, grad_automorphism_sin), - ) - if self._key == "Gamma_c": - self._constants["quad2"] = chebgauss2(num_quad) - self._target, self._bounds = _parse_callable_target_bounds( - self._target, self._bounds, self._constants["rho"] - ) - - timer = Timer() - if verbose > 0: - print("Precomputing transforms") - timer.start("Precomputing transforms") - - self._constants["transforms_1dr"] = get_transforms( - self._keys_1dr, eq, self._grid_1dr - ) - self._constants["profiles"] = get_profiles( - self._keys_1dr + [self._key], eq, self._grid_1dr - ) - - timer.stop("Precomputing transforms") - if verbose > 1: - timer.disp("Precomputing transforms") - - super().build(use_jit=use_jit, verbose=verbose) - - def compute(self, params, constants=None): - """Compute Γ_c. - - Parameters - ---------- - params : dict - Dictionary of equilibrium degrees of freedom, e.g. - ``Equilibrium.params_dict`` - constants : dict - Dictionary of constant data, e.g. transforms, profiles etc. - Defaults to ``self.constants``. - - Returns - ------- - result : ndarray - Γ_c as a function of the flux surface label. - - """ - if constants is None: - constants = self.constants - eq = self.things[0] - data = compute_fun( - eq, - self._keys_1dr, - params, - constants["transforms_1dr"], - constants["profiles"], - ) - grid = eq._get_rtz_grid( - constants["rho"], - constants["alpha"], - constants["zeta"], - coordinates="raz", - iota=self._grid_1dr.compress(data["iota"]), + self._X, + self._Y, + iota=constants["transforms"]["grid"].compress(data["iota"]), + clebsch=constants["clebsch"], + # Pass in params so that root finding is done with the new + # perturbed λ coefficients and not the original equilibrium's. params=params, ) - data = { - key: grid.copy_data_from_other(data[key], self._grid_1dr) - for key in self._keys_1dr - } - quad2 = {} - if self._key == "Gamma_c": - quad2["quad2"] = constants["quad2"] data = compute_fun( eq, - self._key, + "effective ripple", params, - get_transforms(self._key, eq, grid, jitable=True), + constants["transforms"], constants["profiles"], - data=data, + data, + theta=theta, + fieldline_quad=constants["fieldline quad"], quad=constants["quad"], - **quad2, - **self._hyperparameters, + **self._hyperparam, ) - return grid.compress(data[self._key]) + return constants["transforms"]["grid"].compress(data["effective ripple"]) diff --git a/desc/objectives/_profiles.py b/desc/objectives/_profiles.py index 0d0a522e4..0740c6142 100644 --- a/desc/objectives/_profiles.py +++ b/desc/objectives/_profiles.py @@ -15,14 +15,14 @@ "target": """ target : {float, ndarray, callable}, optional Target value(s) of the objective. Only used if bounds is None. - Must be broadcastable to Objective.dim_f. If a callable, should take a + Must be broadcastable to ``Objective.dim_f``. If a callable, should take a single argument `rho` and return the desired value of the profile at those locations. Defaults to ``target=0``. """, "bounds": """ bounds : tuple of {float, ndarray, callable}, optional Lower and upper bounds on the objective. Overrides target. - Both bounds must be broadcastable to to Objective.dim_f + Both bounds must be broadcastable to to ``Objective.dim_f`` If a callable, each should take a single argument `rho` and return the desired bound (lower or upper) of the profile at those locations. Defaults to ``target=0``. diff --git a/desc/objectives/_stability.py b/desc/objectives/_stability.py index 11be16405..3ef4debc8 100644 --- a/desc/objectives/_stability.py +++ b/desc/objectives/_stability.py @@ -16,15 +16,15 @@ "target": """ target : {float, ndarray, callable}, optional Target value(s) of the objective. Only used if bounds is None. - Must be broadcastable to Objective.dim_f. If a callable, should take a - single argument `rho` and return the desired value of the profile at those + Must be broadcastable to ``Objective.dim_f``. If a callable, should take a + single argument ``rho`` and return the desired value of the profile at those locations. Defaults to ``bounds=(0, np.inf)`` """, "bounds": """ bounds : tuple of {float, ndarray, callable}, optional Lower and upper bounds on the objective. Overrides target. - Both bounds must be broadcastable to to Objective.dim_f - If a callable, each should take a single argument `rho` and return the + Both bounds must be broadcastable to ``Objective.dim_f`` + If a callable, each should take a single argument ``rho`` and return the desired bound (lower or upper) of the profile at those locations. Defaults to ``bounds=(0, np.inf)`` """, @@ -356,43 +356,17 @@ class BallooningStability(_Objective): Parameters ---------- eq : Equilibrium - Equilibrium that will be optimized to satisfy the Objective. - target : {float, ndarray}, optional - Target value(s) of the objective. Only used if bounds is None. - Must be broadcastable to Objective.dim_f. Default is ``target=0`` - bounds : tuple of {float, ndarray}, optional - Lower and upper bounds on the objective. Overrides target. - Both bounds must be broadcastable to to Objective.dim_f. Default is ``target=0`` - weight : {float, ndarray}, optional - Weighting to apply to the Objective, relative to other Objectives. - Must be broadcastable to to Objective.dim_f - normalize : bool, optional - Whether to compute the error in physical units or non-dimensionalize. - Not used since the growth rate is always normalized. - normalize_target : bool, optional - Whether target and bounds should be normalized before comparing to computed - values. If `normalize` is `True` and the target is in physical units, - this should also be set to True. Not used since the growth rate is always - normalized. - loss_function : {None, 'mean', 'min', 'max'}, optional - Loss function to apply to the objective values once computed. This loss function - is called on the raw compute value, before any shifting, scaling, or - normalization. Has no effect for this objective. - deriv_mode : {"auto", "fwd", "rev"} - Specify how to compute jacobian matrix, either forward mode or reverse mode AD. - "auto" selects forward or reverse mode based on the size of the input and output - of the objective. Has no effect on self.grad or self.hess which always use - reverse mode and forward over reverse mode respectively. + ``Equilibrium`` to be optimized. rho : float Flux surface to optimize on. To optimize over multiple surfaces, use multiple objectives each with a single rho value. alpha : float, ndarray - Field line labels to optimize. Values should be in [0, 2pi). Default is alpha=0 - for axisymmetric equilibria, or 8 field lines linearly spaced in [0, pi] for - non-axisymmetric cases. + Field line labels to optimize. Values should be in [0, 2π). Default is + ``alpha=0`` for axisymmetric equilibria, or 8 field lines linearly spaced + in [0, π] for non-axisymmetric cases. nturns : int Number of toroidal transits of a field line to consider. Field line - will run from -π*nturns to π*nturns. Default 3. + will run from -π*``nturns`` to π*``nturns``. Default 3. nzetaperturn : int Number of points along the field line per toroidal transit. Total number of points is ``nturns*nzetaperturn``. Default 100. @@ -408,6 +382,13 @@ class BallooningStability(_Objective): """ + __doc__ = __doc__.rstrip() + collect_docs( + target_default="``target=0``.", + bounds_default="``target=0``.", + normalize_detail=" Note: Has no effect for this objective.", + normalize_target_detail=" Note: Has no effect for this objective.", + ) + _coordinates = "" # not vectorized over rho, always a scalar _scalar = True _units = "(dimensionless)" diff --git a/desc/objectives/getters.py b/desc/objectives/getters.py index 7d4772a8b..03e1b7563 100644 --- a/desc/objectives/getters.py +++ b/desc/objectives/getters.py @@ -57,14 +57,14 @@ def get_equilibrium_objective(eq, mode="force", normalize=True, jac_chunk_size=" for minimizing MHD energy. normalize : bool Whether to normalize units of objective. - jac_chunk_size : int or "auto", optional + jac_chunk_size : int or ``auto``, optional If `"batched"` deriv_mode is used, will calculate the Jacobian ``jac_chunk_size`` columns at a time, instead of all at once. The memory usage of the Jacobian calculation is roughly ``memory usage = m0 + m1*jac_chunk_size``: the smaller the chunk size, the less memory the Jacobian calculation will require (with some baseline memory usage). The time it takes to compute the Jacobian is roughly - ``t= t0 + t1/jac_chunk_size` so the larger the ``jac_chunk_size``, the faster + ``t = t0 + t1/jac_chunk_size`` so the larger the ``jac_chunk_size``, the faster the calculation takes, at the cost of requiring more memory. If None, it will use the largest size i.e ``obj.dim_x``. Defaults to ``chunk_size="auto"`` which will use a conservative diff --git a/desc/objectives/linear_objectives.py b/desc/objectives/linear_objectives.py index 537ede2f1..94c4294f0 100644 --- a/desc/objectives/linear_objectives.py +++ b/desc/objectives/linear_objectives.py @@ -621,14 +621,14 @@ class FixBoundaryR(FixParameters): Equilibrium that will be optimized to satisfy the Objective. target : {float, ndarray}, optional Target value(s) of the objective. Only used if bounds is None. - Must be broadcastable to Objective.dim_f. Defaults to ``target=eq.Rb_lmn``. + Must be broadcastable to ``Objective.dim_f``. Defaults to ``target=eq.Rb_lmn``. bounds : tuple of {float, ndarray}, optional Lower and upper bounds on the objective. Overrides target. - Both bounds must be broadcastable to Objective.dim_f. + Both bounds must be broadcastable to ``Objective.dim_f``. Defaults to ``target=eq.Rb_lmn``. weight : {float, ndarray}, optional Weighting to apply to the Objective, relative to other Objectives. - Must be broadcastable to Objective.dim_f + Must be broadcastable to ``Objective.dim_f`` normalize : bool, optional Whether to compute the error in physical units or non-dimensionalize. normalize_target : bool, optional @@ -702,14 +702,14 @@ class FixBoundaryZ(FixParameters): Equilibrium that will be optimized to satisfy the Objective. target : {float, ndarray}, optional Target value(s) of the objective. Only used if bounds is None. - Must be broadcastable to Objective.dim_f. Defaults to ``target=eq.Zb_lmn``. + Must be broadcastable to ``Objective.dim_f``. Defaults to ``target=eq.Zb_lmn``. bounds : tuple of {float, ndarray}, optional Lower and upper bounds on the objective. Overrides target. - Both bounds must be broadcastable to Objective.dim_f. + Both bounds must be broadcastable to ``Objective.dim_f``. Defaults to ``target=eq.Zb_lmn``. weight : {float, ndarray}, optional Weighting to apply to the Objective, relative to other Objectives. - Must be broadcastable to Objective.dim_f + Must be broadcastable to ``Objective.dim_f`` normalize : bool, optional Whether to compute the error in physical units or non-dimensionalize. normalize_target : bool, optional @@ -828,7 +828,7 @@ class FixThetaSFL(FixParameters): Equilibrium that will be optimized to satisfy the Objective. weight : {float, ndarray}, optional Weighting to apply to the Objective, relative to other Objectives. - Must be broadcastable to Objective.dim_f + Must be broadcastable to ``Objective.dim_f`` normalize : bool, optional Has no effect for this objective. normalize_target : bool, optional @@ -870,14 +870,14 @@ class FixAxisR(FixParameters): Equilibrium that will be optimized to satisfy the Objective. target : {float, ndarray}, optional Target value(s) of the objective. Only used if bounds is None. - Must be broadcastable to Objective.dim_f. Defaults to ``target=eq.Ra_n``. + Must be broadcastable to ``Objective.dim_f``. Defaults to ``target=eq.Ra_n``. bounds : tuple of {float, ndarray}, optional Lower and upper bounds on the objective. Overrides target. - Both bounds must be broadcastable to Objective.dim_f. + Both bounds must be broadcastable to ``Objective.dim_f``. Defaults to ``target=eq.Ra_n``. weight : {float, ndarray}, optional Weighting to apply to the Objective, relative to other Objectives. - Must be broadcastable to Objective.dim_f + Must be broadcastable to ``Objective.dim_f`` normalize : bool, optional Whether to compute the error in physical units or non-dimensionalize. normalize_target : bool, optional @@ -951,14 +951,14 @@ class FixAxisZ(FixParameters): Equilibrium that will be optimized to satisfy the Objective. target : {float, ndarray}, optional Target value(s) of the objective. Only used if bounds is None. - Must be broadcastable to Objective.dim_f. Defaults to ``target=eq.Za_n``. + Must be broadcastable to ``Objective.dim_f``. Defaults to ``target=eq.Za_n``. bounds : tuple of {float, ndarray}, optional Lower and upper bounds on the objective. Overrides target. - Both bounds must be broadcastable to Objective.dim_f. + Both bounds must be broadcastable to ``Objective.dim_f``. Defaults to ``target=eq.Za_n``. weight : {float, ndarray}, optional Weighting to apply to the Objective, relative to other Objectives. - Must be broadcastable to Objective.dim_f + Must be broadcastable to ``Objective.dim_f`` normalize : bool, optional Whether to compute the error in physical units or non-dimensionalize. normalize_target : bool, optional @@ -1032,14 +1032,14 @@ class FixModeR(FixParameters): Equilibrium that will be optimized to satisfy the Objective. target : {float, ndarray}, optional Target value(s) of the objective. Only used if bounds is None. - Must be broadcastable to Objective.dim_f. Defaults to ``target=eq.R_lmn``. + Must be broadcastable to ``Objective.dim_f``. Defaults to ``target=eq.R_lmn``. bounds : tuple of {float, ndarray}, optional Lower and upper bounds on the objective. Overrides target. - Both bounds must be broadcastable to Objective.dim_f. + Both bounds must be broadcastable to ``Objective.dim_f``. Defaults to ``target=eq.R_lmn``. weight : {float, ndarray}, optional Weighting to apply to the Objective, relative to other Objectives. - Must be broadcastable to Objective.dim_f + Must be broadcastable to ``Objective.dim_f`` normalize : bool, optional Whether to compute the error in physical units or non-dimensionalize. normalize_target : bool, optional @@ -1113,14 +1113,14 @@ class FixModeZ(FixParameters): Equilibrium that will be optimized to satisfy the Objective. target : {float, ndarray}, optional Target value(s) of the objective. Only used if bounds is None. - Must be broadcastable to Objective.dim_f. Defaults to ``target=eq.Z_lmn``. + Must be broadcastable to ``Objective.dim_f``. Defaults to ``target=eq.Z_lmn``. bounds : tuple of {float, ndarray}, optional Lower and upper bounds on the objective. Overrides target. - Both bounds must be broadcastable to Objective.dim_f. + Both bounds must be broadcastable to ``Objective.dim_f``. Defaults to ``target=eq.Z_lmn``. weight : {float, ndarray}, optional Weighting to apply to the Objective, relative to other Objectives. - Must be broadcastable to Objective.dim_f + Must be broadcastable to ``Objective.dim_f`` normalize : bool, optional Whether to compute the error in physical units or non-dimensionalize. normalize_target : bool, optional @@ -1194,15 +1194,15 @@ class FixModeLambda(FixParameters): Equilibrium that will be optimized to satisfy the Objective. target : float, ndarray, optional Fourier-Zernike lambda coefficient target values. - Must be broadcastable to Objective.dim_f. + Must be broadcastable to ``Objective.dim_f``. Defaults to ``target=eq.L_lmn``. bounds : tuple, optional Lower and upper bounds on the objective. Overrides target. - Both bounds must be broadcastable to Objective.dim_f. + Both bounds must be broadcastable to ``Objective.dim_f``. Defaults to ``target=eq.L_lmn``. weight : float, ndarray, optional Weighting to apply to the Objective, relative to other Objectives. - Must be broadcastable to Objective.dim_f. + Must be broadcastable to ``Objective.dim_f``. normalize : bool, optional Has no effect for this objective. normalize_target : bool, optional @@ -1257,14 +1257,14 @@ class FixSumModesR(_FixedObjective): Equilibrium that will be optimized to satisfy the Objective. target : {float, ndarray}, optional Target value(s) of the objective. Only used if bounds is None. - Must be broadcastable to Objective.dim_f. Defaults to ``target=eq.R_lmn``. + Must be broadcastable to ``Objective.dim_f``. Defaults to ``target=eq.R_lmn``. bounds : tuple of {float, ndarray}, optional Lower and upper bounds on the objective. Overrides target. - Both bounds must be broadcastable to Objective.dim_f. + Both bounds must be broadcastable to ``Objective.dim_f``. Defaults to ``target=eq.R_lmn``. weight : {float, ndarray}, optional Weighting to apply to the Objective, relative to other Objectives. - Must be broadcastable to Objective.dim_f + Must be broadcastable to ``Objective.dim_f`` normalize : bool, optional Whether to compute the error in physical units or non-dimensionalize. normalize_target : bool, optional @@ -1423,14 +1423,14 @@ class FixSumModesZ(_FixedObjective): Equilibrium that will be optimized to satisfy the Objective. target : {float, ndarray}, optional Target value(s) of the objective. Only used if bounds is None. - Must be broadcastable to Objective.dim_f. Defaults to ``target=eq.Z_lmn``. + Must be broadcastable to ``Objective.dim_f``. Defaults to ``target=eq.Z_lmn``. bounds : tuple of {float, ndarray}, optional Lower and upper bounds on the objective. Overrides target. - Both bounds must be broadcastable to Objective.dim_f. + Both bounds must be broadcastable to ``Objective.dim_f``. Defaults to ``target=eq.Z_lmn``. weight : {float, ndarray}, optional Weighting to apply to the Objective, relative to other Objectives. - Must be broadcastable to Objective.dim_f + Must be broadcastable to ``Objective.dim_f`` normalize : bool, optional Whether to compute the error in physical units or non-dimensionalize. normalize_target : bool, optional @@ -1590,14 +1590,14 @@ class FixSumModesLambda(_FixedObjective): Equilibrium that will be optimized to satisfy the Objective. target : {float, ndarray}, optional Target value(s) of the objective. Only used if bounds is None. - Must be broadcastable to Objective.dim_f. Defaults to ``target=eq.L_lmn``. + Must be broadcastable to ``Objective.dim_f``. Defaults to ``target=eq.L_lmn``. bounds : tuple of {float, ndarray}, optional Lower and upper bounds on the objective. Overrides target. - Both bounds must be broadcastable to Objective.dim_f. + Both bounds must be broadcastable to ``Objective.dim_f``. Defaults to ``target=eq.L_lmn``. weight : {float, ndarray}, optional Weighting to apply to the Objective, relative to other Objectives. - Must be broadcastable to Objective.dim_f. + Must be broadcastable to ``Objective.dim_f``. normalize : bool, optional Has no effect for this objective. normalize_target : bool, optional @@ -1759,14 +1759,14 @@ class FixPressure(FixParameters): Equilibrium that will be optimized to satisfy the Objective. target : {float, ndarray}, optional Target value(s) of the objective. Only used if bounds is None. - Must be broadcastable to Objective.dim_f. Defaults to ``target=eq.p_l``. + Must be broadcastable to ``Objective.dim_f``. Defaults to ``target=eq.p_l``. bounds : tuple of {float, ndarray}, optional Lower and upper bounds on the objective. Overrides target. - Both bounds must be broadcastable to Objective.dim_f. + Both bounds must be broadcastable to ``Objective.dim_f``. Defaults to ``target=eq.p_l``. weight : {float, ndarray}, optional Weighting to apply to the Objective, relative to other Objectives. - Must be broadcastable to Objective.dim_f + Must be broadcastable to ``Objective.dim_f`` normalize : bool, optional Whether to compute the error in physical units or non-dimensionalize. normalize_target : bool, optional @@ -1841,14 +1841,14 @@ class FixAnisotropy(FixParameters): Equilibrium that will be optimized to satisfy the Objective. target : {float, ndarray}, optional Target value(s) of the objective. Only used if bounds is None. - Must be broadcastable to Objective.dim_f. Defaults to ``target=eq.a_lmn``. + Must be broadcastable to ``Objective.dim_f``. Defaults to ``target=eq.a_lmn``. bounds : tuple of {float, ndarray}, optional Lower and upper bounds on the objective. Overrides target. - Both bounds must be broadcastable to Objective.dim_f. + Both bounds must be broadcastable to ``Objective.dim_f``. Defaults to ``target=eq.a_lmn``. weight : {float, ndarray}, optional Weighting to apply to the Objective, relative to other Objectives. - Must be broadcastable to Objective.dim_f + Must be broadcastable to ``Objective.dim_f`` normalize : bool, optional Has no effect for this objective. normalize_target : bool, optional @@ -1918,14 +1918,14 @@ class FixIota(FixParameters): Equilibrium that will be optimized to satisfy the Objective. target : {float, ndarray}, optional Target value(s) of the objective. Only used if bounds is None. - Must be broadcastable to Objective.dim_f. Defaults to ``target=eq.i_l``. + Must be broadcastable to ``Objective.dim_f``. Defaults to ``target=eq.i_l``. bounds : tuple of {float, ndarray}, optional Lower and upper bounds on the objective. Overrides target. - Both bounds must be broadcastable to Objective.dim_f. + Both bounds must be broadcastable to ``Objective.dim_f``. Defaults to ``target=eq.i_l``. weight : {float, ndarray}, optional Weighting to apply to the Objective, relative to other Objectives. - Must be broadcastable to Objective.dim_f + Must be broadcastable to ``Objective.dim_f`` normalize : bool, optional Has no effect for this objective. normalize_target : bool, optional @@ -1995,14 +1995,14 @@ class FixCurrent(FixParameters): Equilibrium that will be optimized to satisfy the Objective. target : {float, ndarray}, optional Target value(s) of the objective. Only used if bounds is None. - Must be broadcastable to Objective.dim_f. Defaults to ``target=eq.c_l``. + Must be broadcastable to ``Objective.dim_f``. Defaults to ``target=eq.c_l``. bounds : tuple of {float, ndarray}, optional Lower and upper bounds on the objective. Overrides target. - Both bounds must be broadcastable to Objective.dim_f. + Both bounds must be broadcastable to ``Objective.dim_f``. Defaults to ``target=eq.c_l``. weight : {float, ndarray}, optional Weighting to apply to the Objective, relative to other Objectives. - Must be broadcastable to Objective.dim_f + Must be broadcastable to ``Objective.dim_f`` normalize : bool, optional Whether to compute the error in physical units or non-dimensionalize. normalize_target : bool, optional @@ -2077,14 +2077,14 @@ class FixElectronTemperature(FixParameters): Equilibrium that will be optimized to satisfy the Objective. target : {float, ndarray}, optional Target value(s) of the objective. Only used if bounds is None. - Must be broadcastable to Objective.dim_f. Defaults to ``target=eq.Te_l``. + Must be broadcastable to ``Objective.dim_f``. Defaults to ``target=eq.Te_l``. bounds : tuple of {float, ndarray}, optional Lower and upper bounds on the objective. Overrides target. - Both bounds must be broadcastable to Objective.dim_f. + Both bounds must be broadcastable to ``Objective.dim_f``. Defaults to ``target=eq.Te_l``. weight : {float, ndarray}, optional Weighting to apply to the Objective, relative to other Objectives. - Must be broadcastable to Objective.dim_f + Must be broadcastable to ``Objective.dim_f`` normalize : bool, optional Whether to compute the error in physical units or non-dimensionalize. normalize_target : bool, optional @@ -2159,14 +2159,14 @@ class FixElectronDensity(FixParameters): Equilibrium that will be optimized to satisfy the Objective. target : {float, ndarray}, optional Target value(s) of the objective. Only used if bounds is None. - Must be broadcastable to Objective.dim_f. Defaults to ``target=eq.ne_l``. + Must be broadcastable to ``Objective.dim_f``. Defaults to ``target=eq.ne_l``. bounds : tuple of {float, ndarray}, optional Lower and upper bounds on the objective. Overrides target. - Both bounds must be broadcastable to Objective.dim_f. + Both bounds must be broadcastable to ``Objective.dim_f``. Defaults to ``target=eq.ne_l``. weight : {float, ndarray}, optional Weighting to apply to the Objective, relative to other Objectives. - Must be broadcastable to Objective.dim_f + Must be broadcastable to ``Objective.dim_f`` normalize : bool, optional Whether to compute the error in physical units or non-dimensionalize. normalize_target : bool, optional @@ -2243,14 +2243,14 @@ class FixIonTemperature(FixParameters): Equilibrium that will be optimized to satisfy the Objective. target : {float, ndarray}, optional Target value(s) of the objective. Only used if bounds is None. - Must be broadcastable to Objective.dim_f. Defaults to ``target=eq.Ti_l``. + Must be broadcastable to ``Objective.dim_f``. Defaults to ``target=eq.Ti_l``. bounds : tuple of {float, ndarray}, optional Lower and upper bounds on the objective. Overrides target. - Both bounds must be broadcastable to Objective.dim_f. + Both bounds must be broadcastable to ``Objective.dim_f``. Defaults to ``target=eq.Ti_l``. weight : {float, ndarray}, optional Weighting to apply to the Objective, relative to other Objectives. - Must be broadcastable to Objective.dim_f + Must be broadcastable to ``Objective.dim_f`` normalize : bool, optional Whether to compute the error in physical units or non-dimensionalize. normalize_target : bool, optional @@ -2325,14 +2325,14 @@ class FixAtomicNumber(FixParameters): Equilibrium that will be optimized to satisfy the Objective. target : {float, ndarray}, optional Target value(s) of the objective. Only used if bounds is None. - Must be broadcastable to Objective.dim_f. Defaults to ``target=eq.Zeff_l``. + Must be broadcastable to ``Objective.dim_f``. Defaults to ``target=eq.Zeff_l``. bounds : tuple of {float, ndarray}, optional Lower and upper bounds on the objective. Overrides target. - Both bounds must be broadcastable to Objective.dim_f. + Both bounds must be broadcastable to ``Objective.dim_f``. Defaults to ``target=eq.Zeff_l``. weight : {float, ndarray}, optional Weighting to apply to the Objective, relative to other Objectives. - Must be broadcastable to Objective.dim_f + Must be broadcastable to ``Objective.dim_f`` normalize : bool, optional Has no effect for this objective. normalize_target : bool, optional @@ -2402,14 +2402,14 @@ class FixPsi(FixParameters): Equilibrium that will be optimized to satisfy the Objective. target : {float, ndarray}, optional Target value(s) of the objective. Only used if bounds is None. - Must be broadcastable to Objective.dim_f. Default is ``target=eq.Psi``. + Must be broadcastable to ``Objective.dim_f``. Default is ``target=eq.Psi``. bounds : tuple of {float, ndarray}, optional Lower and upper bounds on the objective. Overrides target. - Both bounds must be broadcastable to Objective.dim_f. + Both bounds must be broadcastable to ``Objective.dim_f``. Default is ``target=eq.Psi``. weight : {float, ndarray}, optional Weighting to apply to the Objective, relative to other Objectives. - Must be broadcastable to Objective.dim_f + Must be broadcastable to ``Objective.dim_f`` normalize : bool, optional Whether to compute the error in physical units or non-dimensionalize. normalize_target : bool, optional @@ -2472,13 +2472,13 @@ class FixCurveShift(FixParameters): Curve that will be optimized to satisfy the Objective. target : {float, ndarray}, optional Target value(s) of the objective. Only used if bounds is None. - Must be broadcastable to Objective.dim_f. + Must be broadcastable to ``Objective.dim_f``. bounds : tuple of {float, ndarray}, optional Lower and upper bounds on the objective. Overrides target. - Both bounds must be broadcastable to Objective.dim_f + Both bounds must be broadcastable to ``Objective.dim_f`` weight : {float, ndarray}, optional Weighting to apply to the Objective, relative to other Objectives. - Must be broadcastable to Objective.dim_f + Must be broadcastable to ``Objective.dim_f`` normalize : bool, optional Whether to compute the error in physical units or non-dimensionalize. normalize_target : bool, optional @@ -2524,13 +2524,13 @@ class FixCurveRotation(FixParameters): Curve that will be optimized to satisfy the Objective. target : {float, ndarray}, optional Target value(s) of the objective. Only used if bounds is None. - Must be broadcastable to Objective.dim_f. + Must be broadcastable to ``Objective.dim_f``. bounds : tuple of {float, ndarray}, optional Lower and upper bounds on the objective. Overrides target. - Both bounds must be broadcastable to Objective.dim_f + Both bounds must be broadcastable to ``Objective.dim_f`` weight : {float, ndarray}, optional Weighting to apply to the Objective, relative to other Objectives. - Must be broadcastable to Objective.dim_f + Must be broadcastable to ``Objective.dim_f`` normalize : bool, optional Has no effect for this objective. normalize_target : bool, optional @@ -2691,15 +2691,15 @@ class FixSumCoilCurrent(FixCoilCurrent): Coil(s) that will be optimized to satisfy the Objective. target : {float, ndarray}, optional Target value(s) of the objective. Only used if bounds is None. - Must be broadcastable to Objective.dim_f. + Must be broadcastable to ``Objective.dim_f``. Default is the objective value for the coil. bounds : tuple of {float, ndarray}, optional Lower and upper bounds on the objective. Overrides target. - Both bounds must be broadcastable to to Objective.dim_f. + Both bounds must be broadcastable to ``Objective.dim_f``. Default is to use the target instead. weight : {float, ndarray}, optional Weighting to apply to the Objective, relative to other Objectives. - Must be broadcastable to to Objective.dim_f + Must be broadcastable to ``Objective.dim_f`` normalize : bool, optional Whether to compute the error in physical units or non-dimensionalize. normalize_target : bool, optional @@ -3049,15 +3049,15 @@ class FixSheetCurrent(FixParameters): Equilibrium that will be optimized to satisfy the Objective. target : {float, ndarray}, optional Target value(s) of the objective. Only used if bounds is None. - Must be broadcastable to Objective.dim_f. + Must be broadcastable to ``Objective.dim_f``. Defaults to the equilibrium sheet current parameters. bounds : tuple of {float, ndarray}, optional Lower and upper bounds on the objective. Overrides target. - Both bounds must be broadcastable to Objective.dim_f. + Both bounds must be broadcastable to ``Objective.dim_f``. Default is to use target. weight : {float, ndarray}, optional Weighting to apply to the Objective, relative to other Objectives. - Must be broadcastable to Objective.dim_f + Must be broadcastable to ``Objective.dim_f`` normalize : bool, optional Whether to compute the error in physical units or non-dimensionalize. normalize_target : bool, optional @@ -3112,7 +3112,7 @@ class FixNearAxisR(_FixedObjective): axis behavior. weight : {float, ndarray}, optional Weighting to apply to the Objective, relative to other Objectives. - Must be broadcastable to to Objective.dim_f + Must be broadcastable to ``Objective.dim_f`` normalize : bool, optional Whether to compute the error in physical units or non-dimensionalize. Unused by this objective @@ -3262,7 +3262,7 @@ class FixNearAxisZ(_FixedObjective): axis behavior. weight : {float, ndarray}, optional Weighting to apply to the Objective, relative to other Objectives. - Must be broadcastable to to Objective.dim_f + Must be broadcastable to ``Objective.dim_f`` normalize : bool, optional Whether to compute the error in physical units or non-dimensionalize. Unused by this objective @@ -3413,12 +3413,12 @@ class FixNearAxisLambda(_FixedObjective): axis behavior. bounds : tuple of {float, ndarray}, optional Lower and upper bounds on the objective. Overrides target. - Both bounds must be broadcastable to to Objective.dim_f + Both bounds must be broadcastable to ``Objective.dim_f`` Unused for this objective, as target will be automatically set according to the ``nae_eq`` weight : {float, ndarray}, optional Weighting to apply to the Objective, relative to other Objectives. - Must be broadcastable to to Objective.dim_f + Must be broadcastable to ``Objective.dim_f`` normalize : bool, optional Whether to compute the error in physical units or non-dimensionalize. Unused by this objective diff --git a/desc/objectives/objective_funs.py b/desc/objectives/objective_funs.py index c32dbb565..3e3af8983 100644 --- a/desc/objectives/objective_funs.py +++ b/desc/objectives/objective_funs.py @@ -1,11 +1,9 @@ """Base classes for objectives.""" import functools -import warnings from abc import ABC, abstractmethod import numpy as np -from termcolor import colored from desc.backend import ( desc_config, @@ -31,22 +29,23 @@ isposint, setdefault, unique_list, + warnif, ) doc_target = """ target : {float, ndarray}, optional - Target value(s) of the objective. Only used if bounds is None. - Must be broadcastable to Objective.dim_f. + Target value(s) of the objective. Only used if ``bounds`` is ``None``. + Must be broadcastable to ``Objective.dim_f``. """ doc_bounds = """ bounds : tuple of {float, ndarray}, optional - Lower and upper bounds on the objective. Overrides target. - Both bounds must be broadcastable to Objective.dim_f + Lower and upper bounds on the objective. Overrides ``target``. + Both bounds must be broadcastable to ``Objective.dim_f``. """ doc_weight = """ weight : {float, ndarray}, optional Weighting to apply to the Objective, relative to other Objectives. - Must be broadcastable to Objective.dim_f + Must be broadcastable to ``Objective.dim_f``. """ doc_normalize = """ normalize : bool, optional @@ -55,8 +54,8 @@ doc_normalize_target = """ normalize_target : bool, optional Whether target and bounds should be normalized before comparing to computed - values. If `normalize` is `True` and the target is in physical units, - this should also be set to True. + values. If ``normalize`` is ``True`` and the target is in physical units, + this should also be set to ``True``. """ doc_loss_function = """ loss_function : {None, 'mean', 'min', 'max'}, optional @@ -67,26 +66,30 @@ doc_deriv_mode = """ deriv_mode : {"auto", "fwd", "rev"} Specify how to compute Jacobian matrix, either forward mode or reverse mode AD. - "auto" selects forward or reverse mode based on the size of the input and output - of the objective. Has no effect on self.grad or self.hess which always use - reverse mode and forward over reverse mode respectively. + ``auto`` selects forward or reverse mode based on the size of the input and + output of the objective. Has no effect on ``self.grad`` or ``self.hess`` which + always use reverse mode and forward over reverse mode respectively. """ doc_name = """ name : str, optional Name of the objective. """ doc_jac_chunk_size = """ - jac_chunk_size : int or "auto", optional + jac_chunk_size : int or ``auto``, optional Will calculate the Jacobian ``jac_chunk_size`` columns at a time, instead of all at once. The memory usage of the Jacobian calculation is roughly - ``memory usage = m0 + m1*jac_chunk_size``: the smaller the chunk size, + ``memory usage = m0+m1*jac_chunk_size``: the smaller the chunk size, the less memory the Jacobian calculation will require (with some baseline memory usage). The time it takes to compute the Jacobian is roughly - ``t= t0 + t1/jac_chunk_size` so the larger the ``jac_chunk_size``, the faster + ``t = t0+t1/jac_chunk_size`` so the larger the ``jac_chunk_size``, the faster the calculation takes, at the cost of requiring more memory. - If None, it will use the largest size i.e ``obj.dim_x``. + If ``None``, it will use the largest size i.e ``obj.dim_x``. Defaults to ``chunk_size=None``. + Note: When running on a CPU (not a GPU) on a HPC cluster, DESC is unable to + accurately estimate the available device memory, so the ``auto`` chunk_size + option will yield a larger chunk size than may be needed. It is recommended + to manually choose a chunk_size if an OOM error is experienced in this case. """ docs = { "target": doc_target, @@ -115,23 +118,23 @@ def collect_docs( Parameters ---------- overwrite : dict, optional - Dict of strings to overwrite from the _Objective's docstring. If None, + Dict of strings to overwrite from the ``_Objective``'s docstring. If None, all default parameters are included as they are. Use this argument if you want to specify a special docstring for a specific parameter in your objective definition. target_default : str, optional - Default value for the target parameter. + Default value for the ``target`` parameter. bounds_default : str, optional - Default value for the bounds parameter. + Default value for the ``bounds`` parameter. normalize_detail : str, optional - Additional information about the normalize parameter. + Additional information about the ``normalize`` parameter. normalize_target_detail : str, optional - Additional information about the normalize_target parameter. + Additional information about the ``normalize_target`` parameter. loss_detail : str, optional - Additional information about the loss function. + Additional information about the ``loss`` function. coil : bool, optional - Whether the objective is a coil objective. If True, adds extra docs to - target and loss_function. + Whether the objective is a coil objective. If ``True``, adds extra docs + to ``target`` and ``loss_function``. Returns ------- @@ -191,30 +194,29 @@ class ObjectiveFunction(IOAble): use_jit : bool, optional Whether to just-in-time compile the objectives and derivatives. deriv_mode : {"auto", "batched", "blocked"} - Method for computing Jacobian matrices. "batched" uses forward mode, applied to - the entire objective at once, and is generally the fastest for vector valued - objectives. Its memory intensity vs. speed may be traded off through the - ``jac_chunk_size`` keyword argument. "blocked" builds the Jacobian for + Method for computing Jacobian matrices. ``batched`` uses forward mode, applied + to the entire objective at once, and is generally the fastest for vector + valued objectives. Its memory intensity vs. speed may be traded off through + the ``jac_chunk_size`` keyword argument. "blocked" builds the Jacobian for each objective separately, using each objective's preferred AD mode (and each objective's `jac_chunk_size`). Generally the most efficient option when mixing scalar and vector valued objectives. - "auto" defaults to "batched" if all sub-objectives are set to "fwd", - otherwise "blocked". + ``auto`` defaults to ``batched`` if all sub-objectives are set to ``fwd``, + otherwise ``blocked``. name : str Name of the objective function. - jac_chunk_size : int or "auto", optional - If `"batched"` deriv_mode is used, will calculate the Jacobian + jac_chunk_size : int or ``auto``, optional + If ``batched`` deriv_mode is used, will calculate the Jacobian ``jac_chunk_size`` columns at a time, instead of all at once. The memory usage of the Jacobian calculation is roughly - ``memory usage = m0 + m1*jac_chunk_size``: the smaller the chunk size, + ``memory usage = m0+m1*jac_chunk_size``: the smaller the chunk size, the less memory the Jacobian calculation will require (with some baseline memory usage). The time it takes to compute the Jacobian is roughly - ``t= t0 + t1/jac_chunk_size` so the larger the ``jac_chunk_size``, the faster + ``t = t0+t1/jac_chunk_size`` so the larger the ``jac_chunk_size``, the faster the calculation takes, at the cost of requiring more memory. - If None, it will use the largest size i.e ``obj.dim_x``. - Defaults to ``chunk_size="auto"`` which will use a conservative - chunk size based off of a heuristic estimate of the memory usage. - NOTE: When running on a CPU (not a GPU) on a HPC cluster, DESC is unable to + If ``None``, it will use the largest size i.e ``obj.dim_x``. + Defaults to ``chunk_size=None``. + Note: When running on a CPU (not a GPU) on a HPC cluster, DESC is unable to accurately estimate the available device memory, so the "auto" chunk_size option will yield a larger chunk size than may be needed. It is recommended to manually choose a chunk_size if an OOM error is experienced in this case. @@ -239,16 +241,14 @@ def __init__( assert use_jit in {True, False} if deriv_mode == "looped": # overwrite the user inputs if deprecated "looped" was given - deriv_mode = "batched" - jac_chunk_size = 1 - warnings.warn( - colored( - '``deriv_mode="looped"`` is deprecated in favor of' - ' ``deriv_mode="batched"`` with ``jac_chunk_size=1``.', - "yellow", - ), + warnif( + True, DeprecationWarning, + '``deriv_mode="looped"`` is deprecated in favor of' + ' ``deriv_mode="batched"`` with ``jac_chunk_size=1``.', ) + deriv_mode = "batched" + jac_chunk_size = 1 assert deriv_mode in {"auto", "batched", "blocked"} assert jac_chunk_size in ["auto", None] or isposint(jac_chunk_size) @@ -1010,46 +1010,7 @@ class _Objective(IOAble, ABC): Parameters ---------- things : Optimizable or tuple/list of Optimizable - Objects that will be optimized to satisfy the Objective. - target : {float, ndarray}, optional - Target value(s) of the objective. Only used if bounds is None. - Must be broadcastable to Objective.dim_f. - bounds : tuple of {float, ndarray}, optional - Lower and upper bounds on the objective. Overrides target. - Both bounds must be broadcastable to Objective.dim_f - weight : {float, ndarray}, optional - Weighting to apply to the Objective, relative to other Objectives. - Must be broadcastable to Objective.dim_f - normalize : bool, optional - Whether to compute the error in physical units or non-dimensionalize. - normalize_target : bool, optional - Whether target and bounds should be normalized before comparing to computed - values. If `normalize` is `True` and the target is in physical units, - this should also be set to True. - loss_function : {None, 'mean', 'min', 'max'}, optional - Loss function to apply to the objective values once computed. This loss function - is called on the raw compute value, before any shifting, scaling, or - normalization. - deriv_mode : {"auto", "fwd", "rev"} - Specify how to compute Jacobian matrix, either forward mode or reverse mode AD. - "auto" selects forward or reverse mode based on the size of the input and output - of the objective. Has no effect on self.grad or self.hess which always use - reverse mode and forward over reverse mode respectively. - name : str, optional - Name of the objective. - jac_chunk_size : int or "auto", optional - Will calculate the Jacobian - ``jac_chunk_size`` columns at a time, instead of all at once. - The memory usage of the Jacobian calculation is roughly - ``memory usage = m0 + m1*jac_chunk_size``: the smaller the chunk size, - the less memory the Jacobian calculation will require (with some baseline - memory usage). The time it takes to compute the Jacobian is roughly - ``t= t0 + t1/jac_chunk_size` so the larger the ``jac_chunk_size``, the faster - the calculation takes, at the cost of requiring more memory. - If None, it will use the largest size i.e ``obj.dim_x``. - Defaults to ``chunk_size=None``. - - """ + Objects that will be optimized to satisfy the Objective.""" # noqa: D208, D209 _scalar = False _linear = False @@ -1634,6 +1595,8 @@ def things(self, new): self._built = False +_Objective.__doc__ += "".join(value.rstrip("\n") for value in docs.values()) + # local functions assigned as attributes aren't hashable so they cause stuff to # recompile, so instead we define a hashable class to do the same thing. diff --git a/desc/optimize/aug_lagrangian.py b/desc/optimize/aug_lagrangian.py index 2d194cdd5..7caa9ad72 100644 --- a/desc/optimize/aug_lagrangian.py +++ b/desc/optimize/aug_lagrangian.py @@ -3,7 +3,7 @@ from scipy.optimize import BFGS, NonlinearConstraint, OptimizeResult from desc.backend import jnp -from desc.utils import errorif, setdefault +from desc.utils import errorif, safediv, setdefault from .bound_utils import ( cl_scaling_vector, @@ -350,12 +350,12 @@ def laghess(z, y, mu, *args): # conngould : norm of the cauchy point, as recommended in ch17 of Conn & Gould # scipy : norm of the scaled x, as used in scipy # mix : geometric mean of conngould and scipy + tr_scipy = jnp.linalg.norm(z * scale_inv / v**0.5) + conngould = safediv(g_h @ g_h, abs(g_h @ H_h @ g_h)) init_tr = { - "scipy": jnp.linalg.norm(z * scale_inv / v**0.5), - "conngould": (g_h @ g_h) / abs(g_h @ H_h @ g_h), - "mix": jnp.sqrt( - (g_h @ g_h) / abs(g_h @ H_h @ g_h) * jnp.linalg.norm(z * scale_inv / v**0.5) - ), + "scipy": tr_scipy, + "conngould": conngould, + "mix": jnp.sqrt(conngould * tr_scipy), } trust_radius = options.pop("initial_trust_radius", "conngould") tr_ratio = options.pop("initial_trust_ratio", 1.0) diff --git a/desc/optimize/aug_lagrangian_ls.py b/desc/optimize/aug_lagrangian_ls.py index 2781ac674..668c08f47 100644 --- a/desc/optimize/aug_lagrangian_ls.py +++ b/desc/optimize/aug_lagrangian_ls.py @@ -3,7 +3,7 @@ from scipy.optimize import NonlinearConstraint, OptimizeResult from desc.backend import jnp, qr -from desc.utils import errorif, setdefault +from desc.utils import errorif, safediv, setdefault from .bound_utils import ( cl_scaling_vector, @@ -289,14 +289,12 @@ def lagjac(z, y, mu, *args): # conngould : norm of the cauchy point, as recommended in ch17 of Conn & Gould # scipy : norm of the scaled x, as used in scipy # mix : geometric mean of conngould and scipy + tr_scipy = jnp.linalg.norm(z * scale_inv / v**0.5) + conngould = safediv(jnp.sum(g_h**2), jnp.sum((J_h @ g_h) ** 2)) init_tr = { - "scipy": jnp.linalg.norm(z * scale_inv / v**0.5), - "conngould": jnp.sum(g_h**2) / jnp.sum((J_h @ g_h) ** 2), - "mix": jnp.sqrt( - jnp.sum(g_h**2) - / jnp.sum((J_h @ g_h) ** 2) - * jnp.linalg.norm(z * scale_inv / v**0.5) - ), + "scipy": tr_scipy, + "conngould": conngould, + "mix": jnp.sqrt(conngould * tr_scipy), } trust_radius = options.pop("initial_trust_radius", "conngould") tr_ratio = options.pop("initial_trust_ratio", 1.0) diff --git a/desc/optimize/fmin_scalar.py b/desc/optimize/fmin_scalar.py index fda78fc63..43a0c1914 100644 --- a/desc/optimize/fmin_scalar.py +++ b/desc/optimize/fmin_scalar.py @@ -3,7 +3,7 @@ from scipy.optimize import BFGS, OptimizeResult from desc.backend import jnp -from desc.utils import errorif, setdefault +from desc.utils import errorif, safediv, setdefault from .bound_utils import ( cl_scaling_vector, @@ -247,12 +247,12 @@ def fmintr( # noqa: C901 # conngould : norm of the cauchy point, as recommended in ch17 of Conn & Gould # scipy : norm of the scaled x, as used in scipy # mix : geometric mean of conngould and scipy + tr_scipy = jnp.linalg.norm(x * scale_inv / v**0.5) + conngould = safediv(g_h @ g_h, abs(g_h @ H_h @ g_h)) init_tr = { - "scipy": jnp.linalg.norm(x * scale_inv / v**0.5), - "conngould": (g_h @ g_h) / abs(g_h @ H_h @ g_h), - "mix": jnp.sqrt( - (g_h @ g_h) / abs(g_h @ H_h @ g_h) * jnp.linalg.norm(x * scale_inv / v**0.5) - ), + "scipy": tr_scipy, + "conngould": conngould, + "mix": jnp.sqrt(conngould * tr_scipy), } trust_radius = options.pop("initial_trust_radius", "scipy") tr_ratio = options.pop("initial_trust_ratio", 1.0) diff --git a/desc/optimize/least_squares.py b/desc/optimize/least_squares.py index 56e7d6e0b..9a5f7df6b 100644 --- a/desc/optimize/least_squares.py +++ b/desc/optimize/least_squares.py @@ -3,7 +3,7 @@ from scipy.optimize import OptimizeResult from desc.backend import jnp, qr -from desc.utils import errorif, setdefault +from desc.utils import errorif, safediv, setdefault from .bound_utils import ( cl_scaling_vector, @@ -208,14 +208,12 @@ def lsqtr( # noqa: C901 # conngould : norm of the cauchy point, as recommended in ch17 of Conn & Gould # scipy : norm of the scaled x, as used in scipy # mix : geometric mean of conngould and scipy + tr_scipy = jnp.linalg.norm(x * scale_inv / v**0.5) + conngould = safediv(jnp.sum(g_h**2), jnp.sum((J_h @ g_h) ** 2)) init_tr = { - "scipy": jnp.linalg.norm(x * scale_inv / v**0.5), - "conngould": jnp.sum(g_h**2) / jnp.sum((J_h @ g_h) ** 2), - "mix": jnp.sqrt( - jnp.sum(g_h**2) - / jnp.sum((J_h @ g_h) ** 2) - * jnp.linalg.norm(x * scale_inv / v**0.5) - ), + "scipy": tr_scipy, + "conngould": conngould, + "mix": jnp.sqrt(conngould * tr_scipy), } trust_radius = options.pop("initial_trust_radius", "scipy") tr_ratio = options.pop("initial_trust_ratio", 1.0) diff --git a/devtools/dev-requirements.txt b/devtools/dev-requirements.txt index f3df4e979..ddc7412b3 100644 --- a/devtools/dev-requirements.txt +++ b/devtools/dev-requirements.txt @@ -9,7 +9,7 @@ # which will need to be updated regularly, but we don't want to do so without testing. # building the docs -nbsphinx >= 0.8.12, <= 0.9.5 +nbsphinx >= 0.8.12, <= 0.9.6 sphinx >= 5.0, <= 8.1.3 sphinx-argparse >= 0.4.0, != 0.5.0, <= 0.5.2 sphinx_copybutton <= 0.5.2 @@ -26,7 +26,7 @@ flake8-isort >= 5.0.0, <= 6.1.1 pre-commit <= 4.0.1 # testing and benchmarking -nbmake <= 1.5.4 +nbmake <= 1.5.5 pytest ~= 8.3 pytest-benchmark <= 5.1.0 pytest-cov >= 2.6.0, <= 6.0.0 diff --git a/docs/adding_objectives.rst b/docs/adding_objectives.rst index b7572410e..2fa3028ba 100644 --- a/docs/adding_objectives.rst +++ b/docs/adding_objectives.rst @@ -192,7 +192,6 @@ A full example objective with comments describing the key points is given below: # and to make the objective value independent of grid resolution. return f - Converting to Cartesian coordinates ----------------------------------- diff --git a/docs/api.rst b/docs/api.rst index b6adda31c..0290790a7 100644 --- a/docs/api.rst +++ b/docs/api.rst @@ -117,6 +117,17 @@ Grid desc.grid.find_least_rational_surfaces desc.grid.find_most_rational_surfaces +Integrals +********* + +.. autosummary:: + :toctree: _api/integrals + :recursive: + :template: class.rst + + desc.integrals.Bounce2D + desc.integrals.Bounce1D + IO *** @@ -170,6 +181,7 @@ Objective Functions desc.objectives.CoilSetMinDistance desc.objectives.CoilTorsion desc.objectives.CurrentDensity + desc.objectives.EffectiveRipple desc.objectives.Elongation desc.objectives.Energy desc.objectives.FixAnisotropy @@ -199,6 +211,7 @@ Objective Functions desc.objectives.FixThetaSFL desc.objectives.ForceBalance desc.objectives.ForceBalanceAnisotropic + desc.objectives.GammaC desc.objectives.GenericObjective desc.objectives.get_equilibrium_objective desc.objectives.get_fixed_axis_constraints diff --git a/docs/api_objectives.rst b/docs/api_objectives.rst index 050ca4acb..64603268e 100644 --- a/docs/api_objectives.rst +++ b/docs/api_objectives.rst @@ -35,6 +35,16 @@ Equilibrium desc.objectives.HelicalForceBalance +Fast ion confinement +-------------------- +.. autosummary:: + :toctree: _api/objectives + :recursive: + :template: class.rst + + desc.objectives.GammaC + + Geometry -------- .. autosummary:: @@ -53,6 +63,16 @@ Geometry desc.objectives.GoodCoordinates +Neoclassical +------------ +.. autosummary:: + :toctree: _api/objectives + :recursive: + :template: class.rst + + desc.objectives.EffectiveRipple + + Omnigenity ---------- .. autosummary:: diff --git a/docs/index.rst b/docs/index.rst index 4d8bda4bf..d36060608 100644 --- a/docs/index.rst +++ b/docs/index.rst @@ -35,6 +35,7 @@ notebooks/tutorials/coil_stage_two_optimization.ipynb notebooks/tutorials/QFM_surface.ipynb notebooks/tutorials/ideal_ballooning_stability.ipynb + notebooks/tutorials/EffectiveRipple.ipynb memory_usage .. toctree:: diff --git a/docs/notebooks/tutorials/EffectiveRipple.ipynb b/docs/notebooks/tutorials/EffectiveRipple.ipynb new file mode 100644 index 000000000..10bbbd781 --- /dev/null +++ b/docs/notebooks/tutorials/EffectiveRipple.ipynb @@ -0,0 +1,649 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "988097b0-18ad-4202-8dea-3423bfcaecbe", + "metadata": {}, + "source": [ + "# Neoclassical transport and fast ions\n", + "- In this tutorial, we will show how to optimize for the effective ripple in DESC.\n", + "The computation involves integration over ripple wells whose structure determines the optimal resolution for the optimization.\n", + "So we will also breifly show how to visualize the ripples and accordingly pick resolution parameters.\n", + "The same tutorial can be used to optimize for fast ion confinement with Γ_c. To do so, replace the objective ``EffectiveRipple`` with ``GammaC``.\n", + "\n", + "- Note that there is still work in progress to improve the performance in DESC by an order of magnitude. See the GitHub issues linked in the objective docstring if you would like to contribute.\n", + "\n", + "## Neoclassical transport in banana regime\n", + "A 3D stellarator magnetic field admits ripple wells that lead to enhanced\n", + "radial drift of trapped particles. In the banana regime, neoclassical (thermal)\n", + "transport from ripple wells can become the dominant transport channel.\n", + "The effective ripple (ε) proxy estimates the neoclassical transport\n", + "coefficients in the banana regime. To ensure low neoclassical transport,\n", + "a stellarator is typically optimized so that ε < 0.02.\n", + "\n", + "## Fast ion confinement \n", + "A 3D stellarator magnetic field admits ripple wells that lead to enhanced\n", + "radial drift of trapped particles. The energetic particle confinement\n", + "metric γ_c quantifies whether the contours of the second adiabatic invariant\n", + "close on the flux surfaces. In the limit where the poloidal drift velocity\n", + "majorizes the radial drift velocity, the contours lie parallel to flux\n", + "surfaces. The optimization metric Γ_c averages γ_c² over the distribution\n", + "of trapped particles on each flux surface.\n", + "The radial electric field has a negligible effect, since fast particles\n", + "have high energy with collisionless orbits, so it is assumed to be zero.\n", + "\n", + "## References\n", + "- [Evaluation of 1/ν neoclassical transport in stellarators.](https://doi.org/10.1063/1.873749.)\n", + "V. V. Nemov, S. V. Kasilov, W. Kernbichler, M. F. Heyn.\n", + "Phys. Plasmas 1 December 1999; 6 (12): 4622–4632.\n", + "- [Poloidal motion of trapped particle orbits in real-space coordinates.](\n", + "https://doi.org/10.1063/1.2912456)\n", + "V. V. Nemov, S. V. Kasilov, W. Kernbichler, G. O. Leitold.\n", + "Phys. Plasmas 1 May 2008; 15 (5): 052501." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "a831f199-3399-4b52-a11e-cf35f73c075f", + "metadata": {}, + "outputs": [], + "source": [ + "from desc.integrals import Bounce2D\n", + "\n", + "from desc.examples import get\n", + "from desc.grid import LinearGrid\n", + "from desc.optimize import Optimizer\n", + "\n", + "from desc.objectives import (\n", + " ForceBalance,\n", + " FixPsi,\n", + " FixBoundaryR,\n", + " FixBoundaryZ,\n", + " GenericObjective,\n", + " FixPressure,\n", + " FixIota,\n", + " AspectRatio,\n", + " EffectiveRipple,\n", + " ObjectiveFunction,\n", + ")\n", + "from matplotlib import pyplot as plt\n", + "import numpy as np" + ] + }, + { + "cell_type": "markdown", + "id": "257d4c55-3387-43bf-8258-f246c3b19e11", + "metadata": {}, + "source": [ + "## Documentation\n", + "Please read the full documentation of the methods to understand what the input parameters do. In Jupyter Lab, you can click on the code and press ``Shift+Tab`` to pull up the documentation. Breifly,\n", + "\n", + "- The equilibrium resolution determines the spectral resolution of the FourierZernike series fit to the boundary.\n", + "- The grid determines the flux surfaces to compute on and the resolution of FFTs.\n", + "- The parameters ``X`` and ``Y`` determine the spectral resolution of the map between coordinates that parameterize the boundary and field line coordinates.\n", + "- The parameter ``Y_B`` determines the resolution for the bounce point finding algorithm. Feel free to reduce this until the plots of $\\vert B\\vert$ along field lines do not change. If $\\vert B\\vert$ is high frequency, then a larger value will be needed (usually much larger than ``Y``).\n", + "\n", + "## Plotting ripple wells\n", + "\n", + "- Here we plot $\\vert B\\vert$ along field lines to see the structure of the ripple wells. This is beneficial to choose the resolution for the optimization.\n", + "- Due to limitations in JAX, it is recommended to plot the field lines and pick a reasonable, yet preferably tight, upper bound on the number of ripple wells. From the plots, we see that ``num_well=10 * num_transit`` is a reasonable upper bound. By making this extra effort, the optimization will be ``Y_B/10`` times more performant. If one were to select something much less than ``10``, as shown in the next example, then it should be clear from the plot that some ripple wells are ignored, which is not desirable." + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "6eb81b56-6b1b-45ba-903e-741c21047c7e", + "metadata": {}, + "outputs": [], + "source": [ + "def plot_wells(\n", + " eq,\n", + " grid,\n", + " theta,\n", + " Y_B=None,\n", + " num_transit=3,\n", + " num_well=None,\n", + " num_pitch=10,\n", + "):\n", + " \"\"\"Plotting tool to help user set tighter upper bound on ``num_well``.\n", + "\n", + " Parameters\n", + " ----------\n", + " eq : Equilibrium\n", + " Equilibrium to compute on.\n", + " grid : LinearGrid\n", + " Tensor-product grid in (ρ, θ, ζ) with uniformly spaced nodes\n", + " (θ, ζ) ∈ [0, 2π) × [0, 2π/NFP).\n", + " theta : jnp.ndarray\n", + " Shape (num rho, X, Y).\n", + " DESC coordinates θ sourced from the Clebsch coordinates\n", + " ``FourierChebyshevSeries.nodes(X,Y,rho,domain=(0,2*jnp.pi))``.\n", + " Use the ``Bounce2D.compute_theta`` method to obtain this.\n", + " Y_B : int\n", + " Desired resolution for algorithm to compute bounce points.\n", + " Default is double ``Y``.\n", + " num_transit : int\n", + " Number of toroidal transits to follow field line.\n", + " For axisymmetric devices, one poloidal transit is sufficient. Otherwise,\n", + " assuming the surface is not near rational, more transits will\n", + " approximate surface averages better, with diminishing returns.\n", + " num_well : int\n", + " Maximum number of wells to detect for each pitch and field line.\n", + " Giving ``None`` will detect all wells but due to current limitations in\n", + " JAX this will have worse performance.\n", + " Specifying a number that tightly upper bounds the number of wells will\n", + " increase performance. In general, an upper bound on the number of wells\n", + " per toroidal transit is ``Aι+B`` where ``A``, ``B`` are the poloidal and\n", + " toroidal Fourier resolution of B, respectively, in straight-field line\n", + " PEST coordinates, and ι is the rotational transform normalized by 2π.\n", + " A tighter upper bound than ``num_well=(Aι+B)*num_transit`` is preferable.\n", + " The ``check_points`` or ``plot`` methods in ``desc.integrals.Bounce2D``\n", + " are useful to select a reasonable value.\n", + " num_pitch: int\n", + " Number of pitch angles.\n", + "\n", + " Returns\n", + " -------\n", + " plots\n", + " Matplotlib (fig, ax) tuples for the 1D plot of each field line.\n", + "\n", + " \"\"\"\n", + " data = eq.compute(Bounce2D.required_names + [\"min_tz |B|\", \"max_tz |B|\"], grid=grid)\n", + " bounce = Bounce2D(grid, data, theta, Y_B, num_transit)\n", + " pitch_inv, _ = Bounce2D.get_pitch_inv_quad(\n", + " grid.compress(data[\"min_tz |B|\"]),\n", + " grid.compress(data[\"max_tz |B|\"]),\n", + " num_pitch,\n", + " )\n", + " points = bounce.points(pitch_inv, num_well=num_well)\n", + " plots = bounce.check_points(points, pitch_inv)\n", + " return plots" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "728efd05-7f52-4ece-af52-c031c6f61441", + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnYAAAHWCAYAAAD6oMSKAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAD+rklEQVR4nOy9d3wc5Z34/57ZqlXvliVbrmBswIDBmF4CGHCcRijJ5eBIOwImR8iFHCkHl/wSviEJl4QQQi4XIOZKLkcoOVwwECCATXHBgAuWu9X7aiVtnfn9MfvMrmyVXWl3ZnY979dLL7A0u/N8ns/MPJ/5tEdSVVXFxsbGxsbGxsYm55HNHoCNjY2NjY2NjU1msA07GxsbGxsbG5s8wTbsbGxsbGxsbGzyBNuws7GxsbGxsbHJE2zDzsbGxsbGxsYmT7ANOxsbGxsbGxubPME27GxsbGxsbGxs8gTbsLOxsbGxsbGxyRNsw87GxsbGxsbGJk+wDTsbGxsbGxsbmzzBNuxsbGxsbGxsbPIE27CzsbE5hieeeAJJkkb9ufLKK0f9zGOPPYYkSRw4cMDYwaZJrozz3nvvRZIkurq6Uv7M/fffz4IFC1AURf/drFmzuPfee6c0ltG+49e//jUzZ84kFApN6buNIlvzAKPPO0x8H+XaHAaDQVwuF2VlZVOeS5vsYRt2NjmJWJzfeeedtD/7xhtvcO+999LX15f5gZlANuQ59dRTWb16NatXr+axxx5jyZIlAOMadjbm4vf7+dGPfsQ3v/lNZHniR/v69euPMTZKSkpYunQpTz/99ISf/7u/+zvC4TCPPPJIBkY/Ntm8X6c6BzD+vE90Hxk1hwCBQIB77rmHK6+8koqKCiRJ4rHHHhvzeEVRqK6u5v7779d/F41G+e1vf0tjYyPf+9736OjoyPq4bdLHNuxsjjveeOMN/uVf/iWvDLtMy3Pqqafyuc99josvvphHHnmEzZs3c/7557N582buuOOOUT/zt3/7twwPD9PY2JixcWSDXBlnuvzud78jGo3ymc98JqXj3333XQB+8YtfsHr1ah5//HG++c1vcvDgQa699lp27do17ue9Xi833XQTDzzwAKqqTnn8Y5HN+3WqcwDjz/tE95FRcwjQ1dXF9773PXbu3MnixYsnPP6tt96iq6uLFStW6L8rKiripptu4q677kJVVbZv357NIdtMEqfZA7CxyRcGBwcpLCw0exgZ4/333+eKK66gu7ubn//859x+++1IkjTm8Q6HA4fDYeAIJ0emx2kVvT/66KN87GMfw+v1pnT89u3bKSsr4/bbbx/x+6qqKm655Ra2bdvGggULxv2O6667jvvvv5+//OUvXHrppZMeu1lkYg4mmveJ7iOj5rCuro7W1lamTZvGO++8w1lnnTXu8WvWrKGxsZFFixYd8zfxu507d3LZZZdlZbw2k8f22NnkBSIfqampib/7u7+jrKyM0tJSbr75ZoaGhkYc941vfAOA2bNn6+EXkW/V3NzM5z//eWpra/F4PCxatIjf/e53Y55vx44dfPazn6W8vJzzzz8fgIGBAe644w5mzZqFx+OhpqaGyy+/nC1btuifT/U8zc3NfOELX2D69Ol4PB5mz57NV77yFcLh8ITypDKOsThw4ACXXXYZoVCIV155ha9+9avjGnUweu5aqnoZj1TmSpxn165dXHfddZSUlFBZWck//MM/EAwGJxznyy+/zJlnnonX62Xu3Lk88sgj+neOdp7R9H7w4EFuvfVWTjzxRAoKCqisrOTaa689JpcvnbEC9PX1TTh3+/fvZ/v27Wktsu+++y5nnHHGMb9va2sD4KSTTprwO5YsWUJFRQXPPPPMhMdO5nqc6H6dKlOdg4nmPZX7KJ05nAoej4dp06alfPxzzz03wluXjLhOd+zYkZGx2WQW22Nnk1dcd911zJ49m/vuu48tW7bw29/+lpqaGn70ox8B8KlPfYoPP/yQ//qv/+Jf//VfqaqqAqC6upr29naWLVuGJEmsWrWK6upq1q5dyxe+8AX8fv+oIchrr72W+fPn88Mf/lAPpdxyyy387//+L6tWrWLhwoV0d3fz2muvsXPnTs4444yUz9PS0sLSpUvp6+vjy1/+MgsWLKC5uZn//d//ZWhoCLfbPa48X/7yl8cdx1goisJnP/tZBgcHefXVVzn99NOzrpexSFcn1113HbNmzeK+++5j06ZN/OIXv6C3t5ff//73Y55j69atXHnlldTV1fEv//IvxGIxvve971FdXT3mZ0bT+9tvv80bb7zBDTfcQENDAwcOHODhhx/m4osvZseOHfh8vkmNNZW5e+ONNwDG1Wsy4XCY3bt3c9FFF+nFGb29vaxfv54f/ehHrFq1KqVwnTjn66+/PuFxE90XozHe9T1VMjEH4817OvfRRHMYiUTo7+9PRSwqKipSyrEcj7a2NrZu3cr3vve9Uf/+9a9/HdA8djYWRLWxyUEeffRRFVDffvttVVVV9Z577lEB9fOf//yI4z75yU+qlZWVI3734x//WAXU/fv3j/j9F77wBbWurk7t6uoa8fsbbrhBLS0tVYeGhvTfifN95jOfOWZspaWl6m233Tbm2FM9z4033qjKsqzLmIyiKBPKM9E4xuLxxx9XAfV3v/tdWp8TOkkeRzp6GY1U50qc52Mf+9iI42699VYVUN99990xx7ly5UrV5/Opzc3N+jF79uxRnU6nevQjcjy9J18fgo0bN6qA+vvf//6Y75horOnM3Xe+8x0VUAcGBo4ZQ2Njo3rPPfeM+N3WrVtV4Jgfl8ul/uxnP0vpOwRf/vKX1YKCglH/lsxkr8exru90OVqGdOdgtO8Yb97TuY8mmsO//OUvo451tJ9U5untt99WAfXRRx8d9e///u//rhYUFIx6Ta9evVoF1JqaGrWmpmbCc9kYjx2KtckrbrnllhH/vuCCC+ju7sbv94/7OVVVefLJJ1m5ciWqqtLV1aX/LF++nP7+/lFDRkefD6CsrIw333yTlpaWSZ9HURSefvppVq5cyZlnnnnM90wUFp1oHOPxy1/+klNOOYWbb745rc+Nx2T0Mhmd3HbbbSP+LXKn1qxZM+o5YrEYL7zwAp/4xCeYPn26/vt58+Zx1VVXpSwPQEFBgf7/kUiE7u5u5s2bR1lZ2ajXTqpjTWXuuru7cTqdFBUVjTnmZETS++OPP86GDRvYsGEDTzzxBKeddhrf/OY32bhxY0rfA1BeXs7w8PCEofXJXo/ZIhNzMN68p3MfTTSHixcv1sc40U864daxWLNmDZdccsmIaxq0ytpvfvObXHXVVdx44410dHTQ09Mz5fPZZBY7FGuTV8ycOXPEv8vLywEtxFJSUjLm5zo7O+nr6+M3v/kNv/nNb0Y9ZrTS/tmzZx/zu/vvv5+bbrqJGTNmsGTJEq6++mpuvPFG5syZk/J5Ojs78fv9nHzyyWOOeSLGG8dYdHV18c4773DfffdN+ryjMRm9TEYn8+fPH/HvuXPnIsvymDlZHR0dDA8PM2/evGP+NtrvBKPpfXh4mPvuu49HH32U5ubmEVWOo4XRUh3rZK/p8Xj33XdxOp185jOfweVy6b+/+OKLaWho4Je//CXnnHNOSt8l5JzoZWMy12M2yeQcHE2699FEc1heXm5YkUIkEmHDhg2jjv2HP/whXV1d/PznP+e1114DtDw7kWdqYw1sw84mrxir2lGdoJWAaCz6uc99jptuumnUY0499dRjfnf0Gy1oOVEXXHABTz31FM8//zw//vGP+dGPfsSf/vQnPc9movNMNN5UGG8cY3mjdu7ciaqqGcmrS2YyepmsTpJJxbM5GUbT++23386jjz7KHXfcwTnnnENpaSmSJHHDDTcc07h2NMYaaypzV1lZSTQaZWBggOLi4gnPtX37dubOnTvCoAGor6/H5/Nx5MiRCb9D0Nvbi8/nG3VOkpnM9ZhNMjEHY817uvfRRHMYDodT9oxVV1dPqer7tddew+/3c/XVV4/4/d69e3nggQf4+te/zvz58+nt7QU0WW3DzlrYhp3NccdoC2h1dTXFxcXEYrGMvBnX1dVx6623cuutt9LR0cEZZ5zBD37wA1555ZWUzqMoCiUlJbz//vsTnms842WscYy1kA4ODk74nUYxGZ3s2bNnhDetqakJRVGYNWvWqMfX1NTg9Xppamo65m+j/W48/vd//5ebbrqJn/70p/rvgsHgmP3X0h3reIiWHPv375/Q2AXNqDn33HOP+X1nZydDQ0NphfP279+fUgUtpH89QvauxUzMwVjznu59NNEcvvHGG1xyySUpf9dkriHBc889x8KFC4/5jjvvvJPq6mq+/e1vA4mKYbsy1nrYOXY2xx2i51jygutwOLjmmmt48sknRzWmOjs7U/ruWCx2TNitpqaG6dOnEwqFUj6PLMt84hOf4M9//vOou2ske2tGk2eicYyFeJj/6U9/Gl9QA5iMTh566KER/37wwQcBxjQcHA4Hl112GU8//fSI3K+mpibWrl2b9niP9kA++OCDxGKxUY9Pd6zjIUKGqezE0tbWRkdHx6iGhKi0veaaa1I+95YtW0Y1kJJJ5XocGhpi165dx2yhNtr1Pd7xqZCpORhr3tO9jyaaQyNz7NasWXNMm5P169fz7LPP8pOf/ETXR3FxMTNmzLArYy2I7bGzOe4Q2/p8+9vf5oYbbsDlcrFy5Ur+3//7f/zlL3/h7LPP5ktf+hILFy6kp6eHLVu28MILL6QUChkYGKChoYFPf/rTLF68mKKiIl544QXefvtt3ZOT6nl++MMf8vzzz3PRRRfx5S9/mZNOOonW1lb++Mc/8tprr1FWVjamPBdccAEnnnjiuOMYjQULFrB8+XJ+/etf097ezhVXXMGsWbO49NJLcbvdU5n2SZGuTvbv38/HPvYxrrzySjZu3MgTTzzBZz/72XHbVtx77708//zznHfeeXzlK18hFovxy1/+kpNPPplt27alPNaPfvSjrF69mtLSUhYuXMjGjRt54YUXqKysHPX4yYx1LObMmcPJJ5/MCy+8wOc///lxjxW7LXR0dPDEE08AWk7Y888/z9q1a7nhhhu49tprUzrv5s2b6enp4eMf//i4x6VyX7z11ltccskl3HPPPSP2IR3rfn377bdHPT4VMjUHY817OvdRKnOYqRy7X/7yl/T19ekvMX/+85/1kPPtt99OT08PO3fu5OGHH9Y/E4lEuOOOO7jkkku4/vrrR3zfwoULbcPOihheh2tjkwHGanfS2dk56nFHtwD4/ve/r9bX16uyLI/4e3t7u3rbbbepM2bMUF0ulzpt2jT1Ix/5iPqb3/xmxOfHOl8oFFK/8Y1vqIsXL1aLi4vVwsJCdfHixeqvfvWrEcelep6DBw+qN954o1pdXa16PB51zpw56m233aaGQqFx5dm9e3dK4xiNgYEB9R//8R/VuXPnqm63WwXUq666asLPjdfuJFW9jEYqcyXOs2PHDvXTn/60WlxcrJaXl6urVq1Sh4eHJzz3iy++qJ5++umq2+1W586dq/72t79Vv/71r6ter3fEZ8eSR1VVtbe3V7355pvVqqoqtaioSF2+fLm6a9cutbGxUb3pppvSHmu6c/fAAw+oRUVFx7SoOLpFx/33339Mi4zi4mL1vPPOU//93/99RCudsb5D8M1vflOdOXPmqJ9JJpX7QrT0GO08o92v4x0/GskyTGYOxpqHseY91fso1TnMBI2NjeO2SfnlL3+plpaWqpFIZIR8TqdTff/994/5vjvvvFOVJGnUdi825mEbdjY2NuPyT//0Tyqg9vT0mD2UMRnP4JosH//4x9V58+Zl7PsE2RirqqpqX1+fWlFRof72t78d8fvxetClymjfEQwG1WnTpo3Z881qZGsexpr3oxntPrLaHF511VXqtddea/YwbKaInWNnY2MzLtXV1RQUFByzc0I+MTw8POLfe/bsYc2aNVx88cXmDGgSlJaWctddd/HjH/84pSrcqfLoo4/icrlG7el3PJHqvI92H1ltDi+++GK+9rWvmT0MmyliG3Y2NjZj8uCDD3Lvvfdy44034vF4zB5O1pgzZw533303//Zv/8Z3vvMdli1bhtvt5q677jJ7aGnxzW9+k127dk15S6lUuOWWWzh06FBeXxepMtG8j3UfWW0O77rrrkn37rOxDnbxhI2NzZj8/ve/57Of/SwPPPCA2UPJKldeeSX/9V//RVtbGx6Ph3POOYcf/vCHxzQRtrGZDMfLfWRjDSRVzUAnVBsbGxsbGxsbG9OxQ7E2NjY2NjY2NnmCpQy7V199lZUrVzJ9+nQkSeLpp5+e8DMvv/wyZ5xxBh6Ph3nz5vHYY48dc8xDDz3ErFmz8Hq9nH322bz11lsj/h4MBrntttuorKykqKiIa665hvb29gxJZWNjY2NjY2NjDJbKsRscHGTx4sV8/vOf51Of+tSEx+/fv58VK1Zwyy238B//8R+8+OKLfPGLX6Suro7ly5cD8Ic//IE777yTX//615x99tn87Gc/Y/ny5ezevZuamhoAvva1r/Hcc8/xxz/+kdLSUlatWsWnPvUpXn/99ZTHrigKLS0tFBcXW2I7JhsbGxsbG5v8QFVVBgYGmD59+sTFUSa3WxkTQH3qqafGPeauu+5SFy1aNOJ3119/vbp8+XL930uXLlVvu+02/d+xWEydPn26et9996mqqvUgcrlc6h//+Ef9mJ07d6qAunHjxpTHe/jw4TEbP9o/9o/9Y//YP/aP/WP/TPXn8OHDE9ojlvLYpcvGjRuP2WZl+fLl3HHHHQCEw2E2b97M3Xffrf9dlmUuu+wyNm7cCGjbuUQikRHfs2DBAmbOnMnGjRtZtmxZSmMpLi4G4PDhw5SUlExFLBsbGxsbGxsbHb/fz4wZM3RbYzxy2rBra2ujtrZ2xO9qa2vx+/0MDw/T29tLLBYb9Zhdu3bp3+F2u/V9N5OPaWtrG/PcoVBoxGbqAwMDAJSUlNiGnY2NjY2NjU3GSSXVy1LFE7nEfffdR2lpqf4zY8YMs4dkY2NjY2Njc5yT04bdtGnTjqlebW9vp6SkhIKCAqqqqnA4HKMeM23aNP07wuEwfX19Yx4zGnfffTf9/f36z+HDhzMjlI2NjY2NjY3NJMlpw+6cc87hxRdfHPG7DRs26FuiuN1ulixZMuIYRVF48cUX9WOWLFmCy+Uacczu3bs5dOjQuFureDwePexqh19tbGxsbGxsrIClcuwCgQBNTU36v/fv38+2bduoqKhg5syZ3H333TQ3N/P73/8e0PbZ++Uvf8ldd93F5z//eV566SX+53/+h+eee07/jjvvvJObbrqJM888k6VLl/Kzn/2MwcFBbr75ZkDbwPkLX/gCd955JxUVFZSUlHD77bdzzjnnpFw4YWNjY2NjY2NjBSxl2L3zzjtccskl+r/vvPNOAG666SYee+wxWltbOXTokP732bNn89xzz/G1r32Nn//85zQ0NPDb3/5W72EHcP3119PZ2ck///M/09bWxmmnnca6detGFFT867/+K7Isc8011xAKhVi+fDm/+tWvDJDYxsbGxsbGxiZz2HvFZgi/309paSn9/f12WNbGxsbGxsYmY6RjY+R0jp2NjY2NjY2NjU0C27CzsbGxsbGxsckTbMPOxsbGxsbGxiZPsA07GxsbGxsbG5s8wTbsbGxsbGxsbGzyBNuws7GxsbGxsbHJE2zDzsbGxsbGxsYmT7ANOxsbG3a3DfD4GwfoHQybPRQbGxsbmylgqZ0nbGxsjKe1f5hP/ep1BsMxntrazFO3noskSWYPy8bGxsZmEtgeO5tx+eueTp7Z1oy9QUn+8rvX9jMYjgGw7XAfWw71mTsgGxsbG5tJY3vsbMbkpV3tfP6xdwDoH45w4zmzzB2QTcZRVZV1H7QB4HJIRGIqr37YyZLGcpNHZmNjY2MzGWyPnc2YPPr6Af3//2PTIfMGYpM1PmwPcLhnGI9T5ptXLgBgy6Fek0dlY2NjYzNZbMPOZlT6hyO8sbdb//fu9gHa/UETR2STDd452APAWbMqdC/drrYBM4dkY2NjYzMFbMPOZlS2H+kjpqjMqCjgxNpiAD5o6Td5VDaZZls8n+60GWWcENdz50CIHrs6Ni959t0WVv3nFl75sNPsodjY2GQJ27CzGZXtRzQj7rQZ5Syo0xb8na22Jyff2Ha4D9AMu0KPk/qyAgD2dwVMHJVNNvjL7g6++l9b+b/trXzp8Xc43DNk9pBsbGyygG3Y2YyKWPAXN5Tqnpw97bZhl0/4gxGaOjUD7rSZZQDUl2uG3ZHeYbOGZZMFFEXlR2t36f8OxxT+6y07b9bGJh+xDTubUdkdz7NaOL2ExkofYC/2+cbOFj+qCvVlBVQVeQBoKLMNu3zkr01d7GoboMjj5HsfXwTAhh3tJo/KxsYmG9iGnc0xhKIxjvRqYZp51UU0lNuGXT4ivHXza4v03zXEPXbNfbau84k/bTkCwKfOqOdji6cDsKcjQN+QnUtpY5Nv2IadzTEc7B5CUaHI46S62KMv9u0DQULRmMmjs8kUTR2aYTevOmHY2aHY/CMQirI+3qvwU2c0UOZzMyvuhX+v2S6IsrHJN2zDzuYY9nUOAjCnuhBJkqgsdON1yagqtPbZLU/yhb1xPc+tSRh200o1w67Dbm2TN7ywo51gRGFOVSGLG0oBOLle++8HLX4zh2ZjY5MFbMPO5hj2xSsi51QVAiBJEtPjuVct/cePJ2c4HNO9WvnIXuGxSzLsKgvdAHQF7BBdvvDirg4Arjx5mr4H8Ny4l/ZA16Bp47KxsckO9pZiNsewP+7JmV1RgH/dOtRwmIqQzD4kDr2ykUUfJPaNldxuii69FNntNmu4GUcJh2lb/wKfeidMW8jFqpkKX2oYuVdurssdCEb0PLrZpW5dz54wgIOeQJCeZ57FodkBOS/v8UokGuOlXVoY9iMn1ei/nx1/adtvG3Y2NnmHbdjZHINY8Gv7O2j+7tcA8J35N9BwOvue/DMte/864viZjz9O4dlLDR9nthjeuo3vP/U/tNVcC8Cje0Nc9st/waNERxyXy3L//t11gEyRV6Xgwx0cukPTc1SS4eP3oyCx+7vfpyyc8FjmsrzHK7/ctIbBkEyhR+W0GYn9f2fFDbsD3bZhZ2OTb9ihWJtjaOvX8qsaFy/A1dAAkkR5SGt/0uspThwoSbhmzMC35Awzhpk13KefyqszF+r/HnQVsKNiVuKAHJc7qkRZ/e4GAGLOFtynn6rr2akqlIS0xb7PEw/R5ri8xytRJcrqd7YC4CjajUqi8EkUT7T7QwQjdkGUjU0+YXvsMkwsqhCLKmYPY9Koqkpb3zCyqiXSl962itZvfZuKYABZhT5vCYrk0I+vuG0VCjLksMxHs/bABoKRGcgqSK5u1Egl71XNY3H3fv2YXJZ7zb619Pa5kVVQHM2sPbCB8+N6RoLyYICAu5AebwkzA9rWU7ks7/HKmn1r8Xc3IKsQdW9jTdNaVsxZAUCRy4HPKROMKLT2DDGzstDk0drY2IxHOnaFbdhlmK0bDlLkK574QIsSjMQ4bUAGZFo3ddAhL6L3lGupkIpZFnRS6pvHgcblgISjpISAtBBp7QGTR505FFVhw473ODuwBACn7CcarCVSdSYHgjK5LreiKrywaxtndi1GCTlxDlTx4tPbqD7hevpPuZaYf4AzogXUB5301V3AgcL5OS3v8YqiKqx/fwdL/acBKp7+Gbz49DZqFpyELGmBmotjHvqCEbY9f4jOeHGUjbVRVegMhAhFFaqLPHhdI4Nu/cMROgZCFHqc1JV6kUwap03mCQylvvOTbdjZjGAgpOWRFbgdOGUJkPAtXYp34zYAhp2e+JEqvqVLkeT8iubv6WvCP6wVSkiOIJK7H4agu0BUjua23Hv6mhgI+1Gj8Ypn5yD+sJ8m/z4aly5l4IUX8Ma0itigw02uy3u8sqeviYFBLwCyqw/kCP5whD19TZxYfgIAhR4nfUMRAqHoON9kYxX6hyM8914rHf4QAJIE00q8NFb6UFSV/V1DdA6E9OPrywr46OI6ClyOsb7SJk+xDbsMc/rljZSUlJg9jEnz8u52Nm3bx8LpBSy5ahYA6uUNBF79DzZ5T6WcCLceeh5XfT1zVt2H5MyfSyiqRLnnmVUcLJtBMHgajqImCur+TCB4GuDkS62vUlVTmbNyC/laprczMHA+uKIU1q/H4e6jvWAHf7r1jxxa9zPWDhawqbqKxuB+5sd25qy8xytCz3u9lxGNRnFXv46n8q9ISLQX7OCp5U/hlJ084e9j0/YBLp5bxJILZpk9bJtxCEcVPvXw6+wOD1JQ7KC62M2hnmEIBaAlUeAkF8CCumL2dQ6yKThAX7+XX//tmSaO3CZT+P2p95y0n9YZxuGUcThz17vRFgijSDCtrCAhh9PNnM9di7IF+j0+JCVK7e234vTmV+uLNXvXc2ToMJHIqSgSODydqK5BVFc/arSUtSdX8Y/XfyVn5RbyKdEqFMkJUhjV001MUjk8dIgNrS9y4e23UvTYyygSBFwFeannfGfN3vUcDrQSHpoNEsjFu1BkrUDi8NAhnj+8npVzVzKtvABFgo7BUE4/s44H/rytmZ3tASqL3Dx7+/nUlxXQ0jfMX3Z38Pb+HpwOmbNnV/CRk2qpKHTzfnM/n/zV62zY3cm25n6WNJZPfBIbS5POPWrfzTYjEBWx00q9I34/46PLAYjKTqKNcyi5+mrDx5ZNokqUh7Y9hISEGtG68suuXu2/7m4Anl9cje/KK0wb41RIli8W1vqZye5OJCkedkbiV9t+he+q5ZT5XAAMllbmnZ7zHaFnZWgOqG4kZz+yp03/u9BzVIlSU6ylVbTZu4xYnv988xAAX75wDvXxfMjpZQX8zdmN/OyG0/nJtYu59swZVMQbjJ9cX8onTqsf8Vmb4wfbsLMZQUt8y7C60pHJ1L4CD+64EeD6wt/nXWhua8dWmgPNqKgokTIAJFdf/L89APQ6ytnW855JI5waI+QLVQMgezr1v6uoHAkcYVvPe9RdfD4Aobkn5p2e8x2h50hAy6NzFn6IlJRBL/S8tWMr1XHDrtveZcTSdAVCvHukD4BPnF6f8ueuWdIAwF92dxBT1AmOtskn7Ke2zQja/Fpz4rqjPHaSJFFW5KVjIET03AvNGFpWWVy9mJ9c9BPCsTDfPiDhB7561ueYUQXrtsBzm+GsiuUsrl5s9lAnRbJ8q1+WeKsTls8/lSvPOFU/xu1ws7h6MT3nzoC9mxkstsM3uYbQ83f/K0IHcONZSzht9pIRxwg9Bwf6Aegdsg07K/Pqh52oKiyaXkJtiXfiD8RZ0lhOiddJz2CY95r7OW1GWfYGaWMpbMPOZgStY4RiAcp9bjoGQvQNR4weVtZxO9wsn7WcUDTG7cPrALh+0RVUFnmI+Zt5bvM2YpFy3I7czDcT8gH8dt3rQB8rFpzJ1XPrjjm23KfJ2J+Hes533A438wvPo6P/FZyyxB3nX0mx1zXqsULPPYO2YWdl3j3cB8A5cyrT+pzLIXNGYzkv7+7k3cN9tmF3HGGHYm10VFXVc+yODsUCeu5V71D+LvhCfo9T1vNVZlRoc3G4Z9i0cWUKVVXZ26FV0YmN4I+mtEDTs23Y5SZ/frcVgHPnVY1p1AH69d07FEZV7VCdVXm/RauGPKWhNO3PLm4oAxLGoc3xgW3Y2ej4h6MMhbXquaNDsZDkycnj0I3IMZxeVoAUT06aUa5tv9TaP0w0lts7L3QMhAiEosgSzKryjXqMMOD7hyP2gp9jqKrKM+82A/DxxdPHPVbcz5GYaveysygxRWVH3LBbND39Nlqnxo3BD1pSb5Vhk/vYhp2NTms8v67c58I7SlPL48Fj1zGgGXaiYhCgssiDU5ZQ4l3fc5mmuLeusbIQj3P0xqXCYxdT7AU/1/igxc++zkE8TpkrFtWOe2yB26E3r+0dzN97Opc53DPEcCSGxykzu2p0D/t4zKvRPrO/e9AuoDiOsA07G51Eft3o2wuV+RKhm3xFVAhWJRl2DllKtIboz+3WEHs7RRh27L1BvS4HnnjPpL48NuLzkWffbQHgIyfVjBuGFYhwbE8e39O5zKGeIQAaK3045PQ3CGso9+F2yISjCi19uZ9KYpMatmFno9MqwpCjhGFB8+QB9OfxYt89qHnkqgpHFknUxuekPcd7fgmP3dya8d/+7Ty73ENRVP4cN+w+tji1thgJL7xt2FmRg3HDbmbF6GkTE+GQJRortc/u6xrM2LhsrI1t2NnotPVrb3SjVcRCIicnnxeBroG4x67IM+L30+JtBlpz3GMnDLt5YxROCJLz7Gxyg7cP9NDaH6TY4+TiE6tT+ozusbN72VmSQ92aMTazYmwP+0TMiXvn93UGJjjSJl+wDTsbnVa9InZ0w+54yLETHrvKoww70T8q17v066FY22OXd4gw7JUnTxs1R3Y0hJ79QVvPVuSQ7rEbPT0mFYS3r7nXDsUeL9iGnY2OMFpGa3UC6Dk7A3m8CHSKHLuikaFYYey257DHzh+M0O7XDNd5Exh2QteBYP4XT6iqyvYjfbT25+7CF4kprHlPa3PysdPGr4ZNRujZP5z/es5FDnaLHLvJe+xEznSuRxtsUsc27Gx0RHLtWB67Yq/Wz3ogjxf77sDoHjsRns5lj53oX1dT7KFkgsT6Ik9c18dBVey/v7afj/3yda544FWO9A6ZPZxJ8dqeLnqHIlQVedJqZFui39P5+7KWy4hncn355D12Ime6JYdfXGzSwzbsbADNazHerhOQCNvkq2GnqipdccPuaI+dCMUKj1cusrdTy9cZqzFxMkXxBT/fPXaRmMLDL+8FNCP2iU25uWG6KJr46Kl1OB2pP9ZL7FCsZQlGYvjj919tcepbiR1NXZlmFOZ6Rb9N6tiGnQ2gLWqJ5sRjhWK1xX44EiOS4416R2MoHCMY0eQaq3gilx+OeuHEBGFYgOK4xy4Qyu8Ff/uRfrqTttR65cNOE0czOYKRGM/vaAc0wy4djgcvfK7SOaC9RLqdMiUFk9/9sy6poj/XG6zbpIZt2NkAiVYnZT4XBe7RE69FeA7ycyEQ3jqvS8Z31BxUx/vYDUdiDOZoeFJvdTJODztBkW7Y5aasqbJpXzcAZzaWA7CrzZ9z7Xxe/bCTQChKXamXM2aWp/VZEZK3PXbWoyNu2FUXefRdcCZDVVKDdfGdNvmNbdjZAOiJ48IzNRpOR8LgycecnK5AotXJ0Q/SQo9T79LfmaMPx6aOAQBOqC2e8Nii48STs/VQLwBXnVLHjIoCVBV2tObW9kv/t10rmrj6lDrkNJvY2h4769IpdsEp8Uxw5Pg4ZEl/Mc3VZ5dNetiGnQ2QCDGOVTghKPHmb55dX7w/X8VRzYkFVcXa77tycFuxYCSmt06Yn4phd5x47PbEvZgn1RVzQo02L8IAzgXCUYUXd2ph2BVphmEhKcfObmtjOYR3LXl7w8lSGc8ZFu2cbPIb27CzAZJ62JWNX30l3vDzcSEQ22eJIpGjqY7n3eWiYbe3M4CiaqH2owtDRqP4OCieGA4nGbs1xbrB+2F77jRyfedgD4PhGFVFbk5rKEv787bHzrp0+IVhN/nCCUFFofbs6rYbUR8X2IadDZAIxdaNE4qFJMMuDxeCvrixKvbEPRpRUNGZgw9HkV83v6YopXydIk+8j10ee+z2dgZQVW2rvKoiNyfUakUle3LIY/fKbq3Y48ITqtMOw0JSH7tgBFW1N4m3EiJsWp0Bj53YIjG5UMgmf7ENOxuACVudCPK5SXF/PBRbOkYFWlUO56nsaRcVsROHYeH4yLETu3DMixu7Yk/NIznUof/luGF38Yk1k/q86GMXiamEonbFpJVItF7KXCi2xzbsjgtsw84GSM6xGz8UW5LHvezE9lllBeN77HIxFCu8UPNTaHUCSQ2K89CAFwgDbka5ZtA1xP/b2p8bbSE6/EF2tw8gSXDBvKpJfUeh24lw4NqVsdZCRBDKfeM3E08FEYrNxWeXTfrYhp0NkJxjl2ooNv8WgUQodowcu7jHrisXPXYiFFubmmGn59iFonkbohOGXUO8q391kQe3QyamqDmxw8jmg1pF74m1xZSPUfAzEbIs6T0L7W3FrIUo5horNSQd9OKJHEwjsUkf27CzYSAY0XOpxmt3AvmdbD1x8URuVsWGojF9z8n5qYZi44u9omq9+/KR5qO2a5JlSf//XAjHbom3ajmjMb3edUeTz+kVuUz/BC+a6VBlh2KPK2zDzkYPw5Z4nRR6xu9wXpLHi4B4kI5l2CVCsbn1cNzXOUhMUSn2OqlNsSeWz+3QQ3T5WhnbHN8Xtr7Mp/+uIacMuz6AtJsSH00+F0TlKqqq6i+amTDsElWxufVSajM5bMPOhpa4YTd9glYnkLxpeP4tAv2pVsXmWCj2gxat4e7CupKUO9hLkpTIs8vDylhVVY/x2EHCsDscb4NiVaIxhfeb+wE4fWbZlL5L6HkoD/WcqwRCUaKKlgJRnolQrF0Ve1wx+Q3obPKGNrHrxBgVsUo4TOCll1DDYRydEiDTc7iV/mef1Y+R3G6KLr0U2T31h5BZ9I1SFZssuycG4GA4EqP1qWfxxXcds7rswgBYNL1k3OOSZQUoUmQGkGh7/iWq4hFcq8uaKt2BkL4v8DSfA/+6dajhMGWt2vV95P3d9A/v0o+3mtwHugcJRRUKXA5mV068RdzRjLiu+2VAovPNd+jfn8intJrMxxPCW+d2SnicU/e/iKK3UFQhFI3hcY6+baRNfmAbdjaJwokxDLvhrdtovuNrAIRrT4JzvkDPgSO0PP7zEcfNfPxxCs9emt3BZglFUekbDgMSb3e+wonTVgIjZQfwfPSHhJxudnz/fqYPdeu/t7Lsf923H5CIuPYBi8Y87hhZL/k6lNZx8OF/o6KrSf+9lWVNlT98sAGQKSlQUd7brsvtajwbTr+Ww+/uouWR3434jJXk/u/tLwMyVaXRSfWvS9a1dNbfQv1iWp98hpb9r484zkoyH0+I6EGEPv5v3/+xcu7KKX1fsUerflZVrUimutg27PIZOxRrM2GrE9+SM3A1NIAkURjRvHtDriQjUJJwzZiBb8kZWR9rtugPBlFVbYFcvesRoooWlkqWHaA8pLUN6fPGq0stLns4GmF/h7ZIvN7137pco3G0rL6odl3oura4rKkSVaL85wfPARCWOnGffqoud2VQC1v3eJO8mxaTO6pEeXrnmwD41d3j6nQsknVdENVSC4adSfmXFpP5eKMroD1nJccQv9r2q0npOJnk6uf+PNw1yGYktscuw8SiCrEca/TZ2juMrEJtkWeMsctU3LaK1m99m4JYBFmFoMODIiXe+ipuW4WCDDkmu+CpHS8gqzJIYdoCR1jTtJYVc1aQLDuSZth1+Crp8ZTq8ltZ9t9vWQcxN7IUoSu8M0mu0Rgpa2E0jKzCkNOXE7Kmypp9a+nxR5FViEk9rD2wgfPjcpeHBpBV6PWUWPb6XrNvLX6/D1mFkHRgAp2ORdI9HdfzsDO/7ulc5uX9byOrMg45SIu/dZI6Hkl5gYvAcJTeQIhYhW/iD9hYinTsCtuwyzBbNxykyJdaSwmrULJ/iGVBJ/IuP5s7Dox6jCovoveUawkMR1kWdOJUSjnQuByQcJSUEJAWIq0d/bNWR1EV3tn+IcuCJyPJMdzNV/Di09uoWXASsiTrssf8A5waK6E86GSw9hwOeGZYWnZFVXh7yyGWBechOQdxt1w2Qq7RSJZ1nlSFK+gkWnUGBxzVlpY1VRRV4YVd2zirdwnRoBMH5bz49DaqT7ie/lOuJTwUYlnQiUQ5+xuvRAJLya2Pv2chatSJq3/GhDodC6HraZ5algWd+IpP4kCjRD7c07mMoiq0bG5hWXAWslqK66jn0WQ5fUCmPuhk36stqJX9GRyxjREEhlLf6tAOxdro7SyKx2l1IskyvqVLccVDAlHZgYoEqPiWLkWSc/dS2tPXxGC8YAA5Aqj4w3729Gl5ZUJ2UPFGteOCTjdWl31PXxNDIU2nsnOAo+UajWRZnXFdxyQHVpc1Vfb0NTEQ9qOq8YIAOYw/7KfJvw/f0qV4o2EkVUVFsqSO9/Q14Q/5UWNa2oTkGJxQp2Oh39OxxD2tYS2Zjzf29DXpvSMl6djn0WTxuDR9hiK2BzbfsT12Geb0yxspKRm/+tBKBEJRXnltJzjh4ZVz9NYHo6Fe3sDO9Q+yyXs+AHe0vExZbRVzVt2H5MzNSymqRLnnmVUcqqxkOHQqDl8rvvoNSEi0F+zgqeVP4ZSdqJc3sG/dz3i9X2HTtGmUR1r5VOwDy8ou5GoqWE5MieKZthF32TvHyDUaQtZ1Qx421dYyc3gf82M7LCtrqog5aa1vZai5mqg6DU/1Vjzlb9FesIM/3fpHDq37GR9yBt3eUq7r2cL8Qiwjtxh/87R+AoGLgShFM55DlmMT6nQs1MsbeOvml9jknY2jp50bDj2Pq77eMjIfbwgd7y9dTDjWiKtiN96aY59Hk+HRnh42DQ1w5UklLFnWmOGR22Qbv9+f8rH2nZthHE4ZRwbK042isyeEImlNSksn2pbI6WbGbX8Pb8RQZAch2UHt7bfi9OZuO4Q1e9dzZOgwUXU6igSyYwhF1t6WDw8d4vnD67WKNKeb2ttvpezXz6JI0OfxWVr2NXvXc3jwMNFQHaoEUsGR0eUajbisBY+/giLBsNNlaVlTRegaGaKxQhQJVJefmBzl8NAhNrS+yIW330rZmlY6faX0ugupvf0my8gtxh+L1aNIIDn8qM4QMVLQ6Vg43dReegHKXhhyupGVaF7oOlfRdayepV2fzuHU79sJKCl0o0jgD0dzao2y0UhHZ7Z2j3Na+sZvdXI0pR9dgU+Jl+I3zKLk6quzNrZsE1WiPLTtISSkpNBWojGthDSiIq1kxQp9a56+kirLyi7kIlqGGisEYsieNv3vR8s1GiUrVlBYqF0T4ZIKy8qaKsm6BlCjWh6s5NTyVsSc+K5aThVauL2/rtEyciePX4mUASC5e/W/p6LTsahcqlW+Djs9uGbMsIzMxxsjn0dahbIkJ5qhT0XHAKXxHSzsHUbyH9uwO85pjTcnHqvVydFITidFPu2h4/3s3+R0uGZrx1aaA82oqLphhyOx+buKypHAEbZ2bAU02Wd/7EoABqrqLCu7kCsanA6A7GlHkhP7vR4t12hITifV5y3Tjj9poWVlTZURulYThp0cN+zEnGzreY/6BbMBCJ53iWXkHjH+iLaFmOzq0/+eik7HoqhAu5+HnR6qb19lGZmPN0boWNFeqiR57OdRuohdg/qH7HYn+Y59Bx/nCI/d9LLUPHYAxWXFtHUEYOm52RqWISyuXsxPLvoJ4ViY//6rxOs9cPns87jqjPP0Y9wON4urF+v/nrn8UvjgVXrUqe/fmC2EXE+9FWHdEVjaWMffnP/DEcccLddoVJxxGhx4j3DVtCyO1hiSdR0Mwzd2ae+0/3LBP+KJq1LMyV8XlUB7E4H6WeYN+CiSx/+/b0i80gEXzz6Vjy89RT8mFZ2ORqFHK5qI1s+kZOUVGRuzTXok6/iBZyX2D8LnFn2axbM/rR8zWR1DYg9su49d/mM5w+6hhx7ixz/+MW1tbSxevJgHH3yQpUtH73weiUS47777ePzxx2lububEE0/kRz/6EVdeeaV+zMDAAN/97nd56qmn6Ojo4PTTT+fnP/85Z511ln5Me3s73/zmN3n++efp6+vjwgsv5MEHH2T+/PlZl9dshMdueooeO4DCeIHFYDg2wZHWxu1ws3zWcgDWv7kFaOXMupNZOXf2mJ+pKtYM4EAoSjASw+uyXgd3IdcfX3kb6ODKExeNK9NYCD0PhXM/dJOs632dAeAVijxOPr1g+THHVsb3BLbSvprJ43/mtXeAdi6efQor5049CV7XsyqnvJdwrrL1UC9/3dPFtWc2pBylMIpkHf+SV4EBLpl1DufNrcrI94ttxfxB27DLdywViv3DH/7AnXfeyT333MOWLVtYvHgxy5cvp6OjY9Tjv/Od7/DII4/w4IMPsmPHDm655RY++clPsnVrwlX9xS9+kQ0bNrB69Wree+89rrjiCi677DKam5sBbTPwT3ziE+zbt49nnnmGrVu30tjYyGWXXcbg4KAhcpuJvp1YWeoPOVE5O5hHm4YH4rIUe8d/1ynxOnE7tNumKxAa91izeb9Zq6I6ub50Up/3uTWjdSjHDfij6RzQ9FZd7Bn175VF1t4wvWNAu2enlaTuZR+PQrd4Ucuf+3k02vqDfPbf3uSBDR/yd797G0VRJ/6QSYjn0XhdCtJF17PFn9sHuwf5+Qt7eO+I3WtvsljKsHvggQf40pe+xM0338zChQv59a9/jc/n43e/+92ox69evZpvfetbXH311cyZM4evfOUrXH311fz0pz8FYHh4mCeffJL777+fCy+8kHnz5nHvvfcyb948Hn74YQD27NnDpk2bePjhhznrrLM48cQTefjhhxkeHua//uu/DJPdLFr6hMcu9UVChG4CFn9ApMNAMDXDTpIkvYCiK2DNhR80o7PNH0SS4KS6ybXf8eXIQpAunXGDvLpodMOuIl4d3m1Rw30iwzRdhMcuGFGIxvK3x9nqTQf0/nC72wd460CPySMaG/FsLcygYVcUf7ZZ+bkdjirc+Lu3+NcXPuS6Rzbq213apIdlDLtwOMzmzZu57LLL9N/Jssxll13Gxo0bR/1MKBTC6x1pkBQUFPDaa68BEI1GicVi4x4TCmkPyeRjZFnG4/Hox4x1br/fP+In11BVdVIeu8J89Njpht3EuXN6qM6iCz/ABy3a9Ti7qnDSi4Mw4IfzzGPXHTfIhWfuaKri+u2xoMdOUVTdU5w5wy6RTpDr6RXj8eJOLfIjos1vNHWZOJqxUVU15QhCOiQiLdbV8V92d3CwW+tMMByJ8cSmgyaPKDexjGHX1dVFLBajtrZ2xO9ra2tpa2sb9TPLly/ngQceYM+ePSiKwoYNG/jTn/5Ea2srAMXFxZxzzjl8//vfp6WlhVgsxhNPPMHGjRv1YxYsWMDMmTO5++676e3tJRwO86Mf/YgjR47ox4zGfffdR2lpqf4zY8aMDM2EcfiHo3qYLdV2J5CfodiBeN5JKqGPhMfOuobd+81aGGPR9MmFYSHJY5dni33vkGawlY/Rt7Ey/vveoYjlPFj9wxEiMS2EOJZhmi5uh4xT1qydfMinHI2OgSC72gaQJPjG8hMBLOuxC0YUYvEwcUZDsR7re+z+skszvsU9uPb9sddgm7GxjGE3GX7+858zf/58FixYgNvtZtWqVdx8883ISVvhrF69GlVVqa+vx+Px8Itf/ILPfOYz+jEul4s//elPfPjhh1RUVODz+fjLX/7CVVddNeJ7jubuu++mv79f/zl8+HDW5c00zfEwbEWhO60igMQDIn8W/IE03pCFR8fKodgdcY/doumT3wVFeHLybbHvjXviKnyjG0ZlPrfu1em1WGsI8TJRWuDC48xM4Y4kSXnphU9G5GvNryniohOqAdjVNoCqWi/PbiCkXXOSlMhzzQTifh4MRy0pN8CWQ1pvxu9+dCGyBHs7B+nw2+HYdLGMYVdVVYXD4aC9vX3E79vb25k2bfR2C9XV1Tz99NMMDg5y8OBBdu3aRVFREXPmzNGPmTt3Lq+88gqBQIDDhw/z1ltvEYlERhyzZMkStm3bRl9fH62traxbt47u7u4RxxyNx+OhpKRkxE+ukehhl14SdmH8YZMvi4CiJEIfRakYdsXCsLOux+6DFuGxm/x16XNpcxGJqYSj1vJcTQVhrJX5Rg+7O2RJN/q6B62l40zn1wkS93T+vKwloxcSTS9lbnURkgR9QxFLFsiItJAijzOjVcrC+6eq1iyICkZi7O3UChbPnlPBidO0Z5cw9mxSxzKGndvtZsmSJbz44ov67xRF4cUXX+Scc84Z97Ner5f6+nqi0ShPPvkkH//4x485prCwkLq6Onp7e1m/fv2ox5SWllJdXc2ePXt45513Rj0mn2jpFz3s0iv71z12eeLJ0d5gtf8vSSXHrtDaxRMDwQgH4nkqUwnFFiR5C/LJaydCsRXjbKGXKKCwlo4nKvyYLPnusXtfvOjUl+J1OZhR7gNgT3vAzGGNijCuizMYhgUocDmIR9wtqeemjgAxRaXM52JaiZczZpYBsOVQn6njykUs1cfuzjvv5KabbuLMM89k6dKl/OxnP2NwcJCbb74ZgBtvvJH6+nruu+8+AN58802am5s57bTTaG5u5t5770VRFO666y79O9evX4+qqpx44ok0NTXxjW98gwULFujfCfDHP/6R6upqZs6cyXvvvcc//MM/8IlPfIIrrsjvZp2tk6iIhfxbBIS3zuWQ8KSwH5/wlnQNWMubI9jZqu2mUFfqHdd4mQi3U8btkAnHFIbCMcp8mRqhueg5dmOEYkHLX9vTYb2WJ1nz2OVJb8qxODo1YV5NEYd6htjbGeCcuZVmDu0YRCg2kxWxkAi5DwSjDISi1GT026fOzlZNRydNK0GSJL1N0662ATOHlZNYyrC7/vrr6ezs5J//+Z9pa2vjtNNOY926dXpBxaFDh0bkvQWDQb7zne+wb98+ioqKuPrqq1m9ejVlZWX6Mf39/dx9990cOXKEiooKrrnmGn7wgx/gciU8M62trdx55520t7dTV1fHjTfeyHe/+13D5DaLyVTEQsKlP5QnYZuBNEMfVXoDW2sadokw7OS9dQKfx0F4SMkvj93g+KFYsG7ls/DYVWXcY5df6RXJBCMxPZ94fk0RADPKtWeeaPdkJfRQbAYrYgVFccPOinoW1bBzawoBOKFW09WedtuwSxdLGXYAq1atYtWqVaP+7eWXXx7x74suuogdO3aM+33XXXcd11133bjHfPWrX+WrX/1qWuPMB8RDLe0cuxyorkqHgTRanUCiGtGqodgPMlA4ISh0O+kbiuRV7lUqoVgRbrday5OugfFbtUyWgnjxlOjzlk8Ig6HE69R1LtJPmq1o2GWhObHAys/uw72ankSYfH6ttp9za3+Q/uGIviWazcRYJsfOxniO9GoPtfq0PXaJ6qp8IJ1WJ5DwlvQOhS3XDgMya9iJPLt80XUoGtMTx8vGC8UWWrPyuX94YqN0MhS4xfZx+WfY7e/S8uhmVxXqHvl6K3vsstDDTmDlXnaHezTDriFu2JV4XbrTwfbapYdt2B2nhKOKXhU7szK95Kl8y7FLddcJQbnPjSxp1WVW8+iEojH9IbhokluJJSOqJfMl7N4Xr4h1yBIl4+i7osiau0+I8Zdl2Hvhi3vsgnnosdvfpRkMs6sK9d/pHrte6xp22fDYFekeO2u18YGEo2FGRcLRILx2ezutV+RiZWzD7jilpW8YRQWvS067wk7sOWhFd/5kSPcN2SFLusfEah6dvR2DRBWV0gJX2kUxoyGaFA/lyYIvDPFyn2vcfMoqi4Zi+4a1Bbl0nPzAyVDgzs+ehZDw2M1KMuxElKLNH7Sc1z3R7iTzocfEdpDWup+DkRgd8cIgEYoFaKzQ/v9Q3Jtnkxq2YXecIm6UmRW+tHslibe+fNlbUoRiU82xg+Qmxdby6Ozp0Lx1J9QWZaQHlt6kOE+MeJFfN14YFpLanVjNsNM9dpkOxQrDzloLfiY4MIrHrrrIg8shoaiacWcl0umpmS5WjbYIb12h2zGiqKkxHk0SeZI2qWEbdscpyYZduiSX4edDe4RAmqFYsK5h19SheSfm1RRn5PvybVsxURE71q4TgkoLhmJVVaVP3w7NDsWmysEereltY2XCsJNlidoSzaPd7reOjiHxPCrM4K4TAtEbT5zDKhwRhRNHORpmxNenw7bHLi1sw+44RdwoMyZh2In+ZmC9N7/J4A+mn9NSpS/81vLoiIaroq3DVMlfj934hlFFvHjCH4wSsYhXejAcIxrfQ9T22KVGJKboIb7pZSNTE0QvwE6L9aMUOvAdR1WxHXHjetpR6SPC8XDQNuzSwjbsjlOm4rGD/Op7lW67E0j0ObOax06EYufXZsawK3Dll8euL4VWJ6AVJ4gu/b0WCceKsbudMl5XZh/d+WrYtfuDqCq4HTJVhSNziUVucafF7mGRz+pLY//uVLFqKLZjQAuHH53vLdanvqEI/cPWK/iwKrZhd5wyVcPOl0cFFKJCLJ2clioLLgrhqKJvJTY/Q6FYYcAP50lSfY/enHh8w06WJX1nip4hqxh2iYrYTO4hConN5vMtFNvSpxkM00q9yPLIObOqx07ca74shGL1dicWu5+FV7WmZKRhV+hx6tEROxybOrZhdxyiqiqHujPjsRvOgzd84bEbr/3F0VgxFHuwe5CYolLscVJbkpmdCfItx07PUUuhqlR49XosomPhsZgojDwZRIPifPPYiZZOozVht6phJ3RQkAXDLhGKtZaehQ5qio/V00y7MjZtbMPuOKR/OMJA3NPWUD41j10+LPiT6RtlxeIJ0etpTk1mKmIh4TXIlzYYPXrxwcQ5alarjM1WRSzkb4Ni4bGbPkoTdqsaduJlWTxjM4m4n63mgdc9dqPsgSx0Z8Vm0lbFNuyOQ0S4rrrYM+m3Qj2p3mIPiMkwmRw7Kxp24o22cZJe2NHIt9yr3rhxVD5BKBaSPHZWMeyGUyv8mAz5GooVHrujCyfAwjl2umGXeY+dVe9nPcduFMNOeFvF3uY2E2Mbdsche+MtMeZWF05w5NiIpHqrPSAmQ6KPXRoeu+JEKFZV1ayMK12mmjc5Gok3/NzXMyQXT6QeirWaxy4be2YmQrG5/6KWTGI/7LE9dl0W89iJ/LdshGJFQYaV7mdVVfWq2NFCsUJ3wki3mZjM+3ptLI8I2c1LsyWGEg4TeOkl1HAYd6cEyPRseZf+tm36MZLbTdGllyK7Mx8uyhYDeruT8R+kyfK7FAAHUUXl8J/+TGl8rTVT/sM92oOvoTy9vX+PJllOpQfAQaCzm/5nn9WPyUU9Q8L7NpZxlCx7YbN2jbe9v5v+4V36MWbJLl5A0skFHY9kWWPDAA6GBoN5oWeBCMUKr0+yzN4ggIOO/iH6nnkWkb1gtszC6CrIUOXziPs5AOAg4A9YRs8DoSihqNZSqLr42PMLb6vQpc3E2IbdcYgw7OZWp2fYDW/dRvMdXwNAOe3TMGsZ7WvW0/LhiyOOm/n44xSevTQzg80y4aiiP1TeaHuJ6ytWjnlssvwARVd/j4Dbx877fsrMQIf+e7Pk39neAUgcCb4LzJz09yTLOVg1D86/hYGWdlqe+MmI43JJz6D1NBNG/DudLzOv5lhdJ8suzzkPTv0krVveo+WR1SOOM0P29zv2AhItw/uBRVP+vmRZ+72lcOV3GY7EaLnrn0Ycl2t6TuZgTz8gsWfgLT7CyhEyh2UnfOz/EVEl9nznHooiCcPBLJnDUUXvVfjXlhe5vmzs51GqJMs8UFQNl32TocAwLXf984jjzJJZeOuQh3nh8FpWzh0ps+2xSx87FHscsrdT68SermHnW3IGroYGkCQKotrNOOxMyomQJFwzZuBbckbGxppt+oYTD/NHdzxMVBk7FJUsP0BZSDOQ+7zx1iImyh+ORuj0awbq2iOrx5VjIpLl9MY0D1fIkfQmnYN6BugOiIVB4bGdo+s6WfbSkHaf9LuTUhZMkj2qRNnevhuAzZ2vTUm/gtH0HJWdRKX4spCjehYMBEMMhrR79U/7f0tUiY6Q2a1EKYxo10Svx/x7GGAglAgLP/rBr7Om56DTOvdza792n8nOAX617VfHyFwX99h1DIQs0yzc6tgeuwwTiyrEota9+CIxhUOdg8gqzK7wpTlWmYrbVtH6rW/jjUaQVQg6PShSIoRZcdsqFGSw8Bwk8+fdLyKrMkghWgdaWNO0lhVzVoxxdEJ+JCgPBWgpqqHXXaLPgVny//d765AUBxIxOoNNE8gxEQk53UoUWYWww53TegZ4ZtdLmq4dw+PoOiF7SXgIWYUBd5Hpsq/Zt5bhENp4Ip1T1K8gIatLiSHHU0WHnQUURrUXnlzUs+AP25/X9C2HaBs8qM/ZiHs4GGDYWUCfp5j6wR7AXJn/b/cL2piJ0hpozrie3TFNz4rkJCy7cKqajGbK/ELTW8iqjMMRoMXfeozM5R4XHlkiElNp7RmifpKdHHKddNZq27DLMFs3HKTIl5nmsNmgZyjMmUMOXA6ZljfaaU2zK4YqL6L3lGupcFayLOikzDefA43LAQlHSQkBaSHS2gPZGHrGUVSFzds/ZFnwZCQ5hrv5Cl58ehs1C05ClkZ3Zgv5Y/4BFimlFAedDNWezQH3dNPkV1SFje82sSy4EMkRwd1y2YRyTISQMzAcZVnQiVMpzlk9gzZH297dy7LgSUgO17i6FrITUlkWdOKVa0yVXVEVXti1jbP756NEnLi6T5qyfgXJ1/M5ww5USeJQ4xUURMM5qWeBoips3raPZcEFSI4Q7paEvqUkmZdECpgZdNJTdyEHijtNlVlRFd56bxfLgqeCBJ4UnkepIvQcHgiwLKgt+/tmXYVbiZkuc8s7bSwLzkRWS3CNIfOlipf+YITN6w7SNkrrmuOBwNBAysfaodjjDLE9Unmhi8m0OpNkGd/SpTjj7vKoLDwZKr6lS5Hk3Lmk9vQ1MRiOhz6kKKDiD/vZ09c05meE/KBSIMIaDjdmyr+nr4nBeMNRSQ6SihwTIeR0KNr3xnS5ck/PIHQd35JIjjDeHAnZPXoY2oWKhFmy7+lrYiDsR1Xj7+FSdMr6FSRfz05V03VUcpCrehZo+tY8HJJj5D2RLLMnpl0TIZPvYTHmQFgLDUtSjEzcxwL9flYV5HgVf1R2YgWZg5G4nuQwY8ksdgUSObI242N77DLM6Zc3UlJSYvYwxuSdV/axaXeUlSdVs+SqWZP6DvXyBt67aT2bvPOJ9HfyuUPP46qvZ86q+5CcuXFJRZUo9zyzikNVpQyHFiN72yms34CERHvBDp5a/hROeXRZ1Msb2LfuZ2zqi7JpWh2l0VY+HfvAFPmFHAfKZxOKnISzZB8F01OTYyLUyxt47/lfscl7HgBfP/ISRXW1OaVnSMzRwYrpBMMLcRQdwjeBrtXLG9i9/he67Kta/0plTbnhsouxt9a3MhA8BTVSgK/2dZy+I1PWr0Bcz+/LZ9LrLeGznZuYX+zIOT0L9Hui9ERCkRNwle7BWzdS3464zM8MFbOpqpwThvcyP9ZkmsxizIdr3AwFlyC5eyhK8XmUKkLP7zrPYdBVwN91vMGsUo/pMu8rWUpEacBd9QGeypdHlfk/B/rY9O4AF84tZMmFswwfqxXw+/0pH5t7d63FcThlHE7rvuXu7R5EkWBubfHkx+l0U7v8UpQPYdjpQlai1N5+K05v7rREWLN3PUeGDhOjCkUCyRlEkTWPxeGhQzx/eP0x1Vk6Tje1t99K2cNPo0jQ6yk0TX4hRzR2CooEqqs/dTkmwulm5q1fRNmk/TMiyTmnZ0iaI2UOigSyc3DiOXK6aVh1CwWvDjPoKmDA5WGhCbKLsSODonpQJVBcQ8Tk6NT1K4hfz64X+lAkCMmOnNSzIHFPnKXdE+7eUfVde/utlPz+rygS+N0+ar9onsyJ59EJ2jUqhzN3Hwviena/NMiAu4CQZK6edZljF2t6cgbGlLmuwociQVsgZOn1NZukI/fxOUPHMZNtdXI0lcvOArTiCdeMGZRcffWUx2YUUSXKQ9seQkJCjWkVV1oIU0NCGrU6K5mSFSv03Sf6iitNkX+EHFHNSyw7E291qcgxERUfXYEr/vnYjMac0jMcrWst6VpyJPacHG+OSlasoCymXReDDXMMlz157ACqIq5VLX0gE/oVlKxYQYEUD9FNa8g5PQuS50yJlAEgu/r0vyfPWcmKFZQXxEN85dWmyTziGlU0I0sLSx475qlSsmIFXkkLfUanm6fn0e/LQf3vR8s8Pd6HsNneViwlbMPuOEJV1Uk3Jz6awgLNqBl2uKm+fVVOhWy2dmylOdCMioqqaHKIxRJAReVI4AhbO7aO+R2S08nsT1wFwEDlNFPkHyFH3LCTkgy7VOSYCMnp1Hcl8N34dzmlZzhqjmJa25LkBWS8OZKcTqqqyrTjPv4pw2UfeZ06IJ5jJ15CMqFfgeR0UlxTBYDnYx+zpJ53tPg52D047jEj5ixSCoDk6tf/njxnktNJ/UXnAjA89yTTZE4eM3HDjiTDLtN6LqooA8DzCeOvacHo92Xihetome1edulhvbvXJmt0BkIMBKPIEjRWTq1kXGw1Fa2po2Tl8kwMzzAWVy/mJxf9hHAszDNvSrzQCefPOJNPnbNEP8btcLO4evG439N41WXw/sv0KObcRslyfK9ZohP4+zNuYF7dDfoxqcgxEb7CAvz+II7zL5ziiI0neY4eWS/xfj98asFyzluQuGbHm6PqGbWws4PhhVObw8mQPPaBYfiW1saOH1xwDyLXPRP6FRTVVkGgGxZbr2/dI6/s5b61u3A5JB6/eSnnzqsa9TgxZ6FomG80SYSAr5/9eWrLEsckz1n9eUth72b8RWWjfZ0hJOv51R3wx1Y4ufoEvnj+D/VjMqnn4uoKONgLZ5yZke+bDMky371fIgDccdYXmV6ROCZZZtHLrjWN3Sf6hsJISJRmYW9lq2MbdscRezu0t90ZFT68rqntQygMuyFVQppMea2JuB1uls/SFvaN298DDnFq7QmsnHtCWt8jQrHDkRiDoSiFHmNvJyGHqqp8M7geiPHJBZcyq2ryewCPhtizcjiSe73MknX9mPQG0MvFjWdy5dy6lD4v9ovtNWG/2OSxa56qlynyOPn4/Oy8SPksqmd/MMLPXtgDQCSm8r3/28Haf7hg1OeOmLP+4QihyPMA/M0pV4+572pFoXYP9w6Ztx9wsp5bjuwFdjG3vIGVc0/Lyvn0+zlsnp6FzDFF5R9CawD45ILLR90rFmB63GPXPRgmGIlNuH793/YW7vjvbTgdEo/dvJRlcyozK4DFsUOxxxFNGcqvA3QjZjgcQ42Xz+cigXj5fPEk9t8s9CTClF0B8zYSD4SiDMX3l6wp8UxwdPoIGYcj1tk4fDKIxbvMl3qyuFj4u00w7JJJ7GecvZeHAnfinrYSr+zuZDgSo7LQjdcls6ttgPea+8f9jAjZlftcYxp1kGy4RzI34Ckg7uPxxjxV9JdyC9zP/uEI8R3UKB/nvizzufDG985t6x/fazcUjvKtP71HVFEJRhS+9+cdGRtvrmAbdscRezsyk18HiQdPVFEJ5/A2L4HQ5A07gKr4ptVdAfMW/vb4XovFXic+d+YX/sQbvvkLwVToG9IW7/EWkKOpjC/8PSYbduI6LZrkdZoKYtN5qxnwrzd1AXDNkgY+clItAM+91zruZ1riSfYiN2ssKuLXQiAUJRQ1X24x99n0/vt0A978nnA98ZetYq8Tl2Nsc0SSJKbHGxO3TJBn98y2FvzBKKUFLmQJdrT6aYqvfccLtmF3HJGoiJ16qM6X5ArP5QV/IKgt9sXeyeVhVMY9OmZ67DoGtDfYmuLMe+sgOURn/kIwWRRFpS++iJSnkXNTYRXDzgCPnVjwhyyw4CfzQYtWEHT6jDKuWKgZdq/t6Rr3My3xXKzpZaOH9gTFXicOWQvpWsFrJ+a+YIqpMuMhXtSGLPDcFikO4j4bDxGOnSjP7v+2twDwlYvncl48F/Pl3R1TGWbOYRt2xxH7OrUcu0yEYp0OGXe8r86gBR4Qk2WqIS6RZ2emYSeMjsqi7Bh2Ip/FzJycqeIPJkI+aYVii6xh2A2ExAtINkOx1tNzJKawu03bSmnR9FLOiedK7Wj164b6aIhQ7EQeO1mWdA+u2TqGhLHly2Yo1mUdD7yY81S86HXxlict47Q8GQ7HeHt/LwCXL6zVc+vePTJ+6D7fsA2744ShcFTvAZQJww6gULz5haz1hp8OUw1xVcdDsd0mhmL1t940DJZ0EN4Dq3ly0qE3HoYt8jj1F5JUsEwo1ogcO5f1PLN7OwOEYwrFHicN5QXUlHiZW12IqsKb+3vG/Jzw6tRN4LEDqCjUPLhmFlAIho0w7DzCM2u+YSfmPBWPXZ0eih3bY7dpfzfhmEJ9WQFzqgo5tUFrefPekb6pDzaHsA274wThrasodFOewk2UConQjfkPiMkiPHYlk82xs4THLp47liG9Ho1YZIIWy71Kh0ThRHohd+FJ6B4Mm1okNBB/Aclu7pV1QnQC8dyaV1uEHA+ZLp2t9cTYdrhvzM+JPKzpE3jsAEt67AqykCsrsJKe9WdXCi+loknxeL3sNu7tBuCC+VVIksQp9Zphd6B7SE+7OR6wDbvjBL0xcYa8dZB4QAzmqCdHVdWEx84z2Rw7UTxhnmGXeOvNTr8mbx5UxSby69IzfivjodhwVDE15UB4cgqz6MmxYpHM4R6tae3MikTfzVMbygB4b5zwWmvcqyPCd+OhV8ZawGMnvOJZ9di5reOBT+fZJYonxsuxE8b+ksZyQEu7qIrfwwe6hsb6WN5hG3bHCaIidm5N5nqc+TzWbI+QKsGIQiyeeDXZUGxVsfDYmbcopJOnMhmslGw9WURifLoeO5/bqbdZ6DFRx4OheIjOkFCsdfR8uFdbjGeUJww74YXZfqRvVC+qqqq6YSeMgfEQnm4z0ykERrQ7SaRWmK9n/dmVSvFEPKw+VlVsTFF5P94GZ/GMMv33jZXamrd/gl1L8gnbsDtO2JvBwgmBSMLN1eIJ4ZqXpMl7QqwQik0nT2UyCD3nQyh2MnMkKp97TPToiLw3XxarJb0W1PPhHm0RbyhPGGgnTivG7ZTxB6Mc7D7WC9M9GCYcVZAkqC1JwWMXfyEarxjDKPQcuyzq2WehfoXp5AeLQpiBYHTUsGpTR4ChcIxCt2PEOjcrbtgd6LINO5s8Y28GmxMLCj25XTwxEEokpE929wxh2HX6za+KzVaOXV547CYZioXklifm6VivljTAYxe00M4TR4THLikU63LILKzT9kbePkqjYhGqqyrypFQoI7y4PUPm52AlqmINyLGzQJGMeFlK5dlV6HHqudCtoxRQvBsvkDi5vlRvYQMwu0q7dmzDziaviCkq+7qy4LHL8eIJfdeJKSyW0+I5PAOhqJ6vZzRZr4q1YO5Vuoiq2HRDsZAw7MwM1emh2CyG6DwWa1CsqipHejWPXXIoFtCrHbePUkChF06kEIYFc7eNOxq9j50BuZRWeG6n08cOEjodreXJ9rhhd1pSGBYSodhDPXaOnU0e0dw7TDiq4HbK1Jen9rBLBSsl4U6GAX07sckXHRR5nHpvsYm2uskWPVkOxVox9ypdJls8AdZoUqyHYg3IvbJKKLYzECIUVZClY9uWiDy70bYWa44bg/UptDqBhLfICsUT4h4zonjCCi9q6eYH6wUUo3nsDmvXgiiuSXxGVNOa83w2A9uwOw5o6tQafM6pKhzhop4qOe+xizd9neo2TdPieTxmGHbD4ZgeOstaKNZCDU0ny2SLJ8Aahl3CY5e9EJ3VcuzE/VRd7DlmuymxeH/Q4kdRRhZQHNIraVMrFBNGhdkeu2hMIRLTZMnqzhMW0XMkpuCPv1yn+lIqqpxbj/LYhaIxdrVpO5QIb65gWjw3r90fPOZayVdsw+44YG9H5sOwYK1+SJMhUxuri3Bsm994w05469wOOWutMPRQrEUW/MkwleIJPRRrpsfOgMa1Vsux64jnrdYUH+t5m1tdiNclEwhFj6l2PDRKi5TxECkMvSbn2AWjiXnPZijWaxE9i72bJQlKC1J74RIeu+ajWp7sbhsgElMp97lGFNqAttWiLGn7mneZmCdrJLZhdxygF07UZNiw8+RLKHZqhp14i2ybYHPqbNCrF064Jl0AMhF54bGbQijWCrtPiER3IxZ8qxjwHQPCsDt2qzynQ2bRdLGrwMhw7MG4oddYmZphVxbvoTYciZnqxUo+tyeN3VHSJVnPZjbd1puGF7hSjiSJIppDPSONeRGSP7m+9JjnoMshUx2/hsxKlzEa27A7DkhUxGauhx3kfrsTUewwVcNOuPrNyOEQb71lBdkJw0JSewSLLPjpoqpqRoonTDXsQqJBcfarYmOKSiRmvteuUxh2JaPvgTxanp2iqByO59il6rEr9jhxxg0LM/PsxIuTxyln7SUNRr4chKLm6Xky/Tdni550R1W4iv514po4mjoTn9FmYBt2xwH74x2351Rl2mMXz7HL0XYngVCGQrEm5tj54/2cSgqyuTm8taol02U4EiMcX8Am5bErsoBhZ0AoVlTFgvn5VwAdA/Ecu6IJDLskj137QJBwVMEpSyntOgEgSRJlFthWLBTNfnNiAK/TGnruS6PViWBWvHVJVyA8opfdexMadqPn5uUrtmGX5wyGonrz3JkphiZSpTDHiyfEg2EqVbGQ9NAwwbATMpRMUYbx8FqoU/1kEIu12ylPyjAyey9RRVF1ozqbi77mKdL+3wpGvAjFVo/RZFgkyb/f0q/vICO2jaovL8DpSH15E1ta9ZmYZydy3rzO7Bp2ToeMy6Ep2kw9p7NPrKDY6zpmi7BQNMbuNq1A8OQxDDuRB91qQh60GdiGXZ4jtuQpLXClnKCaKnbxhIaZxRP+4cyEk8dDhGLD0cQWbLmE2O6tqtA9qRCX2HkiEIrqXhUjSV58sxmKlSRJNypCFiig6Bwnxw5gTnURPreDoXCM/V1auklTh7bAp7snthU8dkLPXlf2l2WvBfJmJ7vH9ayjtgj7sC0wZuGEQLx8t9uhWJt84FB8y51UE4nTIdf72Omh2AwVT/QMhg0PbSRCsdnz2CW3XrBCiC5duuMe66oxDISJKClI5GCZsfCLFydJyv6i77VQk2Jh2FWPoTeHLLFoenwHing4dne7ZtidMK04rXNZYVuxoG7YZddjl3wOMytjJ7tjzqwqzbDbF88d33a4Fxi9cEKQ2PrR/F6FRmAbdnmOKP2fkWIicTrkeh874bErmaJhV1rg0qvYOgzeWixTlb3jkWxM5KKuRSpC5ST7/EmSZOpG8fpuBC5HVpPqxTnAfANeVdUJPXYAp9SXAUmGXTwktyBNw65cL5CxQCjWAMPOCk3HJ7tjjtDtjhatb92b+3sAWDqrYszPWGFPbyOxDbs853CaPZ3SIdHuJPcWe0hsKVbkmZq3S5ISidotBrc88Q9nP8dOkiTLLPiTQQ/FjpGEnwqVJu5OYMT+oQIrhOgA+ocjhOOVuePp7cxZ5QC81tSFoqjsiht2J9SmadjFq6XNrIoNGhqKlUec0wzS2Sc2GVEg8X5zP6qqJgy72bZhJ7ANuzwn3Wad6WCHYhPojTN7DTbshNcxi6FYsNb+kumie+ymYNiZ2fLEiIpYgR6iM7ENBiQKJ0oLXON6sM6bV4VDlmjqCPCX3R0MBKMUuh3MT7NnZ4UFthUbNjAUa4UXtcl67BbVlyJJ0NIfZOO+bjoHQrgdMouP2iM2marixP2bi3nC6ZL9V0AbU8m0YaeEwwReegk1HCYaBXAQial0Pf0s4kVTcrspuvRSZHf2eqtlApGfVjTJBTN5LmoHJECmadNW+pu36Mdkey50GaZYAHI0ybIBeKMyINH54l8QUa5c0bOeY1eU3jiT56CoT9Nv86Yt9B/arB9jxByIFydZjqCqakbDsUfr2RXQ9Nz9+kb6d2nHmKHnroHUdFZa4OL0GWW8c7CXf37mAwDOaCxPqSI2WXZPh6bfjgPN9D97WD/GSNmDcQPem4XmxMfo2R/X88a36N+jGTpG6znRxy69l9Iij5MTaorZ3T7Ad556H4Dz51eNaxBX+NxIEiiqdt6x8jbzBduwy2Mm06xzIoa3bqP5jq8BEJVk+Pj9AOz77r0URxLeqpmPP07h2Uszcs5soKoqgWAEkNjU8TLzalem/R3Jc1F8wkdg4VU0vbaZlq1/GHFcNufiSH83ILGzbzMrmZ6x702WDcBx6TegpJbmh39DZdde/fdW1zPArs4WQOLQ0AfAnJQ/lzwHnlM/CXPO49D6l2jZuW7EcdmeA+GxOzTYxP/tC7FybvrX6lgcrWfp3C9DzQm0/cd/03Jkq/57o/X8wv6NgAyOwITHfvKMet452EtzvEfZRxbUpHSOZNmV2pPgnC/Qtf8ILY/9fMRxRsm+pf09QKY71Jbx7z5az5zzRahdQNt//w8th97Rf22knjsDQ4DEtp7XWTIrvWv6IyfVsLt9gH3xRsUfPbVu3OOdDpkKn5vuwTBdgVDeG3Z2KDaP6R4ME44qyFKiJcdU8S05A1dDA0gSTlXBGdO8CUFn/C1PknDNmIFvyRkZOV+28AdDqGiej9U7f0NUST+cnDwXtUNankdbYVKeR5bnIqpE6QhoOUVrDjw5KRnGIlk2AG9Me7sOOnJLz1ElysHebgBebn42rTlKnoPSkGZg9LuTdm8xaA4CIW3uJTnMr7b9Kqt6dse/O+SIe1FM0HNUifJc0ysAdAT3TSjvNWc06G0uKgvdfOL0+pTOkyx7cVgzEPo9xusXNJlfO/ImAHv6d2RUx3Csnj3x+zkkm6PnwXCYYEQbyx/2/Hva8l535gzcca/sjIoCVkxg2EEiz04U5eQztscuw8SiCjGT81MELT1DyCrUFnuQVTI0LpmK21bR+q1vgwSF0RADspNhZwGKpC1+FbetQkEGi8zDaDyzawOyKgMxWgOHWdO0lhVzVqT5LYm5qB3uQ1ahs6AcRUqEBLI5F2v2rUWJuJBV6B6erAxjMVLP3lgEWYWgw6PLlwt6XrNvLdGQF1mFntChNOcoMQel4WFkFfyeYsP0K3jryLvIqoyDCC3+1qzquSCq6Tlkop7X7FtLfyCKrEJY7Z5QXpck8ccvLWPd+21cdEI1xW5nis+6hOwlkSCyCoNOn+H6BU3mwHAIWYXhSH+GdQzH3s/a/IacXlP0/KcP1uvP37bBg2nLO6OsgEdvOpONe7v59BkNOJEm1Hl1oYs9KnT2By2zRqdDOmO2DbsMs3XDQYp86VVkZYu9nQGWBZ1MczvZvPZAxr5XlRfRe8q1xPwDLA15GFSctNdfTDQ4gKOkhIC0ECmD58s0iqrw5nu7WBY8FSQVT8sVvPj0NmoWnIQspefEFnPBUIhlQSeSXM2+xiuRIatzoagKL+zcxrKhswAJd8c5k5ZhLJL1fCIVFAedhKvP5IC7Pmf0/MLObZw9GJ+jzrPSniMxB0Wqj2VBJ9XeRg40LgckQ+ZAURV63mljWXAmslqDq3ny1+pYJOt5hquOZUEnjrJTONBYYrieFVXhhV3bOKvnZGJBJw7/9JTlXQR0vd1JF50pn0/IPjw4zLKgEyhi76yrcKiqYbInZD5Bk7l/ZsZ1DCP1XO+azrKgE1fpIg40+gzVs6IqbHxvN8uCpyDJCu6Wyyclrwu4EDcdb3XQkcLxJ3SrKEEnHW92sLnNvLY2kyUwNJDysXYoNo/JZNVnMpIs41u6FFBxKlr+T1R2Aiq+pUuRZGtfVnv6mgiENXe8JMcAFX/Yz56+prS/S8yFNxrGoSqoSAy5vGR7Lvb0NeEPaTkq2kAik5ZhLEbVs+Qgl/TsDwXR5kgFKZz2HIk50ENXIhRt0Bzs6WsiGNHuY0ma2rU6FqPpOSabo+c9fU0MhP2oihYilLJwXScjZHfFokiqVkQQdrgwUnYhM6o4l5IVmUfVswn3856+JgZDccNKipCNa3o0cn2npHSwPXYZ5vTLGykpKTF7GAC8/PxuNh2IMn9hKUuumpXR71Yvb2Dfup+xV51Pk3cGV/RsZb4rwJxV9yE5rXtZRZUo9zyzisNVPoaCpyN7Oims34CERHvBDp5a/hROOb3xi7k4GF3EkeIaPtr/HvM9oazNhZChedowgcHzQYpQ3LB+SjKMhZDtqVAZm6orOSnwIfNj+3JGz0eqZAYHz0Vy9lPU8Pyk5ki9vIHgy6vZ5D2NEinKqkPP46qvz/ocCBn2l59CWJmJq2IP3pqpXatjIfT84qCTTdPqmD68n/mxDwzVs5C3tb6VQaWemFSFt2Yz7tJtGZc3GSH7TulM+rzF/E3X28wvdhgie7LMQ62lRJmGp+oDPBWvZ0VmIeurAdhUV0916KChehbyHqqsZDh0Kg5fC74pPn9TZXOhwqaOLqbVuTK+HhqB3+9P+VjrPplzFIdTxpGFcvXJ0DYQQpFgWrkv82Nyuqm9/Va8zx5AkSDocFJ7+604vdZufbFm73qODB0myskoEkiOIIqsvcEdHjrE84fXp191GJ+LmqebOFRSQ0dBGbW3XZO1uRAyxNS6zMkwFnHZ3P/5NooEoRzTcyS2CEUC2dU/+Tlyupl30/Uom6HfU4CqxAyZg4SeT0eRQHWEsq5nz2N/MU3PQl5kiCkFmszOAWJyNPPyJhOXvXB9Nz0FxQw4PdTe/mVDZE+WWVEdKBIocjh7Mov7+XcvoEgQlh2G6ll//ir12n3pHMzeNX0UVSUeFAk6h8KWWaPTIZ0x5550NikjNqWvy1BF7NGUrFiBL968LlI9jZKrr87KeTJFVIny0LaHkJBAic+JnKiQkpAmXXVYsmIF0yQtXNc5rTFrc5Esg6rES/YdiY2tpyLDWJSsWIGvQHvwR8orc0rPalTrUi+7+vW/T2aOZnzsKgBUSWZ49vysz8GoepYSzXOzpeeCQq0tUrSkzFA9j7g3ATWqVadKTq0PZzbkTaZkxQrKJC08OFg30xDZj5FZjYefZW0c2ZK5ZMUKfEWaniMG6nnENR2L69cxqP892zoWTaj7hnIvvy5dbMMuj2nr1xb82pLsGHaS00np3FkAOC75iKVDcwBbO7bSHGhGRUWNaXMiJRlFKipHAkfY2rF1rK8YE8npZN6ZiwDoPeWsrM1Fsgwo2oNKSjJOpyLDWEhOJ+VLTtf+/7QzckrPSkQz7KQkw24yc+TyuCl1ajlY8k1fyPocjNSzWPAThl229Fxx3jLtHwsWGqrnEfLCMQt/NuRNRnI6qZqp9YFULr/KENmPllnombiBmS2ZJaeTqgvP084xf4Fheh75/NUMS8kxpP892zouN3H3GKOx9hPaZtKoqkprf3Y9dgCls2dC9xHUExZk7RyZYnH1Yn5y0U8Ix8I8t1liXQcsq1/M9eefqh/jdrhZXL14Ut8///wz4T+30low9p6FUyVZhi174dHDMKesnn84/4f6MVORYSzKTz4JmncTq5+Z0e/NBslz9NhLEpt7YMX8c/nIqefqx0xmjirLi+jvHCR81rkTHzxFkmV4eJ3EjgH49IKVLDshEabKip5PXwwH3ydWM3FfsEySLG84Cl/fqfkc7jn/H4k7i7MibzI18xrh7cMMzzXmWZYsM8BPuyUODMHnFl3P4lnXA9mTuWzJ6bB/O7Gq1Jo5Z4JkeR9/SeKdXlgx7yIuPfUi/Zhs6lhsXWbmtnFGYRt2eYo/GNX3HsxUc+LREBuT50KlkdvhZvms5QBs/uAD4ACn1s5jZYYe5LOrtP0pD3QPTnDk5EmWYbjnMLCdGaU1rJyb3W7xYq/YYRP3lhyNPe0DdAZCnD27Eoccb7KbNEe/3/AG0Mtlc5fw0blT25mjstDNvs5Beg0I5STLsNqxEejh3PozWTE3uwaX2JbJaD0ny9vSNwy8hFOWuHbBRzO6hdp4lBu88CfLDPArx18BPxfMWMZFc6uzem4z7udkef/n5TeBLs6feTor5zYYcn7hsRsKxwhGYobsyWsWtmGXp4ju2sVeZ1Yv4EKP9t2DIWst+BPRP6wtzqUF6e1TOB6zqrTwQu9QhL6hMGVpbm6dLoPxPUQLM7xP7GiITcOHLWTA//ndFr7631tRVbhiYS2//twSZHmkEdAc31IvE15rkaPTbXAoZyje7sTnMWBz+PiCH4qY18BV30O00G2YUQdQUag9C8zKwQrFjawCAwwOr1M7R9CkFzVhPJcXZu75OxElXidOWSKqqPQOhakrLTDs3EZj59jlKWLj8+qi7O6JJzx2VlrwU8GfBcPO53YyLZ7PuL8re147wWC8T2Gh2wDDzmIeu3BU4V/+/AHx1mM8v6Od/3jz4IhjhsMxWuLpCMKbOhWEYdcTMNiwCxu44MeLoczUs1j0K7L8YnQ04kXMrBwsYWQJHWQTcT8HTTLgewe152+5gTqWJOm4ybOzDbs8RXgVKouye+OIpo/Ce5QrCI9dSQYNO4DZVVrStyGGXXzBN8STY1KIbixe2NlOVyBMTbGH76w4CYBfvNQ0wgMhdFBa4KLcN3U964bdoLF7TQYNNezM9eRAssfOOG8OJAzJPpNysIZ1w844PZt1P+vGe6GxxrueZzeY35WxtmGXpwiPXbZvnMJc9dgFM++xA5hdbZxhNyR2FjEiFOu2Vij2ld3atlEfWzydG8+ZRX1ZAZ0DIf74zmH9GKGDOdWFGQnpVRRq3m+jQ7HB+B6RQgfZRDfsoiZ67AbNWfR1b45Jhp3wnuW7ZzYYiele6HLDdaw9783SsVHYhl2e0hUQHrvshmILct1j582sYTcn7rHbZ4BhF4jnNfoMCMX6LBaK3bS/G4Bz51Xidsp86YLZAPz2tf3EFC0+u7td21txbvXUw7CgFU+A8WEcYUyLvKhsksilNDHHbsj4MJ12vniOnQneHFVVdWPaY0Qo1kTPrPDWOWWJYgNeSpMRLwu9dijWJhfpjoeLqrLtsfNYy5OTKv5hzRDNtMduVmXcY9dpgMdOL54wMHRjAT13+IMc7B5CluCsWVprmevOmkGZz8XB7iHWf9AGwLbDfQAsbijNyHkrTDDskhd8rzv7j2uh55CZOXYmeezE+QZCUcJRYw3bUFTR80WNCMUmcuxMMOzihnOZz9jiGEi8LNg5dgbz0EMPMWvWLLxeL2effTZvvfXWmMdGIhG+973vMXfuXLxeL4sXL2bdunUjjhkYGOCOO+6gsbGRgoICzj33XN5+++0RxwQCAVatWkVDQwMFBQUsXLiQX//611mRzyi6jfLYubQ3rkELLPipEo4quucpm6FYVTyps4SYc0OKJyxk2AlP3KyqQorjHlef28mNyxoBeOTVfURjCtsO9QJwakNZRs5bFb+XugLG5diFYwYv+BbIpRRhMqM9diVeF6Koum/Y2IU/uQrZCM+sOEckphKNGWvEJvLrjM2h1M55fPSys5Rh94c//IE777yTe+65hy1btrB48WKWL19OR0fHqMd/5zvf4ZFHHuHBBx9kx44d3HLLLXzyk59k69ZE5+ovfvGLbNiwgdWrV/Pee+9xxRVXcNlll9Hc3Kwfc+edd7Ju3TqeeOIJdu7cyR133MGqVat49tlnsy5ztjCqeEJ4i0S+Vy4g8usAiryZNYpmlPtwyBLDkRjt/uwaAHpVrAEeO7362QKh2A/bAwDMrxkZYr3x3Fl4nDLvHu7jwZea8AejVBS6WTS9JCPnrS0Rhl2YiEGLYTApJGpk7lVUUQ2T8WjM8tjJsqRXxhqdXC+8sg5ZwuXIvhcrOV8zaLB3Ui+OMdhwTz6n7bEzkAceeIAvfelL3HzzzbrXzOfz8bvf/W7U41evXs23vvUtrr76aubMmcNXvvIVrr76an76058CMDw8zJNPPsn999/PhRdeyLx587j33nuZN28eDz/8sP49b7zxBjfddBMXX3wxs2bN4stf/jKLFy8e11todUTxRGWhMe1OcsljJ/Lrir1OvaltpnA7ZWaUa/2Rsl1AIQw7I3LshFFh5oIvaOrQPHYn1BaP+H1VkYdrlmjNTn/+4h4Ali+qxenIzGOu3OfWF13RJzLbjFzwjQvFgnmVscl97IymLJ5nZ7RHR2914pQNCU96kjaUN9oLb1ZFbPI5bcPOIMLhMJs3b+ayyy7TfyfLMpdddhkbN24c9TOhUAivd2Tj0YKCAl577TUAotEosVhs3GMAzj33XJ599lmam5tRVZW//OUvfPjhh1xxxRWZEs9whMeuyiiPXQ4VT2SrcEIwSy+gCGTl+wWissyQBsVJb/hm7zKyJ+6xm1dzbFHEbZfM04scijxObrlobsbOK8sSNcXas6TdH5zg6MyQKJww5lGdvOCb1uPMpD52yec0OrneyFYnoPV0E95Zow14Mw13u4+dwXR1dRGLxaitrR3x+9raWtra2kb9zPLly3nggQfYs2cPiqKwYcMG/vSnP9Ha2gpAcXEx55xzDt///vdpaWkhFovxxBNPsHHjRv0YgAcffJCFCxfS0NCA2+3myiuv5KGHHuLCCy8cc7yhUAi/3z/ixypEYorePT3bOXbCWxSJqYYnHE+WbDQnTmZOvBnuviwXUBgZinU5JN27aWaPM0hUHI9m2NWXFfDn28/n+x9fxDOrzqMxXsySKWri4dhsh9kFwmNnRKsTMHfBB61YRG9ea0IOlt6k2HCPnfbsNHKbK7MqY/v0qmcTcuyOk/1iLWPYTYaf//znzJ8/nwULFuB2u1m1ahU333wzspwQa/Xq1aiqSn19PR6Ph1/84hd85jOfGXHMgw8+yKZNm3j22WfZvHkzP/3pT7ntttt44YUXxjz3fffdR2lpqf4zY8aMrMqaDuJtU5agLEvGi6AwacEZzJE8u2xsJ5bMnHgBxb7O7Hrs9C3FDAjFSpKkLwRmeuyGwlH9bbuh3DfqMdPLCvjbc2ZlrM1JMjXFmmHXOWCsx85jQEK9wMxWGEPhGOF4qN+cUJ0524oZueuEwKxCGVNz7OL67R2MZL24zUwsY9hVVVXhcDhob28f8fv29namTZs26meqq6t5+umnGRwc5ODBg+zatYuioiLmzJmjHzN37lxeeeUVAoEAhw8f5q233iISiejHDA8P861vfYsHHniAlStXcuqpp7Jq1Squv/56fvKTn4w53rvvvpv+/n795/Dhw2MeazTdSTfO0XtnZhqnQ9YfRoEcMez8QW2cJQXZMYh0wy6LOXYxRdXf8o0IxYI1mhSLvV+Lvc6sGebjUVsiQrEGeewixjUnFpi5K4FY9D1O2ZBikaMxK1QXNDgUm3wuo0PuVsixC8eUnMoLTxfLGHZut5slS5bw4osv6r9TFIUXX3yRc845Z9zPer1e6uvriUajPPnkk3z84x8/5pjCwkLq6uro7e1l/fr1+jGRSIRIJDLCgwfgcDhQlLEveI/HQ0lJyYgfqyDeNssMcnWLnQ9ypUlxtkOxwlN0uGeIUJY6+CfPtc+gRd8KrTCO9GmGXX2ZORt4Jww7Yzx2ZnpyzMixS170je5xBgkvkmnFEyYYdqZ57Eww7ApcDj2PNJ+bFBvb9nkC7rzzTm666SbOPPNMli5dys9+9jMGBwe5+eabAbjxxhupr6/nvvvuA+DNN9+kubmZ0047jebmZu69914UReGuu+7Sv3P9+vWoqsqJJ55IU1MT3/jGN1iwYIH+nSUlJVx00UV84xvfoKCggMbGRl555RV+//vf88ADDxg/CRkg26HGoyn0OOkKhHMmFCv2gszW/NQUeyjyOAmEohzqHmL+UdWbmWAovuuEU5ZGJLxnEyv0shMeu4Zycww7EYptN6oqNmLcPrECj4mhWDPDdGBe8UQix844A17fVszg+1k4HswojpEkicpCNy39QXoGw8yoGD2dI9exlGF3/fXX09nZyT//8z/T1tbGaaedxrp16/SCikOHDo3wrAWDQb7zne+wb98+ioqKuPrqq1m9ejVlZWX6Mf39/dx9990cOXKEiooKrrnmGn7wgx/gciUW9f/+7//m7rvv5m/+5m/o6emhsbGRH/zgB9xyyy2GyZ5J+oeza7gcjd7yJJQbru2eeHJ2RZZawUiSxJzqQrYf6Wdv52BWDDvhsfO5HYZ5NgossK1Ys0U8dh1GeeyixntyCkzcR9TMMB0ktzsxJ8fOSANe3M/ZiiqMhdnGe7kw7PK4gMJShh3AqlWrWLVq1ah/e/nll0f8+6KLLmLHjh3jft91113HddddN+4x06ZN49FHH01rnFbGaI9dUbwqM1c8dj3x7day2fl8TpVm2GWr5UmiIta4W9gKoVjhsas3yWNndChW7NlqTu6VGR47URFrksfOpJ0JxFx7TKiKNdJjNxyO6c8PM6qe4fjYL9YyOXY2mcOMUCzkTvGE2GQ8Wx47gDnxPLu9HdkpoBDeUSMNO59ePGGenhMeO3NCKGL3id6hiCGeDjNyr0zdIF7sOmFCKwwgaecJo/vYxQ14A6ufPSa8qAmD2eWQ9Nxsozkedp+wDbs8xCzDLlc8dokti7LosavObpPiIb3ViYGeHAtUxbb1a56y6WXeCY7MDqUFLtzxnMYOAypjh/UQnZG5V+YVT4jwWJlZOXZxb44/GDV0D1U9FOvO7yKZ3qR9gM0ojoHjY79Y27DLQ/qHtUW/1KCHY1GObSvWa0COR3KT4mz0SwoYuJ2YQO9jZ1IoVlVVfSuv6uLsNt4eC0mSdK+dEeHYkAkeO4+ZOXYG7XE9FqUFLoS90TdsXJ6dnktpQr9CQz12en6zOfqFZI+dsXmURmIbdnmI0R47XzzHLhdCseGowkB8nNl8uMyuKkSSNF1kw+Vv5HZiAhGKDZpkwPuDUb15bVWWd1QZj+mlWn6fCAtnE6O3mgJzQ7FmJ9Y7ZEl/bhoZjhX3lLG5lMbvMJLwyJoTaodEpEbkWucjtmGXh/RnuZ3H0YhciaEcMOyE+90hS1nbKxa0ijNhAGSjUbGR24kJzC6e6ApoD+Jij9PQBfBoROHGkd7sG3ZmbDVlZoNis6tiIdGGw8gcLDPanZhhwHfH7+Fsb3U5HuV68UT+euwsVxVrM3WM8Ngp4TCBl15CDYdxNEuATG/Tfvqf3acfI7ndFF16KbLbvIf00YgHS5nPlZVdOZLnZSYyzUi8v+F1TqhNhGMzMS+DoUS7k2ySLI90SNNz34d76Y816ccYpWcRhjUjTJc8D1Ud2jzs37aT/oFEVX425mE4ounZm+VehcnyyXE9+3c30R/Zox9jhJ6FMZXtrRCPJln+4pAMSBx55XUWvJ84JpvyG1UkkywnR+J63mvcc1u8nFVawXDP4xw727DLQ4ww7Ia3bqP5jq8BEJl1Dpx2Dd3vvk/Lv/1+xHEzH3+cwrOXZm0c6bKm6VVAxuXMjhs+eV6qT/k4zL2AD9a9wrIPnhtx3FTn5b3ODwGJtqFDwKlTGPH4jNDzvIvh5I/S8/YWWh757xHHGaHn5/e+AcjIzuxt1TYWyfPga1wKp1/Hge0f0vLIb0ccl+l52Nd7BJDY698JzMvY9x5NsnyhEz4CC6+iZ9PbtPz6jyOOy6aeVVWNh8ckNne9yqL6lVk5z2iM0O/Zfwd1J7P/D0/TcmDjiOOyJf/+/mZAYk/fB8CciQ6fNMlyBudeAKd8nN4t79Lym/8YcVy25Nza2gRIdIf3Aydn/PtToaLIbndik2OoqqrvhZpNw8635AxcDQ0gSfiimpE05Exyr0sSrhkz8C05I2tjSJeoEuXJXRsA8MeaiSqZDx0nz0tDoBOAI0XViQMyMC9RJcrm1u0AbO9+JytyCJLl8cS0B2HIkXRdGaTnqBLluT2vAtAZ3pdVmUcjeR5qhnoBaC8oTxyQhXmIKlE+7NkPwOutLxumZ69Jeu4dCqKomhf9Pz58xFAdJ8tfFhwAoM9TlDggi/JHlSh7ew4B8GrLS8bdz1FNz2GD9BxVomxv067nzV2vGH4PCyqSto1TlMwXtlkB22OXYWJRhVjU+DYBgoFgBDWmIgNFLkcWxyJTcdsqWr/1bTyxCLIKQacHRUqEEipuW4WCDCbORzJr9q2lb0BBViFKJ2ua1rJizooMnyUxL/WD3cgqtBTWZHRe1uxby1BQm/PBSE+W5BAk6zmGrELIYbye1+xbS/+gpruwki3djUdiHqqH/cgqdBWUE5MciIB+pudhzb61hMKazP5Ql2F6dse0c0YcbkP1/NTOF5BVGaQQbYEjBus4IX95KICsQq+3xBD51+xbSziizXl/MNvXdtL9rGj3c1g2Rs9r9q0lGHRo13Ok2YR7WKPY7URWARV6AyHTWuukSzpruW3YZZitGw5S5Mv8FlKp4g9GWBZ04pAlPnjxMNnsFKTKi+g95VqkqItlQSdl8jQONC4HJBwlJQSkhUhrD2RxBKmjqAov7NrGmT2LiQWdOOQaXnx6GzULTkKWMuu4FvPiHgqzLOhEdtaxr/FKZJjyvAg5zuqbjRJy4uydnzU5BEIel+pjWdBJrbveUD3rMncvIhZ04vRPz7rMoyHmITwwyLKgE3Dy4ZyP4olFMz4PQuaz/SegRJy4uk42TM9eqYhlQSd17gbD9KyoCpu372FZcBGSI4q7+QrDdSzkr5FLWRZ0UlR0YtblF3pe6l+AGnXi6jrVMD071AKWBZ3UuOoMk/Ns/ymoMSeu7uxfz+NxUdRNKKrw9toDpuxZOxkCQwMpH2uHYvOM5Cq6bLd/lGQZ39KluOIu9Ygs3vpUfEuXIsnWubz29DUxEPajKlq4WJJD+MN+9vQ1TfDJ9BHz4osGcSoxFEki4PaRiXkRcqCK74hlTQ6BkMepaAneUf1BbIyeE7qLP4DlcNZlHg0xDw41RkE8/WDQWUA25kGXWY3fU5JxenYIPRt4P+/pa2IwFK9SlMKAariOhfwi5SDoEAt+9uTX72exFJug55iUfT0ffQ9LJt3DAr0Jd470Xk0X22OXYU6/vJGSkhLTzr9xXxeb3t3HnGo3S66alfXzqZc3EH75cTZ5l1Ash7nj0PO46uuZs+o+JKc1Lq+oEuWeZ1bRWt/KYLSRmFSJt+ZN3CUf0F6wg6eWP4VTzuxY1csb2LfuZ7RETmBfaQOXDexiidM/pXkZIYfSQGywHG/NVtwl27Mmh0C9vIH21/+XTd5TmBke4BaD9JwscyA6G0Uuj+tuZ9ZlHg2h1+bIXD4sauSSgZ3Md/RldB5GyBxaiBIuoKBmE67Cg4bo+eDGp9nkXcS8YB9fMkDPQt6DldMIhk/GUXgEX/0GJCTDdaxe3kDXa//DJu8i6qJBvpxF+ZP1PBA8BTXixVf7Bk7fEQPv51OZkeX7WcjZUtfFwMDFQJSi+nXIjrAp9zDADw+0sP3IMDctrmDJwlpDzz1Z/H5/ysdaY+XNIxxOGUeWWxOMx1BEQZGgqMBtzDicbmbe+BmULTDo8iArUWpvvxWn1zru7TV713Nk6DDIEI2VoEqAu5eYHOXw0CGeP7yelXMzXIHndFN7+63U//E9msoaaC6spPbLn5vSvCTLEVOdKBIocii7cgicbqZd8zGU92HY6TZMzyNkjhXFdddvjMyjEddrzR/fZ1dFIx0FpdT+/WczOg8j9exClUB1Gqfn2o+vQNkBQYfLED0LeWPKLBQJZOcgiqx5UgzXsdPN/Bs+gbINuguKsyp/sp4VND0rBupZ3M9BZ3b1LORU1DIUCZAiKM4hVMkE/capKPagSNAXipi6XqdDOuPMDYlsUkbs/lDsNc5mr73qCgCishN15ixKrr7asHNPRFSJ8tC2h5CQUFUJNap5UyWnlq8gIfGrbb/KSoVWyYoVzJS1kF3LtKnNS7IcACSFNCC7cgiqLr4QgKDTjWvGjKzr+WiZ1aiWuyo5tf13jZB5NEpWrKDOoYUN22sbMzoPx+hZjVcsStr5DNHzBecCWrVktvU84v6M+QCQHEP6383Q8ayVywGtGCzaODsr8h9zbSuaniUD9VwZv5/DDmfW9DxCv1GtylhyDOrbtpl1D+f7tmK2YZdn6DsSGLiHaKEv0eak8O+/YpkQLMDWjq00B5pRUTXDQHUBMSRXPwAqKkcCR9jasTXj55acThZddBYAbbMXTWlekuUAUMWCHzfssimHoLBA03PI4aL69lVZ1/MI3SluUOPGbNywM0Lm0ZCcThacp7WD6Jh/akbn4Rg9iwVf1hYgI2QuiHttjNDzCB3HCgFt4ReYoeMinwevrM2//IVbsiL/0XrWDXgD9eyL6znocGdNzyOfv3H9xu9fMO8eFtuK9eZpk2LrrMA2GUHsg1pkoMfO6ZDxumSCEQX5ko8Ydt5UWFy9mJ9c9BPCsTB7WuEXTVBdIvPPF/x/+jFuh5vF1Yuzcv5Fyy+EPa9zSJ3aFjrJcgB895BEXxhuP+PvmVGlHZNNOQC8bu09MOT0UPzRq7J2HkGyzF1++Jfd4Haq3Hfhvfox2ZZ5LE667Dz4zSaOyL6Mfm+yzKoK/7BLQgXuXvaPlMZPlXU9xxPLw0WllKzMrp6T5f235yW298EnTryMCxZeph9jtI4lSaKq1MeR3mGCS8/PyjmS5VYU+Ied2r317WXfpFjbsc4wPUfcXkpWZscrmyznxt3wn0dgQXU9Xzn/h/oxZtzDYlux7oBt2NnkAMJjV2Tg5vDifMFImEGLVRm5HW6Wz9JCK3/oOQS8x8JpNayca8xuGDMqtNW4OxAmGIlNesugZDkAvqM8D0S4YvYlzKspGvuDGUTsLakC4ZiKN8v+/mSZNx/sBd6gptjHyrmXZvfEKTCnSvM+tPQNE4rG8DgzsxVUssyhaAxVXQfAynlXGrb3s9BzSNGMnGySLO9qaSPQw0WNZ7Jibl1WzzsRVUUejvQO05mlhT9Z7qFwFFgPwCdOuAqfQdEWsS9tVIWoouJyZF7XyXIePtwE7GZhzQxWzjX+ZSyZ5CbF+Ygdis0zAkFzDLvC+PmEYWlFDnRruTuNlZn1soxHaYFLXyjb/cGMfe9w3IDO9l6xyRQkGaXDBhvwYo/JKhM3D0+muthDoduBosLhnqGJPzAJROsiGDn32UacK6qoRGLGNRcXe3eWFxq7T+xoVBdr15m47rJJsp69GXpBSIXkl0yxV202Ed4xM/Z6PhrhsevJ023FbMMuzwiEtBu00GDDTrxlivNbkX2dWm5HY2WhYeeUJIm6Ui8ALX2ZMeyiMYVwfME1csF3OmTcDu2RMWzAQpCM1Qw7SZL062h/V7YMO22OZYmseFPGwuNKLAtG6lns3Vlh4gbxAnGdGWHYiTl2O2Rk2UA9O2W9iCHZuMwW3eIeLjT/Hq4stD12NjlEIN7k08gcO4Aij2ZgDJnssYvGFPZ3DY7qafigResDtLDO2D6DdWWaYdfmH87I9wWTtpYpMNBjB4nwzZDRHrsB7QFcXWz+oi+YHQ/HHuganODIySEMuwKXI+sh0WRGLvjG6FlRVH2RtcJOANVxr1LngBEeO22Okw1qI5AkCU+8hYYhHrtB22NnFGmt/rNnz57UA+aOO+7gq1/9atqfs0kfvd2JSaHYgImGXe9gmM/9+5t80OJndlUhj/7dWcyKL759Q2GO9GqG1cLpBht2pVo2dKY8dlpODkgS+oPZKHxuJ/5g1LAFX2A1jx3ArCotpL+/O1uGXWIXGSORJIkCl4OhcIxg2JhQrD8YQezHboW9O6sMDcUmDHijKXA5CEYUQ+5nYSRbwSMrXh4GglEiMQWXI798XGmt/o899tikTjJr1qxJfc4mfcwKxRZZwLD76Ybdulduf9cgn3/sbZ5ZdR7FXhdbD/UBWn6dUUnoAhGKbe3PkMcunAjDGunJgYSH0HCPnQUNu9lVWtFKtjx2IkRntGEnzjkUjhkWihWekyKPE7cFGsZW66HY7Ht0zDLgE+eMGKJnYdjVlnizfq6JKClwIUugqJpDoMYCY8okaa3+F110UbbGYZMhAsF4KNZgw67YqxlLA0FzDLvhcIwnNzcD8PMbTuNHa3exr2uQf3ryPX752dN55cNOAM6dW2X42ITHrjVDHrthk9/wk8dgFNY07DSP3b7O7IZivQaH6CChZ6M8s70WKpyAhMfOyFCsuXrOrmc2HFX0UKwVDDuHLFHmc9MzGKZnKP8MO/NfjWwyymDcY2e0YVdSoJ3PP2xOJ++Xd3cwHIkxo6KAjy2ezkN/cwYuh8Rz77Xym1f38ed3WwC4dEGN4WMTOXat/Zk17Mx4wxceO+OrYrVFocoC+TmCeTXaThht/iD9WbjuzfXYGVskI3YAsEJ+HUBtsXbPdgwEUVU1q+cyMxTrMciA74y/mLkcEuU+axjvYhz5mGeXtmHX3d3NP/7jP3Lrrbeyfft2/fdHjhwhEAiM80kbIwiY0KAYoCTusfMHzTHsNu3rBuAjC2qRJInTZ5bzT1edBMB9a3fRPRhmeqmXS06sNnxs00pE8URmc+yMLpyAZI+dsZ7ZrrjnpNJCHrvSAhfT42H2Pe0DGf/+kIkLvtdoj92g8NhZw7CrKdGus2BEyYrRnozwlnny2IAXrZ5qir2Gp4+Mhcj1683DbcXSNuy++MUv8pvf/IZNmzZxwQUX8Oabb3LaaafR2NhIZWUlX/va17IxTpsUUBSVwfiiX+gx9iFREs9b8w+bE4rdEs+hW9JYrv/u8+fN4tolDYD2APt/15yK04QkWdETq3coTDQDfcHEYmtkDztBwmNnXH+zYCSm76hSbSHDDuCEaZrXbncWDDtTPbMGG3YiTGcVj53X5dAX/kx52sfieNBzR9ywqy2xzv0r9NuThy1P0l7lXn31VZ588km2bNnCT37yEz75yU9SVlbGU089xX333cdjjz3G6tWrszFWmwkYisQQUYNij7Hu7pK4h9AMj10wEmNnq1Y0cfrMMv33kiTx42sX8/I/XszGf/oIF55gvLcOtA2nZQlUNTNuf2FUmbkQGJljJxZ9t0PWQ/5W4cRazbD7sC3zhp2ZSfW6AW+UYSdyKIuts/DrnvYsG3Z6jp0JRSNGeWbb/dYpnBDohl0ebiuW9lOyt7eXU045BYCbbrqJW265haeeeoqzzz4bgPLycn71q1/xt3/7t5kdqc2EiF0fHLJkeCKumaHYPe0BoopKRaGb+rKCY/4uWp6YhUOWqCj00BUI0RkITTlR1xLFE2HjPLOJMKzbMmEcwQm1WfTYhc1LqhdbpBnRuBaSi2Os4bEDrZp9R6s/6x47PcfOxNSKbOs5EYq1juFensfbik3qiSHL2sfcbjc+n4/q6oQn5KKLLmLPnj2ZGZ1NWoiK1EK38W0whCfFjKrYvfEdJeZVF1lu4ReIBSsT7ROEUWVqKNZAj50VK2IFJ4pQbNtAxpPsg1ETDXiDi2T05rUW2JVAMK1UeOwy06ZoLELxhuNGbicmEE2Rsx6Kjb+cWan6tCKPmxRPyrD7z//8T7Zt20Y0euwiXlhYSG9v75QHZpM+enNir/FVR7rHzoSqWGHYza0pMvzcqaLvPZmB9gmmeuxMyLGzojdHMK+mCEmC3qFIxnuemRqKNbgqtjPJK2sVRP/JTBU9jYWZnlmvQakV7XqOnXUMu3z22KUdir3gggu45557CAQCuN1uwuEw99xzD+effz5nnHEGVVXG9wmz0RChWKMLJyCpeCIYRVVVQz1numFXbW7IdTwyufeknmNngsfOZ0JVbKLViXW8OQKvy8GsykL2dw2yu21AN+AzgZkhOrHghwwunrCSjqeJ/pNG5diZWjyR3Re1Dj3Hzjr6zWePXdqG3SuvvALAnj172Lx5M1u2bGHLli3cfffd9PX16WFaG+MRYVCje9hBwmMXU1SGwjFDd77Y26E1iLWyxy4Ris0Xj51xoVjhzbFSYn0yJ9YWs79rkF1tfs6fn7kXWzOT6o0sklEUVV9crWTY6R67bBt2UfP7FWa9eGLAeh67RLsT27DTmT9/PvPnz+eGG27Qf7dv3z42b97M1q1bMzI4m/RIeOyMN+y8LhmnLBFVVPzBiGFjiCkq++NbOs2tsq5hV5nBLYrMzLETi4+RW4pZOccO4KS6EtZ90MbO1swWUOghOhP1bIRh1zccIRbfKNYK+4gKphll2Jkacs9+VexwOEbfkJaiY0XDrnswbHiUKdtkdPWdM2cOc+bM4dprr83k19qkSCLHznjDTpIkSgpc9AyG8Q9HqSs15rzdgRDhmIIswfQy6zw0jiajoVgTQzc+U4snrLPoJ7OgTiugEC13MkXQxKR6r0EhOki0OiktcFlin1iBaHcyEIoyEIxkLXc5cT/nZ7uT5r4hAIo9TsP36R4P0Qw7FFUMjzJlm7QkmT179qSs2jvuuIOvfvWraX/OJj2EYVfoNucCLfE66RkMM2BgyxOR/1JT7DWl+XCqiKTw7kx47OKLrZntToxqXAuJObOqx25hXQkATR0BIjEFV4auw0RSfX4XT3Ra1HAv9Dgp9joZCEZp6w9mzbAzc4cRjwGe2SO9WlVxffmxrajMpNDtwO2UCUcVegbDx69h99hjj03qJLNmzZrU52zSI2BiKBaSCyiMNOy0h0adhb11kKjAysT2RMMmbikmwoJ2KDZBfVkBRR4ngVCUfZ2DeguUqRIS7U7cJuTYxfUcNEDPwnC30nZxghnlPna0+jncO8T82szo9WisEYrNnme2uS9u2I3SY9RMJEmiushDc98wnYEQMyp8Zg8pY6RlAVx00UXZGodNBhBv+GZUxUJyyxPjKiaFx04kOluVsrjRm4nSevF2bUaOnc/gnSciMYXeeH6O1Tw6AlmWWDCtmHcO9rKz1Z8xw0732JkZio0aYdhZ02MH0FipGXYHu4eydg5zQ7HZ98wKj12DxTx2oBVkNfcN6wVa+YJ1Y1c2aSOKJ3wmhWJLM2i8pIpIbJ5WYr2HRjLCYzcUjumemMliaojOQE8OJFoROGRJn0MrclI8HLuzLXN5dnq1pJnFEwbo2crtbGbGvTiHerJn2Im0Bo+JHrtstrVptmgoFhJ7T2ci99lK2IZdHjFkoicHoLwwbtgZWD6eKx67Yq8TOZ6e2j80tXCsFXLshgxuXFtR6EaWrVu1liigyFxlrJkeu0S7EwOKJwbjzYkttOuEYGZl3LDLoscuaGKOnRFFMolQrPVCnaLvZL557PInW9BGXwiMNOyUcJjASy+hhsMUHpEAmdYPPqQ/uFs/RnK7Kbr0UmR35j0uLfEcu2kWNOyS5wagxCHTF5U49NzzeOK9lCczNyLHzqjQTbIc0SCAg+FgmP5nn9WPyZaOxU4dVgzTQWJuZnaHAQc79neMmBeY/Nwkcq+M13PMD+BgqLc/63pOeOysoePkeajsA3Cw/2B71uZB6NljUEXwiPs5rufBPn9W5FNVlf3dmhfbmh47TT7bsLOxLENh40Oxw1u30XzH1wCQZ58Hiz9J65b3aHlk9YjjZj7+OIVnL834+fd19QAS+wY3A9Mz/v1TIXluAAo/chd9xTXs++UjFHbv03+f7tz0Dg8CEu90vMHS2SszOeRRSZajz10IV/8LIUXi8F3/hIPE/qjZ0PEL+98EZFQ5s61EMoWYm0KHG+mj/x9dEZkd3/k+ZeHAiOMmMzf+0BAg8Vb7a5w+01g9D5TWwyVfY7Cnn5a7/r8Rx2Vaz3u62gCJ/YHtQGPGvneyJM+D21cBV3yLI4EoR+76FnIWrvf+oJl6ng6X3MlQn5+Wu74/4rhMyPf0nv+jJwAgWzLHTt/q0Q7F2liVIRM8dr4lZ+BqaABJoiSsNQru9yQ1CpYkXDNm4FtyRsbPHY5G6BnU3nb/fOD3RBXjijZSIXluAErCWjjH746HJCYxN1ElykBIewj9757/NETmZDm8sUSYPeSMv81nScdRJcr6vRsBaA3utpx+ITE3BUqEusFuAPaX1iUOmOTcRJUogyEtZP8/Hz5huJ49Me3cIWdSi48s6DmqRGnu14z2DUf+ZAkdJ89D9XAfshIj7HDR640XxWRwHqJKlKGw0PN/mKjnJM9chuSLKlF+8dZ/AjKSHKa0wHrmhsjrtD12NuMSiyrEosZtkJ7McCiKrILHIRk4BpmK21bR+q1vUxIeQlZhwFWIIiWMy4rbVqEgQ4bH9D/vr0NWHIBCR3Ava5rWsmLOioyeY2ok5gYJSiLDyCoE3EX6/KQ7N2v2rYWYE1mFzqEWg2ROyOFSFByKgirJDDkL8Ma0hSgbOl6zby3+QRVZhaDSaUH9QvLczOlvo62wmn2lDSzuSnhkJzM3z+1dCzEHMtAxaIKeVQVZhajkyuq9/NzetcRCPmQVekIHLKLjxDzIwLShXtoKq2gpqqY8pL28ZmoetPtZ6LnZhPs5hqxCJAt6XrNvLR092v0rOztZu3edBXQ7kkqfS7v2BkKmrdupks74bMMuw2zdcJAiX3b6HU3E3A6F6qCTnre72Lw7MPEHMoQqL6L3lGtRQyrLgk68cg0HGpcDEo6SEgLSQqS1BzJ6TkVVeGP7HpYFFyHJIdwtl/Hi09uoWXASsmSdN0MxNzH/APOlShxBJ5HKMzggVaY9N4qq8MLObSwb1sIjnrbzDJM5WY7zh2UispPmGZfhjwxnRceKqvDCrm0s7V5ALOTE2d9gSf1CYm5OUUpQgk6C1WdxIFrAZK9/RVV4cee7LAueBYCn7QLD9Tw4GGRZ0Ak42d94JRJkXM+KqvDCjvdYNrwEAE/H2ZbRcfL1fk7IRavDSVv9pRQWtWRsHrT72Vw9D2VJz+L+XdJ3PtGgE1n1Wka3yfQNR1gWdOJqj7E5w2tUpgkMpV6YZZ0Ztpky4Zhm0Weq832qSLKMb+lSPUwXcrhQkQAV39KlSHLmx7Onr0lvyIwcBFT8YT97+poyfq6pIOYGVNwi7OFwM5m52dPXFM+70lClmGEyJ8vhVLSQf0R2kC0d7+lrYiDsR1XjISI5bEn9QmJuykLag7fXI17sJjc3mp4H9X+boWeHmvAOxCSZbOh5T18T/mA8tC9HwEA5JyL5ei8NaS/JWopJ5ubBEnpWEtXtmdSzfv/GtLQTyTFoGd0mI9KWIjFFXz/zAdtjl2FOv7yRkpISU879xqbdhB0K/+8jDdSXG1tarl7ewO71v2CT9zwAbm99lYqaCuasug/JmdnLLKpEueeZVRwsbyQYXoSz+AAF9RuQkGgv2MFTy5/CKVvn0lYvb2Dfup/xZn+ETXX1lEZauC72QVpzI2RurhsgMHg+oFBUvx5ZMk5mIceHnEyzt4aP92xmvjeScR0LWVvrWwmET0SRSyiofQNX0V5L6he0ueGl3/Ej78k43S6+dPhFfNOnpT03up6nBUzV8551P2eT90IAbm95hcqa8ozqWch5uNLH0PBZyJ52Ci12D4vrfXdHL5vq6gk7Brk+zft2LKxyPzet+xmbvNrGA7e1vkp1ddmU5Uu+fwcPNRIjinfaJtwl2y2j22Ru2dzEUDjG/7eslsaqQrOHMyZ+f+oFZNaZ3TzB4ZRxmLCRdUxRCcYUkKDI5zZ+DE43DatuwfvqMEOuAvwuLyfdfitOb+ZbGKzZu54jQ4eJxhahSKC6elFk7c3z8NAhnj+8npVzs19dljJON7W330rxr59FkcDv9lKb5twImRUqUCRAiqA6YsQwUOa4HN41rSgSBGUntbd/KeM6FrIiQyxWjCqB6u4nJketqV8Ap5tTv/w5vH/Vrv+WwnLOm8T1r+tZMlfP02//CvJrUaIOJxFZSvt6nQj9HlbOQJFAcvmtdw/Hr/eZP/o1igQHimsyNg+J+7k8rueoKXquu/1WHK9FiDhcRCQ5I/Il37/RcBWqBHg6LHv/VhR7CPQM0ROMMMeEtTtV0lnTrSuFTVqIVidgXoPikhUrqIpqfeX6Z86j5OqrM36OqBLloW0PISGhREoBkF39+t8lJH617VeWqK5LpmTFCkqKtXL/oaKytOYmWWZV0aoUJTlRnWqkzCUrVlDg1Kp8w7XTM67jEbKqciKU49TCnFbVL0DpR1cwJ9gDwKHZJ6c9N6PrOdHM2mg9e1TN0IrVz8yonkfcw1EtuiE5E94IK+m4ZMUK5hVrz9MuXxlcevmUv3PkNW6+nr1xPSv1M6as5xGyxQpQY1paguzuBKylW0E+Nim2Dbs8QbQ6kSXjGl0ejeR0Mn1aGQDBqz+Z8RAswNaOrTQHmlFRUaOl8fMmDDsVlSOBI2zt2Jrxc08Fyemk7uorAAjXzUhrbpJlRs85SywERsosOZ2UzdT6BTovvzLjOh6p30K0R1QMyaHlFlpVv6DNzaJ5WquT1vOuSHtuRuo53mZEMk/PvgLtWvP9zecyqueROtYMOznJsLOSjiWnk9m3fonKYe0Z09QdnPJ3jtCzYr6evQWaYeP77N9MWc/JssWC0+Ln6EVyaEaTlXQryMdtxexQbJ6Q6GHnRJLM23ppxryZbNp8hL45C7Ly/YurF/OTi35COBbm3iMS3cBXltzAnGk36Me4HW4WVy/OyvmnQu2F58GuTQx608vjSJb5wxZ48ADUFpbz7fN/qB9jpMxlM+uhtxVlwaKMf3eyrIe74P4mKCmQ+cEFP9CPsap+ARafeyp/eOp99hfWpP/ZJNn3tMIvDkB1YRnfNUnPvuJC6BnCcc75Gf3eZDn/bYPE9l74+IKLuXDhxfoxVtJxycc+xgn7X2JjW5AP2wdY0lg+pe9Llr+pFX5+AKoLSy2g5/Om/F3Jsr38Pjx5CBZNL+PvTZItFaqK82/3CduwyxMSu06YE4YV1JVp4ca2/qm/2Y6G2+Fm+azlKIrK14fWAQrXLPwIDQYXi0yGkgLt7Vyv5k0RITPAi+F24B1qispYOTezC26qFHq0x8ZgFjaIT5b1L9EO4G0aykpZOfeCjJ8rG8yu0ppzT2bT+GTZX47LXl1onuzZ2kc0Wc5/X/c60Mdlc85i+dxpGT1PppAkiVNPmM7Gtn2819zPZ6b4fcnyvxrrBN6i0meengvia0Yoqk5w5MQky/bXre8CR7hk3nxWzj1xyt+dLWqLte0o2/zZWbPMwA7F5glm7DoxGnXxPVtbs2TYCXqGwoRjCpIENcXW2yd2NIq9mkHkD04+v2TYxA3DBYVuYdhlN09GvEGLHJhcYEaF9mLT3DdMTJn8QpnYJ9Y8PXvdwrDLvAEv6IgvprUl1r6HF88oA2D7kb6Mfm/ifjZvKfbEr7HhDOt5Z6uWF3tSnTldIlJFOCOyvWYZiW3Y5QnCsCswcJ/Y0TDKsGvt076/qsiD28KVTMkIj104qhCKTu4hOqzr2UTDTnjs0vQ8povIeRHb/uQCdaUFOGWJSEylfQoegKAFDHhhbGR6wRcoikpH3HivLbG2jk9t0PJ5d7UOZNTQFd9lpgEv9JxJuSIxhQ/bc8SwM2jNMpLcWBFtJmTYKqHYUu3tp6VveNS/t/uD3Ld2J7/96z6iU2gI2dqvff/0Umu/6SdT5HaKbWMZmKTXzgoLfqFHO/dgKHueHMhNj51Dlpge9wAcnkQ4VpBY8M17RHuz5MkRdAVCRBUVWbK+8V5fVkBloZuoorKjNfV+YhNhBcMuEXLPnJ53tQ4QiiqUeJ00Vlg7TUY37PqGUdWph6OtgG3Y5QlikTXbsJsZv4n7hyP0DIZH/C0QinLDbzbxyCv7+P+e28lPnv9w0ucR+RDTcsiwk2WJorhH1T8cmeDo0Rk6jjx2uWjYQSIce7h39JebVBDGlMdUT0489ypLht2R+MvftBKv4bvlpIskSbrX7t3DfRn7XhFyN/NFzevMvGG3+aDW9ueMxnJk2bxivlQQzojBcGxKaTJWwtp3k03KDEWsYdgVuB3Uxz0WTR0j96v9t1f3sb8rsYXOo6/vxx+cnIEj3ObipswVRJ7dZD12VsixK/IYm2NXVZT5JtfZZEa8kGdqHjvzF/yCLHvsmuOGb315btzDZ86qAODNfT0Z+86gbsCbtxQXuDNfJLP5UB8AS2ZOrYLYCArcDsp8WppMtor+jMY27PKERCjW/ELneTVaZeCejsSmxUPhKL/feACABz9zOvNqighFFZ7/oH1S52iNv+3X5ZDHDqDYqz1ApmrYmRm6EddYIMuhWJFjl3seO82wO5IBj52ZoVg9qT6cnT00m+P3sHgRtDrnzK0EYOO+7ikVxiRjhfvZm+FcSlVV2XxAM36n2hrGKPQUov7J37NWwjbs8gSrVMVCwrBL9tj9z9uH6R2KMLPCx1UnT+PKRVprg9ebuiZ1DuGxy6VQLCR77CbnqQxaQM8ix27IoFBsTY4ZdqLCs2Ng8m//IQt4ZsW5g5Ms9JmII72aRzMXWhUBnFpfSpHHSf9whB0tmcmzs4JnNtM5dh+2B2jpD+J2yHo1sdWZrufZ2R47GwthJcNOVEGJXJRoTOHf/rofgC9dOAenQ+bc+NvvG3u7JpWwKnLsjtdQrJlv+EUG5NgFI4l8l+qi3DLep8UNu6lUxVpBzwXuuCcnC/0KIfdCsf9/e2ceX0V9LvzvzFmzhxCykIQEwq4IiAah1q0oAlWsdSlvb7VW660Vb61969JaaW1vbdV6bS3V3rZW1Pe2tte1LiyiWLWoFUJVUGSHAEmAkPXkrDPvH+fMyUlykpysZ+bwfD+f81FOfjPnmXl+M/PMs/3sNpW548Ph2Ld3DeyFtCtmKpIZqlDsKx8dBuCsyfnRfFyzYzgIasVjJ5gJo0FxstudAFRFclE+PNhEuz/E3z44xMHGdkZnOLl8TikQTqp12lTqmn0caOjfxaTrekyOnbUe+kbLk4HmFpqhv1lHKHb4DDsjDOu0qWSnJX9O9wejdcdg8nVMUS1pNxrXDpNhZ7FQLMBnJ+UDsG7bwFJIumKGKndDz0MVin3lw1oALjy5eEj2NxIYleyHJMdOMBOGxy7DBB67srw0inPcBEI6f99xhJWv7wLga2eOjz6o3A4bU4rCC0R/dKipx33Fo6HNjz8YNnDM3ti0K6lUPOHxh4atPcDR1nBF9ehMZ1KXyBsIBZE52ewNDtjbZQYD3kiqHw6Pna7rlvPYASw8OZxCsmnf8UF5ZA3MYMAbntmhqH7efaSV7XUt2FWF86cVDnp/I8XY3PA1a6QHWB0x7FIEj0nanUC4NcCSGeG3tX9/YhM761vJdtv5yrzyTuNOGhsO2W7tp2FneOus1JzYYLDFE9E3fGfyjtvIsQtqOr7g8CTWG96uAosZ7gDZbnvU8B5onp0ZDPjh7GPX0OanzR9CUazlsSvOSWP2uFwA1mytHfT+zNDWZij1/MpH4XMyf2I+OZFKUytQPjq8fve+Y2LYCSbCE33gmyNsdfX8ik5G5p2fn062u/OFflJJuC/URwf7l4hca9EwLMQuKzawUGx05QkThGJh+PLsDG9IsQUNO0VRBh2OTcXcq1h2R9oejc1JS6q3aiAsinjtXv7w8KD3lWrFE6sjhp1xjqzC+Ihhd7jJO2w5pSOJGHYpgllWnjAoy0tn1dequOK0Uh64YiZXnFbWbczJUY9d/ww7Y9UJaxp2hsdugDl2weS/4dtUJfog8gzTTdCqVc8GhqexLlLZ21/MkHs1nH3s9hwJG3YTxmQM+b6Hm0WR3LH39jQMqvIZzNHWZqgM+AMNHj482ISqwAXTrROGBRiV4SQnkv+891hbH6PNjxh2KYKZqmINTq/I497LZnLpqaVx/z61KGzYHW31dVulojesWjgB4TAdDLzwwAweO+hYfWK4CijqLLiySCzRytgBe+zMkGM39GuIGuw6Gm6FNCHfeoZdWV46M8ty0XRY89HgwrFmaGvjtg9NHzvDWzd3/GhGm3yJuHhURObi3qNi2A0LK1eupKKiArfbzdy5c3nvvfd6HBsIBLj77ruprKzE7XYzc+ZMVq9e3WlMS0sLN998M+Xl5aSlpTF//nz++c9/dhqjKErcz3333TcsxzjUdBh25gjFJkJvq1T0Rm3Um2Od3ByDjEE29zVD6AZi14sdHsPO8MoWWTAUCx1NlY3q3v7SboIVCYZjqSmD3VGPXeaQ73skWDIjHGp8aZDhWHMY8EOjZ6PNyaIZ1grDGowfHe6nuEc8dkPPU089xS233MKKFSvYvHkzM2fOZOHChdTX18cdf+edd/Lb3/6Whx56iG3btvGNb3yDL3zhC1RXV0fHXHfddaxbt44nnniCDz/8kAsuuIAFCxZw8ODB6JjDhw93+jz66KMoisIXv/jFYT/mocBjslBsosRrZtwXRndwo5LJSgx2ndVoUn2S9Zw9yCKQvqhrDhtEVvXY5WWEl0E71g9PdCxmqJZ0O4cxFBvxioy3oMcOYHGkOOzdQYZjzRWKHbie61u8bI4sI7bwJGsaduKxG0YeeOABvv71r3PNNdcwffp0HnnkEdLT03n00Ufjjn/iiSf43ve+x+LFi5kwYQI33HADixcv5he/+AUA7e3tPP3009x7772cddZZTJw4kR/+8IdMnDiRhx9+OLqfoqKiTp/nn3+ec889lwkTJozIcQ8WM4ZiE2Eghl3UY2dBb85gm/tGH/j2JBt2kd5yTe0DyxXsDV3XLa1jgNERw64/KQaxmCrHboiXFPMGQlHDzrj+rUbpqHA4Vtdh/cfxnQ6JYAYDPm0Icuw2fHIEgFNKcyzXgsrAmIvb6xJ/FpkVUxl2fr+fTZs2sWDBguh3qqqyYMECNm7cGHcbn8+H2915IqWlpfHWW28BEAwGCYVCvY7pSl1dHS+99BLXXnvtYA5nxNB13ZKhWIgx7I4kdjFpmh5tIjnWQm0SDIwQ5kBy03Rd73jDT2K7EyCaaDzQ6t7eaG4PRo/zxPXYJT/kbhgbQ9HfLJZP61oIaTqj0h2WzJM1OGfyGAD+sevYgPdhhhVGDG/hYJaOe+2TsHF73tSCIZEpGZw0Ntyl4ePDzQRCw9PGaaQwlWF39OhRQqEQhYWdK2oKCwuprY2fpLpw4UIeeOABduzYgaZprFu3jmeeeYbDh8Px/qysLObNm8ePf/xjDh06RCgU4sknn2Tjxo3RMV1ZtWoVWVlZXHrppT3K6vP5aG5u7vRJFv6QFl2UOtkhuv5iGHa7EvTYHYs0J1YUaz70Yz12/W3u6wtqGJskO8fOCMU2eYbesDOWi8tNd1iuFYbB6EzDYze4qlgzeHKGOhRrrLM6fWy25ZpPxzIvsizixl3HBtyo22cCA95lrDwxwAr3YEjjrcia31Y27Mrz0sl02fEHNXYl6GgwK6Yy7AbCL3/5SyZNmsTUqVNxOp0sX76ca665BlXtOLQnnngCXdcpKSnB5XLxq1/9imXLlnUaE8ujjz7Kl7/85W5evljuuececnJyop+ysu7tPEaK2AvScqHYSPL0wcb2hMKTRlJ9QZYLh81609fIsdP0/oc+YnNgkm3wDHZptN6weuEEQF5GuHiiobX/HrtASCNovKiZwLALavqQejCM9kaGh8SqzB6Xi8uucrTV169UEoOQpuMPmad4whfU0LT+G6jb61po9QXJctk52cI6VVWF6UYLrn72VjUbpnoy5ufnY7PZqKvrvA5fXV0dRUXxEzLHjBnDc889R1tbG/v27eOTTz4hMzOzU25cZWUlb7zxBq2trRw4cID33nuPQCAQN3/uzTffZPv27Vx33XW9ynrHHXfQ1NQU/Rw4cGAARzw0tEUMO6dNtZyxMyrDGc1HMirleuNQo9HDznphWAgb3oaTor/hWMMQtKtK0vUcDcW2D33xRK3Fe9hBRyi2zR/qd1J67PhkVsXG/vZQVsZWHzgOdKw8Y1VcdhuzynIB2HKgsd/bd35RS37xBDCglWSqI0UTs8bloqrW9cACUcP0XzWNyRVkkJjKCnA6ncyZM4f169dHv9M0jfXr1zNv3rxet3W73ZSUlBAMBnn66adZunRptzEZGRkUFxdz/Phx1qxZE3fMH/7wB+bMmcPMmTN7/T2Xy0V2dnanT7IwmhNbLQxrUBnNs2vpc+yhxvBD30rLEMWiKEq05Ul/CyjMsMyUgdGPbziKJ2qOW29x+K5ku+3YIw+5/hZQGHpWFHAlcck8l12NvoQMVTf+Zm8gGoqdO370kOwzmZwcWT2nv03WoYthl8RiKLd9cAa8YdjNjhi5VqZq/ChgcHmTZsBUhh3ALbfcwu9+9ztWrVrFxx9/zA033EBbWxvXXHMNAFdddRV33HFHdPy7777LM888w+7du3nzzTe58MIL0TSNW2+9NTpmzZo1rF69mj179rBu3TrOPfdcpk6dGt2nQXNzM3/961/79NaZDatWxBpUjjHy7BL32Fmx1YnBQAsojIer2wR6Hs5Q7IHIQtxleelDvu+RQlEURg2wMtbIu3LbbUnNQVMUhfQhzrPbtPc4mg7lo9Mt7ZE1OLlkYOtdA3gj3jGnXU2qp8tuU3HYlIhM/dfzlogHdlZkDV0rc8aE0ShKuEuD0STdipiuhPLKK6/kyJEj3HXXXdTW1jJr1ixWr14dLajYv39/p9w4r9fLnXfeye7du8nMzGTx4sU88cQT5ObmRsc0NTVxxx13UFNTQ15eHl/84hf5z//8TxyOzmuX/vnPf0bXdZYtWzYixzpUWNGw0/x+Wl97Dd3vp7ReAVQ++dcOmnzbo2MUp5PM885DdTqj3x2y4HJisccKkBZQAYX6196gKZKSEu9Yu2I8XG1qCF3XR/yhH3sc9uMANo7XHqXphReiY7oeR8jn4xdP/pUXD+QyN0fn9gk69i5id93mQEPYsCsdZT2PXew5yg2pHEHhwPo3iHVm9KVrQ88Ouz7ieu42V3WVNhTq1q4nN9JyLpG5Gg9d13nmg08AOMPi3jrjPJU3+gEbW/c3cPz5F4i1z/rUs5FCYyfpenahEkChfvU60iOXXSJ69gaC0dY104utm19nkJvuZEZJDh/UNPH6J/V8qWpcskUaEKYz7ACWL1/O8uXL4/5tw4YNnf599tlns23btl73d8UVV3DFFVf0+bvXX389119/fcJymoWO5sSmVGdc2qu3cPDmbwOQXTAF5n+dT/fWcejR+zuNG7dqFRlzq6L/3lZ3GFA45N0KWKPHYOyxAjjO/haMKuPA7x+juO7j6Pddj7UrRpik3lvDi7tf5KLKi4ZP6DjEHodvVDmcfRPH6xs4dOs9ncbFHsfvV/+O3+wYByjs9ypkrX+Ry3du6Lbv2G12HjkOKOzzbALGDuMRDT2x5yj9M/8OYyax+/E/U1FT3Wlcb7o29NwSaBhxPXebqwtuh8x89j/0MFkNe6Pf9zVX4/HCrhd58YNmIJcFFltLtCvGeXKiYL/oHjzY+dcPf0Zh+/FO4xLRc1vwePL1fOFd4M6m5hcP4mzu6BbRl55XbXkFTVdxO3QKs623jFg8Ljy5iA9qmnim+qBlDTvThWKF/mN47KyUY5c+51QcpaWgKJS1hHsgHcrMJ6REpqSi4CgrI33OqdFtglqQmuPht8NXD/0vQW14Vj0YamKPFSA9GG6B4bFHboRxjjUebZG3a5QAv9nymxE//tjjyAiEPaetjhivWpfjCGpBHtndCHTMy/+ddA4+1d7jNq0+H83t4fP03L5HLaNjg9hzlO0Pex5bnDEh5QR03eaLhLfVkddz17maFgrPVa894rVJcK52JagFuf/N59GDuaiqn/mVuUMp9ohjnCebAmPbwq0+DmbmdwxIRM9JvJ676tkVCs85ny1xPQe1IKu2rAn/w1lHSB/6FUqSwSWzSlAUeG9PA9tr+877NiNi2A0xoaA24p+29iCqDpl2NSm/P5CPhkrejcvRUBntbSEt4EdT7BzKGIOm2Dr93djmhe2voPnTUXU45tvJyztfSfpx9PdYNcVGetCHqkO7Pa3HY4332bh/E6oONiXIoebDI378sXKmB/2RY3ATVOxxj+OlHa/QfKwcVYf04v8h13+cVmcm7xadHB4fZ5v/2bIWVQdV8VLXtscyOo53jrL87ag6tDoyejzeeJ83974T1jOBEddz17maZujZ5u7XXO36eWnHK9QemIGqgyN7E+v3rU26robqPJW2HkXV4WBmYb/0/HdDz0ry9ewOBlB18NpdCcv/8s5XaGh0oOqg2Q5a7lrt6VOY6WLRtEJUHe55cRvBQCjpMhmfRLFO7M4iVK/bR2Z61oj+ZtOBRs7w2hlXF2TTK3tH9LcHg66exPEZlxNqbuG8thDHXXb2VFxIoPUotuxsWpXpKJHj0XSN9R99zBnemaBouGo/w/rntlAwdRqqYv73k9hjnaAWoHjt6Hmz2KvkdTvWeGi6xsHNNZzhnYCqjcJx8IKkHL9xHP6WNs7whm8fu8YvxqGFOh2Hpmus/XA7c1tmhPXVVIZia8PrHcOeikWUOscCSrdtNm/ZwxneKSh2cB5KzjEOFuMclTgLOcNrx5lzEnvL7XQ93nhousbu6n2c4Z2EEsrBmQQ9x87Vafoocrx2fGOq2OsqS2iuGjS1BzjY2A7ovLnvGKe3TgVFw+mzWVKvXTHO03Q9F7x22sdUsVfPJlE979qylzO8k1GC2UnX8wwtm7FeO60F89ibMSkh+V/9ZAunHZ2N5rNjt41OCZ0aXOzKpMXfgP/DRh745T85c9KYaJV7smj1JO49tL4GhGjzULvFetgpqkp6VRWgk+MLN/hsdmYAOulVVSgxRTI7GnfS6o20gVC9oOg0+5vZ0bgzCZL3n9hjtUdCLgHVTrxjjceOxp14A0boRgOSc/zGcdj0EDY9PO98Ngddj2NH405aPOHiJNVxHNQQoYxwf8pDGUbIvfs2Hp/xO2GDwEo6NjDOkTMS3vLbjCKtvnW9o3EnnkD4JCiESMY56DxXw9dcULWR6FyFcFXh4xv3sXZrHWu31tPeWgyAPX0Xis1jSb12xThP2f5wekhHyL2fek7S9RyrZ1skjBpSu1+X8djRuJMWfzN6KJKKYWtLCZ0a5KU7o6tobDnQxGNv7+WDmia0Aa4wMtKIx26ImX1++Yj3tHvzVT/v1NQxcXImcxZVjOhvDxb9/FJ2r36QjQ1B3ikYQyYNLA1tZcLye1Ds4ekZ1IKseH45+0aV4PWdgi1jD+kl61BQqEvbxrMLn8Wumn8qG8f6equNd4qKKfLtY1KXY42Hcfx788bjC07Enr2PtLHJO37jOHbos6lPG8VlDZuYlK5Hj8OQd3fGGQSCQZyjN+Easx408PgmEtJyOL9tF3Ndnu7bZJ5GIFiJc/S/cI2xno4N9PNLqf7qOt5xTyDUdIxl+9fiKCnpVdfReZ4/Fm9gKrbMQ0mb54aOn/Xm8M6Y0Uxt28Gk0K4+5yrAsVYf1//X32l2BplanMn+1o/xhQI4cqpx5GwGsKxeu6KfX0r9l/7KO+4pFAeDXNMfPY8uwuufhi0j+Xr+Y6CUzaOymNe0lUl6XULyHy45TIvnNHR7kPSxr2F316WETg3mAEVb6/jJS9s43OTl1b2HmKN5+O1XTiMn3dHn9kNNf5Yttf7ZNxk2u4pthJuKeoIamgLpbseI//agsTspvOmbjPvl/6ApsD8zn8IvfRO7u6PE/uVda6jxHCAYPAlNAZvrGJoafsM84NnP2gNrRrxCdEBEjjXt0VfRFGi3OSi8qfOxxsM4/pA+CU0B3eZP7vFHjiPr5cPUZoyiyZFO4U1XR4/DkDfg+yKaAkr6gbC8KpD9KVrT6WwqmMTFV32m2zbBwIVoCuCqt6aODexOSi84B+1TaHG4UbVgn7ru0HMZmgKq6kveOYjo2P3/3kVTwGuzJzRXAf53y0EafUGmjc3m+sWN/OAfKzGaE8VmCVlSr12xO5m2bClaNdSn54AW6oeeS8J6tgWSrmfH0x+jKeBXVQq/mZj8Og5CWiYogKuBkBpMDZ3GsGhmMeedVMCf3t3PL9Z9yj8PNPKtv25h1TVVI957sD/PdotZAUI8OtqdWKcqNpbsJUuoyAhfJAeyi8latCj6t6AWZOWWlSgoaP48AFRnR1dwBSUpFaIDJXvJEjIzwuELb04e2YsX9zo+9vjRI2+JakdT4GQdf/aSJeQpYTlaisZFj8OQl5ALzRcOZahpHcvt2TPCfQrfLz252zYKSsc2rvroNlbTsUHRZ+YC4cphR1lZr7qOPQe6HnnfVjuONxnnIHvJEjLSwpXb/lH5fc5Vg2c2HwTg6vnjeOSDyNyNg1X12pWJSxeh6DoBmwPP+MkJ6zl6PSsdDayTpWe3KyxLYHRBwvJrgdzwl6oX1HCVfKroNBaX3cZXPzOeP19/Bi67yps7jvK3Dw4lW6xeEcMuBbBig+JYFLudWV9bhqprtNldHPV2lM1X11dzsPUgOjqaP9zUVHU0RP+uo1PTWkN1fXW3/ZoRxW6n4JwzAQhVTu4zrBV7/LoWfotWYh4EyTp+xW6naFIFAIGzzosehyFv0FsCqCj246j2jgXSbZk7gRA17jxqmv2dttFCbvRQuPBIdXYYdlbTsUFuVthP1eJMZ8xNy3vVdaye0cIPWUXpMOCTcQ4Uu53RVbPDv3/KrD7nKoTX+d1Z34qqQNGY2o5jioNV9doVl9tJfsTBFfjK1xLWsx4x7BQ1+XrOnTYZAMdnzkxc/ohhpzoao0vPpYpO43HS2ByWnzsRgF+t34Fu4nw7CcWmAB2GnXXVOeaSiyndupb9rUF21bdREHkozhwzk/vPvh9f0M+tOxW8wLfP+ArFozq2ddqczBzT+9q+ZiJ/7mmwuxpfbt/d943j94f8/OlNhX8ch/MrzuHCU8+JjknW8Y+dPhHe2E1LaUejaEPelzf7eX4/zCzL5dozf9ppuwePBNh13MZrn9Rz9fyK6DZba/z86lMYlalz99k/7LSN1XQMkBNZdq0tPZvsi3r3dsXq+fl3FV49CmeWzeXSMzqawybjHIyacRIc+IRgUWlC49/ZHfamn1ySw/yy2dFj6gkr6jUeJUWjOHKgkaYZp/c6LlbPL/xTYd0RmF9SxWXzO7ZLxjnJqhwP9fvQKif1Oi5W/rc/hj8fgGkFhXwj5hpPFZ3G45ozx/PIG7vYdaSNTfuOc1pFXrJFiot1LQEhitVDsRBel3JiaR77P6ln55FW5lWGjR6nzcnCioU0tPnxBtYBcNXMxbgd1j3WTHf4smvz9x2uMI4fYP0/q4FDzC46iYsqk7/qxujMcJjuWMxaqIa8z721Cahl0dRpXFRZ2Wm7g2fs4mevfMKrH9dx9fyK6Db79u8CPmFueTEXVc4ZwSMZHgzDzq+BL6j1Omdj9bxp61ZgLyflT+KiyikjIWqPZERCdG3+xJrP/nNv2Js+d3xep2NKdUpy09hyoJHDTb2vLxp7Tqq3bQP2MH3MRC6qnDoCUvaM0dzeWKe4J2Ll375zO7CT2SXlXFQ5Y7hFNAWZLjsXnlzM05treLb6oGkNOwnFpgBWXHkiHhMLMgHYVd/a7W/7joVbChRmuyxt1EH45gDQ5utfp3ZjDVGzHP+YrIhh1+rr9rd/HWgEwh67rpwfWU7qnd3HaPYGYrZp6nEbK5LpsmOLJFg3egJ9jO6g3UTXc4YrLEN7ILGcKaNT/8kl1l83tD8Ya1cfamxPeJvo9WxPvp4NGbzBxO9JxrGOzbXems6DYckpRQC88ekR04ZjxbBLAdotnmNnUDkmvMr4riPdDbudEWNvQn7miMo0HGREQuatvv4lGLdH3qbTTGLYjc4IG3ZHuxh29c1eDjV5UZT4D/jKMZlMGJNBIKTzxvYjQHgR9E37wutszixNDaNAUZSo166pPXHDzni4ukxQ4W6kdyTyEqLrOtvrwobdlKKRbdKebIoihl1tc+8eu1h8AcOAT76ejZfFdn/iqxscjXjqx2SmxhqxiXLGhNE4bAo1x9vZd8yTbHHikvwZJQwaqxdPGEwuDD8Mth1q7vYmtCNi2E0utL5h1+Gx659h5zWZx64gsuh3XXNnw+5fNWHP26SCzOixdsXw2r0YqS7bXtdCbbMXl13l1PJRcbexIgMx7EzlsYvI4EkgbeBwk5cWbxC7qqTEC1h/MLzXXV9yesMw4M1wPac5wqZAfzx2hqc+/wQz7NKdduZE7lFv7TyaZGniI4ZdChANxTqsnTI5rTgbu6pwrM3PoS65Kp9GPAGTCq3vCTDCWx5/CE1L3JXvNdEbPnSEYJraA7R0Cqk2AjCzNLfHbS+dHU7Gf/Xjeg41trP6o1oA5lWONsWDbqgwDLtGT88FBF3xRtaENEOIzjAuE/HYGWHYCWMycJrA2ziSGIbdkZbEDTvDgDeDno1rzptgLiVAQ8Rjl5fRd2/DVOP0SG6dca8zGyfW1ZeitKdA8QSEby5GCOfDmsZOf9tRZ3jsUsGw6zDAEymgMIg+CExi+GS67IyKdGCvOd6RW7Sll/w6gylFWcwdn0dI07nr+Y/4n3f3A3DJrJJhkzcZDCgUGzCRxy4yV418sN7YUZ86L1/9pWAAhp03klrhNoGejbmWqMdO13WOtYYNu9GZJ55hNyOSYvLhwaYkSxIfMewsjq7reAKpEYoFOCWSX2WE8yCci3YwkqibCqFYl12NLijdnwIK4+Fqlhw7gLK88PqYhmGnaXr0LXb2uNxet/3uwnDF56sf11Pf4qMsL40LTy4aNlmTwWAMO7cj+bfn9KjHru8XkAMN4TlQMTq9j5Gpx5jMcI5dszcY1V9fdBRPJF/PLqN4oo+qWIMWXxB/ZI1yI9f2RMJ4af20riWhNIWRJvkzShgUvqCGkY5mhjf8wXJKJHz3YYxh91Hkrag4x01uuvXfDhVFiXpC+lNAEX3DN5FhVzoqHI490BBOIt51pJUWX5A0h40pfXhuTqvI48dLT8LtUCnOcfPQslNNdWxDQW76IAw7E4TojEIfX1AjGOr9oV9zPDwHSkedeIZddpodpy38OI1t/9MbZvLMGi8R7QmGYhsi3rp0p80U8o80hdluCrJcaDp8fLgl2eJ0w9pJWUI0vw6s3aDYwMjLqt5/nEBIw2FTqd7fCMCsFGmDAeEwZlN7oF8FFF4TeuyMh/j+iGFn6OqU0hzstr7fG78yr4L/M7ccBUZ87cWRYEDFE4ZhZ4IHZuxD2xMIkd2LTg2vrWHsn0goikJ+ppNDTV6OtPgoSaAFiC9onhc1456SaCj2WFs45HwihmENJhdmUd/iY1d9a7SYwiyIx87iGG5gp12N9syyMlOLssjLcNLmD0WNhC0Hwm0w+grtWQmjgCJRw07X9Y5QrAke+AZG70Ejcf79feEGtbP6oSubqqSkUQeQ7Q4bds398tiZp3jCFXNf8fSSNqDrejRd4kT02EH/Cyii1c8mMOz6WzwRza87AcOwBsa9b2ec9lzJRgw7i5MqPewMVFXhMxPzAXhzxxGCIY13doeNBbO9FQ2G/oZiAyGdUKSC1gxv+AbTi7MB2HY43KLmrR3h8v/5lfnJFMs0DCjHzkTtThRFid5besslOu4JRKMHY3PdIyKb2eivYWecTzPouaN4IrEcOyPcPPoErIg1qDQMuzgN9ZONGHYWJ9rDzkQP+8FyzuQxAPztX4fYvL+RpvYAuemOXttnWA0jdynRqtjYEIkZkuoNJhdm4bApNLUHeH17PYeavDjtKlUmXWpnpMlOC+u52duPkHvQPMUT0DFXPb14c4z8uoIsVzQR/0Sj3x47E6VWRFeeSLDww+hhdyKHYieOEcNOGCZSZTmxWC48uYgMp429xzx8/fH3AThvSkFCOVtWwQjFtiZYFWt4cVSFaJK2GXDa1ajBfctf/gXA/MrRKTUfB0N2Pz12wZBGIBT2zJrhgQ+JVcaeyPl1BsYKDEda+159IhCjZzNEW6LFE4FQQstkHYv2sDtxQ7GVBeGVkg4c9+DrR2PnkcA8TwhhQBhrOKZC4YRBhsvOl6rGAR0PxK/MK0+mSEOOEYr1JBiKjX27VxRz5aMZq0gY66FeNqc0meKYiv7m2MWGwswScjfmam/e5RO5ItagPx67WO+nGV6CjEIdXSfaxqQ3jBy7/BPYYzcm04XboaLrcLgx8aXkRgIx7CxOKnrsAL59/mTOnJiPw6Zw84JJzB6XOvl10P9lxcxYOGHwpapx0QatM8tyWXRycZIlMg/9zbGLDYWZYa1YgCx3eK629BJOFo9dh/eqIYF2J0ZutE1VTOGBjy3U8SawXqxUxYbzT40XmdgG7WYgddw8Jyipsk5sVzJddp68bi4hTU+Jat+udBRPJBiKjVRKmjF/KSfNwYs3ncnm/cf57KQxKamvgWKEYn1BDW8g1KcXrmN1EdU0nlnDsOstT7DDsDtxPXbG0lqJGHZG4US6STzwDpuCTVUIaTreYIgcHL2ONzx2J3IoFqBsVBo761ujHmuzkPxXBWFQpFpVbFdS1Ujot8fO5J7Zgmw3F55c3Gm5NAGyXHaM53ZvHi8Dn4kWhjfIioSTY9cD7kpHKPZE9tj1x7Az1/WsKEp0BYxECiikKjaMWT12YthZnOgNwiEPVCthGOKtiVbFmqiCTkgcVVXIihi7iYRjDc+smfTcVyhW13UJxdJh2DW2B6KtiXrCa8JlII2Xib7WBdY0neNtRo7die2xi668Ix47YShpN1z6JrpBCH2TMdAcOxM98IXEyIksK9bci8fLILrqhIn03JfHrrFTD7sT17AbFdGzrkOjp3evncdvPj1HmxT3sV5sszdAMGK4jsroPWSb6ojHThgWUjXHLtXJjFbFJppjFx7nMklvMyFxjMrYxDx25nvgZ/fhsTMeagVZLlPJPdLYbWp0beC+wrFmvG8nul7s0Uh+XZbbbsqc35GkJOKxOyiGnTCUeExcLSn0TH9XnhCPnXXpT8uT2OIJsxAtnuhBfsmv6yAvPRyOPdaHYWfGNlUdq0/0btg1SH5dlKLs8CorR1p9aH2E30cS89w9hAGR6sUTqUqmsVZsgjl2Zi+eEHrGaHmSiGFn9LEzkwHfEYrt3WN3IlfEGiRaQGG24gnoaHni6yPHrmPViRM7vw7CffwUBUKa3qcxP5KIYWdxOtYbNM+bn9A3/c2xk+IJ69KfZcW8Jsy96qt4wvDYlYjHLmHDzowv5IkWT0hFbAd2m8roSMuX+hbzNCkWa8DipOJasamK5vfT+tpr6H4/IS+AjVaPj6YXXoiOUZxOMs87D9XZ+aZp3GzN0rRW6J1YXbsPKYBK/Ycf09SyLTomnq6NEF2yQ7Gx8qstADaajjfHnasHDI/dCVo4EXuuso6FdX1o0wc01f8rOqarro0XumS/qMXKbj+mAgrH36+m6cDm6Jiushseuzwx7AAozHZxtNVHfbOPk8YmW5owYthZHDO++Qnxaa/ewsGbvw1AizMdFt+NV1M4cNsd2PSOSrRxq1aRMbeq07bbjuwEFA569gInj5zQwoCI1TWTPwfTF1H3j/c49Jv/7TSuq66r6z4CVI56D4+gtN2Jld+TkQ/n305zm5dDt/6g07hxq1bxcV09oHDQ+wGQWkv/JULsubJPWwRTPkfNhrc59OHzncbF6vqjI58CCrXt+4FTRljiDmJl1077MpTOpu7ZFzi0+61O42Jlf/9QWPbjgeTKbhYKslxsBeqazeOxk9d/i2PGXA0hPulzTsVRWgqKQlqwYz1Jry3y5qsoOMrKSJ9zaqftglow8sCHLUfeI6glFr4VkkesrjMDYY9WiyMmBy2OroNakLcOvAfAp41bk6rnWPkzguEHVrvdhUak23JEfsesGdQ1hXMHV9f8zwk5N2PPVY6/FYAmV2bHgC66DmpB3j/8AQAfHttkGj2nBcMhVq89xhMXR/Yth3cCsKXhzRNS310pjBRQ1CewRvBIIR67ISYU1AgF+15rb6jw+oOoOrht6oj+rjAQVPJuXM7h730fuw7OUJCgaqfVkU5aKPxwzLtxORoqxOjy5d2v4PGF9dwWOMbLO19hyYQlyToIISE6dJ0R8KHq4HGkoSkdL2Bddf3y7ldo9XpRdWgPNiZZzx3ypwUDqHr4uzZHetTQy7txOU9vfxVCTlTgqG/HCTo3O85Vjq8dVYcWZ2aPun559yt4vAGTXM8dsrtD/vDcs7t7ld3rtYWPMXD4BNV3ZwoyXag61DW2D+szuD/7FsNuiKlet4/M9KwR+72JRzSKfHaOvneETR83j9jvCgNDV0/i+IzLCTW38Jl2Gz6bnUNln6PN78GWnU2rMh3llb3R8Zqu8eonW6hqrEDz2bE3TGH9c1somDoNVRGHu5kxdO0IuTjDayfPWcLe8oWA0k3Xhp5Pb5hCyGvH1liRdD3HztX57SqaorK3fCEZQR+27GyamcqbL/yNM7wno6h+nIfPS7rMycI4V66QkzO8dkY5S+PqOqrnxvHh6/n4pKSfM0P2QmcBZ3jtZGRNZW85Pcpe1TwdPWjHcWza4GRXdFA1sPiqkWNq21jsdJG9v4VN63YNbCc6oKmg93wyWj0tCe9ODDuLEwiFrXi7zeJXxwmCoqqkV1XR8uqr2LUgPpuDoGoHdNKrqlDUzjfIHY07afE3gx75XgnR7G9mR+NOpoyaPPIHICSMoWvn2+8D4FeN2213XXfouSSycfL1HDtXXaEA7XYXfpuDjKCX9KoqdjbvptUX8SLY2gE96TInC+Ncud4Mh9J9RnpFF1136NnwiJlHz47NYaMkqMSfp1HZtcixqX6a/a0DkF1HyfRizwyhpMBa4NPybVRMzkNVFZzOgefZ6ZpOsNWG3upmsNauGHZDzOzzy8nOzh6x33v7H58QtOvct6CMopwTsyrNaujnl7J79YPs1Kezz13EkobNTHJ5mbD8HhR7xyUZ1IKseH45h0sO0xYaR8iTi3vMZpzZH1GXto1nFz6LXZVL2Mzo55fi37CKd9ynkqUG+Nb+tThKSjrpOlbPnkO5BCnENfojXHkbk65nY67u1iJz9fi/mORqZ9w3f8w9L13G3twJ+PzTsWfvJG3sOhSUpMucLPTzS1Fe+wPvuE/DHtK5ef9anDG6jns9F2zGmf1h0s+Zfn4p/7xmPe+4x2NrqOVLXeapIfuhsbW0tJwFBMkoWYfN3tZv2Wvramlu8jOmoJD09HQUxdrGXbs/SM3xdhyqSsWYjAHtQ9d1PB4PR+qPkD05jaLCom5jmpsTj8idWFfeCGCzq9hGqCWFP6jh13VQIDPNOWK/KwwSu5PCm76J66UaNAW8NjuFN30Tu7tz+4CXd62hxnMAVAjpdjQFdJuPkBrkgGc/aw+s4aLKi5J0EEJC2J1UXL0MbRO0ONNAC3XTdayeNd2BpoBmFj1H5mrWC3vRFGh2uCm86RrWHV5PjecAweCpaArgPIamhgu5ki5zsrA7mXzdV9DeA7/djle1URaj6/jXs9c0ei447yy0XdBud6JqwU7z1JBd0zPQImFX3dFCSNH6JXsoFKK5uYmCwgJGjx49rIc0Uqj2ELSE0BSFtLSBO1cMI7e+vp6iokJsts4Fkf15voslYGFi1/STqlhrkb1kCRmR8HmgoJjsxYs7/T2oBVm5ZSWK4ZLXI4ttq+EiCwWF32z5jVSlWYDSz18IgKaoBMsndNJ1Vz3rET0rarhC0Qx6zl6yhFxbOOTaWlhK+oUXRGXW/KPCcjqOR8ebQeZkUXDxEtyhsO485ZOiuu5+PXeEM8Ec52x0Vbjy1WN34Sgriyu7Hop4pGxtKEp4TvRH9kAgfP9KT0+dVUpskXBySNfR9MEtK2acF+M8DRQx7CyMJ9LM1K4qOMVbZykUu53c8WUA2D53QacQLEB1fTUHWw+iE75R6Frkga+EHwQ6OjWtNVTXV4+g1MJAcKe5cCphPTqvvb6Trrvr2Wh9E76xm0HPit1O8bSJAATmn8WWhg+jMuuBPABUZ0N0vBlkThaK3U5eeuRa/T9fieq65+vZPHrOSAuvoOC1Oxlz0/K4suvBcBsX1dYW3W4gsls9/BqLTVWiBnswNDjDbqjOi4RiLYz0sLM2uRVl0HCQ4ORp3f42c8xM7j/7fvyRt//v71NoDsBNc75BaSSC4bQ5mTlm5kiKLAyQ7AwXR1v9aGee3en7rnr+WZ3CwXb42ilfZlppeIwZ9Fx40mSo20lbSQUzx0zh/rPvxxf0851PFTTg1nnXkh+TWmwGmZNFfn4uhw424Zvd0Xi6q56/t1ehJQD/MecblJjkejbWrw6WlJN90QXR72Nl37wL/rgfJuSN4Vtn/jQ6JtmyJxNFUbDZFIIhnZCmYQZ/mRh2FkZWnbA2mZH1Yj3+7mszOm1OFlYsjP77e9oaIMjC8ecyYUxmt/GCuclJc3C01U9ze+dwVVc9/0J5HfBwXvlnOK0ib4Sl7BljwfeGNn9U5vpmL4HQelQF/u2UJThsyX+gmYG8zMh6sZ6OcFpXPd8WWg2EWFR5HuWjB5ZwP9SkR9Yb92Dr5DmKlb2hbi+wlUn5xVxUOScJUpoTu6oQDEFQG5zHbqiQK9HCRNeJdYp9bkXSI4Zdqy+BxeED5lscXkic7LRw6K3Z23vujFm98PEWtz9w3ANAcU6aGHUx5KV3P1exhDQ9qmfj5c4MZBiGnb/n+9GxyDGNzpR1YmOxR/LsxLATBo1xASZ7IWlhYBg39bY+DLtASCMQyd0Q76w1yYkYdk3tvRt27SZ9WRsdMeyOxRp2DeGl0kpHSZulWAwj+HgPhl1bjOGUYSLDLj0SivX4Q2g9GCjHWsPLZuVluEZMLrOwYcMGKioq4v4tatjFybHrbbvhQgw7CyOhWGuTEdFbW5xQbCweqX62PNnuiMeuL8MuYM5rujAnvB7m4cZ29Ejl3+4j4XVRJwywd1eqYoRij7b2YNj5OoreXCYqesuIeZnwBOLfk45FjilfPHYAnH322SiKQnl+JjPLRjF5XDGXXHIJR44cSapc5plVQr8xa9hGSIyMBD12RhjWpio4JeRlSQyPXW+GnT+oRUM5Zrumx0aan7f5QzR7w/N115FwZWSl5Hx2Ij/DyEeMvyi8cb1nuOymqg51O1SMhSA8PdyTjPDy6BPQY9cVXdeprq7m/vvv54NP97Dun9t46Hd/ZP369dxzzz1Jlc08fmCh33hM+nYvJEaiodhoLqXDZqoHgZA42WlhXRtGUTw69aU0WXpFmtNGXoaThjY/hxrbyUlzsCvisRPDrjNG/tmxHkKxLZE5YKb8OghXd2Y47bT4gj1GEY62GaHYofHY6boe9VKPNGmDvJ/u2LGDlpYWzjnnHMYWF0NaO1MmlDNx4kQ8Hs8QStp/zDWzhH7RHsnVMFs+jpAYGdHiib5CsWE9u8WAtyyJ5NgZfSkdNsWUxQhjc91Rw25yYRa7j4rHLh5GBfGxHkOx5iucMEh32cKGXR8eu6EKxbYHQky/a82Q7Ku/bLt74aCenZs2bcLpdDJjxgzsDgcZdp0nnniCnTt38uijjw6hpP3HfDNLSBgJxVqbjEiycl8eO8mltD6J5NhFr2eTeesMxuak8dHBZg41tlNz3IM/qOG0q5RI8UQnjEKTo60+dF3v5hVqjYZizafncJ6dL+49KRDSaIy0cDGM1xOZzZs3EwgEyMsLtyXyeDwUFBSwdu1aZs+enVTZxLCzMO0xITrBeiSaY2f2B77QN4l47MxaEWtgGHD7jnn48GATAFOLsqJLKglhjFCsL6jR5g9188wZ13tmxNg3E7GVsV0xqnxVBXLThkb2NIeNbXcv7HvgMDDY++nmzZtZtmwZP/rRjwA4cuQIt99+O9/4xjeorq5GVZPndTfnHURICI94ciyNUYXW1kvfKBA9pwKJ9LEzu56nFGYB8EltC7bIOsczSnKSKZIpSXfaSXfa8PhDHGv1dTPsDI9dpmk9dvHvSUbOYF6GE3WIjHlFUUz7ItMXmzdv5qc//SkTJ4aX25s4cSK33HILl1xyCTU1NYwbNy5pspkvkUNImI5QrDUvjBMd44bvDWgEQ1qP49oDkktpdTqqYns24qN9KU1q2E0fG14zbNvhZjbvOw7AKaVi2MUjL07fP4NoKNaE17MRRfDEyfs1cgaHqnDCyuzevZvGxsZuIdddu3Zht9vJzc1NjmARzDezhITpeOCb80Eg9E5sc9I2f4ictPjvWZJLaX2MHLveQrFek1e5Ty4Mh10b2vzRJPr5lflJlsqcjM50UXO8PW4BRWy7E7NhzL14q+EcjTQnzpf8OjZt2oSiKBQUFFBbW0tbWxt///vfufvuu7nhhhvIzs7ueyfDiPlmlpAw8sC3Nk67itOm4g9ptPmCUa9OV6R4wvoY7U7aA6Fo0UFXjOvZrMvGuR025leO5s0dRwGYVJBJWV56kqUyJ/mGx661ey87w7DLcpvv8dvbsmJi2HWwefNmdF2nsrISgFGjRjFp0iQefPBBrrrqqiRLJ6FYS2P2nByhb9ITqIwVPVufrJhE+Z7y7Kyg5y/P7cgbuv6sCUmUxNz01svOaG9kRo9dZsTYbInrsZN1Yg3uuecedF2PfhoaGnj33Xf56le/mtSiCQPzzSwhYTx+CcVanQynnUZPIG7ow6CjKlYuV6tiUxWyXOHmr83tgbheD7NXxQJceHIx/++6uWi6zpkTJQzbE0Y7kKNxPHatvrBhb0bDrqMtT5ziCfHYWQbzzSwhYTwWeBAIvWMUUMRrL2DQLgZ8SpCd5qDFF+wxz84qqRWfEYOuT0ZHQ7HxcuzCes4yo2EXXSGl+xztCMWKx87sJN9nKAwYj4k7mAuJYTQpTchjZ/IHvtA7HS1P4uvaWHlC+lJaH8OrdSzOerGtJi6e6K2RthGKPVE9dhUVFdx8880jtt1gEMPOwhh5WeLJsS6JNCluN3m1pJAYORFvSE8eOymSSR2iOXZxPHZmXnmit5cPIxR7oq46IYadMOzouh5tIikeO+uSmYhhJytPpAR9LSsmfSlTh9EZRo5dd8POMOx7qoJPJtlG8USXOarreozHTkKxZkcMO4viDWhoevj/08WwsyxGfmRrnIagBhKKTQ36WlZMPHapg2H8NLT50IwbdQRTG3Y9rJDS4gvijzRRP1FDsVZCDDuLErvki+TkWJfMRNqdBKRIJhXoa1kxI+QunlnrMypSPKHp0BhjyHsjfQzBnIZd7Aoput5hkB5tCYdhM1120/ZZFDoQw86ixObXDdW6fcLIE82x62W9WKmKTQ06Hpo9hWLNvaSYkDgOm0pueljfsU2KDW+dTVVMmUJjvHz4QxreQMcyh0Y/PulhZw3EsLMoRsm8eHGsTSLFExKKTQ2M/KWe1ouVUGxqYbQ8ic2zMwy7bLcdRTHfC3mG04bhJ4j1LBseOwnDWgPTWQUrV67kvvvuo7a2lpkzZ/LQQw9RVVUVd2wgEOCee+5h1apVHDx4kClTpvDzn/+cCy+8MDqmpaWFH/zgBzz77LPU19cze/ZsfvnLX3L66ad32tfHH3/MbbfdxhtvvEEwGGT69Ok8/fTTjBs3ruvPmgJPtHBCHgJWQ/P7aX3tNXS/H9thBVBp3LOfphf2RccoTieZ552H6nTGFE/Ie5jViNW1vT6s62P7D9H0Qk10jKHrVqlytzyx+h7lUwGFvRv+wfSt4bBmTZMO2KNGvhmIlRkgy6bSFFQ4+PJa3JEV4w7Uh+U1jFXB3JhndgFPPfUUt9xyC4888ghz587lwQcfZOHChWzfvp2CgoJu4++8806efPJJfve73zF16lTWrFnDF77wBf7xj38we/ZsAK677jo++ugjnnjiCcaOHcuTTz7JggUL2LZtGyUlJQDs2rWLM888k2uvvZYf/ehHZGdns3XrVtxu94gef3/oeAiYSoVCArRXb+Hgzd8GwF92Gsz5Eg3bPuXQH37fady4VavImFtFi88HKLxT+3emFV+UBImFgRKr62DhNJh3Lcf21nBo1S87jRu3ahXHPK2AQvXRjcyrFD1bkVh9Z81ZBmVz2PnsyxzauQGAl6tOgrHXoAWOJ1HKzsTKDJB2/u00ZeSz51e/Ia0h/LK54axFkPc52qlNlphCPzCVC+CBBx7g61//Otdccw3Tp0/nkUceIT09nUcffTTu+CeeeILvfe97LF68mAkTJnDDDTewePFifvGLXwDQ3t7O008/zb333stZZ53FxIkT+eEPf8jEiRN5+OGHo/v5/ve/z+LFi7n33nuZPXs2lZWVXHzxxXGNSbNghOfMmKch9E76nFNxlJaCopAWCoc4PPaYEIei4CgrI33OqfiDAfzBcGzkf7b/kaDWc8hWMB+xus4ItAPQ5oh5YYzo2jn7lGju3dM7/5/o2aLE6nt0ezMAR9OyAQgp8Ma0sAusQakzjY5jZQbIDHgBaHWkARBSFT4sHQXAJ03vmEZuoWdMYxX4/X42bdrEHXfcEf1OVVUWLFjAxo0b427j8/m6edXS0tJ46623AAgGg4RCoV7HaJrGSy+9xK233srChQuprq5m/Pjx3HHHHVxyySU9yuvz+fD5OpJim5vDF3EoqBEKaj1tNmS0eAKoOmQ41BH5PWEoUcm7cTmHv/d93MGwHr02F5rSEYLLu3E5GirPb38JVQ+/f9W11fDyzldYMmFJsgQX+k2HrjODPlQdPPb0brp+ec86CNlRgXqP6Nm6dOg739uMqsMx9yg0xcZbJym0ujJRdQjoTSbScYfMKJDlb0fVodWREZZ7uoJXz0bVoU0b3NwMBTV0XY9+hM4Y5yWeHdGf57xpDLujR48SCoUoLCzs9H1hYSGffPJJ3G0WLlzIAw88wFlnnUVlZSXr16/nmWeeIRSKrMWXlcW8efP48Y9/zLRp0ygsLORPf/oTGzduZOLEiQDU19fT2trKz372M37yk5/w85//nNWrV3PppZfy+uuvc/bZZ8f97XvuuYcf/ehH3b6vXrePzPSswZyKhGg60MgZXjvldUE2vbJ32H9PGFp09SSOz7gcLaByhtdOpprP3vKFgIItO5tWZTr6y7t5Y+tHnOE9FQDXoXNY/9wWCqZOQ1VM5WwXesHQdavHzxleO4qe3UnXzUzl1Wf/yhne0wBw1Z4perYwhr5z9TTO8NrJSx/PnvKFfDRV5bQjEwh57dgoMJWODZlDzS1MJY80rx3fmNPZ4yjio2k2qprK0EN2HMemDE5uewhnQYj2lgCaL/nHPRLc9cM7+fXDv2LpRZfwx98/3utYnz+Avz3E1jcPQrBzrm2rpyXh37T0mf3lL3/JpEmTmDp1Kk6nk+XLl3PNNdegqh2H9cQTT6DrOiUlJbhcLn71q1+xbNmy6BhNC1vBS5cu5dvf/jazZs3i9ttv5/Of/zyPPPJIj799xx130NTUFP0cOHBgeA+2C4FIs0iHzdIqPGFRVJX0qirsoXBYI6ga71g66VVVKKrKjsadtPrbIxuEQNFp9jezo3FncoQWBoSha2coHGrVFYWAasfQ9c7m3bT4InpGRyckerYwhr7TIyFNj83N/gKFNjegRYoPVL+pdGzIDDruSHqI1+Zk/xhoc2nomisyzmsquUeSt95+k8u/dCkTp40nc5Sbv730Qtxx37jx6/zoJyui//7Ot7/LT3/8c/769F/YtXvXiMhqGo9dfn4+NpuNurq6Tt/X1dVRVFQUd5sxY8bw3HPP4fV6OXbsGGPHjuX2229nwoQJ0TGVlZW88cYbtLW10dzcTHFxMVdeeWV0TH5+Pna7nenTp3fa97Rp06Lh2ni4XC5cru6l37PPLyc7Ozvh4x4oG9b6eKemjslTspizqGLYf08YevTzS9n42h94x12FMxTiO/vX4igpYcLyewipsOL55dQUhGjzzEWxtZJZsg4Fhbq0bTy78FnsqmkuX6EP9PNL2bX6Qd53foagauf62rcZOzqTcd/8Mfe8dBk1hX7aPPNAbSerVPRsdfTzS7Gv/x3vuOegOhX2THqVYzngOVhAkCJcY7bgGvWeqXSsn1/K7tUP8m5jgHeKxpIVquW1qtc5ku6gpeUcIEhm2cuoanDAcnu9Xvbt30talgO321oVtiHFz+w5s7ju+mv54he/iCvdTnpO52MIhUKsXvsKL774YvRv6TljuGH59dx6x3fYufcTZsye1uNvqF4NZ5qNSZ8t6ZZCZqR7JULyZ1MEp9PJnDlzWL9+fTS3TdM01q9fz/Lly3vd1u12U1JSQiAQ4Omnn+aKK67oNiYjI4OMjAyOHz/OmjVruPfee6O/e/rpp7N9+/ZO4z/99FPKy8v7fRw2u4rNPvxetLZACE2BzDTHiPyeMAzYnZR/7Sto74PX7kDXNQpv+iZ2t5NXdv2NGs8BQkopmgKKGkBTwykGBzz7WXtgDRdJ5aR1sDspuumbpL/eTqM7C4/dSeFN32Td4fVhPVMS1rPNJ3pOBexOpv771fCPEEGbjdqsdFRbC0EtA00B3dFESA2aS8eROTnqN8+gKbAzP5P6HD8hXw6aAqjt6HYvIQY+N212FUVRoh9d19FCycm1U21Kv3oJLl68mMWLF0f/bRxDLBs3bsThcFBVVdXpb6FQiPT0dLZu3cqll17a428Y+4xnR/TnOW8aww7glltu4eqrr+a0006jqqqKBx98kLa2Nq655hoArrrqKkpKSrjnnnsAePfddzl48CCzZs3i4MGD/PCHP0TTNG699dboPtesWYOu60yZMoWdO3fy3e9+l6lTp0b3CfDd736XK6+8krPOOotzzz2X1atX87e//Y0NGzaM6PH3hzajman0sbM0hZ9fBO+vAyBQPoHsxYsJakFWblmJghITAulocqqg8Jstv2HR+EWmeNMXEiN7yRIyX/8TjYC3ZBzpF17Ayr9d0kXPHQVZomdrM+rzS8j7+/9y1JkFgRxwtKAHMwFQ7K3h/5pMx9lLlpD/+EsA1ORm40JBD+QAoDqaouOGSm4tpCctR3zOogps9qFtEv3CCy9w0UUXdTP47rzzTlpbW/noo4+G9Pd6wlSuniuvvJL777+fu+66i1mzZrFlyxZWr14dLajYv38/hw8fjo73er3ceeedTJ8+nS984QuUlJTw1ltvkZubGx3T1NTEjTfeyNSpU7nqqqs488wzWbNmDQ5Hxzp9X/jCF3jkkUe49957mTFjBr///e95+umnOfPMM0fs2PtLR4Pi5N8MhIHjcjtxKOE31rRrv45it1NdX83B1oPo6NEHPjEPfB2dmtYaquurkyGyMEAUu51R+eG2EerSS9nS8GGMniNhF9FzyqDY7eSOCt+fQ8Gw3vVguLBOjRh2ZtOxYrcz/gvhile/nomOjhbIC//N0dF7z2xym4Xnn3+eiy++uNN3mzZt4pFHHmHJkiUjZtgputQcDwnNzc3k5OTQ1NQ0Ijl2Vz36Hn//9Aj3Xz6Ty+aUDvvvCcPH7LvXctwTYO3Nn2VyUTb+kJ/XD7yOP+Tnnzvg8Q0qU0p0li/uuFSdNifnlp2L02atPJUTnav+8C5/33GU+y87hYtnF3bT89QSnRtFzynDt5/azLPVh/n8aRrnnAz/97GwL+X+r2q4Ir4Fs+m45riHM3/+OnYVHviaxvPvKaz/QOGck3W+OG9wc9Pr9bJnzx7Gjx+P2+22VCg2FkVRePbZZzu1RPv44485/fTTOXr0aDQ/TtM0qqqqOPvss5k7dy7/9m//RltbWyfHUixdz08s/bExxN1jUTw+WVIsVchw2TnuCUTD606bk4UVCwFoPLIP+IiK3CIuqjwtiVIKQ0FOevgh2OQN9qDnYi6qnJNECYWhZGJBNnAYp1bGrLyJwBtkuuxcNnVhskXrkTFZ4ShBUIPPFi/kpdAHQB3nTjiZiyorhvS3wvlk5lszdyC88MILnH/++Z0MsoceeoijR49y9913s3//fgKBAJ988gkzZswYVllMFYoVEkeWFEsdjHB6my/U7W9tET1nSMg9JTDWCDVWmTBo9YqeU5GK0RkA7DnaxoEGDwBleenJFKlPXHYbBRHjbl+Dh33HwnKXjza33Mnm+eefZ+nSpdF/Hzx4kB/84AesXLmSjIwMJk2ahMvlGpFwrNxFLIqxpFiGeOwsj/EwN4z1WNp8kkuZSmSnhUMwTV0MuzbxwKck4/M7DLv9EcNuXF5aMkVKiIr8DOpbfOw+0sreY20AlEeM1BOV1tZWdu7s6N+3Z88etmzZQl5eHm63m/fff58XXujobfcf//EfLFq0iCVLwjmLdrudadOmiWEn9Ix4clKHdGf4Yd4Wx7BrFT2nFDkRw67Z28VjZxh2btFzKlGRn46iQKMnwPv7wsUHZaPM7/kaPzqD9/Y08Pr2I3gDGm6HyjiTexqHm/fff59zzz03+u9bbrkFgKuvvprPfvazVFVVkZ+fD8CLL77Ia6+9xscff9xpHzNmzBDDTuiZtkhVbIaEYi1Plls8dicK2e6IYdeDx04M+NQi3WlnSmEWn9S28Ld/HQJgcuHwLzk5WMrzw0acIfP04mxsamrkwg2Uc845p8f1bS+++OJO1bCf//znOX78eLdxjz/e+5JiQ4Xk2FmQYEjDGwgvKSYPAutjPOxbunhxoCPvLsMpIbpUIOqxa+9sxLeKAZ+ynFo+qtO/Ty7JSZIkiTOzNLfzv8ty444Twpx55pksW7Ys2WJEEcPOgngCHUn26fLAtzzZ0fCchGJTney0SPFEFyPeyLkzDD8hdThrUn70/0dnOJlSZH6P3ZzyUThj1iE/Z0pBEqUxP7feeitlZWXJFiOKGHYWxAjb2FUFlywnZnl6qpQECcWmGjk9FE8Y/84Wwy7l+Ny0QqYXh/uO3XBOpSVCmm6Hjf8zdxwAU4uy+Ezl6CRLJPQHeVpYkJaIZyfLbR9wg0XBPGT3kFAP4rFLNXrKsYsadm4x7FINh03lmW/Op+Z4OxMLMpMtTsLc9fnpLJ5RzNTiLOw2cSBYCXlaWBAjFytLHgIpQcfDPk7xhF+qJVMJw2PX5g8RCGk4Ig9MCcWmNm6HzVJGHYCqKlSNz0u2GMIAEDPcgjTHeOwE69NT3hV0FE9IKDY1iL1mDc97SNOj/y+GnSAIg0UMOwvSIoZdSmF47LrmXYGEYlMNu00lK6LL4x4/0LkaWgw7QRAGixh2FkRCsalFNMeui2EXCGn4g+G2NpnSrzBlyI8s13SkxQd0GPRpDhtOKYYSBGGQyF3EgojHLrXIiWl3EtsAM3YlClk6LnUwFlmv72LYibdOEIShQAw7CxL12El4LiUwQrEhTY+uAQwdBrzLrkpVWgphLLBe3+wFxLATBGFokaeFBenw2MmDIBVwO1QctnDbmtgCimhFrBjwKUVBlhvoHooVw04QhKFAnhgWREKxqYWiKGS7HRxr89PcHqQ4suKQrB+amhRkdw7FNrSFiyhGZYhhJwg9ofn9tL72Grrf3+MYxekk87zzUJ3OIf/9n/70p3z/+9/v9v1//dd/cfPNNw/57w0GeWJYECmeSD2y0yKGXYzHzuhrJ56c1CIaim0Jh2KPRgy8/ExX0mQSBLPTXr2Fgzd/u89x41atImNu1ZD//k033cTXvva16L/vuusu1q5dy2WXXTbkvzVYJBRrQaSPXephLCvW5Okw7DqWmRI9pxJGKLa+OWzQHWkNeyCMogpBELqTPudUHKWl0NNqS4qCo6yM9DmnDsvvZ2VlUVRURFFREStXrmTt2rVs2LCB0tJSvvCFLzBq1CjTGHli2FkQCcWmHvGWFZPcq9Skayj2aKt47AShLxS7nTE3LYeYzgGd0HXG3LQcxT68z8W77rqLJ554gg0bNlBRUQHAt771LR5//PFh/d3+IIadBZFQbOoRbw3RZjHsUhIjFNvUHqDdHxLDThASJHvJkvheu4i3Lnvx4mH9/RUrVvD44493MuoAzjnnHLKysob1t/uDGHYWxPDYZYvHLmUwwq2N7XFCsWLApxQ5aY7otbu/wRM17MZkDX3CtyCkEj167UbAW7dixQpWrVrVzagzI2LYWQxd16PLTInHLnUYlR5+qB9v66j46sixEz2nEoqiUJGfAcCeo63URXLtxmS6kymWIFiCbl67EfDW/eQnP+Hhhx/mz3/+M263m9raWmpra/H5fMP2m4NBDDuL4fGHCGnhtxXJsUsd8jLCht2xGMPOyLcTwy71KB8dNuze3dOAP6hhUxWKc8WwE4S+6Oa1G2Zvna7r3HfffRw5coR58+ZRXFwc/XzwwQfD8puDRSwDi2F4ceyqQrpTlpmyMrF9mdKOKIBK/b5DNL1QA8CxA+HvsuQqTTkqRqcD8OaOowCU5KbhkNVFBCEhspcs4chDvyZQUzPs3jpFUWhqahq2/Q8HciexGMc9YY9ObroTpaeyb8ESGH2ZDt16G/qq3wNQv/8wh269jUO33sb+I7UAbN2xNpliCsPA+Egodmd9KwDlEUNPEIS+iXrtYEQqYftiwYIFXH755bz88suUlpaycePGpMojvgCL0RjpczYqXcJzVsfoyxQ4eJAcXxsATa5MAEIKNKS7IQTr/G9xm3YNdlUu11RhVllup39PLjRPRZ0gWIHsiy/GOWEC7pNPTrYovPrqq8kWoRPypBhiQkGNUFAbtv03tPhQdchzO4b1d4SRQCXvxuUc/t73yQq0o+rQ6sggpNh46yQFTUtH1eFYew0v73yFJROWJFtgYYgYl5vGmHRnNKdyTmmuXM9CyhMKaui6Hv0MFsOoG4p9mQHjvMSzI/pzfxDDboipXrePzPThe/uurWniDK+dygaNTa/sHbbfEUYGXT2J4zMux9/SxhleO2Dn0wmf58MpGme0hr13zvozWP/cFgqmTkNVJHsiVfhydi7vHWsg3Wkje6+HTQf2JlskQRhe7CGcBSHaWwJoPrmXdcXnD+BvD7H1zYMQ7JxD3+ppSXg/cmYthi8QAiDNIYUTqYCiqqRXVWHTQzi0cBubPWOctLmMULsOSoBmfzM7GncmT1BhyDljQh4XnFTIZaeV4pTCCUEQhgjx2A0xs88vJzs7e9j2v+bldt45GGTGyTnMWVgxbL8jjBz6+aXsXv0gO/SZ1LpHc6CkmsbMAG1t81FsLWSWrkVBoS5tG88ufFZy7VKI05MtgCCMIF6vl33795KW5cDtlobcXVG9Gs40G5M+W4Lb3bn9UXNzc8L7kSfEEGOzq9jsw/f2fdwbQFNgVKZrWH9HGEHsTgpv+iZZLx3iUOZojqSno+h+NAVURxuaGvbSHvDsZ+2BNVxUeVGSBRYEQeg/NruKoijRj9AZ47zEsyP687wXy8BiSFVsapK9ZAmj1MhyYoEs9FA4v06xdeRVKCj8ZstvCEZCtoIgCILQFTHsLIbRxy4nTdzYqYRit5M+aTQAWjAXPRgx7Oxt0TE6OjWtNVTXVydFRkEQBMH8SCjWYhgeO2MJKiF1OPXU03htzU5OGXUOuRnwaj2cOW4mX5x3SnSM0+Zk5piZyRNSEARBMDVi2FmM+mYvAGOyXEmWRBhqyvPCbXLU4Giy1TTgIHNLp3FRZWVyBRMEQRAsgxh2FqLNF6TNH06kLxDDLuUYm5sGwMHG9uh3paPSkiWOIAiCYEHEsLMQ9S0+ADKcNjJcorpUoyRi2NU2e/GHwl3GxbATBEEQ+oMUT1gIIwxbkO3uY6RgRQqyXKQ5bIQ0nSMRI750lCwOLwiC0BVd1/no6EcjtpzYT3/6006tWozPgw8+OCK/3x/EsLMQdZGHvYRhUxNVVZhW3LEcXZbLTn6mFMkIgiB05cXdL7LspWW8uPvFEfm9m266icOHD0c/X//61ykvL+eyyy4bkd/vD2LYWQjx2KU+J43Nif7/KWU50sRTEAShC0EtyMotKwFGrLdnVlYWRUVFFBUVsXLlStauXcuGDRvQdZ1zzjmH6dOnc8opp/DXv/512GXpCzHsLMS+Yx4AxuVJ3lWqsmB6YfT/PzMxP4mSCIIgmJNX9rzCwdaDANS01vDKnldG7LfvuusunnjiCTZs2EBFRQV2u50HH3yQbdu2sXbtWm6++Wba2tr63tEwIoadhdh7LDxZyvMykiyJMFx8dmI+1545ns+fUszV8yqSLY4gCIKpMLx1CuFoxkiuyLNixQoef/zxqFEHUFxczKxZswAoKioiPz+fhoaGYZelN6S00kLsbwh77MpHS0J9qqKqCj/4/PRkiyEIgmBKYr110LEizyt7XhnWdbRXrFjBqlWrOhl1Xdm0aROhUIiysrJhkyMRxGNnEZraA9FQ7MSCzCRLIwiCIAgjS1dvncFwe+1+8pOf8PDDD/PnP/8Zt9tNbW0ttbW1+Hy+6JiGhgauuuoq/vu//3tYZOgPYthZhE37wq7dcXnpjM6UqlhBEAThxMLw1ul0bnES67UbanRd57777uPIkSPMmzeP4uLi6OeDDz4AwOfzcckll3D77bczf/78IZehv4hhZxH+9N4BAM6bWpBkSQRBEARhZOnJW2cwXF47RVFoampC1/Vun9NPPx1d1/nqV7/Keeedx1e+8pUh/e2BIoadRbhmfgULTyrk384Yl2xRBEEQBGFEqa6vjuutMzC8dtX11SMq19tvv81TTz3Fc889x6xZs5g1axYffvjhiMrQFSmesAjzJ+YzX9pfCIIgCCcgM8fM5P6z78cf8vc4xmlzMnPMzBGUCs4880w0TRvR3+wLMewEQRAEQTA1TpuThRULky2GJZBQrCAIgiAIQooghp0gCIIgCEKKIIadIAiCIAhCiiCGnSAIgiAIQooghp0gCIIgCCOGrsdvWXKiM1TnRQw7QRAEQRCGHYfDAYDH40myJObEOC/GeRoo0u5EEARBEIRhx2azkZubS319PQDp6ekoSvyVJE4kdF3H4/FQX19Pbm4uNpttUPsTw04QBEEQhBGhqKgIIGrcCR3k5uZGz89gEMNOEARBEIQRQVEUiouLKSgoIBAIJFsc0+BwOAbtqTMQw04QBEEQhBHFZrMNmSEjdEaKJwRBEARBEFIEMewEQRAEQRBSBDHsBEEQBEEQUgTJsRsijMaCzc3NSZZEEARBEIRUwrAtEmliLIbdENHS0gJAWVlZkiURBEEQBCEVaWlpIScnp9cxii5rewwJmqZx6NAhsrKyhqXhYnNzM2VlZRw4cIDs7Owh379VkPMg58BAzoOcAwM5D3IOILXPga7rtLS0MHbsWFS19yw68dgNEaqqUlpaOuy/k52dnXITdiDIeZBzYCDnQc6BgZwHOQeQuuegL0+dgRRPCIIgCIIgpAhi2AmCIAiCIKQIYthZBJfLxYoVK3C5XMkWJanIeZBzYCDnQc6BgZwHOQcg58BAiicEQRAEQRBSBPHYCYIgCIIgpAhi2AmCIAiCIKQIYtgJgiAIgiCkCGLYmYiVK1dSUVGB2+1m7ty5vPfee72O/+tf/8rUqVNxu93MmDGDl19+eYQkHR7uueceTj/9dLKysigoKOCSSy5h+/btvW7z2GOPoShKp4/b7R4hiYeeH/7wh92OZ+rUqb1uk2rzAKCioqLbeVAUhRtvvDHu+FSYB3//+9+56KKLGDt2LIqi8Nxzz3X6u67r3HXXXRQXF5OWlsaCBQvYsWNHn/vt730l2fR2HgKBALfddhszZswgIyODsWPHctVVV3Ho0KFe9zmQ6yqZ9DUXvvrVr3Y7ngsvvLDP/abSXADi3iMUReG+++7rcZ9WmwsDQQw7k/DUU09xyy23sGLFCjZv3szMmTNZuHAh9fX1ccf/4x//YNmyZVx77bVUV1dzySWXcMkll/DRRx+NsORDxxtvvMGNN97IO++8w7p16wgEAlxwwQW0tbX1ul12djaHDx+Ofvbt2zdCEg8PJ510Uqfjeeutt3ocm4rzAOCf//xnp3Owbt06AC6//PIet7H6PGhra2PmzJmsXLky7t/vvfdefvWrX/HII4/w7rvvkpGRwcKFC/F6vT3us7/3FTPQ23nweDxs3ryZH/zgB2zevJlnnnmG7du3c/HFF/e53/5cV8mmr7kAcOGFF3Y6nj/96U+97jPV5gLQ6fgPHz7Mo48+iqIofPGLX+x1v1aaCwNCF0xBVVWVfuONN0b/HQqF9LFjx+r33HNP3PFXXHGFvmTJkk7fzZ07V//3f//3YZVzJKmvr9cB/Y033uhxzB//+Ec9Jydn5IQaZlasWKHPnDkz4fEnwjzQdV3/1re+pVdWVuqapsX9e6rNA0B/9tlno//WNE0vKirS77vvvuh3jY2Nusvl0v/0pz/1uJ/+3lfMRtfzEI/33ntPB/R9+/b1OKa/15WZiHcOrr76an3p0qX92s+JMBeWLl2qn3feeb2OsfJcSBTx2JkAv9/Ppk2bWLBgQfQ7VVVZsGABGzdujLvNxo0bO40HWLhwYY/jrUhTUxMAeXl5vY5rbW2lvLycsrIyli5dytatW0dCvGFjx44djB07lgkTJvDlL3+Z/fv39zj2RJgHfr+fJ598kq997Wu9rsOcavMglj179lBbW9tJ1zk5OcydO7dHXQ/kvmJFmpqaUBSF3NzcXsf157qyAhs2bKCgoIApU6Zwww03cOzYsR7Hnghzoa6ujpdeeolrr722z7GpNhe6IoadCTh69CihUIjCwsJO3xcWFlJbWxt3m9ra2n6NtxqapnHzzTfzmc98hpNPPrnHcVOmTOHRRx/l+eef58knn0TTNObPn09NTc0ISjt0zJ07l8cee4zVq1fz8MMPs2fPHj772c/S0tISd3yqzwOA5557jsbGRr761a/2OCbV5kFXDH32R9cDua9YDa/Xy2233cayZct6XRu0v9eV2bnwwgt5/PHHWb9+PT//+c954403WLRoEaFQKO74E2EurFq1iqysLC699NJex6XaXIiHPdkCCEI8brzxRj766KM+cx/mzZvHvHnzov+eP38+06ZN47e//S0//vGPh1vMIWfRokXR/z/llFOYO3cu5eXl/OUvf0noTTQV+cMf/sCiRYsYO3Zsj2NSbR4IfRMIBLjiiivQdZ2HH36417Gpdl196Utfiv7/jBkzOOWUU6isrGTDhg187nOfS6JkyePRRx/ly1/+cp9FU6k2F+IhHjsTkJ+fj81mo66urtP3dXV1FBUVxd2mqKioX+OtxPLly3nxxRd5/fXXKS0t7de2DoeD2bNns3PnzmGSbmTJzc1l8uTJPR5PKs8DgH379vHqq69y3XXX9Wu7VJsHhj77o+uB3FesgmHU7du3j3Xr1vXqrYtHX9eV1ZgwYQL5+fk9Hk8qzwWAN998k+3bt/f7PgGpNxdADDtT4HQ6mTNnDuvXr49+p2ka69ev7+SFiGXevHmdxgOsW7eux/FWQNd1li9fzrPPPstrr73G+PHj+72PUCjEhx9+SHFx8TBIOPK0traya9euHo8nFedBLH/84x8pKChgyZIl/dou1ebB+PHjKSoq6qTr5uZm3n333R51PZD7ihUwjLodO3bw6quvMnr06H7vo6/rymrU1NRw7NixHo8nVeeCwR/+8AfmzJnDzJkz+71tqs0FQKpizcKf//xn3eVy6Y899pi+bds2/frrr9dzc3P12tpaXdd1/Stf+Yp+++23R8e//fbbut1u1++//379448/1lesWKE7HA79ww8/TNYhDJobbrhBz8nJ0Tds2KAfPnw4+vF4PNExXc/Dj370I33NmjX6rl279E2bNulf+tKXdLfbrW/dujUZhzBovvOd7+gbNmzQ9+zZo7/99tv6ggUL9Pz8fL2+vl7X9RNjHhiEQiF93Lhx+m233dbtb6k4D1paWvTq6mq9urpaB/QHHnhAr66ujlZ7/uxnP9Nzc3P1559/Xv/ggw/0pUuX6uPHj9fb29uj+zjvvPP0hx56KPrvvu4rZqS38+D3+/WLL75YLy0t1bds2dLpPuHz+aL76Hoe+rquzEZv56ClpUX/v//3/+obN27U9+zZo7/66qv6qaeeqk+aNEn3er3RfaT6XDBoamrS09PT9YcffjjuPqw+FwaCGHYm4qGHHtLHjRunO51OvaqqSn/nnXeifzv77LP1q6++utP4v/zlL/rkyZN1p9Opn3TSSfpLL700whIPLUDczx//+MfomK7n4eabb46es8LCQn3x4sX65s2bR174IeLKK6/Ui4uLdafTqZeUlOhXXnmlvnPnzujfT4R5YLBmzRod0Ldv397tb6k4D15//fW48984Tk3T9B/84Ad6YWGh7nK59M997nPdzk15ebm+YsWKTt/1dl8xI72dhz179vR4n3j99dej++h6Hvq6rsxGb+fA4/HoF1xwgT5mzBjd4XDo5eXl+te//vVuBlqqzwWD3/72t3paWpre2NgYdx9WnwsDQdF1XR9Wl6AgCIIgCIIwIkiOnSAIgiAIQooghp0gCIIgCEKKIIadIAiCIAhCiiCGnSAIgiAIQooghp0gCIIgCEKKIIadIAiCIAhCiiCGnSAIgiAIQooghp0gCIIgCEKKIIadIAiCIAhCiiCGnSAIgiAIQooghp0gCEKKM3PmTBRF6fapra1NtmiCIAwxYtgJgiCMACtXrqSiogK3283cuXN57733hmWbeKxbt47Dhw+zfv16Jk6cSFZWFnfddRdFRUUD2p8gCOZFDDtBEIRh5qmnnuKWW25hxYoVbN68mZkzZ7Jw4ULq6+uHdJueKCgo4IUXXmDx4sVUVVWxY8cOfvSjHw3mkARBMCmKrut6soUQBEFIFu+99x633nor7777LuXl5Tz55JNs3ryZF198kRdeeGFIfmPu3Lmcfvrp/PrXvwZA0zTKysq46aabuP3224dsm5548MEHuf322/nv//5vrrrqqsEdjCAIpkY8doIgnLC88847nH322SxZsoQPPviAadOmcffdd/Pzn/+8m0frpz/9KZmZmb1+9u/f3+03/H4/mzZtYsGCBdHvVFVlwYIFbNy4Ma5cA9mmJzZu3Mh3v/tdnnrqKTHqBOEEwJ5sAQRBEJLFLbfcwuWXX853v/tdAJYtW8ayZctYunQps2fP7jT2G9/4BldccUWv+xs7dmy3744ePUooFKKwsLDT94WFhXzyySdx9zOQbXriP/7jP7jhhhtYunRpv7YTBMGaiGEnCMIJSU1NDRs3buT++++Pfme329F1PW7+WV5eHnl5eSMp4qDZsWMH77//Ps8880yyRREEYYSQUKwgCCckH3/8MQCnnnpq9Lvt27dTVVXFjBkzuo0faCg2Pz8fm81GXV1dp+/r6up6rEodyDbx2LhxI/n5+ZSVlSW8jSAI1kYMO0EQTkiampqw2WwoigJAQ0MD999/P+np6XHHf+Mb32DLli29fuKFYp1OJ3PmzGH9+vXR7zRNY/369cybNy/ubw1km3gEAgF8Ph9erzfhbQRBsDYSihUE4YRk1qxZhEIh7r33Xi6//HK+9a1vUVFRwbZt29i3bx/l5eWdxg8mFHvLLbdw9dVXc9ppp1FVVcWDDz5IW1sb11xzTXTMr3/9a5599tmoMZfINn1xzjnn4PV6ueaaa/jOd77DlClTyMrKGtAxCIJgDcRjJwjCCcnEiRO5++67+eUvf8ns2bMZO3Ysa9eupaSkhAsvvHBIf+vKK6/k/vvv56677mLWrFls2bKF1atXdyqOOHr0KLt27erXNo899ljU4xiPyspKnn/+eXbv3s1nP/tZcnJy+N73vjekxyYIgrmQPnaCIAgWZcWKFbzxxhts2LAhofErV67kP//zPzl06NDwCiYIQtKQUKwgCIJFeeWVV6INjPuisbGR999/n6qqqmGWShCEZCKGnSAIgkXpz9qx//Vf/8XBgwd57LHHhk8gQRCSjoRiBUEQBEEQUgQpnhAEQRAEQUgRxLATBEEQBEFIEcSwEwRBEARBSBHEsBMEQRAEQUgRxLATBEEQBEFIEcSwEwRBEARBSBHEsBMEQRAEQUgRxLATBEEQBEFIEcSwEwRBEARBSBHEsBMEQRAEQUgRxLATBEEQBEFIEf4/BF7SU+Fhl2oAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnYAAAHWCAYAAAD6oMSKAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydeZwcZZ3/31V9zfTck0wm9w0h4QhJMCQcEhAIIUbWA0XdBUF0EcJuZHdxo/7EYxUvPHYBUVFBdHd1RRAlIYRbJOEIGa4kkJB7MpnJMTM9PX131e+P6qe6OpmjZ6br6tTn9coLpru66vnU9zm+z/d6JFVVVTx48ODBgwcPHjy4HrLdDfDgwYMHDx48ePBQGniKnQcPHjx48ODBQ5nAU+w8ePDgwYMHDx7KBJ5i58GDBw8ePHjwUCbwFDsPHjx48ODBg4cygafYefDgwYMHDx48lAk8xc6DBw8ePHjw4KFM4Cl2Hjx48ODBgwcPZQJPsfPgwYMHDx48eCgTeIqdBw8ePHjw4MFDmcBT7Dx48ODBgwcPHsoEnmLnwcMJjt/85jdIktTnv8suu6zP39x3331IksTu3butbewQ4ZZ2fvWrX0WSJA4fPlz0b7773e9yyimnoCiK/tnUqVP56le/OqK29HWPe+65h8mTJ5NMJkd0b6tg1nuAvt87DD6O3PYOE4kEgUCA+vr6Eb9LD9bCU+w8OB5icX7llVeG/NsXXniBr371q3R1dZW+YTbADD5nnHEGDzzwAA888AD33XcfCxYsABhQsfNgLyKRCN/5znf4whe+gCwPPo2vW7fuOGWjtraWhQsX8vDDDw/6+0996lOkUil++tOflqD1/cPM8TrSdwADv/fBxpFV7xAgGo1y2223cdlll9HY2IgkSdx33339Xq8oCk1NTXz3u9/VP8tkMtx7771MmTKFr3/963R0dJjebg+lgafYeShrvPDCC3zta18rK8Wu1HzOOOMM/v7v/54lS5bw05/+lE2bNnHeeeexadMmVq1a1edv/uEf/oF4PM6UKVNK1g4z4JZ2DhW//OUvyWQyfPzjHy/q+tdeew2A//zP/+SBBx7g/vvv5wtf+AJ79uzhyiuvZNu2bQP+vqKigmuuuYYf/OAHqKo64vb3BzPH60jfAQz83gcbR1a9Q4DDhw/z9a9/na1btzJ37txBr3/ppZc4fPgwy5cv1z+rrq7mmmuu4dZbb0VVVV5//XUzm+yhhPDb3QAPHtyI3t5eqqqq7G5GyfDmm29y6aWXcuTIEX784x9z8803I0lSv9f7fD58Pp+FLRweSt1Op8j9V7/6FR/4wAeoqKgo6vrXX3+d+vp6br755oLPR48ezQ033EBLSwunnHLKgPf46Ec/yne/+12efvppLrroomG33S6U4h0M9t4HG0dWvcNx48bR1tbG2LFjeeWVV3jPe94z4PVr1qxhypQpnHrqqcd9Jz7bunUrF198sSnt9VBaeBY7D66DiEfasWMHn/rUp6ivr6euro5rr72WWCxWcN2//du/ATBt2jTd/SLirVpbW7nuuutobm4mFApx6qmn8stf/rLf523ZsoVPfOITNDQ0cN555wHQ09PDqlWrmDp1KqFQiDFjxnDJJZfw6quv6r8v9jmtra18+tOfZvz48YRCIaZNm8bnPvc5UqnUoHyKaUd/2L17NxdffDHJZJJnn32Wf/qnfxpQqYO+Y9eKlctAKOZdieds27aNj370o9TW1jJq1Cj++Z//mUQiMWg7n3nmGc466ywqKiqYMWMGP/3pT/V79vWcvuS+Z88ebrzxRmbNmkVlZSWjRo3iyiuvPC6WbyhtBejq6hr03e3atYvXX399SIvsa6+9xvz584/7/ODBgwDMnj170HssWLCAxsZG/vSnPw167XD642DjdaQY6TsY7L0XM46G8g5HglAoxNixY4u+/tFHHy2w1hkh+umWLVtK0jYP5sOz2HlwLT760Y8ybdo0br/9dl599VXuvfdexowZw3e+8x0APvShD/HOO+/wP//zP/zwhz9k9OjRADQ1NdHe3s6iRYuQJImVK1fS1NTE2rVr+fSnP00kEunTBXnllVdy0kkn8a1vfUt3pdxwww384Q9/YOXKlcyZM4cjR47w/PPPs3XrVubPn1/0cw4cOMDChQvp6uris5/9LKeccgqtra384Q9/IBaLEQwGB+Tz2c9+dsB29AdFUfjEJz5Bb28vzz33HPPmzTNdLv1hqDL56Ec/ytSpU7n99tvZuHEj//mf/0lnZye//vWv+33G5s2bueyyyxg3bhxf+9rXyGazfP3rX6epqanf3/Ql95dffpkXXniBq666iokTJ7J7925+8pOfsGTJErZs2UI4HB5WW4t5dy+88ALAgHI1IpVK8fbbb3PBBRfoyRmdnZ2sW7eO73znO6xcubIod5145t/+9rdBrxtsXPSFgfr3SFGKdzDQex/KOBrsHabTabq7u4uhRWNjY1ExlgPh4MGDbN68ma9//et9fv8v//IvgGax8+ASqB48OBy/+tWvVEB9+eWXVVVV1dtuu00F1Ouuu67gug9+8IPqqFGjCj773ve+pwLqrl27Cj7/9Kc/rY4bN049fPhwwedXXXWVWldXp8ZiMf0z8byPf/zjx7Wtrq5Ovemmm/pte7HPufrqq1VZlnWORiiKMiifwdrRH+6//34VUH/5y18O6XdCJsZ2DEUufaHYdyWe84EPfKDguhtvvFEF1Ndee63fdq5YsUINh8Nqa2urfs327dtVv9+vHjsdDiR3Y/8Q2LBhgwqov/71r4+7x2BtHcq7+/KXv6wCak9Pz3FtmDJlinrbbbcVfLZ582YVOO5fIBBQf/SjHxV1D4HPfvazamVlZZ/fGTHc/thf/x4qjuUw1HfQ1z0Geu9DGUeDvcOnn366z7b29a+Y9/Tyyy+rgPqrX/2qz+9/8YtfqJWVlX326QceeEAF1DFjxqhjxowZ9FkenAHPFevBtbjhhhsK/j7//PM5cuQIkUhkwN+pqsqDDz7IihUrUFWVw4cP6/+WLl1Kd3d3ny6jY58HUF9fz4svvsiBAweG/RxFUXj44YdZsWIFZ5111nH3GcwtOlg7BsKdd97J6aefzrXXXjuk3w2E4chlODK56aabCv4WsVNr1qzp8xnZbJYnnniCv/u7v2P8+PH65zNnzmTZsmVF8wGorKzU/z+dTnPkyBFmzpxJfX19n32n2LYW8+6OHDmC3++nurq63zYbIYLe77//ftavX8/69ev5zW9+w5lnnskXvvAFNmzYUNR9ABoaGojH44O61ofbH81CKd7BQO99KONosHc4d+5cvY2D/RuKu7U/rFmzhgsvvLCgT4OWWfuFL3yBZcuWcfXVV9PR0cHRo0dH/DwP5sNzxXpwLSZPnlzwd0NDA6C5WGpra/v93aFDh+jq6uJnP/sZP/vZz/q8pq/U/mnTph332Xe/+12uueYaJk2axIIFC7j88su5+uqrmT59etHPOXToEJFIhNNOO63fNg+GgdrRHw4fPswrr7zC7bffPuzn9oXhyGU4MjnppJMK/p4xYwayLPcbk9XR0UE8HmfmzJnHfdfXZwJ9yT0ej3P77bfzq1/9itbW1oIsx77caMW2dbh9eiC89tpr+P1+Pv7xjxMIBPTPlyxZwsSJE7nzzjtZvHhxUfcSPAfbbAynP5qJUr6DYzHUcTTYO2xoaLAsSSGdTrN+/fo+2/6tb32Lw4cP8+Mf/5jnn38e0OLsRJypB+fCU+w8uBb9ZTuqg5QSEIVF//7v/55rrrmmz2vOOOOM4z47dkcLWkzU+eefz0MPPcTjjz/O9773Pb7zne/wxz/+UY+zGew5g7W3GAzUjv6sUVu3bkVV1ZLE1RkxHLkMVyZGFGPZHA76kvvNN9/Mr371K1atWsXixYupq6tDkiSuuuqq4wrX9oX+2lrMuxs1ahSZTIaenh5qamoGfdbrr7/OjBkzChQagAkTJhAOh9m/f/+g9xDo7OwkHA73+U6MGE5/NBOleAf9vfehjqPB3mEqlSraMtbU1DSirO/nn3+eSCTC5ZdfXvD5u+++yw9+8AP+5V/+hZNOOonOzk5A4+opds6Hp9h5KGv0tYA2NTVRU1NDNpstyc543Lhx3Hjjjdx44410dHQwf/58vvnNb/Lss88W9RxFUaitreXNN98c9FkDKS/9taO/hbS3t3fQe1qF4chk+/btBda0HTt2oCgKU6dO7fP6MWPGUFFRwY4dO477rq/PBsIf/vAHrrnmGu644w79s0Qi0W/9taG2dSCIkhy7du0aVNkFTak555xzjvv80KFDxGKxIbnzdu3aVVQGLQy9P4J5fbEU76C/9z7UcTTYO3zhhRe48MILi77XcPqQwKOPPsqcOXOOu8ctt9xCU1MTX/rSl4B8xrCXGesOeDF2HsoaouaYccH1+Xx8+MMf5sEHH+xTmTp06FBR985ms8e53caMGcP48eNJJpNFP0eWZf7u7/6OP//5z32ermG01vTFZ7B29Acxmf/xj38cmKgFGI5M7rrrroK//+u//gugX8XB5/Nx8cUX8/DDDxfEfu3YsYO1a9cOub3HWiD/67/+i2w22+f1Q23rQBAuw2JOYjl48CAdHR19KhIi0/bDH/5w0c9+9dVX+1SQjCimP8ZiMbZt23bcEWp99e+Bri8GpXoH/b33oY6jwd6hlTF2a9asOa7Mybp163jkkUf4/ve/r8ujpqaGSZMmeZmxLoFnsfNQ1hDH+nzpS1/iqquuIhAIsGLFCr797W/z9NNPc/bZZ/OZz3yGOXPmcPToUV599VWeeOKJolwhPT09TJw4kY985CPMnTuX6upqnnjiCV5++WXdklPsc771rW/x+OOPc8EFF/DZz36W2bNn09bWxv/93//x/PPPU19f3y+f888/n1mzZg3Yjr5wyimnsHTpUu655x7a29u59NJLmTp1KhdddBHBYHAkr31YGKpMdu3axQc+8AEuu+wyNmzYwG9+8xs+8YlPDFi24qtf/SqPP/445557Lp/73OfIZrPceeednHbaabS0tBTd1ve///088MAD1NXVMWfOHDZs2MATTzzBqFGj+rx+OG3tD9OnT+e0007jiSee4LrrrhvwWnHaQkdHB7/5zW8ALSbs8ccfZ+3atVx11VVceeWVRT1306ZNHD16lCuuuGLA64oZFy+99BIXXnght912W8E5pP2N15dffrnP64tBqd5Bf+99KOOomHdYqhi7O++8k66uLn0T8+c//1l3Od98880cPXqUrVu38pOf/ET/TTqdZtWqVVx44YV87GMfK7jfnDlzPMXOLbA8D9eDhyGiv3Inhw4d6vO6Y0sAfOMb31AnTJigyrJc8H17e7t60003qZMmTVIDgYA6duxY9X3ve5/6s5/9rOD3/T0vmUyq//Zv/6bOnTtXrampUauqqtS5c+eqd999d8F1xT5nz5496tVXX602NTWpoVBInT59unrTTTepyWRyQD5vv/12Ue3oCz09Peq//uu/qjNmzFCDwaAKqMuWLRv0dwOVOylWLn2hmHclnrNlyxb1Ix/5iFpTU6M2NDSoK1euVOPx+KDPfvLJJ9V58+apwWBQnTFjhnrvvfeq//Iv/6JWVFQU/LY/Pqqqqp2dneq1116rjh49Wq2urlaXLl2qbtu2TZ0yZYp6zTXXDLmtQ313P/jBD9Tq6urjSlQcW6Lju9/97nElMmpqatRzzz1X/cUvflFQSqe/ewh84QtfUCdPntznb4woZlyIkh59Paev8TrQ9X3ByGE476C/99Dfey92HBX7DkuBKVOmDFgm5c4771Tr6urUdDpdwM/v96tvvvnmcfe75ZZbVEmS+iz34sFZ8BQ7Dx486Pj3f/93FVCPHj1qd1P6xUAK13BxxRVXqDNnzizZ/QTMaKuqqmpXV5fa2Nio3nvvvQWfD1SDrlj0dY9EIqGOHTu235pvToNZ76G/934s+hpHTnuHy5YtU6+88kq7m+HBBHgxdh48eNDR1NREZWXlcScnlBPi8XjB39u3b2fNmjUsWbLEngYNA3V1ddx6661873vfKyoLd6T41a9+RSAQ6LOm34mEYt97X+PIae9wyZIlfP7zn7e7GR5MgKfYefDgAdAC+r/61a9y9dVXEwqF7G6OaZg+fTqrV6/m5z//OV/+8pdZtGgRwWCQW2+91e6mDQlf+MIX2LZt24iPlCoGN9xwA3v37i3rflEsBnvv/Y0jp73DW2+9ddi1+zw4G17yhAcPHgD49a9/zSc+8Ql+8IMf2N0UU3HZZZfxP//zPxw8eJBQKMTixYv51re+dVwRYQ8ehoMTZRx5cC4kVS1BdVQPHjx48ODBgwcPtsNzxXrw4MGDBw8ePJQJPMXOgwcPHjx48OChTODF2BUBRVE4cOAANTU1jjh+yYMHDx48ePBw4kBVVXp6ehg/fvygCVOeYlcEDhw4wKRJk+xuhgcPHjx48ODhBMa+ffuYOHHigNd4il0RqKmpAbQXWltba3NrPHjw4MGDBw8nEiKRCJMmTdL1kYHgKXZFQLhfa2trPcXOgwcPHjx48GALigkHc1TyxHPPPceKFSsYP348kiTx8MMPD/qbZ555hvnz5xMKhZg5cyb33Xdfv9d++9vfRpIkVq1aVbI2e/DgwYMHDx48OAWOUux6e3uZO3cud911V1HX79q1i+XLl3PhhRfS0tLCqlWruP7661m3bt1x17788sv89Kc/5Ywzzih1sz148ODBgwcPHhwBR7lily1bxrJly4q+/p577mHatGnccccdAMyePZvnn3+eH/7whyxdulS/LhqN8slPfpKf//zn/Md//EfJ2+3BgwcPHjx48OAEOMpiN1Rs2LCBiy++uOCzpUuXsmHDhoLPbrrpJpYvX37ctf0hmUwSiUQK/nnw4MGDBw8ePDgdjrLYDRUHDx6kubm54LPm5mYikQjxeJzKykr+93//l1dffZWXX3656PvefvvtfO1rXyt1cz148ODBgwcPHkyFqy12g2Hfvn388z//M7/97W+pqKgo+nerV6+mu7tb/7dv3z4TW+nBgwcPHjx48FAauNpiN3bsWNrb2ws+a29vp7a2lsrKSjZt2kRHRwfz58/Xv89mszz33HPceeedJJNJfD7fcfcNhUKEQiHT2+/BgwcPHjx48FBKuFqxW7x4MWvWrCn4bP369SxevBiA973vfbzxxhsF31977bWccsopfOELX+hTqfPgwYMHDx48eHArHKXYRaNRduzYof+9a9cuWlpaaGxsZPLkyaxevZrW1lZ+/etfA3DDDTdw5513cuutt3Ldddfx1FNP8fvf/55HH30U0E6MOO200wqeUVVVxahRo4773IMHDx48ePDgwe1wVIzdK6+8wrx585g3bx4At9xyC/PmzeMrX/kKAG1tbezdu1e/ftq0aTz66KOsX7+euXPncscdd3DvvfcWlDrx4MGDBw8ePHg4USCpqqra3QinIxKJUFdXR3d3t3ekmAcPHjx48ODBUgxFD3GUxc6DBw8ePHjw4MHD8OEpdh48ePDgwYMHD2UCT7HzwK7Dvfz8uZ28eyhqd1M8mIwj0SRe9IUHDx48lC88xe4Ex8HuBFfc+TzfXLOVD939Age7E3Y3yVS8vPso1/7qJe56escJpeBksgr/+MArLPiPJ3j/fz1PZ2/K7iZ5MAHJTJZfPL+L29dspbUrbndzPJiE3mSG3728l+feOXRCzWMeioOn2J3guOvpHUQSGQC642l++bddNrfIPMRSGT73m008/fYhvrfubR59o83uJlmGX2/Yw7q3tGLebx2I8P3H37a5RdYgmcna3QRL8W//9zrf+MsWfvrcTq78yQueAl+GSKSzfPznG/nCg29w9S9f4ud/3Wl3kzw4DJ5idwIjnVX4y+sHALhm8RQAHtrcWrY7wDVvHORwNL/Q3fe33fY1xkJksgq/eF5T2JefMQ6AB1/dTySRtrNZpiKRzvLRn27gtNvW8asy3qwY8dKuozzy2gF8skRNhZ8D3QnufmbH4D/04Cr89sW9vL6/W//7++veoSNS3p4WD0ODp9idwNi48widsTSjq0P8+7LZVARkDvUkebu9x+6mmYLn3jkEwJULJiJJ8MqeTtq6y99d9cK7R2jtitNYFeSOK+cyvamKRFrhr+8ctrtppuE3G/fw0q6jpLMq3167jUM9SbubZDrue0FTYD961kT+8yqtFuhvX9xLPFXeVsu7nt7B/G+s5/a1W+1uiulQFJVf5jZpt3/odBZMaSCVVfjNxj02t8x8HOxOcOU9L/C+O55hy4GI3c1xNDzF7gTGxp1HALjg5CYqgz7OnjYKgL/tOGJns0yBqqq88K6myHxkwUROn1AH5N9BOeOJrZoLdumpzVQEfFw0awwAz7zdYWezTMUfX23V/z+ZUXh8y0EbW2M+oskMT23T5PnJs6ewZFYTExsqiaWy+ufliO3tPXxv3dsc7U3x02d38mKZj+fX9nfR2hWnKujjg/MmcHXO0/KX19vK1tMi8O21W3l5dyfvHurlyw+/MfgPTmB4it0JjJd3dQKwcFoDAPMna/99s7W739+4FYd6khyOppAlmDupnsXTNSV2w7vlvRCoqsqTW7WF/X2nNANw3kmjAdi0p9O2dpmJg90JtrRFkCT49HnTAHi6jJUbgOe3HyKRVpg6Ksyp42uRJIkVc8cD8Nhb5avU/t+m/QV//+GYv8sNj72pyfKi2blN2iljCPpkdh7uZXtH+VY1iCTS/OX1fEz0q3u72HW418YWORueYneCIpnJ0rK/C4CFOUvdqeO1atblaObedlBzL08dVUVFwMdZUxsBCmJVyhH7O+O0dsXxyxLnztQUurkT6wHYebiX7nj5xdm9sucoAKeNr9NjClv2dZW1RWPjTo3ze09uQpIkAC7MWWY3vHukbLmLjdnHF04G4MltHWXLFeCv2zWvwyVztE1aTUWAs6drc1k5b1L/tv0wGUVlelMV587U1qtytkSPFJ5id4Jie3uUVEahPhxg6qgwAKdO0BS7HYeiJNLlFZfzdk6xmzW2BsgrsTs6yo+rEa/u1axyp46vpTLoA6ChKsikxkoA3ipD6+ybrdrG5IyJdcwZV0vAJ3E4mirr8h8v7tIUu4XTGvXP5k6qI+SXORxNsqMMrTk9iTRvHdD6741LZhD0yxztTZWtJSeSSLP1oNa3FxnkfHbu/1/K9YFyxAvv5sOGzpmhbVA37y1Pj0Mp4Cl2JyiEBeuUsTX6Dn9sbQX14QBZRS27heCdXELIyc2aYjeuroKGcIBMGXI14tWcu3X+lIaCz0WM4ZsHyk+xE4v9aRPqqAj4OGWspsS/UabW2e5Ymm25Bd+o2IX8Pj284pUydLtvbetBUWFCfSWTGsPMnaj16XLkCtpYVlWYMirMmNoK/XPhcXlx19GytVaKeWre5Abd4/BGGW5KSwVPsTtBsa1NWwjEogcgSRLTRlcBsOdIzJZ2mYV9nRofwU+SJObkrHZvlaFyI/Dq3i4gHz8pMHOMpuCWo3XjrVwogbDKntRcDVC2J6u83tqVX/BrKgq+OyOn7JRjH9/eITZrmnzPnFQPlKcVGuCV3ZrCetaUxoLPz5hYl7NKJ8vSKp1VVLa1abI+dXytvindcyRWlqEkpYCn2J2gECVNTsm5JgWmjdIUn91HymvBFxPehIZK/bPZOaVWWC/LDclMli05Bf5Yi930nIL77qHyknN3LM3RXFHemWOqC/5brpbZrTkZzxlXe9x3p04Qil35xc1ub9fkeVLOCi+s8e+0l6echdXqzMn1BZ9XBHz6Rq0c46N3HY4ST2epDPiYOqqKunCAsTmL5c4y3ayNFJ5id4Jia24HdMoxi8EUodiVkSUnq6i0dWkFPCfU5xW76U3agl9OXI14t6OXrKJSVxlgfF2hJWd6kybnnWWm2O05qvEZUxMiHPQDMKNJWOzKi6uAsGbM7kuxy1ktt7ZFyCrl5aYTFjuhuAsFT3xebhBynjOu5rjvTtW9D+Wn2G3R16oafLIWNiQ8L+XocSgFPMXuBMTR3hSHo1rBVuHGEJg6WkukKCdXbHskQUZR8csSzYbYFDE57C4jrka83a5N8rOa83GUAoL74WiyrE6gELKckksIgvzC/+6haFnGIAmrbF+K3bRRVYSDPhJppewWQbEpEYr7STk5H46mdKttuaCzN8XB3OkSwjJphLDWir5QThAbbyFngGlNnmI3EPx2N8CD9RCDYXxdBeGgHyWVIvrUU6ipFKN6AHzsOXCE7kce0X8jBYNUX3QRcjBoT6NHgP25+LpxdRX4ZEnnO6onBfjYezjK4YcfIWDY5riZr4DIBD55bH5CNMq6KSBzKC3xxoNrOc2wVriZu1gEpowK61zrEikkZGKpLLse/DOjDLTczBUgmc6yo0NY7PJCNMp5ckBmW0rirTVP0WQIz3Iz93RWoT2n6Eyo8hF57DHUVIpxQZm2lMTrDz3GPIOe62aukHe3T2qopKYioH8u5DzlkDaXvbnjYMG8De7nvicXFjS5Mb9ZE6EkOz3Frk94it0JCH2g5Kwa8c0ttK76PABSqAaW3cahpMq+L6zGpyr67ybffz9VZy+0vsEjxF/eeQGQqajQFDzBVwVC7/8WSX+Qzd/4HhN7C4/Ycitfged2vgtIpHy7gdOBQlk3nX8Th0ZN461f/JbGA68X/Nat3J/f/TYgkZD2Ed+c0rmOuvTLHA7X8/r372RW176C37iVK8B9LWvIKDIVAbUgzMAo5+azPsm2ifN4/Q9rOHnHswW/dyv3g90JFBWQ0jy36VecvuoeAJrOvYG2ppm8dd/vaN7/asFv3MoV4MG3NgAyDbWF3gUh55pAJSz/Bm0piZ2r/x8V2UKLpZu5b27dD0gczW4DTgK0eqRQvmE0I4Xnij0BIdysYnCEF8wnMHEiSBJ1ySg+JYsiyRwN5SwAkkRg0iTCC+bb1eRhI6NkWPPOiwB0pLeRUTI6X0mSmBDVzo9trW7K/8jFfAUySkYv8fLikYfIKBmgUNZN8S4ADlXW53/oYu4ZJcMbbVp1+s1HHyc47wyda3NMq/HVHjaarNzLFTS+97c8pv0RbCer5usxGuVcjn189xGtb0uBLn4VXYs8aUKBnA9WlZecn9iunYN7IP2yPpYhL+eaTILapJZIsL96dP7HZcB9by5u9pm2P+jcx+c2MW3dCdva5mR4FrshIJtRyGaUwS90OPYciiKrMLk+nOMj03jTStq++CUkCZriETrCDRwKNzIqN1k03rQSBRlcxn/NzrX09ErIKiSVg6zZsZbl05frfCdFD7O7bgL7a8byno539N+5la/Ag9vWoiRrkYHOzFadt1HWTbFuZBU6wg0okk//rVu5r9m5llQ8jKxCd2YXa3ev57wc17HxLraqmmJXDlxB43u0W0ZWQZEPGmQMRjlPiB5BVqG1ekzZcH/snZeQVRmfv5sDkYO0XP8hTvvq7xnXexRZhfbwqLLhumbnWnqjVcgqxNSd/cp5UvQQW4PV7Ksey/RIu/57N3N/+J21KKlqZOBo+h2d+9jqELIKXdEUvfE0FQHfoPdyO4aie3iK3RCwef0eqsPHB666DfK2HhYl/NTtjrEpthsAVT6VztOvJBvp4exkgEOyn44JS6io7cBXW0tUmoO0dret7R4qFFXhiW0tvOfoyShJP/7uyTz5cAtjTpmNlOM7S2oknfCTHTWf3ZlKQHItXwFFVXj29XdYlDgNSU4RPHi+zluWZF3WE3z1LEr4qaydw+4padzMXVEVntjawtnR9wASwUPzePLhFppO/hjdp1/JTGk08YQfpUzkrPftI/PJJvz45cYCGUN+TNekJE3OoSnsnrKUcuDe/tIhFiUm4KMGf+ulvBCUqDn9SpqpYlHCT1X1rLLh+sS2Fs7uPhNV8RM8enK/cp6fDlOX8BMZdy67A2MpB+5Pv/E2ixKng5QhZJjHJEnm/HSQdFbh+UfepSHszvjBoSAaKz7b23PFnoDojmlZkHWV+SBcSZYJL1wIqIQzmnk75q/Q/l64EEl2X1fZ3rWDnlQElNygl5NEUhG2d+3Q+Valtfp20YDIlnUvX4HtXTuIJrXsT8kXA1SdN+RlHc5x7/WL2Cz3ct/etYNIIglIgKrLekdk5zFydj9XyPdtNZsLKPfFCmQMeTnXpjRXVtwfIi37KQfuiXQuy9uXQPTv9gWTy1LOkUQMVcxhvt5+5VyXk3MkWJX7xv3cowktvEDyxTHOYxJQU6FZ6XoSmf5vcoLCs9gNAfMumUJt7fElBdyE7niap5/fCj74yRUzqA7lu4B6yUR2PvYjnur2sbFpNM3pA6zIvsX0lbcj+d3VVTJKhtv+tJK2CW30JE5D9WWoHPs8gfBe2iu38NDSh/BdMpF9n3iIjRUnMyUZ51N7HycwYYIr+QoI3rvrTiKZmo2/7h0qx61HQtJ5+2U/6iUTiT37GzZWnE49WW5wMXfBeX+TRG9sMZK/m+qJj+uc/3jj/3Hgkw+ysWIWk9JJrnUxVzimb8fno/oyhMc/hb/yQIGMIT+m35TPIhoM8w9HXmZGbdD13HeELyNLhooxLxOo26zJuvotvvhMiK9XzEcO+Vi57wkqx49zPdf9o6G39zwkXw/Vkx47biyDJuddn3yEjRXT6Ugm+GSZ9PE9jRNIpE7DV72H8ITCeSxysIONO45wxSm1LFgw0e4mm45IpPhSNu6TuI3w+WV8fnfufgRauxMoEoyuDlJXdYz52h+k+eYbGfWzR1EkOFJRQ/PVN+KvcJ+Ze82769gf2wcyZJVqzZAT7CYrZ9gX28vj+9axYsYK5ly5HOU1aK9qQFYyNN/sTr4Cgnc6fTaKBIQOo8jartfIG3+QOdd8FOUVOFpZQxqY6FLuOmdlDooEciBSwHl925PM/tgKlBboqKxzvZwFX5Ug2Wyt1rcrOo7r20B+TD/WQSQU5lCojnNuvtb13LPZahQJ1GCnQdb7aL32I/heTpP2BegMVTG1DOSczpyBIoEvdKTvsQzgD3LmlZehtEBr1WikMunjmewsjXug6zju4xqmoEhHONiTdP26XAyGwrH834aHAogzUycZagIZUbt8OU1hzUXbVTea2ssvt6xtpUJGyXBXy11ISKhKABTNzSr5tEQQCYm7W+4mo2Q4+YqlAMQClSSnznAlX4EC3intYHA5kC/hYuQNMPGKy/WyCN3TT3El9wLOac2aLvvzO1vBecry9wEQD1SQnjLdlVyhkK+Sk7HkiyL5tPCJY2UM2phuVrXvj06YVh7cM1qss+TPxx1JSNzn28CojDbHdU8+qTy4prQsVynY/1gGmHXFZYDWx+NTy4O7mtHGtNTHmG6u05TWtu7yOx93pPAUuxMMB3Jnpo431LwyQvL7mbJCU3Z6xkxwpRl/c8dmWqOtqKiomVxxXikFsnbahorK/uh+NndspipcQYNfi0dLXfNZV/IVMPJW0jnFLnhE/97IG0AOBHQlXrnqH1zJvVDWuUUgkD8EXnDe3ruVap8mZ/W6f3QlVzhGximtpIcUOKp/f6yMITemZ00FIHrOha7nrigyKNrGVDYodhr3VmpyFajTH/iw67lqY1lT7GSDYteXnCsqQzQFtD6e+Ifry4S7GNN5xU5wT9ABoJ+i5CEPd0rew7BxoI8zU4/FlEuXwJa/0ok7zfhzm+by/Qu+TyqbYlc7/OBdaKwK8LXzv6VfE/QFmds0F4BJzfV0tnbTeYY7C3gKCN49iRT/ulXbs9323psIh/LXGHkDNI9tZN+eTmJnnGV1c0sCo6wfeEbipSNw2cxFXHrmIv0awbm58QWih3rpXXCOjS0eGYx8n34D/tgKc8dP4rrz+u7bAlPnzYbH3uZQk3tjkQT3g10pbnsbfLLKt977/zCelhf0BXn4+VFsf7OdyMmn2dfYEcIo5x/8SWIX8PdnXMq86Zfq1/Ql58njGzm0p5Ojp7lzPEMh99sflDjQC9fN/RBzJn1IvyboC5LtmQ68xqEeT7E7Fp5id4JBmK3HHXMovBFNNdp3XfE06axCwOcuw27QF2TpVM3quC5xENjE5IYGVsw4t8/rJzRU8nprt27NdCsEb+34ob9SHw7wsTmXDvibphpN6zscdefZmkZZ/+7pF4HDLJk6jxUzjldgmmsrePdQLx0uXgiMfFu2bgF2sXDiDFbMmD3g7yY2aBauti73FnQV3Dfv7QReoLmmkg/MfN9x1734xhYA2iPlIeevxZ4Aknxozns5bULdgL+b1FDJpj2dtLp4LjNy/0ricSDNFadcwCljCxMXtX7g3rnLTLhrxfYwYgzmigWorwzgk7Vt8BGXDxphphcKTF8Q1svWTvdOhkbsParFGE3pJ47SCPFeymHXK84Oba7te9MiPhfXuR2ivw40lgXENW5e8AWEYt7Uj5zH1ml9uhzknEhn9TlsIC+LgIid3nc0NsiVzkcyk6UzV5prbB+yNs5dqqpa2janw1PsTjAcyB3BMr6u/0lCliUacxmzbo9fEArL6Or+Fbtx4niaMlgIIK+8T2gYfCFoqi4fxe5Ir7YJGV3TdwjBmFqx4LufK8CB7uIVO2Gh7+hJoCjuXgRFX23qZ0wLBf5gGYxncWRWZcBHfTgwyNUwMTfm95XBJrUjN06Dfrmg5qqAmNNTWYVI3KtlZ4Sn2J1ASGay+qQ4vr5/VyzkB43bFTvdYlfdf7yg2A12lMFCAPnFYNwAyruAvut1uZyzikpnTFPsGo8t45NDcy7EoL2nPOSct74PPJYhP57TWZWueNrUdpkNMYcJRf1YNOvj2d19Ggo3aZIxmLAfTMq53Pd3ut9iJxTzsbUVfXKvCPiordCiyQ5Fy2NMlwqeYncCob1bm+hCfrnfxU9gdLWw2LnbFXs0Z8UZNYDFrjm3QJTDDh/y7rZiLDnl4ortiqUQ3pjGfo4Xai4jBV5z0Wl9uxgXXdAv05Cz+HS4XLHtGILFzu0uuqGMZcjHUu7vjLveMpsPreh/7s7PX+5ep0oNT7E7gWB03Qy2+xOT5hGXW3K6cjEaA7kx8rFX5RGroe/yh2DJcbtlVrhh68MB/P0k+5STAi9kXBX09emm6gtjchZLtyvxuiu2n7hZYYGPpbL0JN3tohvKWAYYV1+BJEEqo3A05m5lR8R3DxRGI75zu8eh1HCUYvfcc8+xYsUKxo8fjyRJPPzww4P+5plnnmH+/PmEQiFmzpzJfffdV/D9T37yE8444wxqa2upra1l8eLFrF271hwCDsdQXDejchY7sWC6FZ26Yte/hVK4dFIZRVcE3YxiEmQE8lmxSVfv8MUiMJAlupwUeFG2qJhNmoDo5253UR7KWRzH9KPYVQZ9+lGJbk/+0sdyEWEVAAGfzKiq3Aam290bmCO6t6X/MV0uHodSw1GKXW9vL3PnzuWuu+4q6vpdu3axfPlyLrzwQlpaWli1ahXXX38969at06+ZOHEi3/72t9m0aROvvPIKF110EVdccQVvvfWWWTQci6HEXglFqNPlil1XbtfaMIDFLuT36QqB2+OvUhlFd1UVo9iJSTOdVel2ceyV7nIfQLHTg60zStlYcop10YEhUcbl1o0jRYRX6BtTl3M1KvDFQmQFu16xy8musaoYV6y75VxqOKqO3bJly1i2bFnR199zzz1MmzaNO+64A4DZs2fz/PPP88Mf/pClS7U6OCtWrCj4zTe/+U1+8pOfsHHjRk499dTSNd4FGEq8hnBduj3QulNX7AaOKRxTE+Job4qD3Ynj6iW5Ce2RBKqqxVQNpOQIhPyaK687nuZwNElDEb9xIo70ahP7qAEWgcqgj6qgj95UliPRFLUVxbkwnYihxl4BNJWJxa6zCCV+VFWQPUdirg8xGI4CP7a2kjdbI64PORCbtdEDWOzEZu1or7vlXGo4ymI3VGzYsIGLL7644LOlS5eyYcOGPq/PZrP87//+L729vSxevLjf+yaTSSKRSMG/ckCbbtYf3BUrFKEuF8dpJNJZEmkFgLpBSgWUSybdAYOMi3XRCWtmp4vd0LordoBFAGB0TXnEjh7UyxYVF3sF+Rg7NydPJNJZelPaYfADbUJG6bGj7p2/VFXVFfhiEmQEyqWOXzHhFWKdOtrr3rnLDLhasTt48CDNzc0FnzU3NxOJRIjH83V83njjDaqrqwmFQtxwww089NBDzJkzp9/73n777dTV1en/Jk2aZBoHK3Ewp7SMLWIxqM8FZLs55ky03S9L1IQGNk6PLZPaV0OpbSYgFsijLna7F+OKNX7vdkuOCBnorxhzXygHt5UY0z5Z0ktd9IXRevKXe/t0ZyxNMqNtTJvr+rdEHwsxl7W53RVbhBW+sUpsSt0rZzPgasWuWMyaNYuWlhZefPFFPve5z3HNNdewZcuWfq9fvXo13d3d+r99+/ZZ2FrzIMo8iJ37QNBj7Fys2InBXh8ODGq9aq4tj13ucGJyGsvAOisUu8HK+JSDJQfyRZb7q+XWF8aUgWIn5NwQDg44pkfryV/u5Sosq41VQUJ+X9G/G5uLoXb7XFZM8kRDmcSClxqOirEbKsaOHUt7e3vBZ+3t7dTW1lJZmV/YgsEgM2fOBGDBggW8/PLL/PjHP+anP/1pn/cNhUKEQsVPmG5AOqvoA6WYxUDE2HXHU6iqWrRbz0kQil0x5SCa68rjuKnhxF4JJd7N5RGEBW6ggHooD0sOGDNDTyyLXb4I9cBjWlhm3SxnERbSX/Zvf9C9Dy622KWz+QoFA1nhxUbOzXOXGXC1xW7x4sU8+eSTBZ+tX79+wPg5AEVRSCbdO7kNB2Lh88tSvwVcjRCKXTqr6jEtbkN3bmIYLHECDKcSuDzG7qCe+Vz8gq+7M1y86y3WFZsvvO1eOaezim5xHKh467EQ474nmSGdVUxpm9kwWuwGwqgyqM/YMUi9vv6gZ8W6eJMqFHhJGrhUlQgj6Y6nybi0T5sBRyl20WiUlpYWWlpaAK2cSUtLC3v37gU0F+nVV1+tX3/DDTewc+dObr31VrZt28bdd9/N73//ez7/+c/r16xevZrnnnuO3bt388Ybb7B69WqeeeYZPvnJT1rKzW6I3V9TTQhZHtz6VhnwEfRr3cOtLrpiatgJjC0Ti12HHntV/GIgJkc3u92LdsVWud9FJyxuflkqatMiUFcZQAx9t8YkDXZsnMCoMlDgByvE3B+EK7YnkaHXpWV99MSJcBDfAOuViAVXVVxdrqnUcJRi98orrzBv3jzmzZsHwC233MK8efP4yle+AkBbW5uu5AFMmzaNRx99lPXr1zN37lzuuOMO7r33Xr3UCUBHRwdXX301s2bN4n3vex8vv/wy69at45JLLrGWnM0Qu79izfqSJLk+gaKziBp2ArqLrjfl6kK9efdN8RY7t8epKIZzYgdNniiDGDvjWC5mkyYgGxTBTpdmEeoWu0Hk3GQYz25FxzDc7QDVIb9eoNmtVrtiN2p+n6yH2rh1s2IGHBVjt2TJkgErwh97qoT4zebNm/v9zS9+8YtSNM31EJaopiEu+B09Sdcqdl2G5InBIHb4WUU7JH2wCcWJyCqqbqEYSlxOg8tj7CKJNEIXH8w6Ww5HqImxPGYIGbECDVVBjvSmXJsBLTYfg4WTCAW+K5YmnVUI9HPMnJMx1M24EWNqQ0QPZeiIJJnRVF3qppmOfMzs4PNwY1WQ7njaK3ligPt6u4dhQZ8khuCiqwu7eyfUNQRXbMAn6wqgWxf9I9EkigqyNHgSgRFCiXWrAi9cMOFgPnygP+jZkmVisRsqGvW6X+7kf1TEzQ6y8ao3up1dyvXQMDKfBdy+gcnHzA7OXXhk3NqnzYCn2J0gEFl0zUOw2OmuWJfGLnQOIXkCDJOhS7MGxYI/qjo0YFzKsXD7xCgU0mKyn4XC2x1Pk8q4M9halC0aSg07gYZcooxbrbPihIHBsmJlWdKPonKr2124YpuGsEkT0I+Pc+lcJjZexVrswL0GCDPgKXYnCDqGsfvTT59w7YJffIwd5K05bj1LcziJE+D+zDJhsStGsauvDOhKr1sVWd0VOxyLXZW74ymFu62YzZrbM6AP6V6WoSvwbud+pMgYOzCePuHOPm0GPMXuBMFw3Dd1ei07t1rscnXsilbsXL7DH0biBOQts+BOWXcNQbHTLDnuXvTEWB6Wxc7li2DnMBZ8N1pyepMZvczUcBR4t7tijxRZlxLyG1O3Vm8wA55id4KgfQinTgiII3t6Eu5MmRdKSn3lEF2xLp0M24dZ0NTtmWW6nItU4PMlT9zHFYZ36oSAm91WqqrqLuRiLHbC7ezG2FGhvFcFfVQNchxiXxBnIrt1kypkVkzNVe+82OPhKXYnAAqyJYewGNRUaBNjJOHOAROJawppsRY7US/KvTF2w3fRNeiJMu6TdfcQThiBMoilHMYmTcDNFrtYKqvHRRZjsat3scWuQ69iMLwTkJpcvkntihc/pr3zYo+Ho8qdeDAHR3q1bElJGrzOl5JKEX3qKdRUCv8hCZDp3NdG9yOP6NdIwSDVF12EHHRuSZBEOksqFy9WE+r/nEUj33C7xvfgu/vofmSPfo0b+MLQK9UbuVclZECi7Znn6W7MX+MG7sW4Yo1ca7s0Oe9/aTPdra/q17iBa8HRgDXFtdPIPdQJ4OPwgUOuG9NCGQ36JSoDfdskCsbzfk3O7W++TXdsm36NG7gO59QJI/eKHgAfHR1drpMzGONmB1dR3LxZMQueYncCQMReja4O4R+knlN8cwutq7STO9LNs2Hxpzmyez8H7v9xwXWT77+fqrMXmtPgEiBvZVR4unUdV8xc0ed1Rr5Sju/BXfs5cJ+7+AK8c+ggILE39gYwddDrjdyD53wGxsxi729/x4F9rxZc53Tub7bvBCTa4u8Cc/q8poDraR+Ame9l//pnOLBlTcF1TueaL9OS5W/t67mipu9+bYSRe6Z+Eiz5Z44c6uLArd8suM7p3IVFJk0Xj+56lBUzjudeMJ5nvBdO/wBtL7dw4J7/LrjO6Vyf3bMJkElLR4v+TYGcKxtg6Zc4HM/Seuu/Y8yRdzp3gKO9CUDilUN/5fSJA/dxsaGLuDA+2Cx4rtgTAIeGkDgRXjCfwMSJIElUZTR3QCxgcPlIEoFJkwgvmG9KW0uFzt5cxXU5wT2v3U1G6TtO0Mi3PhnVfhuqyV/gEr4ZJUNrt9b+9fv/0C9fI4zcq9Pa+4oGKvMXuIB7RsnwZsdOAF459GxRcq5N9QIQCVblL3ABV4D2nhgAkq93wH5tRF/cu13I/WhuTEu+GHe39M3dyLUmpb2rnmA4f4ELuGaUDE/vfhmA3dE3i5IxFHJvSPZo9/L56RXztwu4A/Qmk6Szmir6P+/cOyh/EWrj1rJcZsCz2A0B2YxC1oW1r9q74sgqNFcFi2i/TONNK2n74pcIZ5LIKsT8lShS3p3ZeNNKFGRw8LtYt/2vyKqMJCc4EGljzY61LJ++vI8r83zrUjFkFSLBarKST9/luoHvX95di5IMIwNHkrsH4GtEnntNSusj0UCVq2S9ZudakklZk1uqvUg5a1x7QtWu4gqw7u2/Iasysi86SL82Is+9Oq2N6bQvSNwXIpRbNN3A/bndLyOrMj5poDF9fJ/uCbqvT0djKrIKCeVQkTIGI3e/qlKdihMLVNJZUU84cwhwPneAP259HFmVAYWDvXsH5V8T8GlyjqXJpLNIUvE1PN2EoegenmI3BGxev4fqcM3gFzoMh3YdZVHCz8zDCpvW7h70elU+lc7Tr6Q3nmZRwo+s1rJ7ylJAwldbS1Sag1TEfeyCoipsadnFosQspEwlwdZLefLhFsacMhtZOt5ILfimenpZlPADfrZPez9BJeMavk+89SaLEtpOPNS+aEC+RgjuE4LNLEr4Cdadyu4pftwga0VVeGJbCwsjc1AzfgJHTi1KzmG1kkUJP02hKa7r1+++uo9FiRnIShWBQfq1EYJ7JtLD4oQPFYmd0y6nMpNyDff9m1pZlJiGrNQPyF1wldMyixJ+qn1jXSNn0affc/QklKQff9fUomUMee7ZSA/nxX1Esn5aJ76PdLzL8dxB47/xjW0sSpwBcprQgUsG5Z/Oqrl5GzY+uougC4+PKwbRWE/R15bnG/BQgFhK25WHi0ybl2SZ8MKFBLOaaVuRZLKSDKiEFy5Ekp3dbbZ37SCW1uJxJCkDqERSEbZ37ejzesHXp2YJ5iwYCX8QN/HtSeb4yimQlAH5GpGXtcY7LYsEBOdz3961g55UBJRcv5bSRck5lNHeVdLnHq6g8Y2ncrt2Kc1g/doIwV1C1WWdkgO4iXsinXPJyQOPaTfLOd+nc8kNUqpoGUOeO6hUZLUQHLfNZdGUmLuL6+N+n6QXHU+knWuJtBKexW4ImHfJFGpra+1uxpBxf1cnGw9luGT+KBacM7Wo36iXTGTHYz/ixdB5qJLM5w7+jebRtUxfeTuS37ndJqNkuO1PK9nTOJFEajb+6n1UTliPhER75RYeWvoQfvn49quXTGTnYz/iXeU0WsNj+EBnCydVpFzDd9+oKmLxs5BD7VQVwdcI9ZKJvPqpJ9hYMQ26DnHV3scJTJjgaO6Cd9uENiLRc0DNUDX+KXzBrkHlnHzm12ysmEetlOFmF3CFPN9ddaeTyk4j0LiNijFDl/POx37EO+oZtFWM5oNHN3FSZcY93OvnaNwbtlPRPDB39ZKJtKz/CRsrFgHw+X1PEh4/1tFcjX06mpqFkqyhsvkFAtU7i5Yx5OX8P4kmNjbUMLd3Bydl9zqaO+T57x1VSzxxJnJF8XPZ2y07ORxN8sVFY5g9zn1rdDGIRCJFX+tcKTsQPr+Mb5BDxp2IQ7EUigSj6yqKb78/yLibb6Ty2QTRYJi4z0/zzTfir3B2mvyad9exP7aPjDIdRQLFH0eRtQru+2J7eXzfuj6z6fAHab75Rur+vJd9NWPoDoRpvvl69/BVz0SRQApEi+NrhD/IuEsuQNkOPYEKZCXjeFkL3io+FIIggRroJStnBpXzjGuuQtkE3aFKVCXreK5g7NeLUCRQ/T3DknPzzTcSXtOGIkGvL0jzzZ91DfesOi/HvYgx7Q8y43Ofhg0KiiTT6w8yzeFyFjyRIZutQpVADfYM3qePRU7Otf/9MoqkjenmG5zNHYxynq/NZcXO3UBN2E9Hb5KeVNaVa3QxGAqv8nwDHgqQP55laAO7dvlyqlTN/ZGcMIXayy8vedtKiYyS4a6Wu5CQQNEywSQ5rn8vIfWbTQca30ZZ+y4ydpKr+KqZakDLlhQYjK8RY8/Ryh9EA5UEJjmbewFvRWTxKiDnsiYH4T3xA8sAUCWZ5NSZjuYKx8pZy2aV/VH9+6HIuXb5cmplzV0VHzvRXdyzmqyLHdP1719OdUab++KTpzuaawFPFdSsJmcxnociY9DkXB/SlvfoqGZHc4e+x7TkK37uFiVPuuNeLTvwFLsTAqKg6egizt0zQvL7qW/QkkV8H7rS0WZ8gM0dm2mNtqKiomZzip0voX+vorI/up/NHZv7/L3k9zNu9kwAUue812V8xUKQX/AH42tEfbX2vnoDlTTdvNLR3At55xQ7OYEkqcDgvIOhIDU+7Vrfp653NFc4lq9Q4IcnZ8nvZ9T0SdrvLrrEXdyVoY1pye+nIXc6h/TRTziaq5GntinVsngln1ayZSgyBo37+MVnAZCcc4ajuUPfY9qowA/GX5wy4sazrs2As6XtYcRIZxX93L2hKnYAdc2jYNdRsmeeVeqmlRxzm+by/Qu+Tyqb4r6nJDZ1wfKZF3HR6Rfp1wR9QeY2ze33HmNPOxnadxCbMNX8Bo8QRr6/fVZi4xFYOuMcls47R79mML4Ctbkdb29tI7UrlpnW5lLAyHvnQfjhThhdXclt531Lv2Yw3qPqq+g5EiN19rlWNHlEMPL9f3sluoCbzrqGKU35a4qVM8CoGVPgyD7SM2aZ0t5Swsj9h49I7IzCJ0/9EGdO+5B+zUDcR41pYM/eLlJnvseqJg8LRp4d3fCNdyAUULn9vV/XrxmKjAHGLZwPe16jp36MGU0uKYz8//CCxLOH4cKpZ7PiPflCygPxz1vsPMUOPMWu7NGZs9bJEtQXeZamEbW582J7EsW5AOxE0Bdk6dSlADz43EvAIRZPPJMVMyYVfY/GKk35dcO5g0a+D//1ZaCD8ybPZcWMyUO+l5gYezMqWUXF73NuLSgj7ydT7cArjK+tZ8WM84q+R0NVkN1HYq44G1fwVVWVf0k8Bih88JSLmVBfOehv+0JdpbBuuGtM/xfPAlHeN3Ux58wYXdTvxXFTTi9ea+S5aU8n8AJjasKsmHHRwD8cAOI83S4XuCeN/J96pQVo5azxs1kxY0ZRv/cUu0J4rtgyx+HcEUSNVSFkeeiLdW2Fpvv3JNw1YIQiKhTTYiEmw/zRTe7A4ZwCP2oYVlmAmor8Hs8NSryAsEYXc1i4EY3igHgXnS/Zk8zo5x8PdubzQHDrIhjJKaK1Q5C1cNG5YaMmIM48FX10uGioEn3cXXLuyslqKGO61qV92ix4il2Z40ivOCd2eJOEGDARlyl24tzA2iIOkTZCKHZuWgggnyDTOMwFP+CTqQpqcT1umhzzh4UPTbETi95RF8lZbDaqQ34qAr5Bru4frlXscnPQUDZrDeK4KRdYZgXEZmO4Y1lAKIZHXbR5geGNaXGtm+RsJjzFrswhFoOhZsQK5C127rHiwPAWAci7btw2GQo5D1eBB3cq8cNV7HQF3kVyHm52+7Fw46Hp6axCLKWVvhjKZq3BjXLOtbVhhIpdfZUm53g6SyKdHXG7rEJ+TBfPv96lmxWz4Cl2ZY7DYjGoGq6Lzn2LAAzfFSsWzc5YGkVRS94uMxBLZYjnJu7humLBnZYcXc5DtdjpCrx7uObHcmkUOzfKGTSLZbFoCOfHs1sgvAUjlXNNyI8/F37jJg+EiP0cjsXObeuUWfAUuzLHkd4RWuwq3WexG+7uHqA+57rJKqprOAtrXcifd6cOB7rFzgVB9QLRpDaRD2WxB2jMWTPctOAdjg6vbNGxEGPCTZZZsWBXBX34h3AWqHDFuknOYjyP1GInSVI+5MAlFktVVfVadHXhISh2YfdtVsyEp9iVOYT7ZriLQY2LsmIFhru7Bwj5fdTkfiPiE50OY51CSRp+NquwbrppcsxbZocmZze63PNhFSNT7NxosdNDK4ZomXUjV6HYNIwweUK7h7tiz+LpLOms5ikZShUHN8rZTHiKXZlDXwyGufsT2ZInwu5eoMFlCRQjTZwQqHNhjF00qSl21UNU7NyYJDPSRCgBIedYKks6645D0/WM2CGGVrgxW3K4caN9wW0bGMHdL0uEh+B9MCp2bgmhMROeYlfmGGkZDGHxEguoGzDcuCuBBpeVPBlpgoyAcNG5aRGM5GRdHRpmVqxLFjwY+SZNoMagHLlF1nmL3dAUeDdacsxQ7NyygTGWLxqK90G8K0WFaMo9a5VZ8BS7MsdIM+mExc5Nit1wM2IFRrnMmnO4d2QJMgLCBd3rIllHc7KuGarFLrfg9SQyrrFa6ckTI3TF+mRJf19uUXj08kVDHNMi9iqVUVyTGTrc2ox9wW217HSldgjxdQAVAR8hv6bOdLvE7WwmPMWuzKGXwRjmol9lWOxV1R0m7uHWsBNwW8bk0RKUOoG8OzPqonhK3RU7xFjK2soAol63WxR40c6RutzBfZas4cbYVQf9upzdwrWUFju3JQmNhLvb+rSZ8BS7MkZvMl8GY3TN8BYDsWCmsyrJjDssGxHdijNMi121UOzclTwxUlescGf2uMhiJ9zuQ7XY+WQpfyqBSxR4UbKjfojWjL7gtkSZfIzd0OQsy5Kr4uwS6aw+zw43lMQIt8bYjUSx80qeeIpdWUNY6yoDPsLB4Vmvqgy/c4uLbriZkgJus9gd1pMnRuiKddnxcVlF1cvaDEeJFxmDblj0VFUt2YkEkLdmu8U6O1yLHbjLkiOUElnKh0aMBPUuOStXoHsEbmg3Flg3C55iV8bQY69GYMmRZUmvjeaWOLu8K3Z4O17hvnCNxa5EyRPVLounNLazKjT0+n1uyoyNJjNkctl+pSiDoVtnXaLYDbfgOBgUOxfEXnUb5q7hnO19LNyk1EK+nUMpdSKQr+Dgjj5tJjzFroxRqrpXVS7LjI2MYBGAvOXrqAsWAjCUwShR8oRbrDjCshj0y4T8Q1fs3OSmEu7iyoBvROfECtTqSrw7+vhI4mbdpNyUMr4O8nJ2i3tyJPxrXVhz1Sx4il0ZQy9OPELXTbXrFvzh1TYTcJPFTlVVXTE5US12w3W5u+m8WGFVbChBfB3kZe2WRXAkme5uirErtWInskvdoth1jcDbUuMyJdZMOEqxe+6551ixYgXjx49HkiQefvjhQX/zzDPPMH/+fEKhEDNnzuS+++4r+P7222/nPe95DzU1NYwZM4a/+7u/4+233zaHgMNQsqD63IDpdUl9oOEeMyUgLHZuCKqPJDJ6pfaRxl6J9+WWxT6aGF5GrICIPzrqAlesrtiVIL4OjPGU7pC1njxR5jF2JVfsDNzdUNVAd8UOI9xA9A239Gkz4SjFrre3l7lz53LXXXcVdf2uXbtYvnw5F154IS0tLaxatYrrr7+edevW6dc8++yz3HTTTWzcuJH169eTTqe59NJL6e3tNYuGY1CqulcigcItA0ZYcoaaKSkgapxFkxmSGWfXvuqK5RNkRuqiq8nFXSUzCikXZECP1DIrrF9uiL3KW+xKo9i5LcZuJBY7Nyp2pciIhfz7yhgSjZyMkSi2bjwlySyMPO2mhFi2bBnLli0r+vp77rmHadOmcccddwAwe/Zsnn/+eX74wx+ydOlSAB577LGC39x3332MGTOGTZs28d73vrd0jXcgSlWpXrfYJZ0/McDILTk1FX58skRWUensTTO2buQxTWZBlMAoRaakMQGhN5kh6C+NEmEWRFmWmiGeOiFQ76ID4oX1uPQWO3csgqWIsXODi66UxYkBwkEfflkio6hEEmk9XtqpiJQkxs75cjYbjrLYDRUbNmzg4osvLvhs6dKlbNiwod/fdHd3A9DY2Ghq25yAIyXIigXjsWLuGDDCYjfcSUyWJdcE1ov4sFLUNvP7ZCpzVj83WHKiI7TYuakURKlj7Nx0okwmq9CbszadKBa7Uil2kiS5ir/wQIzIYhd3fp82G65W7A4ePEhzc3PBZ83NzUQiEeLx+HHXK4rCqlWrOPfccznttNP6vW8ymSQSiRT8cyNEHbaR1jfLK3YusdgN8zQCI/IJFA5X7ErsotMtOS5Q4sXOfLj1vupdVAbDNDm7QIE3tnE44RVuUmwiIyj30R9qXdLPVVXVKxoMZ6OqW+xcMHeZDVcrdkPFTTfdxJtvvsn//u//Dnjd7bffTl1dnf5v0qRJFrWwtNALmo5wMahyWVZsdJinERghXJtHHJ4ZW8rTCMBdx4qNNJaywUV17HRXbMksdtp93GCxEzFTVUEfft/Qlyw3KXalttiBe7KCo8kM2VytxuEVKHbPZsVsuFqxGzt2LO3t7QWftbe3U1tbS2VlZcHnK1eu5C9/+QtPP/00EydOHPC+q1evpru7W/+3b9++krfdbKiqqmf7NVSNbJKo0WPsnD9gFEXV3TYjsdgJy4jTJ8OuEp4fCoZadi6Q9UiTJ+oNC56iODtjsNRZsfkMaGf3bxhZRix4ip0eY+hwhUfEFwb98rASwcRmxQ2xlGbD2ZGUg2Dx4sWsWbOm4LP169ezePFi/W9VVbn55pt56KGHeOaZZ5g2bdqg9w2FQoRCI3Nf2o1YKqtnNg5n0VdSKaJPPYWaSiG3SYBM5649dD+yW79GCgapvugi5KBzguyNJVnEiRnFwsg5fEjj3PbqG3Qfel2/xmmchat4JK4bI++KHhmQ6HjhJbq355Udp/GGvFIyFAXeyFVSAHwoKrQ+/Gdqc7dxIleh2JVKziQAfPTEknQ/8oh+jRO5d8c17kOpV1gwf+W4dvcmXMB1+EkiRhTMZUe1uaz95c10t76qX+M0/kLOw+3jxgLFqqoiSSM/ucOtcJRiF41G2bFjh/73rl27aGlpobGxkcmTJ7N69WpaW1v59a9/DcANN9zAnXfeya233sp1113HU089xe9//3seffRR/R433XQT//3f/82f/vQnampqOHjwIAB1dXXHWfXKCWLBD/nzAfFDQXxzC62rPg9AetJZsOAqjm55hwO/uLfgusn330/V2QtH3uASIW9pyvD43rV8YOaKon9r5OybswxOfh8HnvkbB974U8F1TuK8pWMPINEafweYNax7FPBeeA2MP53W/3uIA7sLk5CcxBtg+9H9gMTunq3AzKJ+Y+QKUPH+b5Lwh3jnP77L+NgR/XOncW2LRACJNztf5AKK79NGGLn3BCph+TdIKhJ7vvBFAmo+ftZp3J/esxGQSdNT9G+MXGP+Cnj/f5BUJHb/+5cIKvnNn9O4tkd7AInXjmzk3CHMXcfCyF+e+yGYdg6tjz3BgW2PF1znJP6PvftXQEb2JYb1e+FZyigq8XR22OejlwMc5Yp95ZVXmDdvHvPmzQPglltuYd68eXzlK18BoK2tjb179+rXT5s2jUcffZT169czd+5c7rjjDu6991691AnAT37yE7q7u1myZAnjxo3T//3ud7+zlpzF6DS46IazcwkvmE9g4kSQJMIZbaDF/AYrpiQRmDSJ8IL5JWlvqdAV02LiJF+Sn7x2NxmlePeDkXNNKgZATzCcv8BhnDNKhrcP7wdgQ/sTQ+JqRF+y7g1U5C9wGG/QuO84qnH/a1vx3I1cgePl7ECu6Wya7pimeD2084HSyDmdXzxjgdy4diD3jJLh0R1PA9CR2D0sOVdmksiq5r2IBnKbeYdy7Ylrcn7w3eHLGY6dy7REQp07OI5/Rsnwx7e10mTdmbZhcQ8Hffhy5+ue6HF2jlJplyxZMmB17GNPlRC/2bx5c7+/KWW17WxGIeuCwq0AhyMJZBUaKwPDbLNM400rafvil6jMppFViPtCKFLe+td400oUZHDQO3ni3b8iqzKSlORApI01O9ayfPryIn+d51yT0t5fT6DKsZzX7FxLKulDVqE72TpErkbkeYfTSWRVs3I4lTcI7mjcE0ORc54rEtSmYhypbCASrNb5Oo3rw28/hqT4kYCO+O6SyFmSIJxOkvCHiAaqqUlrGyKncV+zcy3dvVqfTCndw5ZzTSpOT7CKSKia+pwy7zSuf3pnrS7nQ7E9I5AzGPlXp7W5LBYIO3ZMr9m5ls6oJueMOhQ5F6Iu5KcrlqarJ8noEmWQOwVDWccdpdg5HZvX76E6XGN3M4rCvoMRFiX8TO6W2LR297Duocqn0nn6lWTSEosSfqrkJnZPWQpI+GpriUpzkIZ5bzOgqApbWnayKHEKUiZMsPVSnny4hTGnzEaWijNOC86VSgWLEn5GhyY5krOiKjyxrYWze+aiKn6Ch+cOmasRgvfY4BgWJfyEa2eze4qE03iDkftpqFk/gSNnDom74JqN9DA3W0Nzwk/P2HPYHZ7uSK7PvrmFRYkzQVIIHVhSEjlnIz2ck/AT8/tpm3gRyWSPI7k/sa2FszpPJ5vw45PGDlvOixIBehQ/7RMuRIl3O5Lr02+9yaLEfEAl1HbBiOQMef61ci2LEn4awtMdPZe9p2semYQfH6OHzf3suJ/uhMrWp1vprqsY/AcuQjRWfCiCo1yxHkqHeErT7iuHmEBghCTLhBcuJJDVzNoZWewDVMILFyLJzuo+27t20JvWXNCSlAFUIqkI27t2DPxDAwTnYFa7T1IWgbzO4ry9awc9qQiqmmufnB4yVyN0WedcIGkHy1pwR831bSkzJO6CK6gEs1qwetIXwLFck7nwAikN0tD7tBFG7rqsfX4cyz0VAVVktQytjxfIOcc1JTtXztFUzj0uZUcsZzDOZVofTzl+LhuenI0I+TVOKYcfBWk2PIvdEDDvkinU1tba3Yyi8Nz6d9i4N8NJp9SwYNnUYd9HvWQiLz55LxsrzsanKPzL3scJTpjA9JW3I/md030ySobb/rSSPaPGkkjNwVfVSnjCeiQk2iu38NDSh/DLxbVXvWQiqWd+zcaK+VTLGf5p7+MEHMRZcD0w7jA9PUsAheoJjyH70kPmaoR6yURe/dQTbKyYDp0dfNxhvCHPvW1CG5HoOaBmqBr3NL5g15C4q5dMZOdjP2JNb5iNTaOYHt/FSdltjuS6b3SYWGIBcqiDqmH2aSME913ZGbxTMYX3db7OSf5uR3Jvm9BG7EAdGXUcodFvEGp8YVhy/kV6Ei31Yc6JbOEkOhzJdX+TRG9sIZK/i+oSyBk0/m1/e5CNFacyJRXlsw4b00Y5xw+GSSsTCY7aQsXoZ4bF/YetB3lxVy8fO6ORBWeMM7Hl1mMoByXYL1kXweeX8fmdscsZDEcTaRQJGmpCI2uzP8jU669GeRkUn48s0HzzjfgrnBW/sObddeyP7SOrTkKRQPYnUGRt17YvtpfH961jxYwis8z8QaZfcxXKJugJVqAqWUdxFlwVtQ5FAsig+OOo0jC4GuEPMvaSC1C2Q28ghKxkHMUb8txVSUYhCBKogV6ycmZo3P1Bmm++ker7nkWRoCdQ4ViuGXUuigSSPzb8Pm1Ejnvln95FkSDu9zuWOzJk1QoUCRRffPhy/r83USSIBkI03+BMrhlmjHzuOhb+IJM/sgLlDYgEKx03pgvkrGhyVv2xocs5h5pwUJNzOuOatbpYDIVPeTH3oKOUhWvHrrhc///UlOnUXn75AFdbj4yS4a6Wu5CQUBUtrkKS81l/EhJ3twwtQ3biB5YBoEoyyakzHcO5gGu2CgDJFxNJnsPiakTTovcAWvJEYNIkx/CGQu4ohgxtOeeqHCL32uXL9RM7ovVNjuWqZrWMXcnXq38/UjnXLl9OjV/rNImmcY7lDkA2N6Z9WnbncORcG9SWutjosY7lquZ4iv4MI5czwPhLLgS0rFgnjelj5awqWtau5NOSW4bDPV+k+MTOivUUuzKFqGNXirMlfcEAYVnLLq689tOOMOEbsbljM63RVlRU1GxuwTdMjioq+6P72dzRf/b0sQiGglT5NM7+a693DOdCrrkF3x/Tvx8OVyNqwtr7iwUqaLp5pWN4w7Hcc4uglELSKg0Pmbvk9zN+ybkAJGfMcjBXseDlz78eqZwlv5/GWVrtP+m8CxzLHYwLvrZZG46cx5ypnQ2eXbDQuVxzmxXjpnSkcgaor9beX9IfpO4m54zp4+Qs+rms9fPhcM8fK3Zinz7hDAl7KDnE2ZKlOmqquqqCWE8Szn1vSe5XSsxtmsv3L/g+qWyK3z0v8fxRuHjqeVy+4Dz9mqAvyNymuUO6b0NtmN7OONlF5w1+sUUwct30Lty3F6Y3NvPP531Lv2Y4XAXEKQ7J0c3UrrisJG0uFYzc9x+B77yrVZv/5gi4jz1nIby7iWhNgxlNHjaMXP+4QeLpw3DBlIVcsfA9+jUjkTPAqJOnw6HdpKYWV9zZKhi5A3xlr0RnElbOv47JTdo1Q+XedMZsOPA28bHOOvfbyPWZN+HBNjij+WSuK9F4hsIj99SLLh1Re0uJY+X81f0SRxLwufnXMK1Zu2ao3HWLnafYeShH6OfElqiWT3XIT0dPkt6k87KNgr4gS6dqRamfeHkzcIAF405lxYzpI7pvQzjI/s44XQ46e9DItbNjN/AWMxvHsWLGgpLcvyqkZZrGFMlxR/IYub8oHQE2MrqqmhUzlgz7nmLjI0IXnAIj12dffQ3Yz4Jxs1kxY0bJnlGdWwSddi6wkTvA6sw6IMPymRcxdXTVsO5Zn5sHnbbgG7nu3r0deIdTRk9mxYwzSvYMnyxRHfITTWb0c7SdgGPl/KW0JufLZ17IzDHVw7qnOHbuRC9Q7LliyxCqqtIpXLFVpTlMWuz6nLYIHItobkDXDPNgeCNE/JWwfjoNol2lkjFAVc5iF0tlUZTSFfcuNUQ/HKmcxbmUTlLej4U4HL2UB8ND/t05eRHMZBVd1rUj4C/eXbeD5dyT4zmUs4+LhbinU12UWUXV+Y+kn9fqMXbO5GkVPMWuDNGTzJDJLcqlsthVBV2i2OmT48gXQbHLd+qirx8MX8IK61WG8xVjaefs7o+FLucRKnZ14fyCn3WoIisWKfMUO2f2byicb0aixLtCsdM3paWVs3bP3PztUCW+J5FGHBI1kn7uhs2KFfAUuzKEsNaFgz4qAsMvUGyEayx2ufYJl+JI0JBb9J3mphPQM59LqNhVBGRyxy3S62BZRxKlsW7UV2rvTlWdq+B0m6bYafdz8iIoshvDQR8B3/CXK3codlrbzLDYCYUn4lBZC7mEgz6CIyhTIqy6Tu7TVsBT7MoQpcyIFRCTjZMXeyidiw7ybrpOhyp2R3MuOuEyLgUkSdKtdk6WdbRE1o2gX6YqdzqLcHk6DWYpdmJMO3mzJmLiakcoZzcodqWcu46FU+MpBUrVx/MKrHPlbAU8xa4M0VnCGnYC+iLg8J1QNGGCK9ahC35XiRNkBKp0Jd7JrtjSWTeEnJ2qwJul2Amrdm/KuWNauKFFGYvhQiiGibRC0qHHTfWUMD74WDjd7V6qONJaF1ihrYCn2JUhjupB9SWMvdJ3986cFAVK6Yqt112xzpwMhSJSyuQJgLALFvxSLoK6nB1ozUllFOK5WMfSK3a5RBkHj+lSWexqKvx6EW+nFq8tlRW6L9Q4fGNeaotdNJlxbMysFfAUuzKEiLFrLKGLrlos9g415YO2CCYzWrHamhJY7BocbsnpEgp8iS12bnC7m5H97MRYSrHgSVLpLTluSIgSSthIMmIBZFnSlRunumOtiLHrcaisS6fY5X/vVCXWCniKXRlCr2FnhsXOwVYcoyJS7ha7VEbRJ+lSK3bhoLDYOdeS02NG9rMD5SwWvJqQH1kubV1BvRh1RiGTVUp671Ihb7EbubIjlEOnxl/1lCjTuy+IceJUF2WpFLugX6YioKk1TpWzFfAUuzJE3mJXesXO0VacXNsqAz78I8igE8gv+M6z5HTFtTZJ0sitGcfCDRY73bpRwiQZJyt2dSW0vgtUGSxDTo2nzMfYjZy/kxMoFEU1NXnC6TF2QialSATzTp/wFLuyhJ4Va0LyhJMX+3x8XWkmRlHupDeVJZVxlkWjO5aPPfKV2JLjJiW+FItgg4MVeLNq2IFm3QjmNkBOtcSL8hwjjbGD/Dt0YvHaWDqr13ErRRjJsXB6uaruEhbh9k6f8BS7soQZWbFuSJ4o9Y63tiKgB1wLC5lTUMod7rEI6+VOHCxrEWNXkqxY5yZPmJURK1Dl8NjZUmXFgrNPJRCWNL8s6a7EUsLpyk4p+3mNg+VsFTzFrgxhTh07Zy8AYDx1ojSKnSxL+kTjNDedWcdMQV7WMYdacaC0Vfrr9HqFzpIx5Be8Ulis+kLY4TULS5UVC852xeplmir8ppzRLGLsnJpQIDbOpXC5e0WKPcWuLCEWKDMsdk5dACA/aZUicUJAz4ztdabFzgzFLuyCbMlSBpoLGXc70BVrtsWu2uE1C0VWbEkU+LBzFbuIiTXsjPd1boydxr8UxyN6RYo9xa7skFXUfOHaUh4O74LFvpTnxAo41U1n5oIvFvuYQ7Nik5l8zGNpChQ7U8ZgnSvWqeNat9iVxBWbW/AdWMfOjLnLiGqHlzspZSyp093OVsBT7MoMkXgaUZfRjCPFnFwaoZS1zQTyGZPOsuZ0mRlj5/DF3uhOKunJEw6zyoLBFWuaYudsS3ykhK5oJ7tihSXNbItdNJlBcWDhXjG/lkaxE65Y58nZKniKXZlB1LCrqfCP6NDsY+GG0giljrEDY8aksyYJM7MlnZ4BrWc/B30lyQgWynEk4bxq9Za5Yh0aT6lnxZYw9sqJil0pk4H6gsi0VVUtA9dJSGcVvWZmfUmSJ5xrmbUKnmJXZug0IXEC3FEaodTlTsB4jqizFgMrYuycWqC4J1G6+DoofIdOW/TNd8U6N8Yuk1X0MV3uBYrNPCcWoCIg489tgpxmyTJmr5ZCgRfxmD1JZ/G0Ep5iV2bIZ8SaUdDU2ZmxprhiHXrclGhPfWVpFXhwvpxLmRELEPDJuqXEaXI20zILmtUTnClrYyhAKbOfnaa8g7mnTgBIkpSvZeew2DPj6SqlsMCLeEwvxs5D2UDEXpWyOLFAvpadMweMsCSW1hXrzHInZsZeiUSZmFPlbILLvc6hCRRWWeycOKaFK60y4CPoH/lS5WTFLlrizUpfyGeLOkvWXSWey4Tb2atj56FsICp4lyJW4Vg4PvYqYaYr1lmWnC4TF3wnL/YA0WTpA82devqEda5Y58m6lBmxkA+qd2ICgX5Enkkxdtq98/ydhFIXW6/xsmI9xa7cIBSQUtQDOhZOXgTAHEtOvUMtdhETs2Kr9ALFWVTVWQsgmBOP5EQ5p7OKXnLmREyeKGVxYsi/Q1V13qJv5jmxAk6tZVfqcIN8LKWzZGwlPMWuzGBmGQynHytmRoydbslx0JFiqqqaaskRcs4oKkmHnZELhuSJUrpiHXj6RHeJg8r7gpPHtHDFlop70C9TGdA2LU5zx5rRp4+FiCN1WoxdqU/R8QoUe4pd2cFcV6xzA63BXItdZyztGOtVLJUlndXaYkodu0D+5A4nFik2o5irE0+fMC72pQgq7wv68XEOHNN5i13pxrNw6zpt0Tdj7joWTnVRlt4Vq90nlVFIZpw3f1kB83qRB1sgLEulcsUqqRTRp55CTaUItEuAzJGWN+g+/Lp+jRQMUn3RRcjB0rt/hwJjfbORwMhZzgL4SGUU2h/+M5W5W9vJWUyEfhkqShBUDoWcASpkmYQi0fboY/gqtGucIucekUVXUTo5V+zX+nb7lnfoTrytX2MnZ2FZCQVUVFUt2RmiBbLuAvAROXSU7kce0a9xgqxLUZz42H5dnZZpR+LAk88yqV67xglcxbnM4RHOXcfCyD/YpvXxw6+/RXfXm/o1dvMXm6lSudxrQn4kKe9yD1WX9p26AZ5iV2bo7M2ZtUu0+4lvbqF11ee1P06/AmacT/v6pzmwdW3BdZPvv5+qsxeW5JnDgaqq9CRSgMTG9meY2bxi2PcyclYB3we+Q1b28c7XvkVTolu/zi7OQrHLSj08uutRVswYPleBAjkDoWVfJRGqZs/3f4gcOah/brecAbYd2QNI7I2+A8wa9n2MnKUZ58PpV9D+cgsH7vnvguvs4izqcHWm2vjLzr+URM5QyDvWMAUuuJnIoaMcuPX2guvslvUrbVsAiaPpVmDesO5xbL+uOO9GGD2d3ff9lkkH8ptTu7ke6u0BJDYf3sh5J5VGznAM/znL4OT3cfDZ5znwxiMF19nJ/81DuwCJA/EdwOwR30+WJaqDfnqSGXoSGUZXh0Z8T7fBUa7Y5557jhUrVjB+/HgkSeLhhx8e9DfPPPMM8+fPJxQKMXPmTO67774R39PNEIt+qQoUhxfMJzBxIkgSlZkkALGAYaBIEoFJkwgvmF+S5w0XvakUiqpZNB7Y9nMyyvDdDUbOElCTigEQDYa1C2zmfKQ3oTXDF+fulrtHxFXAyBmgMqM9I+7Pydohcs4oGbYd3gXAhvZnSibn6lQcgB4hY7CdcySRcwvLiZLJGfoZ035njemMkuHF/a8BsKVz07C5H9uvq3L9ujcgzNDO4Nod1+Tw0Lv/UzI5QyH/cFrIuiJ/gc38M0qGtzq08fxyx7Ml454/fcJZLner4CiLXW9vL3PnzuW6667jQx/60KDX79q1i+XLl3PDDTfw29/+lieffJLrr7+ecePGsXTp0mHdcyBkMwpZBwaTGxHpTSGrUBvwlaitMo03raTti1+iMqPdO+GvQJHy5u3Gm1aiIION7+bhrY8jqzKg0Bbdy5oda1k+ffkw75bnjAR1yRiRUA3doWqdt52cn9n5IrIqI8txDkTaRshVoJBzOK3JOuavdARngTU715JMSsgqRJLtJZNzdTqBrGrKu1P69gt7NiGrMj45VUI5g5F3KJtBViHpCzmGN2hy7k0oWh/MHBoB98J+XZuKa3IOVDmmX6/ZuRYyfmTgUKy1hHIGI/+q3PwdD1Q6RtZrdq4lmciN59TBknGvDfk5qEJ3b8rxa3axGAoPRyl2y5YtY9myZUVff8899zBt2jTuuOMOAGbPns3zzz/PD3/4Q12xG+o9B8Lm9XuoDteU5F5mIKuonB6RAD/7XzjI4UBpYgtU+VQ6T7+SOrmORQk/oyqnsXvKUkDCV1tLVJqDtHZ3SZ41HCiqwoY3t7IoMRekDKEDl/Lkwy2MOWU2sjQ8o7TgnI30cGa2igkJP11jz2N31cm2clZUhb2b9rMoMR1ZqSPQOnKuAkbOpyu1jE34iTYvZnd4hmPk/MS2FhZGZqNm/ASOnFYyOctpmUUJPzXyWEf0bUVVOLjpAIsSU5HVxpLKGfK8471xFiX8gJ+dUy5DBttlrcu5cxpKyo//6MwRcTf268n+cSxK+PHVn8HuKWFHcF2/9TUWJd4DQOjguSWVM+T5V1LNooSf5tBkx/TxJ7a1sLBnTm48n1oy7qd3Q2PCz76/HWTT9miJWmwvorGeoq91lCt2qNiwYQMXX3xxwWdLly5lw4YNNrXIXiRyGUCSBEF/6QJGJVkmvHAh/pyZPC2L/YBKeOFCJNnebrS9awfRpOZmkKQMoBJJRdjetWPY9xScQSWU1cz5KTmA3Zy3d+0gIQ7xltKUgquAkXMgJ+uM5MNuzgLbu3bQk4qAmut/UqZkchYyTvpEbKr9co6nc24pKUsp5QyGMZ3Nu74ysh+7eUMfcpZHJufCfp0byz4HcU3G9L/VEvTpY3H8/C3WBvv7eE8qAkpuzJWQu1j/vKxYF+LgwYM0NzcXfNbc3EwkEiEej1NZWTms+yaTSZI5RQEgEokAMO+SKdTW1g6/wSZjR3sPG1/aTn04wHsun1rSe6uXTGTn3/+ZjRWzmRXv5Lq9jxOYMIHpK29H8tvXjTJKhtv+tJJ9TSFiifnIwSNUTViPhER75RYeWvoQfnl47VMvmcjOx37Ew/E6No5uYFZsBydl37WNs+C6q/5UUtlpBBq2U9FcGq4CgvP/JkezcVQ9c6Nvc1J2r2Pk3DahjZ7Ye1CzAcLjnsUfOlwSOW964qdsrDgbkLhl73oqJox3gJznkMpOJdCwo+RyhrysNwXOI+0L8Jn2vzGhscpWWRvlHE3NQknWUDlmA4HqnSPiLri+1tnLxglTCGbb+UT2LUdwbW2OE+09F6QUNRMfL7mcQePf9rcH2VhxGlNSUf7R5vnbKOdI9BxQM1SNfwpfsKsk3H/b08XGaDcXzqplwXlTS9dwGyH0kGLgasXOLNx+++187WtfO+5zn1/GV6LyEmYgks6iSFAbDpS+nf4g4z9wGcoWLfhWVjI033wj/gp7S1+seXcd+2P7yDIbRQJ8SRStRgn7Ynt5fN+64WcT+oM033wjNQ/8DUWCnmAlzZ+xj7POVVmAIoHqj5WOq0COc8X/vooiQcLnp/kG58hZlSCrhCDHPytnSiLnGf94LcqL2p9xX4ApNvZtXc7qmZqcffHSyxl0WYeeSZL0B0jKPtvHtOCODFmlAlUCNVACOee4Vt/5B20sByocwzVLM4oEki9ljpwB/EEmfHgFypvQGwjZPn/r4xkfCkFtPAeipRnPQG04qMk5nXX0mj0UDIWHqxmPHTuW9vb2gs/a29upra0dtrUOYPXq1XR3d+v/9u3bN9KmWoLOXi2Lrs6E48QAmt57DqBlSgYmTaL28stNeU6xyCgZ7mq5CwkJVdGy+iRfQv9eQhpxNmHt8uXU5Yqa9jY02ca5kKvWtyVfXP++FFwFapcvpypXUyrZaB9nASN3zT2nyUOSc+73EnAftWI54ax2v/iUGQ6Rcy57Uc57D0opZ9BkHUa7V2rCZFtlXSBnOK6fj5R77fLl1NdqWc+91fXO4Zqbu8yUM0DzRRcAWga0nfN3X3MZKDr/UnA/0bNiXa3YLV68mCeffLLgs/Xr17N48eIR3TcUClFbW1vwzw3QjxMz6fihmrA2AcX8IZpuXmmraw5gc8dmWqOtqKh5xc4wOaqo7I/uZ3PH5mE/Q/L7GX/eIgCSJ59qG+cCrtncgifnFbtScBWQ/H5Gz5+r/TH/LIfJWZRqUEDWNjKlkrMo6u37+N87Qs6Y1KeNkPx+ahq0+S34oY/YKusCOasS6IqttlkbKXfJ72fi32nKTHxUs3O4WiBngKrc/B33hxi90r75u3Auy5UX8sWRJO00nVJwF6dPOO2UDavgKFdsNBplx4584OSuXbtoaWmhsbGRyZMns3r1alpbW/n1r38NwA033MCdd97JrbfeynXXXcdTTz3F73//ex599NGi71lOEMeJNZhwzBTkz5VMhMLUvL80mcYjwdymuXz/gu+TyqZY3wKPHIQF407j78/7ln5N0BdkbtPcET1n7KIFsKuF3rpRI2zx8GHk+r2HJPb2wjWnf4TTpnxEv6YUXAUaTjsFWt8hPd7+MWLk3tEN39gOFQGJ28//pn5NKbg3jqrjwIEI6flnj7TJw4aR651rJN7ugY/N/gDvOekD+jWllDNAbVMj7OmE+e8p2T2HAyP3WBK+sE37/D/O/xIiF2yk3MddvATeep6oz96itUauLbvgF/tgav04Pl/iucsIMX9nZR8Vy5aW7L5DhZH7zoPww50wuirMbSXkLo6O63HY0XFWwVGK3SuvvMKFF16o/33LLbcAcM0113DffffR1tbG3r179e+nTZvGo48+yuc//3l+/OMfM3HiRO6991691Ekx9ywnlPo4sWOhHw6vQiqrUmGzvTfoC7J0qibrbTu2Ae8ye/Q0Vsw4taTPEe/TzoPDjVy/rz4NxLhk+rmcNbXRlOeJc1idcFaskfvr+7uAv9EYrmTFjPeV9Dm6nG1cDIxcfyH/DejivEnv4dIZY017phjXvUl7ZW3kvu9oDHiaioDMB08uVU23wrFcymPahgoj10TnPuB1JtWNYcUM805/MB612JvKUhG0Z/k3cn8y1Q68wvjaelbMOK9kzxAWO6edCWwVHKXYLVmyZMCD1vtSxJYsWcLmzf2bbAe7ZzmhM2exqzPJFVtlmAh6kxkqSlQnrxQQ52rWlPDAcAFxikenQw6IFwqmWXKG/JmVUYcdDi/kXG2CnMUxfF0xZywG+sHwJnA1ojqkybo35RxZd5fgnNi+IO6XUVTi6Sxhm5QbI3qFnEPmtsXvk6kIyCTSCr3JLKOqTX1cUegyac0S68CJ6op1dYydh0IIV2y9Sa5YnyxRmVPm7N7dH4torj1mTI5i0nHCgq8oal6xM0nOkH+PvQ5T7HpMXATrHSRnsG7BFxs2JynxwtJSW+IFPxz04Zc1K52dFngjenNW8aqQ+Rtl0ZecImuzNqm1J3iMnafYlRGEK7ZU58T2hSqHTQwC0dyB6VVmLPg5BSqZUfLFgW1CTzKDMECbarETip0DXLFG9OiW2dJzF3J2yoKvWyfNVuwcqMRH4lpbaktsrZQkSR83TpGzeO9mzF3HQjwj5hDrrHmKXS4r9gR1xXqKXRlBN2ubaslxntsG8oqmGa7Y6pBf3+Xbbc0RVtnKgI9QCU8XORa6nB202ANEcxO1Ge5JsSHqcoDLXVVVoilrXLFVIedZ4c2y2BnvKZRHu6Erdha4hZ1mnTVLsTNmxZ4ooVhGeIpdGUEoHWaVOwEnW+zMc8VKkqRbc+yOs7Mivg7QY4+csrMX0BV4E13unQ5wxcZSWd0yeyJa7IRlttQxdpBX7JxisRNzlxUWu2qHJMoICBmUOnxIbPCzuVjKEw2eYldGEJYGs7JiwaDYOSx2QVhyzJocnRJnZ5Vi57QFQKDHxCQZMW66HLDgCwVWltDjWs2CLmsHKfGisKwoW1FKOM0VKzZP1RbE2FU5zBJv1nwWDvrw5bwsJ2KcnafYlQlSGUWPhzKrjh04N6g+anKgeb5Mgr0WOxFHaaa7HfJZsfF0lqziHFdGPnnCxBg7B7hio4a4K7NLcgj3nJOUeN0Va4bFzmGnEghZW5Gh6zSPi1mKnSRJJ/TpE55iVyYQC74kmRNYLuC0iUHAzHIn4JyMSassdkbLp5PcsWaWO9Fl7ICFQO/PlgTUO8uKA4bkCRP6udMsdlYmTzhtYy68THWVpfcy6YqdZ7Hz4FaIoPraioBugjYD1Q4MtFYUVbdWmm2xs3vRN9MVaUTIL+v9yAlFigVEJXkz+NcZsmIVm62UVtWwg7ylyEkZ0GZa7Jyn2Jk7dxmhb8wdslnrzinwZmxU8yVPnCFnK+EpdmWCLpOCUI+F7rZxyMQAhW0xa9frlOSJHhMXPCMkSXJkkWIzkyfqc1YDVbU/LidqQwkMp1hxwNwYOz0r1iELvpi/rKhj5yRZq6qqh7aYEVriWew8uB56RqyJiRPgTFesaEvAJxHym9OlhZuu22ZXrFUWO8gr8TEHWWd7THTFBv2yfuyS3Qq8VTXsIK9QOMnlHjExK7ZOL3fiEMXOUlesczwu8XSWdFazjJtRyaHGs9h5cDvEQmRmqRNwXowGFFboNyvQvN4hx01Zqtg5sGahmQWKwTku996UhYqdE5MndIvdieOKtdI664SNuXj/fjnvHSglTuTTJzzFrkxg9nFiAk4y5QuIgWvmxFinL/jOcMWamSAj4ERZm539nC9rY7ecrbTYac9wUgZ0PsbOBFesOCDeAQWKUxmFVFYBoNqCrFgnbcy7DGuWGRtyLyvWg+shFA6zLXbCiuOEHZ+A2Ys95EvInFAWO4cF1auqauoJI+CcY8V6LUyeMMZ2OcEdqyh5OZe7xc74vsNWxNgFnaPYdZtolYX8psCz2HlwLayKsXNi4VqzS51APrDeKYqdpbFXDlgEoNCiZLZiZ7ecrdisCAR9sn5knhPGtfE8ZFOynx2k2Ak5B/0yAZ/5y7ETXbFmlW4SCqMXY+fBteg6gV2xVmQQ6gu+3a7YpHWu2LDDzpUUCryZpzGIjdGJlDxhzIB2QjylcJ1VBGRTzkMWmbbxdJZURin5/YcCK0udGJ/jBAW+2+QjML2sWA+uh+6KNVmxq3bQjk/ACuuGSMdPpBUSNp49mD9D07rYK6fUseuxIknGIYWorSx3As6KvTKzhh0UborsLnliZakT43OcIGezLXZeVqwH10O32JlQwdsIR1rsLHDF1oT8esFeuxZ9VVVNzwo1QpT+cIqsreDulBg7s2MJj0XYQZYcM0+dAPDJ+eOm7JazXurEgsQJKDwXWFXtTZTJGyPMWbNqvBg7D26Hda5Y4bLJ2l6dX0BUUTdzcpQkyXDklD1uOitizIwIGxYBJ8DaWEp7XbG9FsbYgdE6a7+szcyIFchnxjpEsbNYzoqqzSd2wvzkCa/ciQeXQyxEViVPAMRsnhgEzDw/1Ig6mwPrxQTlM6nu07Go1pMnnCFn4VKxwuVudx27HqsXfAedMmJmDTsBpyRQWFnDDiAc9CGiGOy2zpp5nBh45U48uBzprKKXpDD7cPjKgA9ZnxjsXwTAugxCu+OvjIqNWTFmRjgteaLHAvekU04YsTJ5ApwVTxmxwOXuGMVOL0RtTYydJEmOKXnSZXJRfdF/oqmMY7xLVsFT7MoAxh2J2UH1xonBKQu+VW6rhpw1tNsmV6yVpU7AeNSU/Ys9GC2z5i34DVXOyIq13BXroHhK3WJnpiu20hkZk1GLY+zAObVII6YnT2jvVFXz4TonCqzrTR5Mg9h1Vof8+E2ohaSkUkSfego1pS12lapMDxLt659idLV2jRQMUn3RRchBc13BfcHMkyeM3MNHJECm7ZXX6G5r0a+xiruYCM20WBn5SkcBfEQOHqL7kUf0a+yStX7qRomtG0bOcgrAR3csReefHtGt01ZyVhRVt8CbmS1p5O1v0/r2kdfforvzTf0aO2RtlmJn5Ft5SOPb8errdHe8pl9jNV+xWTEztOK4+TstAxIdTz1Ld512jR1yFp6Pukpz5rOKgI+gXyaVUYjE06ZlWTsRnmJXBoiYXAIjvrmF1lWf1/8Ove/foKaZvXf/jIbD7+qfT77/fqrOXmhKGwZCa+QIILGlcxMrGF/Sexu5+077AMx8L63rn+HAljUF11nB/dm9LwIyaSKmPcPINzZ6Jpx3A90H2jnwm+8XXGeHrF9rfweQaE/sBc4o2X2NnFOyHz7wbRQkdnz5NqrTCf06qzgbk1WeO7CeD89aYcpzjLzVU98PJy2h46nnOPDWXwqus1rWbx3aBUi0xnYAs0t2XyNfOcf3wJP28n3r0A5Aoi2+GzjNlGccO38HLvhnaJjEvnvvY1z7Vv1zq+V8qLcXkNh85AXeM82cPl5b4edwNHXCJVB4rtgygNnZReEF8wlMnIiIuq3MJAGI+0PaBZJEYNIkwgvmm/L8gZBRMrRHuwFYs/uPZJTSDmAj95p0DICeYDh/gUXcM0qGNe8+DUB7fHfJeQoY+VZmtR1+3G/Yxdsk64ySYdPBtwB4/ciLJeVv5BxUMoQyGu+eQE7OFnPuiidz/5fl52/cbY2s9TFtr6wzSoYth3YC8FLHs6bJuTodByAaqMxfYDHfjJKhJadYbT68wRI5A4Rzso7ZOH+nMmliSS3u7ffb7zON+4maGetZ7IaAbEYha3Ol8r7QHU0hq1AX8pvUPpnGm1bS9sUvgQThjPa8mL8SRdJcCI03rURBBovfz5qda1HSPmQVjsRbWbNjLcunLy/hE/Lca1IJZBWigSqdN1jDfc3OtXT3JpFVSCndJvAUyPOtyKa158khy/keizU71xKPK9r7Tx8uMf/C/l2XjHHYFyQSqqY5rm0arOS89p2nkVUZfAnaetoskXVlRpN10l9hq6zX7FxLMikhqxBJtZsm5+q0NpZ6A2Hb+K7ZuZZ4Iqv16dQRS+Sszd8a97iN8/cftz6m9XGgI7bHNO61QW1t6I4mHbl2DwVDab+n2A0Bm9fvoTpcY3czjkPH/m4WJfzMOKKwae1uU56hyqfSefqVZCM9zKKRcMJPevRZ7PaPxVdbS1Sag2TSs/uDoio8sa2Fs2NngSoT7FjEkw+3MOaU2chS6YzRgnsVYRYl/DRVTGH3lKWAZAl3wfOsztPJJvz4pLGm8BQQfHviaRYl/MhqjaV8j4Xgv7B7BkrKj//oySXnb+zf70mH6Ez4OTzuAgJ1Ry3lrKgKLa9vZ1HiVCRfiGDrpZbIulquZVHCz+iKqbbJWpdzZDZqxk/gyKmmybmKKhYl/IyxeCwLHN+nZ1ki52ykh+nyGKSEH7XxTHZLjbbI+a9vbmVRYi5IWUJtF5nG/ZROCCf8HNjYzqbd8ZLe22pEYz1FX+u5YssAyYwWaG3GuYoCkiwTXrgQUPEr2vMysg9QCS9ciCRb35W2d+0gkuyB3M4PKUMkFWF7146SPkdwD2U0l3fKJ1ze1nDf3rWDnlQE1Nw+zCSeAoJvIKu5LxRJ1nbzNsla8FfVXP82gb+xf4eympyTvgBWc97etYPeVM4VK2UA1RJZ+3OyTstiDrFe1lb0c8E3mBVjWdg2rJezxtW8Pm1E4fwtZO3HLjlHk1ofl0zu46GAxsvuM4GthmexGwLmXTKF2tpau5txHJ5cl2Dj/nZOmV3LgmVTTXuOeslEdj72I9bEKtk4pokp8Z2clN3K9JW3I/mt7UoZJcNtf1rJgXFd9EQvAKB64mPIkkp75RYeWvoQfrl0bVIvmUjkuf9mY8VcRitJbtz7OIEJE0znLni2TWgj1lZDRh1HcNSbVIx63hSeAuolE3l73X+yseJ8AP6p7VkaxzRaLmsj/2jqFJRkNZXNGwhU7So5f9G//yfZxMbGWs7s3c5J2b2WcRZc945qIJ48A7nyIFUT1iMhmS7r3Rv+xMaKOZwc7+bTFvVtI4xyjvSeDUqGqnFP4wsdNUXOnX/9HRsrzmBsNs7nLOZb2KdnaX16zEYC1TtNl/POx37E01EfG8eOY2xyDydl37JFzvuaKokl5iOHDpnaxx+M97Cxu4tzZlaz4MKpJbuvHYhEik+a8xS7IcDnl/H5nWfkjCSzKBLUVgXMbZ8/SPPNN1J5/19RJIj7tL/9FdaXOFnz7jr2x/ahqA0oEiClUH1pssC+2F4e37eOFTNKmGnlDzLtkx9B2QzdoTCykrGEu+CJDIoaQpFA9cfJyhlzeAr4g0xceQPy8xkyPj9J2WeLrI38s0oFqgSqP2YO/1z/rv6fV1Ak6AmEaL7BOs6Ca5YxKBJIviSKrFnHzZb1uCsuR9kCMX/Qsr5thOCuShKKGgIJlEAMTJLzlI9/EKUFIsFKy/kW9Gk1mOvTCUvGdPPNN1Lxyydz83fANjln1NNzfTxuah+vCQe0sZzOOnLtHgqG0n53M/UAmF/o0Yja5cuprtKyqZL1jdRefrnpzzwWGSXDXS13ISGhKtqkJMlJ/XsJibtbSp9NOHH5pQAk/UHUyVNN527kCaBmKwCQZK0Eh1k8BWqXLyesaH0rM3GK5bI+jr+i9TshazP41y5fTp04D7mx2TLOhX1a8MyXWjFb1mMuOBfQMt0DkyZZKusCOStBxLJkZj8ff9nFAPQGKvBZyPfYPk1O1pjYp42oXb6c6mptHknUWTt/F/TxrJaNLPli+vdmcBenT9hdiNpqeIpdGSB/aLb5ip3k9zPm3LMByM6aY7kLFmBzx2Zao62oqKiKNklhUOxUVPZH97O5Y3NJn1tbVYEPLUU/8NnPmc7dyBPQuYoFzyyeApLfry8Coas+YbmsC+SsSvlF0Gcef8nvZ9zZWtmH9GlzLeNc2KeFYpc//cJsWVdVas+M+0M03bzSUlkXcs+VH5HSSLK2GJvBvS7Xr1VJpvJz1vE9fkznZO3T5i8rxnTzBecBkJ1xsn1yzil2+PIJDWZwFyeMiOLmJwo8V2wZoNtCix3AqAVnwu43SI1qtuR5x2Ju01y+f8H3SWVTvLUP7tkDE+tGcet539KvCfqCzG2aW9LnSpJEXVWIo70psucuKem9+4KRJ8DXWyUOJeAf513DjLHaNWbwNKK6vgbao7BwsWnP6A9G/vEU3LpN24d+/bwvIk5gMoP/2LPOhL1v0NtoXf82cv3TixJPHILzJp3FhxYv0K8xU9bi6LJkRZjaFdZaZo3c9x+B7+zQCst+08TxHPL7qAjIJNIK6gXvK9l9B4ORa1aBVVu1Pv3/Ft9KVW6PavaYHn32AtjZQrJ+lGnP6AtG7g+/KPHkITh/0gI+tDhfP6/U3E9Ui52n2JUBIiYXKD4W1SHtOb02nb8X9AVZOnUpAFLvAWAzE2pHsWKG+cpHfWWAo70pSw4PN/IE+Gp2PZDishkXcMpYa5J47Dwc3si/rTsOPEXAJ/Ghk9+PlCu2agbqc2cCd1l4QLyR64tvvAHs5fTmk1kx42RLnh/OuZ/TCqSyiqkZ9sfCyH2jdATYSFN1NStmLDH1uXWVARLppKWLvpGrNoc8DsCHZi0naFEMmJi/rR7TRu5/a3kd2Mf8cbNYMeMk054pjl880Sx2jnLFPvfcc6xYsYLx48cjSRIPP/zwoL955plnmD9/PqFQiJkzZ3Lfffcdd81dd93F1KlTqaio4Oyzz+all14qfeNthJiYrLLYVecGSzRp/+Hw+sHwFh2WXhfW3rGVi76AqJ5eY+GZh+JwcruUeIEeg5zNVOoA6m2UMeT7dI1FfRoKD6GP2TiurdykitCViE1y7k1qcg76ZMuUOshv1sTz7YDuZQqbK+cT9eQJRyl2vb29zJ07l7vuuquo63ft2sXy5cu58MILaWlpYdWqVVx//fWsW7dOv+Z3v/sdt9xyC7fddhuvvvoqc+fOZenSpXR0dJhFw1Koqmo4UsyahaBaBJfbODEIRJPWKnYNwpoTSw1yZWmRzGRJZbVaTFZxhfzh5L02K/FWKrVCseuO2aTY5d51tUlnP/cFnyxRkav5FbVxXOfPvTZfzmIjbIX1vS+I+bMqZJ111Pg8O+XcFbMmfEhY7OxS3u2Co1yxy5YtY9myZUVff8899zBt2jTuuOMOAGbPns3zzz/PD3/4Q5Yu1Uy+P/jBD/jMZz7Dtddeq//m0Ucf5Ze//CX//u//XnoSFiOWypJVtEBcqyx2TtjxCeiWHIsWwfrcO+6yeNE37jitVOyqdVes3RY77X3XWCDn+sq8K1ZVVdMthMcimtS4VlkoZ9Csdol0yha3u4CVFju7FbuorthZL2ewJ7xCwKq48BPVYjekHjVt2rRhTXKrVq3in/7pn4b8u8GwYcMGLr744oLPli5dyqpVqwBIpVJs2rSJ1atX69/LsszFF1/Mhg0bSt4eOyAGiF+WqAxYs/MTE4OdOz6BXosnR7tcsUZXpE+2TtEI67t7Z1jsrFBqhcUuq6hEkxlLXd+Qt45a6YoFbQwd6U3ZbLETGf7mcxfKY8Sm+CuhWBnd4FZA35inMrZsXMBCxS7nxYqns6SzCgGfo5yUpmFIPaqv+LViMHXq1GH9bjAcPHiQ5ubCzLXm5mYikQjxeJzOzk6y2Wyf12zbtq3f+yaTSZLJfPmMoVR8thpiUqqrDFg2QPUMuoxCJqvgt3GwiEXIqkVQt+ZYbrGzzmJlhL67t1mJ1+VsgZJVEchnTHbF0pYrdnZZcoTb3U7rbCSec8WeUBY7e1yxqqopPGGLFUvIv3ORqGQWjBvBnkSGxirri+nbgSFJ9IILLjCrHY7C7bffzte+9jW7m1EURByQVRmxULjg9Caz1IXtU+x6rI6xqxKuWGtj7PIxZnbt7u222Fmr2NZXBjmYTtAVSzOp0ZJH6rDSOmlEtR5iYaMr1sKanLWOibGzVs6VAR+yBIqqKZdWK3bprKIrtWZb7Pw+mXDQRyyVpSeRPmEUO1fbJceOHUt7e3vBZ+3t7dTW1lJZWcno0aPx+Xx9XjN27Nh+77t69Wq6u7v1f/v27TOl/aWAHmxsoWIX9MsEc1a6qM2xV5a7Ym2LsROKjbXWo3zyhN0xdtYqtvnMWGsVeMi/a6uV+LADYmdFjJ0V3Gv1wHp7+Pba5IqVJCmf7W6DEm9MZLDE5X4CxtkNWbE7cuQI//qv/8qNN97I66+/rn++f/9+otFoSRs3GBYvXsyTTz5Z8Nn69etZvFirZxYMBlmwYEHBNYqi8OSTT+rX9IVQKERtbW3BP6dCz4i13JLjjAU/avmCb32NM8gr8HZZ7OxPnrCWv10KfCarEE/nFnzLg+od4IpNWBN7ZXzGiWaxg3zsrB3zt3jfNSG/JWE8J2Jm7JDf6vXXX8/PfvYzNm7cyPnnn8+LL77ImWeeyZQpUxg1ahSf//znh92YaDRKS0sLLS0tgFbOpKWlhb179wKaJe3qq6/Wr7/hhhvYuXMnt956K9u2bePuu+/m97//fUEbbrnlFn7+859z//33s3XrVj73uc/R29urZ8m6HVaeE2uEmIzsTqDIlzuxhr/Iiu22yRVrtXuuygHuOTDyt0jONiXJGF3e1sde2V+fsvsEirGL2RRjpz3TPutst8UF9XXF7gSy2A15lXjuued48MEHueSSS/j5z3/OBz/4QU4++WQeeughduzYwTe+8Q3mz5/PP/zDPwy5Ma+88goXXnih/vctt9wCwDXXXMN9991HW1ubruSBlqX76KOP8vnPf54f//jHTJw4kXvvvVcvdQLwsY99jEOHDvGVr3yFgwcPcuaZZ/LYY48dl1DhVlg9SASqHeC2AesDkEUdu06LLTlRG4oTQ96KY3eBYlECxCqLnZCz1Qq86M9Bn2zp6Q/gEIudhR4Iu7NidVesDRa7akNmrNXo0hMnrFLshCv2xLHYDblHdXZ2cvrppwOawnXDDTfw0EMPcfbZ2sHwDQ0N3H333cNS7JYsWYKqqv1+31dW7pIlS9i8eeBDg1euXMnKlSuH3B43wErXhRFOqWUXtTgeSZQ7iaezJNJZKiwqMdNjYRkII8JBZ8jZcldsTs5WK/DiPVtZnFjACVZ4O1yxdrnohAItFGorYWfhcau9TEKB92LsBvuRrP0sGAwSDodpamrSv7vgggvYvn17aVrnYVDkY+zscsXa57ZRVdVwpJhFu7+QH1FGzsoFwa6s2HyBYme4Yq3MigX7ClHb6Z6z60ixrKLq/K12xQ5kUDALYu60o9yInR4Xq06dEMi7Yk8ci92wFLv//u//pqWlhUzm+E5RVVVFZ2fniBvmoTiIjC6rLXZOOFYsmVHI5E7dsGohlGUpH1hvpWKnuyItzop1wPFDxudbHWPXbXFWrNU8jbDb7R41WFSsLHeSzqok0orpzzsWdsbYhW0sMt9tuStW43oiWeyGvFU4//zzue2224hGowSDQVKpFLfddhvnnXce8+fPZ/To0Wa000M/yB/BY0/hWjsXfOOzrSwZUB8O0hlLW2rNsa2OneH4Ibuq1IMddezsyYrVS53Ykilpr9tdWFQqAz6CfvOzJauCPnyyRFbRztuutNglKhRoO2Lsqmy0xFsdF17rxdgNjmeffRaA7du3s2nTJl599VVeffVVVq9eTVdXl+6m9WANTuQYu6ghU1S28Jitej3+yjprTsSu5ImcNSGrqCQzimUxhcfC6nIvdh0dF7XTFSviKW1yu3dbvEmVJM36frQ3RXc8zdi6CkueKyDi26yuYwf2elzEZkmEO5gNu+sV2oFh96iTTjqJk046iauuukr/bOfOnWzatGnQZAYPpYNdMXZOyIq160iefMkTKy122rOsLndijP/pTWZsUeySmSypjOYqq7HIRSmyYq0+YUR3xVo8nsH+2pQRG+ay2gq/rthZDWGxC9uSPGG/K9a6GLucxS7pWeyGhenTpzN9+nSuvPLKUt7WwwCwv46dfUH1+Xgka5WdfJFi6xZ9qwsxC/hkicqAj3g6SyyVZZSlT9dgjL2yKltUr2MXS1vqgs73aRuTJ2yy2NnhfbAzM1YkqdhZ7sQeV6w2b1qXFetZ7AbEtGnThjXBrVq1in/6p38a8u88DIx0VtHdJtbXsbM/eUJ3xVps3bDjVAI9W9AmS048nbUtnlI8N5yLibICwk2UUVR6U1nLNg92bVbA4Iq1Sc521OS087xYO0+esLO0jdXJE2LOPJGyYofUo/qqI1cMpk6dOqzfeRgYPQVZZHYdDm+fYieebXWgudVFitOGY6asttiBcNukbCtca0fiSEVAJuiXSWUUumIpGxS7E9EVKzYv1snZLsVOVdV88oQNrlghazvGtNWuWLtPGLEDQxpBF1xwgVnt8DAMiI5aFfRZcuaeEU4oZmpXzS+rS2HY4Yo0wu5jxSJ6Rqx1yo4kSdRXBujoSdIVSzOxwZrn2po8Idxz6SyKolqakAQ2u2IttuYkMwq5Sk16NrKVyFc1sH5MW13HzqjY2dGv7YCXwupi2BVfB85KnrDaumGMv7ICQoGtDPgIWKzAg6G+mV2uWJvOyc0r8NYt+nq5EzsU+Nxir6roFmIrYYcr1i5rjnEshW1ISLKrqkEinSWZS4Sqs8oVm5OxqkKPzfU4rYKn2LkYdp0TC/ZbcbRn27MIWh1jF7G4htux0Oub2RRUb1cNv3rd5W5dkkyPjXFXFQFZP1XFjhALO7Ji7VPsxKkTPlssSLor1mJFR7xnWYJqi8q8VAR8VAQ0Vceu4+OshqfYuRhiwbdDsat2wIkEdrlirS6F0aMnidij2FXbGI8D1hcnFrCjSHGvjckTkiQZEihsOEM0Yf0pOnpgvcUZk/lSJ/aMabtCaYzxdVYqtCdanJ09vcpDSWB1DTsllSL61FOoqRRKEsBHbyJF158eQSRLS8Eg1RddhBw0v/hkNGldbTcjd18CwEdnT5zuRx7RrzGLu67YWLjYG/n6D0qAzOHNb9B96HX9Gqtk3WOhsmPkHT6s8W5/9XW6O17TrzGTt9VuZyNfgApVpgeJ9sefpLFau8YqOYv5zGwF3sg5cBjAx9HWg5aMZQGxSQr4rTvRxcg7q8/faUvnbyHjiqBqaRmhusoA7ZGkp9h5cD6sPic2vrmF1lWfB6DXXwHv/w8yqsSe1V8iqOR3fpPvv5+qsxea3p7tR/YDErt6tgIzTX2WkXssUAnLv0Fckdj9718kqOStG2Zw/+u+lwGZpNpV0vsOBCNf9Yy/g+nn0bH+KQ5sfazgOitk3XLwbUDiUHIfMNfUZxl5+059P5y0hNYnn+PAW38puM4s3kdivYDEpkN/46ypK0p+/2Nh5AsQet+tUDOGfXfdQ92RXfrnVsi5tfsoIPFW5ysswzzuRs7pppPg3H/k6L6DHPj1HQXXmclZJC20x/fyl51/YcUMa2Xd6w/B+79JFmvn785ebQPRnthpGW/Ily+y+ohAu+C5Yl0Mq4/gCS+YT2DiRJAkKjJJ/fOYP6T9jyQRmDSJ8IL5prclo2TYfnQfAM8feIKMYq5Lwci9Kp1AUrUA4GggrF1gEveMkuHxnX8FoDX2ruk8BYx8w2lN1nG/YRdvkawzSoZNbW8C8MaRlyyVc00qBkBPMJy/wETeGSWju0D/b/sDlsjayBegMjeurR7TGSXD4d5eAB7d/XtTuReO5TgA0UBl/gILOPcktPcsyUnubrnbcllXZPJhJFbK+mgsx9sXs4w32Fuv0A54FrshIJtRyOYyepyASCyFrEJdyG9Ru2Qab1pJ2xe/hCRBZTpF0h8kFghTm04A0HjTShRkMLk9a3auJZUEWYXuZDtrdqxl+fTlJj4xzx0JalNxeoJVRELV1OcUADO4r9m5lu5YElmFVLbLAp4Ceb4VWa2fJfwVKFI+ntEKWa/ZuZZYQkFWoTdz2FI516TiyCpEg1WW8P7zjrVIih8J6Ijts0jWhf06nNFkHfdV6pytkrOSDiKrcDi+32Tuec5VaY1vLFBpad/euG8zsiojS2kORNosl7Vd8/fGva8jqzI+OWEhb22NlFXoiqYctYYPBUNpt6fYDQGb1++hOlxjdzN0BN/uYVHCT+X2XjYld1vyTFU+lc7TryQb6eGchI+430/bxItIJKP4amuJSnOQ1prbFkVVeGJbC2f3nIqa9RM4PJcnH25hzCmzkSXzjNBG7osTASKKn4MTLkKJd5nCXfB8z9FTySb8+KTxlvAUEHzrfPUsSvhprJzO7ilLAckSWQv+C7tmoKT8+I+eZKmcw2olixJ+xoQmm85bURWe2vIGixILAAi1vdcyWRv79clSI1UJP6mms9gdHG+ZnNdvfY1F8fcAEGpfbDp3wTneG2dRwg/42TnlMmQwnbOiKnS80saixBRkdRSB1kttkbWYvw9aNH8rqkJ082EWJcbjk5rxW8h7bGuSRQk/idePsinmTkdlNNZT9LXuZOgBQK8HFApYJ0ZJlgkvXAio+HOxZWnZB6iEFy5Eks1vy/auHfSkIqDm9iVSmkgqwvauHaY+18g9qGgm/ZQvgFncj+eZsYSngOAbyMk5I4t9oDWyzvPPWVIs4i94B7OajJOyiGE1j/f2rh30JBO5BmRBUiyTtbFf52Vt3ZjWuMdzf6moFshZ79vZvCvQzLFsxPauHcQzOZeglAVUW2Rt9fy9vWsHyXSuKrOUxkreFX5tDknaUJ/RDngWuyFg3iVTqK2ttbsZOr61q5XXezN8anEzC2Y3W/Zc9ZKJ7HzsR7yrnszOioksPdrCScFepq+8HclvbpfKKBlu+9NK2ia0EeldDIqPqvFP4wt20V65hYeWPoRfNq8Ngvt9qfFsqq/i7J6tnKQcLDl3I8/YgUYyNBNqeoNQwwZLeAqol0zknX/4CxsrZnFqbyef2vs4gQkTTJe1kX80dQpKsprK5o0EqnZaJufeZ3/LxoozaSDFShN5C677xyj0xs5G8vVQPWE9EpJlshb9+i+xKjY2jWZm7F1Oyr5jmZz3j0nR23sOyHFqJj5uCXfB+XXfImKBSj7VsZGp9SFTOQu+u+rnkMpOJdCwg4pme2S9Q53FrooJXGbB/C14v1tzQW4ue41gw0bLeG/ZILHxQDsN4wIsWDbVtOeYiUgkUvS1nmI3BPj8Mj6/c4yc3aksigT11SFr2+UP0nzzjVT8eQ+KBAlfgOabb8RfYX6JkzXvrmN/bB+qJKGoIZBA8cdAzrAvtpfH960zN9Mqx73696+hSNATqKD5s6XnLngiQ1YJoUig+mJkreIp4A8ybvlSlG0Q8weQlYwlsj6WvyqB6reQvz/ItH+4EuVV6A6GkUzkLbhmmIIigeRLosiaZcEyWYsx/cDfUCSIWzSmBfcskzTu/oR13HOcw09GiAYr6c39bSZnna86Nzem7ZN15Z/35uZvv3W8lUqNtz9qKe/66iCKBF3JjKPW8KFgKO12J0MPgPVZsUbULl9OlV/LpEuNGUft5Zeb/syMkuGulruQkECp0D+XfLlMKyRLMq1qly+nPqgNnd5RY0vOvYAnoCq5rDVZc9VZxVOg6bzFACT8IQKTJpku6+P5a7KWLOY/cflSrT0+P9kp00zhXdinNTlLcj7j3EpZ1y5fTnVYa0OqfpSlclazQsZx/XsruNcuX04NmoIRHz/ZVM59yRobZR22aP4ulLOWYS75Yvr3VvA+0QoUe4qdS6Gqqq1nxUp+Pw0zpgIgL7nIdBcswOaOzbRGW1FR9YUAKY0kaROzisr+6H42d2w2tR2S38/YBWcAkD5zQcm5G3kCuhIraZWRLeMpUJU7aSPmD9F080rTZV0gZ/X4RdAq/lXhEAFJk0Hg+htM4V3AVSh2vvxib6WsJb+f0Yu0BAbl1NOtlXNWKzci+fKKnRXcJb+fxrGjtP+//AOmci6UtTamJDlfdsRqWdfPmAKA78L3Wcdbl3NesbOCt1fuxIMrEEtlySjaomPl2YpG1E+fAkf2kZk5y5LnzW2ay/cv+D6pbIr9R+A772pV6r913rf0a4K+IHObzC1iCzBm3umwfwuxMeNLfm8jT4D/t1eiKwkr53+ayU3aNVbxhPwpCMnqOmpXLDP9eUb+8RTcuk3bf379/NWIE5is4C9JEvXVFRzqSZI95wJTnmHk+sI2+J9WmD16Gv9oQ58GGDX/DNj7Fukx40x/lpH781vgdwfg1KbpfMZi7k1TxsMbB0mccpqpzzHy/cljElt64COz3s+iWe/Xr7FS1vXTJsOR/WRPOsXU5xh53/KORBr4t7NvYrQhXN1s3laf7203PMXOpRDnxPpliXDQ2rNSBcSCH7PocPigL8jSqZp77EXpCLCRpqpqVsxYYsnzjRDnxZqxAzTyBFidWQdkuHzmRUwbXVXy5w0GcZ5lLKOiqnotW9Ng5H+gKw48RcAn8aGT32/ZEUQC9ZUBDvWYdxSRkWv7gZ3AVmY0TmDFjHmmPG8wiDNEey0Y00bu+/btAN5m1uhJrJhhjWIjIMZyp8mLvpHvA74NwFHOnXQWl88wX4nuC1bJWvBOpLOks9rJNR+efZmlBon6sPasnkSGrKLis/CcWjvguWJdinx8XcDyxU5ATAw9Fh8kDdoABesPhheoy00Unb3mLgZZRdUP6raLa1Uov3GIW1wuwHgesh39XCwIXRa4cKIWnonbH4QS32vT4fC1NoSVCMWuK5Ya5MrSoTd3Vqxdm3IwbMwtkrWwlvlkydJzr6EwXEmcvV3O8BQ7l8Lqc2L7gpgYrF4EAHqS4sBwe/ibabEzImp4t3Yt+JUBn26lEwuSVbAzjlR7rnVnTEYT9it2+TFtrQIv5jM7wkoaqqyx2BkhvBxVNspaPDtqkaw7c4pzvQ3GiIBP1pXoEyHOzlPsXIq8JcP+icEWxc5mi129HrNh7i5f7C6DPpmKgD27e0mSqAratOALOduk2OUtduZbc4TSbK/FzlfQFqsgQkvqbMjwb9Ct79ZZ7MSGzU6LXZWQtcUWOzGmrMaJFGfnKXYuRcRG14WAcNFFT0TFLjc59aaypEw8e9BuN6xA2OJFQKDbZoudWPStWAxEn7bTimN13KyAnfNZPsbOOsUu5gC3ez7GzirFTnu/4n1bjROp5Imn2LkUdsakCNjltoH8Dt8uV2xNRUB3T5o5UditwArYvuDbpsBbF38llOZqG2Ud1t1z9rjc7XTFWmXJURSVWC5WVcQ02gGrPS6dDrHYeYqdB8ci77qw02J34rpifbJkMO2bt+j32KzACoRD9ljsRD+3awNjpftGt87aabHLKRqpjEI6a54l+lgIl3udDYu+sMoetcgVm8hkUXMlKo2JSVbD6vAKEc5Q71nsTIen2LkU3TbucAWqbdrdg1Gxs4+/Hmd3Aljs9GxJi2Ov7HbFWpsVa39AfaUh5itmoSXezvlMKBrxdJaEBVnfYr6UJC0xyS4IpdI6V6wm4wbPYmc6PMXOpXBCVqy9FjthybJvEawLm+/CiThEscuXRjhxsiUB6nNZsd2WWOy0Z9jpig36ZYK+3HF5Fi34qqraezxihV+va2aFZVaMoaqg37ZSVWCDK7bXs9hZBU+xcynyLio7YzTEji+LkjsFwyoIS5adWcFWZMYKBbY6ZLMrNmhPoozd/VxY7KwIrHdCuRMwjGuLZB1NakVjwZ7AekmSLHXHOqGGHRgVO6tcsfbG2InnWrFJsxueYudS2O2igsIFKGZx4VonxJ5ZkTHpFFesiMeJncCuWFU1d/MiFli7Fbu8292iBT83fkJ++0r6WFmkuNcBLncwxFNmFVMz+wW69Dp2nsXObDhOsbvrrruYOnUqFRUVnH322bz00kv9XptOp/n617/OjBkzqKioYO7cuTz22GMF1/T09LBq1SqmTJlCZWUl55xzDi+//LLZNEyHnVlkApUBH+JkFqvdsU5QePSMSRNrnEUdYJkEa4+aMsLufi5knMooJNLmLX7JTJZULlnBTlcsWH8iQbfNlhyw7lgxyFvs7EycgHxCFFizYbM7xq7WU+zswe9+9ztuueUWbrvtNl599VXmzp3L0qVL6ejo6PP6L3/5y/z0pz/lv/7rv9iyZQs33HADH/zgB9m8ebN+zfXXX8/69et54IEHeOONN7j00ku5+OKLaW1ttYqWKbC7Ij8UFq612kUXdUDyhBUZk06wTIL17jkB3eVuUz+vCvrwi/grExV4ozusysYSGJBf8K0a03rhWpssOZBXKo9aYLETMXZ2ljoB7TSGoF/EU5q/YcuXO/EsdmbDUYrdD37wAz7zmc9w7bXXMmfOHO655x7C4TC//OUv+7z+gQce4Itf/CKXX34506dP53Of+xyXX345d9xxBwDxeJwHH3yQ7373u7z3ve9l5syZfPWrX2XmzJn85Cc/sZJayRGxecETsCOBQlFUoiknWOxOwKxYi5Mn7HbFSpKUl7OJCrzYqISDPtsPKM+73a0tg2FHqROBRlHLzooYu9xcWWVzjB1Ydyykqqp5V6yXFWs6HKPYpVIpNm3axMUXX6x/JssyF198MRs2bOjzN8lkkoqKioLPKisref755wHIZDJks9kBr+nvvpFIpOCfk5DJKvpu2k6LHdhz+kQ0ldHrQDlCsTM1ecJ+yyRAdU7OVsbYGfu5na5oSyyzuYxYu+OutDbYY7Gzy0UHeSuSFRa7vCvWfllblRTVm8qSsTFBBvIy9hQ7C3H48GGy2SzNzc0Fnzc3N3Pw4ME+f7N06VJ+8IMfsH37dhRFYf369fzxj3+kra0NgJqaGhYvXsw3vvENDhw4QDab5Te/+Q0bNmzQr+kLt99+O3V1dfq/SZMmlY5oCSAWe7DfkmPH6ROCf9AvE/Lbt+utt6Tcif1lXSBvsbNUgTc8y07LtBWB9WL82FmcWMDqRBk9xs5GV6yVR8cJS6jdLnewroyRKHUS9MtUBOxRO8QGLZrMkLGw+LYdcIxiNxz8+Mc/5qSTTuKUU04hGAyycuVKrr32WmQ5T+uBBx5AVVUmTJhAKBTiP//zP/n4xz9ecM2xWL16Nd3d3fq/ffv2WUGnaIiJsCroI+CzV4R2uGL1uDObF8F6S2Ls7D9mCvJytvJIMdHPwzb3cytc7lFHWeyEEm9VVqy9LjrIHytmRVkbMVeGbU6eAKOszZ2/xVhuCAdsq91ntPqXu9XOMYrd6NGj8fl8tLe3F3ze3t7O2LFj+/xNU1MTDz/8ML29vezZs4dt27ZRXV3N9OnT9WtmzJjBs88+SzQaZd++fbz00kuk0+mCa45FKBSitra24J+TYPcxS0ZYNTEY4ZS4MytM+0KJtT8r1vrkCbuLEwvUVZpvmY06pNQJ5BUOq7JixXu1M8ZOz4q1NMbOAbIOWjOuhcJslxsWwO+T9TXDipNk7IRjFLtgMMiCBQt48skn9c8UReHJJ59k8eLFA/62oqKCCRMmkMlkePDBB7niiiuOu6aqqopx48bR2dnJunXr+rzGLbA7oNwIq4JvjXBKpmi9wbRvxrmaqqrmzw+1+6xYG44Uc8J5yGC02Jlf1sZuyyzk65tZVdqm0wFZsQ16IWoryp04o44dGFyxJo9r8V7tHstW1iu0E/b3LANuueUWrrnmGs466ywWLlzIj370I3p7e7n22msBuPrqq5kwYQK33347AC+++CKtra2ceeaZtLa28tWvfhVFUbj11lv1e65btw5VVZk1axY7duzg3/7t3zjllFP0e7oRTrFkgD2WHKdY7GorA0gSqKpmdWiqCZX0/rFUFsUBSSJgz5Fidh4zZYRQ4M2sWC/GjzMsdtZu1rrjJ5YrNuaQOnZgjJ01d1x3O8Bipz0/wN6j0Nlb3hY7+2cRAz72sY9x6NAhvvKVr3Dw4EHOPPNMHnvsMT2hYu/evQWxcYlEgi9/+cvs3LmT6upqLr/8ch544AHq6+v1a7q7u1m9ejX79++nsbGRD3/4w3zzm98kELBfKRou8gue/RysjscB55yf6pMlaisCdMfTdMdTJVfshALrkyVbDwsHe44Us7s4sYAV5U56HKTYiTIcViVP5OvY2e+K7Ulo1nczYzqjDqljB/lsd/NdsfYXodaeb50Cbyfs71nHYOXKlaxcubLP75555pmCvy+44AK2bNky4P0++tGP8tGPfrRUzXME7D4/0wjdbXMCumJBm6i642lTFv0eQ0asnYeFQ16BT2YUMlkFvwXJDM5xxZq/GAhXrBPcc1bHzYp4Jztj7OpMtr4bEdOVePstdvkTZcyVdZfNxYkFGiw8+9lOOCbGzkPxcFKMnb4IWBh75RRXLJibGesUyyQUuo2sOhfYKZZp/fBwEwOue5POk7UVGdCqquoubjsXfZ8sGeoVmrvoixg7J1jsrKpq0KW7Yu0ey9YdHWcn7O9ZHoYMu11USipF9KmnUFMp5HYJkOnee4DuR/br10jBINUXXYQcLP1k3RO3t9yJkX91VAYkDrzwEt078ofEl4K/4GmXe87IU1XBL8lkVImDf16LmjNomClnoUjZoewYufujAD6OHo3Q/cgj+jWl5K4XKLbpNAIjX7oBfESOdJnGVyCezp+RW2eznGsVmS4k9j3+NGPq8teUmrde7sQBspbbtPm7a9deuh/Zo19Tas7CQma3McJLnvDgWNhtsYtvbqF11ecBSI0/AxZeTeeOXRy47+6C6ybffz9VZy8s+fO3Hd4DSOzrfQeYVfL7DwYj/8CCT8Ck+ex76C8cePe5gutGyv+ZvS8CMmnVnpNPjDwBKi7/OtFgmN3f+T7Z6CH9c9PkfEiT8/6Y9XI2ck+EG+HSL9IdS3Pg1i8WXFcq7rs62wCJHZE3gWkjvt9QYeTbWzcBLvw8PUe7OXDrfxRcV2pZ5y3dGZ7a/xgfmLmiZPcuBkbe4feuhMap7PzlA/+/vTePk6I69//fVV29zL4vDAMMDAguOCAIuMUlKApBzaLGm0RjEhMXzDXkJtFEJTG5EhPjl3yN0STfuN+bmPziFiMqoLiCRhhcQJB9mZUBZu3pter3R3VVd8NsPdM9XdWe9+s1L2XmdPf59DlV56nnec5zGNP0UVy7ZOo+0tsDSLzX+haza0ZXL8RrDo6fDad8mcObt9H45z/HtUum5t1HWgGJHV3vA+OT8p7DoSgnEorN8M0TIhRrQ9J9Tmz2rFNwVleDJJEV8gPQ64zJSZEknOPGkT3rlKR/dkgN8XHbHgDWt7xKSB3dQ+khXn9e0AtAlys72iAJ+kNqiBd3rgWg2bcn7TqB6Fgrhrsu1eOsexDWN4/+OMeNcUAfY7/iwi9HnoWTqD2khtjTrp+E82rDi2kfa2OcfUrqr+lDPb362zt6eeD936d1nPMDqbmWYwmpITN38e87Hk/7WHtCuueqN4VjHVJDNHS0A7Bq/zNp0WwgNk8IjiEcUgmH0n8USWdPAFmDfJcjTf2RKb5xCU0//gmecBBZA5/DjSpFQwvFNy5BRYYk9++FXSsJ+EHWoMPfwgs7VrJo0qKkfsbgRPXnBXqRNehy5iRV/wu7VtLh9SFrEAi3p10nEmQH9XnndWaZWlM5zn6/pI9zoCkN+uPnuBIOo8oOOtx5lPp0D2qytL+wayXBgIysQbuvOe1j7Q6HkDXwO9yEJQfGtp1UjPXL299C1mRk2UtjZ3rHuSDgRdag05WbsnvZ8ztWIoWdSEBrT0PaxzorpF/TPiV19+8Xdq0kHHQha3DIty9NmnUK3A79ntITsMRangiJ9FcYdglQv2ovudl56e4GYxsDZPsUuusPs2FPb1r6oMkncmT6ZQT8GvN8Ch6K2TNhASDhyM+nWzoBaeWepH6mqqms3rqJOV0noIUUnIems+aZTZRPOx5ZGl3ns6G/1FHEPJ9Cfu6UpOk3dM4+Mp2wT8EhjUm7znBnFyeruYz1KXRWnM6enONSPs5zO09CC6dvnGO1f6ZXwudQODD+fLr9PUnTbmrtPhktrOA6ODPtY+3r9jLPpy8Nu2ouwqFpKRlrVVP5pH4v83xTkMM5OBsuSOs4j1fGMM+n4Cg8mT0TPCT7XqZqKmu2fMA832wA3M1npX2sw0GZeT6FPKksJfdvVVNZ/fEm5vWcCki4WuemTTNAV5efeT6FnOYQG5J830o13d6uIbcVoVgb4o9Y7uk6TBlAkmWy58xBibjVg0aICo3sOXOQBjiLd7hsb99BV6ATVCMcFqQz0Mn29h1J/6zBMPS7w7pLP+AwwuIj12/q1KyjEzScqr6bLyQrjMo4a5HvVAqkRX+sdldYz8nxy06Sqd3Qqqm6t0STQmkfa0WN7oYNpnCst7fvoNfYTS8FAS2t4+yOhCX9DmPDQHJ1b2/fQZffeBDX0AinfayNazpV9+/t7Tvo9PvA8Pum6Vo28ETqgfqCYbRB2toZ4bFLgJnnT0j7ubGapvHGuq0EZY1fnT+eMYVZ6evL+dXUr36Q9R79yLcf7F+Np2oMk5YsR1KSO7VCaohlzy6haWwTnT2ngRoip+pVHK4jtGRt4ekFT6PIozudtfOr2feVZ1jvOZ5afxff2PcyzrFjR6Q/Vqe3KZ+QNgZX6Ud4it9Kq85dL67gfwIVrC/O55SurUwJH0jpODdWNdPV9RkgRM7Y1TiUnrToN7TvC09iq6eGczs+YoqjPSnao1qb6Oo6CwiRU/UKDmdX2sd6k3I6PsXNN1veZlxRVtLH2tC+p6gWf2gKSsFussasQkJK2zhv/Poq1nsmEu44xJeTcC3HYug9UBGgx3sayL3kVadPL+ia33rlIdZ7TsUdCvH9VGkuD9LTc3pE88tp1ewNhPj2e9sBuP+8akvUjRwqnZ1D30RnH1UWwKHIOJT0Ojm9gRB+VQMJivLc6e2P4qLmO99AfUf/p092MOGmG1A8yS998cLOlzjg3Y8myaiaGyRQlR6QQ+z37uPl/S+xuHaUd5gpLiZ8fiHqR9DpzEZWQ1SMUL+hExlU1Y0qgebwEU6zzoqbbiDryU2oEngdTiquT/E4k4UaCdVozm7CUjg9+iPac5/+BFWCHqebihuToz06pxUzv0lTeiwx1u5XvXidbnyyY8Rzui8M7WHtRH2OKz2osu49Stc4j7/gHNRPoMOVlZRrORZTL2NRJZAcgfTqBV3zN76K+h70Ol1oajglmkNaja7Z2Z12zbkOJ4pTJhBS6QyEyM9Jb8HkREhkrRehWJthnBPrkKW01UGKpXTxIjN0Exw3kfyFC5P+GSE1xP2b7kdCQgt7zN9LDp/+XyR+v2n0d9QBVM0/B4AuVxbOceNGpD9WJ4Cm6lolOf068xctIi9SuNZXUj4K4xzZmSj7kSR9fqVLf/6iReRHHoF7ysYkRXucVjVmR6Ksh3zTPdbZRK7pqpHN6b7oa5wlh9f8e7q0V39Gjzy0u3NHfC3HEj/WuiEhyX7z7+kc6zGLLoz2c8Kk1GgO5QDWGGNJkswiyak8IjDdCMPOZsTWsEv3MVMAkqKQ49Knkeeqq5MemgOob62nobsBDQ3USOhZ9iFJeq6hhsaB7gPUt9Yn/bMHozhP74/XmUXhjUtGpD9OJ5hGrGHAplOnpCiUnVIHgDpzdsrHWQvr36skRxeDdOmXFIXK6dMACM09Iyna4+d05GFF9iFJkbFP81jnlRQC4Pr8F5M+1vHjfKxhly7tJQX6nOtw5VJ208iu5VjixzriIYox7NI51m6PCyUy57K/9e2UaNbChmHXY/49nZqLPgUlT0Qo1maY58Ra4Oghg9zcbDrae5FOOzMl719XVsc9Z99DIBxgTyv8ZicUZbu588y7zDYuh4u6srqUfP5AxNYS1D57wYjeK1YnwM8aJNr8cN2Mq5lUqbdJl06AkpNPgIatBMaMS8n7x+rfvB8e3ANjCwr5kQXGuezEqdC0nd6qCUl5v1it+9vgVzuhMMvNzy2gFSCvrBh6jqDNnJ30947V/tvnJXZ0wZUnXMKs2kvMNunQXhIJy/U6PbgvWpC0943Vu2EnPHIAaouq+a4FxlqSJLLdTjp9IeTPnJu0943V/FI9PN8Mp1Ydz1csoLnQPC82cz121rEOBEPCOFcx3UezxJJrHiSdmrMlXQ4XC2r0G+1r4YPAu1TmFbC49qyUfF4iOGSJfI9Cpy9ER2+IshFUw4nVCbAsvAoIcGHtOUytTH+ZHeNor64UnSsZqz/c2QBsYkJRKYtr56Xk8xKhKMc4iig5i0Gs1vXSIWA9Jdm5LK49JynvP1KMpPJUnBcbq/3/hl8Dujl/0mmcUVua9M9KhHyPE0WWCKkaR7xBxhQkZ3mM1dtzaB/wIeMLKlhce2pS3n+k5Lr1+1cy79+xmjd9vAXYTd2YWhbXHp+0zxgupseuJ3M9diIUazNMj52FDDvj0PBUHyQNsefkWueZxKhm3tGbvBuFpml0+dJ3VmpfGAZ8ty/142yESdJ5MHwsqQzfGN9nbprOfu6L0Toc/oh5OHz6x1mWJdOAP9SdmkXfOHXCSrsxzbEOpGasD0cMqGILjDF8Ok6fEIadzTBy7Kxl2EUWfH9qPHaxpPuc3L4wknGTef6gP6QSDOu5L7kWMezyI4aHcWB9KjE8Y4UWGefiyIJ/OAVP+caCmutO/2Yog5zIxqxUeeEB1IhnDKAk1xqLfkkKxxmihp1VrmmAbNOIT81YG99lkUV2oIrNEwLLYeyKzbfQ073hURoNj50VDbuCyBNge2/ybhSGZ1aSINdljUXAWIxGw2PXbiFPDqTWY9dleOws6MXxpsiLA/ocD6v6w4uR95RuUmnAQ/QeaaWxzk1xxMW4ZkosYtgZYyw8dgLLYEXDxrhJGaHDVNJpQf2GV6k9iTcKc7F3Kchy+nc/Q9SA7x4FA94wkq2y4BsepSPeIKqa3Jr1lgzPuVLrxYGo8ZTnVnAr1vBWGov+oVR77Cw01tmu1IZijbC2VTx20VCs8NgJLEI0x846NwYzRDcKnhwrhqIN46MjiR4747u0Sn4dRBejzlHJsTMMO6ssBvoYh1XNvAaTheEpybPQYj8aOXZWC9FB1Kt0qNs/SMvhYaSrWMmIz03xWBueMavk2EVDscJjJ7AIVvTYGUZWshe8vjA+w0r6ox67ZBp2xsYJ6+g0+hIIqfhDqc2n7DA2T1hknN2Kw1wAkx2mM72zFjLizQ1RKQzFWtGwK87Ri0WnOhRrLSPeCMUm/5r2BcPmzupii+RRis0TAssR3RVqjQUPokZWMj1W/WFFwzYVN4puC3vsIPV5dkYotijHOuOcqtycHguGYrNHIRRrtdwriBofKQvF+qw31tGwe/KvacNAVmTJMsas6bFL4mY3qyEMO5thRcPGCAsbGztSiRX1f1pCsbHH2KU6z86oMVWQZZ1FP1WlMLot6MVJdUI9RI0nq2yQASj9FO6KTWW5k1ivrBVOSoLofOvyhwiG1TT3JjUIw85mGAu+lXLMDO/haIRirZxjl8xQrPFdWqm2GcQUKU6hx07PY9Pfv8gimycAis2K9akx7KzkxYkm1KfQY2fUN7OgVzblhp2VStuksNyJFb2y+VlODBszU0ueCMPOZljRY2Xm2I1CKNbwChZYaPOI4VVqT2KBYit67CB2B3TqDLtYz6eV5nk0/yq589yKOyVHo9zJIdOwc6fsMxLF2P2cqs0TVgy7mzULUxiKtZJX1iFL5n0lUzdQCMPORoTCqrkIWOnkhdHKsVNjdiRayWOXipwNqxp2xgaKVIZijZttnkdBcVjnFmV4lg73JHfR77by5okUjrM1PXa6kdnpCxEIJT9M12VhIz4V17R56oSFPHYQNTRT5ZlNN9a5awoGJdZLYiXDJhqKDaFpya3xFUuXP4Tx9lby5BSmIGfD2BVrpU0yEBuKTZ0RHy11Yi3tRWaYLjXlTiy12I9GHbvIOFvJY1eY5cQoG5nskHswrJrGopXGOtf0zqYgFGvm2FnrWs70IsXCsLMRhrcq2+XAaSFPhrF5IqxqKbk5GBihXo9TtkxBU4j3nibLa2ldj13qixQbZ+5aKXwD0TyhZC8GVvbi9AbD5ukQycbwfFrJYyfLkjnvkr1JJtb7aaVQbHYqQ7Fe64XbIfWFqNONdawDwaBYMb8OIMvpQIk85qZyA0WHBUu9ACgO2RyTI0m6UZg7JS1m2I1Gjp1x5q7V5rm54CdxMdA0zZIeO2Oxh9Tl2RnjbDUDPlUbKIxrxq3IlnowH5VQrMW87+aZwEk23q2CdWaXYFCsathJkjQqeXZWPE7MINmHh5sFit3W0prrTv0pI0csdk6sgRm+SeKC3xsMYzjErFSM2q3I5sNaKsKx/lDYNCRKLOvNSW4upVFOxGoPazkpDMVasQg1xGySER47QboxdoRazWMFsTtjU79b0oqGXVGSw3RWPI0AYkOxqTPgrZpwnQrDzhhnhyzhcVrndixJ0ZqFqahvZnjrHLJkOUOnNDc1p09YsTgxxJ8ykuwcaWOcrWe86/0Rhp0g7VixhpuBkWeWypInljbskhym67R4jl0qPXbGgmql2lcQNey6/KGkHalmGvBuxTIFXA3MpPoUeOyiZTCcyLK1dKcqFGvWK3RZ65o2xlnTku+1O2TRzRPRCEtqytqkG2HY2QgrGzajcV6slfUbCeDJ8uZYfVdsKo8UM+ubWeRsSYN8jxNHxAhJVmFTK9awM8j+FJbBgNQl1hshbat54bOcDrNgbzK9s5qmmREMq41ztF6h8NgJ0kzUY2etGwOMTpFiK3ssk1m8NhBS8UfKIljNY2fm2KVwV6xVPXb6jkmjll2SNslY1DML0cK1qdg8cdiieZQQXfSTnVhvpC9YzYiXJCkl5W06fSFzR7XVxlnsihVYBsMbZkWPleFZ6khhjp1V65tBjMcuCTl2sTXirLYI5I5iKNZqJRIg+YVNrbrYQ4p3S0ZOdiixmFcWUrd5otvw2FlyrJNf8sS4RnJcDjxO65SngmjO3+GeAGqKyvmkE8sZdvfffz81NTV4PB7mzp3Lu+++22/bYDDInXfeSW1tLR6Ph7q6Ol588cW4NuFwmNtvv52JEyeSlZVFbW0tP//5z1NaSDdVWDkUaXgRUxmKbbfwU34yc+wMoynb5bDUyQswOpsnjOOcrBa+gdgixZm9SQai58WmZLek+ZBmvTFOlTfHqpsnILYgdfINOyuPcTjmNKNMwlKrxpNPPsnSpUtZtmwZGzdupK6ujgULFtDa2tpn+9tuu40//OEP3HfffWzZsoXrrruOz3/+89TX15tt7r77bh544AF+97vf8fHHH3P33Xfzq1/9ivvuu2+0ZCUNK5f7ME+fSGEo1iyDYcEF3/A8JCPHzljsrZZfB5CX4jp2wbBqbhyxWigWoDg7ubufrZxjZxxUn4p8yraI8W7sQLUSsd6cZGLVcicQNTaTmWNnPKCV5llvjF2KbI5DJoZjLTXD7r33Xq699lquueYaAB588EH+9a9/8dBDD3HLLbcc0/7xxx/nJz/5CQsXLgTg+uuvZ/Xq1fzmN7/hiSeeAODtt9/mkksuYdGiRQDU1NTwl7/8ZUBPoFWxWoFeNRCg+5VX0AIBXM0SIHNo9346nttrtpFcLnLPOw/ZNfJF2jCaCi2SYxir39kF4OBQWzsdzz1nthmOfuMJ0uUMo2la2ndLxurU/AAOunsDtD/7nJl0naxxNsZYlqxzHnKs/tw2fZ43bviQjoMfmG2Gqz92V6wViNXqjlzTBz/YTEf7R2abZIx1W1dk0beI8R53LQcAHLR7gxx69jmUJM3x7sh1neNKf1gyVi+Au0sGJA6+/S4dn+jRrJHqPWiE2y0yxkdTkuOiyxfiUHeA2rJ09ya5WONuAgQCATZs2MCtt95q/k6WZebPn8+6dev6fI3f78fj8cT9LisrizfffNP89+mnn84f//hHPvnkE4477jjef/993nzzTe69995+++L3+/H7o/kVnZ2dw5WVVEyPnUVyzHrrN9Fw8/cACI2dAad+lbZtO2l86MG4duMffZScuXNG/HlNXV2AxEdH3uEzLB7x+42UWP2B7BK44FYO9wRo/OFP4tolqt/IsTvg3c7zu/wsrk2v1lidXsUNn/tvQprEnlt/gluNPuEnY5yNp2dN7uKFPf9Ku3aI168cfyFMnU/D6+to/ODpuHbD0f9+yzZAotW3Dzg5ST0ePrFapYjW5tfeovHDZ+PajXSst7c1AxJ7vR8CNcPvcJKI1R2WZLjkVwBsu+PnFPm7zXYj0b3t0D5AYk/3NuC4kXZ5RMTqBZDnfQMqT6Dxyf+Pxr1Rp8dI9L697wNApldrGWl3U0JJrps9h7wZWfLEMqHYtrY2wuEwFRUVcb+vqKigubm5z9csWLCAe++9l+3bt6OqKqtWreKpp56iqanJbHPLLbfw5S9/mWnTpuF0Opk5cyY333wzX/nKV/rty/LlyykoKDB/xo0blxyRI8RqOXbZs07BWV0NkkRusBeAbmdWtIEk4Rw3juxZp4z4s4LhIF29+k7Rp3Y+RkhNXfL+UInVXxDoAcCnuPHLkeelYepvj5yVKsk+fr/p92nXGqszK+RH0vRx6DHGOonjfLBLn0eS0mMJ7RCvPz8yzh2u7GiDYeoPqSE2NG0G4IND71pOa07QB8SMMyRlrENqiAMd+sPy6gNPW063Q1PJ9xvjnKs3GKHukBpia9seANY3v5p2zbF6AbIjY92rRMKmSdD71v4PAfikc0Pa9fZFJu+MtYzHbjj89re/5dprr2XatGlIkkRtbS3XXHMNDz30kNnmb3/7G//zP//D//7v/3LiiSeyadMmbr75Zqqqqrj66qv7fN9bb72VpUuXmv/u7Oxk3LhxhEMq4UgZitFG0zS6e0PIGuQqjrT1Ix6Z4huX0PTjn5Ad8iNr0KtkoUrRUEPxjUtQkWGE/X1m24tIqgMJaO3dwws7VrJo0qIR9n+kRPV7wkFc4RAhWaHdk09ZbwcwPP3v7P8AWZNxyH4aO5ssoDWqEwlyg356nFn0uHIoDHiB5I3zK7vejWj3WkQ7xOov8HuRNeh05414nr+wayVeXxhZg55Qm+W05gT1a9rrTO41/cKulYT9HmQNDvutdy0jQZG/m25XDu2ePNTug8DIdL+wayWBAMgadPhbLaA5Xm9WOBi5f3vMsR6pXq9X0udPuMUCeo+lJMuJrMGhTr9F1tOBSaSPljHsSktLcTgctLTEu21bWlqorKzs8zVlZWU888wz+Hw+Dh06RFVVFbfccguTJk0y2/zgBz8wvXYA06dPZ+/evSxfvrxfw87tduN2H5vwWb9qL7nZecOVOCL8IZVTvfoFt/uNJg44rFGtXZNP5Mj0ywj4wszzKbgoYs+EBYCEIz+fbukEpJV7RvQZqqay9qMtzPPNAEnF3Xgua57ZRPm045Gl9DqdDf3hzi7O8kr0Kgr7x51Pj797WPpVTaVr40Hm+cbioAJFu8ASWmN1nuZT6A4rNI09l6CvM6nj3PBeE/N8E5C1ApwN1tAOUf3usIt5PoUi59gRzXNVU1m9dRNz2iehBhSUw1MspzVLy2aeT6HcPT5p17Sqqaza8gHzemcD4G6Zaznd4c4uZoayGetTOFJ5FntyjhuRbnOsO49HCyk4D023hOZYvVWuaub5FNz5J7Jngis5etunoAYVnIdr+9YraSCrkKalbOJhPwtdbuTtR9gQ2pmeThhogCqD1v+X0e3tGvLbWcawc7lczJo1izVr1nDppZcCoKoqa9asYcmSJQO+1uPxMHbsWILBIP/4xz+4/PLLzb95vV5kOf7icTgcqKr1LfRYjIK1DllCsYhRByDJMtlz5tDz6usABB0KGhISGtlz5iDJI79xbW/fQbc/Ep6UgiBpdAY62d6+g6lF6c1VMfR3rV6NOxygV3Hjd7hgmPq3t++IHlclhwBraI3V6VKDQBYBh5Ph6uyL7e078AXVyOcFsYp2vT+6fvcbev6RPsYwknHuCnSCZoTtQ5bT6nxbry4QNFILkjDW29t30GXkL0thNAvq7lq9Gk9Iv9/4lOFfywbRsY54PS2iOVavMxIqDcoOkqVXUyPXiBw4Sq+GlOtDyQ0jpfE4uZklbk44qRjFIeNy+tLWDwNN1Qh1O9C6PYzU2rWMYQewdOlSrr76ambPns2cOXNYsWIFPT095i7Zq666irFjx7J8+XIA3nnnHRoaGpgxYwYNDQ389Kc/RVVVfvjDH5rvuXjxYv77v/+b8ePHc+KJJ1JfX8+9997LN77xjYT7N/P8CeTn5ydHbIJ83NTJ+ve2U5rrYvZFNWnpQ39o51ez9aX7WO85E4Cbml6nuLyYSUuWIykjm2IhNcSyZ5ewvzQHr+8UZHcrOWNXISHRkrWFpxc8jSKndxpr51ez68UVNAbH80HBZM7o3MIUqS1h/YbWXfnzCGpVuEo24y553TJaDZ1/Co7ng4JszuzYPCydfRHVfipBdZyuvfQVy2gHXb/0yp9Z75mNomrcvO9lXGPHDnucm8Y20R2YiurPJat8Pc7cXZbS2vHGX1jvqaNc7eWGfS/jHIbWWKLXsoLXOxfJeZjcamteyy92e1hfVsJ4314+F94ybN2xY93lnYUWdpFd+RqK56AlNBt6N7b3sn7sBLJCTXwlvDlJek9FC4fIHvNqnN62g210dgQoK68gOzs7bbv+O3uDtHT6yHI5qC7KHvwFKUTTNLxeLwdbD5J/XBaVFcdGKRPZxGkpw+6KK67g4MGD3HHHHTQ3NzNjxgxefPFFc0PFvn374rxvPp+P2267jV27dpGbm8vChQt5/PHHKSwsNNvcd9993H777dxwww20trZSVVXFd77zHe64446E++dQZBxKelznXYEwqgS52c609aFfFBfjlnwH1xt+fIqbHsXF8TfdgOIZ+Tb3F3a+xAHvfkJaHaoEkuJFlXWP1n7vPl7e/1L6d04qLipuuoH8v3+EKkGXK4uK6xLXb2gNa2ejSqBZTWtEZ84/tqBK0ON0U3F9csc5rBrau6ylHUBxMeVbX0N9FwIOBZ+sMG4Y89zQigxhzY0mgebsJSyHLKV1/JVfRN2kz2dZDVExwmvavJbVE1ElkJVuS45xxU03UPjQalQJjrhzqbhm+LqPHmsk0BSfdcY6ojf7gWdQJfBG/j1SvZokE1ZzdL2uTlPvqn0vUxuspbyinJKSkiSLSYyQpIBXRXM4yMrKGvwFKcYwcltbW6msrMDhiC+Lk8i6bzELAZYsWcLevXvx+/288847zJ071/zb2rVreeSRR8x/n3322WzZsgWfz0dbWxuPPfYYVVVVce+Xl5fHihUr2Lt3L729vezcuZNf/OIXuJJQV200sdqO2KPJX7SI/LAeYvFWTyQ/UltwJITUEPdvul8P7IZzAJAcPebfJSTL7JzMX7SIQpf+5NldOiZh/fFa9RI+khwND1hFa/6iReQ79duGt7Qy+eMcioyzYs1xrrh4EZ6wHqbrrpkyonEG0NRILm9krK2kdcyF8wG9xI1j3LgRjXX8/NZ3mspKtIyIlXTnL1pESaRWZkdh2bB1x2nWZND0NUeS9fukVTTnL1pEbr5+3flyCpKjN3Idg4rk0DdYSUj8dfNf0TSN7Oz0esgAlEgYOBS2zilUxvcSDI6s0L/lDDtB31j5nFgASVEoLtY3lkhfuGzEoTmA+tZ6Grob0NDQwvqEN24SABoaB7oPUN9a399bjBqSolB1ynQA/DNPTVh/nFb1WMPOKlolRaH85BMACJ86LwXjfKwBbxXtoOsvNepIfvmrIxtnDTCNeH2xt5LW/By9b5okk339khGNdZzukG7YSUo0GdxKuiVFoWbBuQB0VU8ctu5Yzagxm/Ec1hprSVGovOgCAIJV1UnRaxjvkqMHSdINJw2NVm8rATWQ9qLrAEok+hdWNcscMZqs78VSoVhB/3Ra7NSJvigZUwo7DuE/aeT1zADqyuq45+x7CIQD/P0tidfb4LyauXzu1GjBTJfDRV1ZXVI+b6RUzjwJDmyhu6xq8MZHEav1Zw0SbT64bubVTIpJtbCK1rLp06DpE3xV45PyfrHab9kl0QPcfOq3qCqOtrGKdoCy8iIO7G+nt+7UhF8bqzUQgu9v1ReXn55xC0b0yypaPU4HbkXGH1LRzpk/oveK1f3kmxJvtsF5E+fwudnR79AqugHGn3cWbHubI47hh+hiNR/qgp9+Ak6HxvKzfm62sYrmsrNOh23v4BtB1YdYvR8fgN/vhjEFudx65l1mmyyycPmtES1zRDYhamiEVc1SmxJHijDsbILVQ7EARZFzNNuTdF6sy+FiQc0CAF5+tx5o5NSxJ7C4dtLAL0wTxZFzL4dzjmis1mXhVUCAC2vPYWplesrrDIQxBzuSPM5hVeO7gRcA+MK0Cyiz4BmTED37sm0YhU1jx7m1ywesQZLgi1M/h5zGHYL9kedx4u/2j/hs4Fjd/3p7A9DM6eNOYnFtzcg7mQKMudfWHRj2sX6xmjc3dgBvUpjtYXHtyIzkVGCeFesf/jjH6g12HADeZ1JxGYtro+lUPp+P3bt3j6ivyUKWJByyRFjVCKkaSvpPeksaIhRrEzptZNh1JOmA9FjaI+9pfIYVMQ6IH8nh4ZqmmUeKWfGwcID8yBzs7E1ubtARbwAjIlJkkWPz+sI4uN4473S4dBvnxLoUSxp1APmRXDNjTiaDtsgZolY13CHat0BYpXOERi1EzwS2yvnHR5MMwy6WQ936PbAk17r3a4iGY0OqNUKxyUIYdjbB8I4YN1orYizGR7zJWwQMDC9YUY51F3zjiJrDPcPX7wuqBCPJvPkWNeKT7bEzMBaDomwnisO6t6ayXOMoohEadpFFNNeiiz1EUz+SYdwYGIadYSBbEY/TQV7E2DH6OxKMB/M8i6bS5BqGXSCclHwzO4wxxG6gGLyu7dq1a6mpqUn4M4b7upFg3bunIA47hGILIx6r4YQiB+NIxFiytMcuJ6p/uDdHwzMiS5DjsmZsIFWG3cEu63tyQD88HKCta2Tz3PTYua1r2Ble484kjrUxzqUW9+YYIfeDI/TMQtRjZ1UvfLZbv9eEVc0shj8S2uzisYvk1Q3XY3f22WcjSZL5U1xczKWXXsrBgweT2c2EEYadTbCDYWd409pT6bGzsGFn6A+r2rA9HJ0xi70Vdo71RYEZik2yYdet7wK2umFnhmJH6MnpsoPHLjLWyQrF9gbC9AT02nWllh9n/V6TFI+dz4i4WPP+neOKzsFkhGMNb3ZpjrXH2BmJDAzFY3c0mqZRX1/PPffcQ1NTEw0NDfzlL39hzZo15iEK6cK6dxRBHMaCb9UbA6TOY+cLhvFGFgMrG3ZuxUGuW6HbH+JwT2BYRrjVFwCIWez9IcKqhiNJ+WGmx87i4ZtSMxSb+R47IycsWaFYw0hyKbIZ6rQq5gaKJHrsrJpj55AlspwOeoNhevxhSnJH9n5mKDZv4Pu1pmn0BsMj+7BhkuV0mKHY4DBq2W3fvp2uri7OOecc8zz7qqoqJk+ejNfrHeTVqcWas0xwDB02KHdi7opNssfOWECdDsnSOYage+0Mw25iac7gLziKaMjGuuMca7B2+YKmQT9S7BKKLU3Sgm/k2Fn5mjZz7JLknT3YHTXereqRNjA8sweT4LGLboiy7ljnuCOGXSAJHjsjFDuIx643GOaEO14a8ecNhy13LjBzeYcTit2wYQMul4vp0yP1S/1+HnvsMXbs2MFDDz2U1L4mirVXSYGJHUKxhVnG5onkeuwORW6sJTnWXwyKs13sP9zLkWF6c6y+Ixb08EW2y4E3EKajN3mGnZGXY3nDLrJYdflD+IJhPM7h5UKamycs7LmKhmKT5LGzSX4dxO5+Hvn9zNhBblWPHejzsK07MOKx1jTNNOysHm43c+yGEYrduHEjwWCQ4mK94KbX66W8vJyXX36ZmTNnJrWfiWLdWSYw8QXDBCIJrQUWLgNheOy8gTD+UBh3kgoDDdWtbwWKjJ2xwzRuowuAdccZ9AcMw7BLFtGkemsvBvlZCi6HTCCscqgnwNjC4RWxNRZQK+fYmZsnkpRj1xIZ4/J8T1LeL5VEa9klwWPnt77HLln5lJ2+EIGIoVSSM/A9O8vpYMudC0b0ecMly+nAFwkDB4fhsdu4cSNXXnklP/vZzwA4ePAgt9xyC9dddx319fVx59qPNta9owhMjDCIJOk1r6xKnkdBlkDV9HBsRX6yDLuhufWtQLTkycg8dlZ+sgfdsGvq8KXEsLO6x06SJEpyXTR1+Gjr8g/bsOuOLPaW9tiZ5U6SM86tnfoGmUobGHbJDMWaD2wWTiVJ1lgbhnCeWxnUmy1JEtlpXNOMUGw4rCZciHrjxo3cddddTJ48GYDJkyezdOlSLr30Ug4cOMD48ck5mWc4iF2xNiA2v86qhUwBZFkyw3LJzLOzS00kiBYpHn4o1tplEQyMRSCphp0NCtcaJGNnrB3GOlqgODmh2JaIYVeRb4cxjuyKTcrmiYjHzm1lj51R2mZkY218X1YvdQJ6HTsJ0Egsz27Xrl20t7cfE3LduXMniqJQWFiY1H4minXvKAITO+TXGRRmOzncE0hqnp2Zr2GDG0XRCD12dtgVC9H+JcuwC4ZV8zuz+q5YiC5aIzHs7LArNi/JmydaOu0Yih3+sWIGtjDikzTWrTYKt0uShEOWCakqobBqlj8ZjA0bNiBJEuXl5TQ3N9PT08Prr7/OnXfeyfXXX09+fn6Kez4w1p1lAhM7GXZ6nl2PeQRYMjA3T9jAsCsZcSjW+gsAxNayS+4RRA5ZsnRJG4Oox27489yoY5djYcMu2Z7ZqMfO+ou+McbGsWIjuf/a4YHNPCpwhKFYY4zLbeB5B30DRUhNzGO3ceNGNE2jtrYWgKKiIqZMmcKKFSu46qqrUtXVIWPdO4rAJHpTsP5wpeJYsTbTY2f9G8VIN0/YoSwCRA279t7kGPBt5s5nl6XTDQySEYq1w/nPhdlRw05VtRGPjeHNsUMo1jhWrMsf4mCXf4SGnfUf2MyahSN8WDNyZcvzrG+8g77L3xcMJ1TLbvny5WkvQjwQIsfOBnR4rb8AGKSiSLG56NvAsDOPFRtuKNYmu2KLjVNGRnAubix22ThhED2VYAQeOxsUHTfuOaoW9TAOF38obHqyK2yy6CdjZ2xsVQMrP7Aly2MXDcXa41pO5LxYuyAMOxvQbj7ZWz9ENVLDpi/a7JRjl52cHDsrP9lD1DM50tMXDOxn2On9PJQEj52Vd0B7nA6yIjsbR5peYYyxyyGbnkCrk8xNMpKEpU/bSNau2NYu+4ViYfjnxVoRYdjZAGOHaZENboZGjtmhEXgyYlFVjcM99tkVa+jv9IUIDuMJ0A5eHIjqTJZnNvZEAjsw0gU/rGqmB8zqY23cd0a60z26ccL6hcYNjNqZB0ewM9YwlHJdiqXTDJK1K7a10wi328Mra2yYGOx+XVNTw80335zw+w/3dSNBGHY2wHhStsNTrhEubUuSJ6e9N4jxIFU8SLFLK5Cf5cS4dw/H6LGNx26EZV2OxnYeu7yRhWK7Y8qHWH2sC5KUXtFqo40TBmWfkrI2kEyPnZFjZ49rORqKHdhjJww7QVIxNiIk6+imVFKSxNpPEL2hFmY7h7wVPZ04Ymr5HUkw/yysauYiYPV8yuIRbhI5GrsZdkax7CPewLByc4zF0+OUk3ZCS6ooyk7OzthmG9WwMzBKdhheqOHQZYMdsRCTYzeCcfYFo6fR2GnzBIhQrGCUMXLsCi1+Y4DoE+6hnuQadoMdTWMlis38s8S+g9ijfKxu2Bk5dh29waQkHR+0URFq0MdYlkDThmfcxhYdtzrJ8s622CxEB1Gvk2GUDgcjtGl1j51ZwsgXQtOGZ+SYeZSKbIsqDhD12A0ndcaqCMPOBhih2CIbGDeGx+5QpKjnSLFTqROD4mF67IwcphyXw/LeSeMhQ9OSU+Os1Wa1rxyyRHHEazccb44d6poZFCSphJEdQ7EVSfDYmWNtcSPe6F9Y1fAGwsN6j9iNE3bJozSOFVM1jXCGeO2svXoIgOiTsh08doa3KqRqSVnw22xyMHwsRZFSIIl6cuxUiFqJ2dk43B3ABpqmmR6RygL7LPqGETqcxPpoWRvrezWSFYpt6bJfKNaYjyPx2B0xc6St/WDucco4IztEh5tnZxjAdnlAA/0hzSFlltdOGHYWJ6xqZnFLq98YANyKw1ysRlLjyyC6GNhnwTc8OYmGrszwnA0MO4h6Jkdq2HX0BvEF9RuqncbZMFBahrHo28ljV5iVnM0TZijWJrlXEO2rPkeH58XqMHOkrT3WkiTFHCs2vJ2xrTYrTmxg5tkJw04wGsQ+JVv9xmCQjBpfBtGt8/Z5AjSK9yZq8Ji5lDYZ56IklTwxvCGF2U48TmtvJIjFDNMNy2NnH+9sYZJCseZRUzYy3vOzFDxOfZkcjgEP0RQLO0RcRlqkuNWGXlmI1rILJHD6hJWxfhzgU46RX5frViydd6UGAnS/8gpaIECBXwYk9q19i2kfRdtILhe5552H7Bq659Eu5w7G6s9qlACZlk920fHcTrPNYPo7ImNt5cU+Vmdepz7ODW+/R8eu6A0x0XFubo+EYW2w4MfN8yZ9nPd/sJWOno/NNkPRbxh2Vk2oj9XpOgzg4FBjKx3PPWe2SWScvYGQueO7PM/6kYdY/WUOmf1BiV0r11AYc7b7UPUbx+5Z9YEtVmu2T7+mm9a+SUdxtM1QtRoP4nbZ3W7gGmItO7tgzbuKwOSITdz4vfWbaLj5ewBkn3oVjD2Z3X9/lsbdb8e1G//oo+TMnTPk9915qA2Q2NVTD1QnscfJJVY/406BWf9B85btNP6/P8W1G0j/Ow0fAjIdweYU93b4xOp0zbwMJsxl3/Mv0vjJK3HtEhnnl3e+A8jIzs5kdzfpxOp31pwGM77I/k1baPzDI3HtBtP/fst2QKLVtxeYnroOD5NYncHiGvjMEg61HKLxh7+MazfUcW7uiHi7ZD9rG17i4smLk93lpBKrv+DM69lfWsvWh/9CZcOmuHZD0b/zcDMgsbPrQ6AmJf0dCXHX9OnXQvlU9j/xJI0HNsa1G4rWj1r2AxJNvq3AlBT1OPk4lcwy7KzrAhIA0GHxpz2D7Fmn4KyuBkmi0N8NwBF3XrSBJOEcN47sWacM+T1DaoiDXbr+f+39X0LqyCqip5JY/QX+HgA6XLnRBoPoD6kh3t6/CYBPOustq3WkOo8mpIZ4eee7ADT2brGsboNY/SW+DgAOeQqiDYagP6SGqG/eCsCmtrctqTlWZ35AH+duZ3a0QYLjfOCI/h6y0s4D7//ekppjiR9n/YHjsCfWXTc0/SE1xP72QwCsOfBPS+qO1Zob1A3wbmdWtEECWncdagPg9ebnLam1P4xNI8EMCcUKwy4BwiF11H8OdwaQNSj2ONPy+UP9UZEpvnEJKjKFgR5kDTrdeaiSQ/+J+ftQ3/Ppj1dCyI2sQZtvJy/sWJl2nUPRnx/wImvQ5coZsv4Xdqykp1dF1sAbOmhZrfE6e3Wd7txhj/MLO1bS1SMja+DTmi2ruy/9Rf5uZA3aE5znL+xYic+H/t0FWy2pOVZHTlC/B3md2QRl57DG+aVP3kXWwKF00NjZZEnN/ekv6e1E1nQDPtF5/sKOlYQCTmQNjvgOWFJ3rJbcoA9Zg25X9vC0+rN0rf69/WrVNM1yP4osI6F77JL93j/60Y9wu938x3/8x5Bf0993PFREKDYB6lftJTc7b/CGSaRtXzvzfAqTDobZsHLPqH52omjyiRyZfhllcgHzfAq5ucexZ8ICQMKRn0+3dALSEDWomsraj7Yyz3cySCHczeew5plNlE87Hlmy5vOIoT/gDTDPpyBTPCT9qqayeusmTj1SixpQUI7UWlqrobNQymOeT6Eoa9KwxtnUffg4XXf7eEvrNjD0ByPjLFHC7gkXIsGg+g3NczqmoAYVnIenWVazoTPU1c08n75UbJ+4CE84mPA4t7zbyjxfNQ4KUBousKzmWAz9Y5Vi5vkUPAUnsmdCmKHOc2Os5/bMBk3GdXC2ZXUbWqudFczzKTgLTmLPBCeJaF318fvM7TkVAPfBU/rWqoRxlYfp7Qqi+q3zHWhhlRxVQg5oeDv63gz25ltv8Nv7/g/179fT3NzEX574G4sXXXxMu+tuvJYxY6pYdtvPAPjPG75PeckY/utH3+OW/7qN2km1/fbDHwgS6A2z+Y0GCMVvJOv2dg1Zj3W+WUGf+CNb7LNssFtQkmWy58zBHdYvDJ/DSLTVyJ4zB0ke+nTb3r6D7sjOLEn2AxqdgU62t+9Icq+Tx9H6VUkmICsMpn97+w66Ap2gRZ6z5KCltZo6Q7pO/zDH2dCtqXqiteTwW1q3gaE/K+RHQkOTpMhcH1y/qVmLpFZI1h1rQ6ekqbgiYbWAw8lwxtkfjLS1ybUMMeMcCU96FWNDwND0b2/fQae/G7RIOxuMtTus33MTvaa3t++gyxcxiKQwmoW19oUcOX1CjXjM+sLr9XLSSdO599cr+n2fcDjMypdWsuiiz5m/Kygo4OqvfR1Zltm85aN+X5tMhMcuAWaeP4H8/PzBGyaRfz7Xw/qmELOnFzJrfs2ofvZw0M6vpu3Nv7HecyJVoV6+ve9lnGPHMmnJciRlaNMtpIZY9uwS9pWU0euvw5HdQPbYVUhItGRt4ekFT6PI1py62vnV7HpxBR865tLjzOLrbe9SU+DuV7+htWlsE92Bqaj+PLLK1+PM3Wlprdr51XS8/hfWe6ZTqga4LsFxjtXd5Z2NpoTIHvMKiqfV0roNjHHeyiyOePL58uENTMmVBtQfp7l3BlrIQ3blmyhZjZbVbOj8RKuj2VPCFw5tYEp2OOFx3pFzAWHK8VT8G2fBRltcyxB7PzuBMSE/1w5xnhu6Gyp66O7+DBAmt3olsmRd3dr51Xxw9Uus90wi2HGI/0hQ6/4SN17vXCTXQXKr+75f+3w+9u7bQ1aeE4/HhaZpqGnKa5MdUvR0DA32ef2omoaS48TtPNaQvfRLi7n0S/qmn//42hW4sxWyC+J3Cb/xxhu4XE7OOvf0uJM3wrKf7Oxstu/aSnbBZf33yafiynIw5ayxeDzxVQI6O4e+ucxaMyvC/fffz69//Wuam5upq6vjvvvuY86cvnfjBINBli9fzqOPPkpDQwNTp07l7rvv5sILLzTb1NTUsHfv3mNee8MNN3D//fcPuV8ORcahjK6T84gviCpBQa571D97WCguJn/5UtRN0JaVj6yGqLjpBhTP0EscvLDzJQ549xMK16BKIDs7UGXdc7nfu4+X97/E4lqL7qpTXFTcdAP5q47Q5cqiw5lFxU3X9avf0IoMYTULTQLN2U1YDllbq+LiuK9+EXUjHM7KBTWc0DgbujUchNVckABXu/V1G0TGuWhlM4ey8jniyqHipq8PqD9urDUPSKA5e6ytOaIz54UmVKmELqeHipuuTnicw6F8VAk012H7XMsAioupV16KWq/fz6Qh3s9M3VoFqgSSoxfNESaMhXUrLsZdeB7qNuhwZw/53m3er9WZqBI4nO39jrFDkZEkyfxRwxobXzx2bR4NZl1Ug6xEjC9JP03HHwoTUlU80uARMkNDLP/85z9ZvHgx8lEezttvv53u7m42b9484FFrxnv2ZWsksv5bzlJ48sknWbp0KcuWLWPjxo3U1dWxYMECWltb+2x/22238Yc//IH77ruPLVu2cN111/H5z3+e+vp6s82///1vmpqazJ9Vq1YBcNll/VvOVsEoUFxk8V2xsdRevAAAn+ImMKGW/IULh/zakBri/k33IyGhhnTvqKREn1QkJH6/ydq76vIXLaJQ08MSXVU1/eqP1QqghfWdaJKjV/+vxbXWXHwRACFZwVczecjjHKtbi4wxUhAcXv1/La7bIH/RIkrQx7m9asKA+uM0azKokadxWQ/zWVlz/qJFFMl6v7orxyc8zmgSarAQAFnpMP9uZc2xTLpYdxL4FRf+IczzuLEO6zuJpcjcBmvrHnv2aQB0urJxjhuXkFY1qO8Ol5z2ul8bJGNn7LPPPsvFF8fn3W3YsIEHH3yQRYsW8dFHn9JQ7L333su1117LNddcA8CDDz7Iv/71Lx566CFuueWWY9o//vjj/OQnP2FhZAJef/31rF69mt/85jc88cQTAJSVlcW95pe//CW1tbWcffbZKVYzcqLnDNrHsMvJ9pDn0OgKS6jXfHvIIViA+tZ6GrobAMxFP7a+mYbGge4D1LfWc2rlqcnteJKQFIWKCWPYfBhC8y/qV3+cVs0BmpFrpht2Vtfq9rgoVDTaQxLa1d8a8jjH6o413qNREWvrNpAUherjaninFXxnnjeg/ljNhKOlJOww1pKiUDl5AhyE4GcG1hmLoVlTs6Jz29lu/t3KmmPJynJToGh0hCTUr187qP646zpi2BFj2FlZd1GePjc7XTmU3bQkMa0Rw05W2s2/D6ZVdkjMuqgmOZ1PENkR7zlzjrBI8ccff0xjYyOf/exnzd+pqsp3vvMdlixZwty5c/nqV79KMBjE6Uztem4pwy4QCLBhwwZuvfVW83eyLDN//nzWrVvX52v8fv8xseisrCzefPPNfj/jiSeeYOnSpf26RP1+P35/9JigRGLbyeZIj1Gg2PrV2mOpLMmjq7Wb7lmnJfS6urI67jn7HgLhACv+KbGzE/7jxEWcUrvIbONyuKgrq0t2l5PKmCk18M4+eiYd12+bWK2dXvjJVpDQ+O+zbsfw5Ftda0VJHu0t3XhnzRvya2J1v7cDHt0LtSXF/OeZd5ltrK7boHr6cbBmB+1jJgzYLlZzazv8fDt4nBrLz/qF2cbKmqtOmAyv7aKretKQX2No3t0a4JefQK5HY/ln7oxrY2XNsVSW5tPR3EXXjMHneexYr9sK/9sAJ5RN4Ds2mN/G+c9eZxaeiy4cpHW81j+8JPFRO3z++HM58/hzzTYDadXDjv2HJkcTw7ALDNOwe+655zj//PPj7JH77ruPtrY27rzzTvbt20cwGGTr1q1Mn57aouSWMuza2toIh8NUVFTE/b6iooKtW7f2+ZoFCxZw77338pnPfIba2lrWrFnDU089RTjc94HNzzzzDO3t7Xz961/vtx/Lly/nZz/72bB1JBMjFGuHcwZjqSzwsL212zz4e6i4HC4W1Oih3F/6XgF6+dzUM5g1oXjgF1qMEuO83AHOi43VuqO1G3iNPI+TS6YsGI0uJoWyPA/bWrpp6x76ebGxuvft2wFs4+SqahbXzkhNJ1OIce7pwUHOi43VvGHvEeBtSnOzWVx7Xqq7mBRKhzCfj8bQvKa3BXiPmpICFteelaIeppbqwiy2NXfR0NE7aNvYsW44sBPYynGl9pjf+VlOJAk0DTp8QcoHqcYQq/WB4BtAJxdOnsu5teWj0Nvk4lJGFop99tln+fa3v23+u6Ghgdtvv52//OUv5OTkMGXKFNxuNx999FHKDTvL5dglym9/+1umTJnCtGnTcLlcLFmyhGuuueaY5EWDP//5z1x00UVUVVX1+5633norHR0d5s/+/ftT1f0BCYRUuv16bkKRzTx2xgHpwz04OxRWzcPhxxZmD9LaepTm6uN1aIgGT/SEEXuNs3GGb+sghk1/NLTrC2V1YdYgLa1JRZ4xz4eu3zj/2U7XtGHYtXUnPs6NkePExhTYc4wBqiLzs+HI4IZdLO3GkZBZ9hhrhyyZTgQjWjRUjPt1ZYH1z3zuC+O82EA/hYC7u7vZtGkTmzZtAmD37t1s2rSJffv20draynvvvcfnPhctc/Ld736Xiy66iEWL9GiToigcf/zxo5JnZymPXWlpKQ6Hg5aWlrjft7S0UFlZ2edrysrKeOaZZ/D5fBw6dIiqqipuueUWJk06NmSwd+9eVq9ezVNPPTVgP9xuN253+g8xNvLrZMnaB8P3hXGgu3lGZIK0dvkJqxpOh2QaD3aiJCexhdDwzNptnI3DvgfzWPXHgchCWV1kP+MdhvcAY5fzn2MZiWHXFDHeq2y64AOMLYoYdu2JGXaHe/TvqyTXHoYdQFGOiyPeoLn+DAVfMMzhiDe3yqYGvHFebCBy+sTRqVrvvfce554bDTEvXboUgKuvvpqzzjqLOXPmUFpaCsDzzz/PK6+8wscffxz3HtOnT//0GXYul4tZs2axZs0aLr30UkBPPlyzZg1LliwZ8LUej4exY8cSDAb5xz/+weWXX35Mm4cffpjy8nLTgrY6hrenOMdlFlC0CxWRm3jzMD12xg20ssBjO+2QuMcumktpn8UeoobdsD12R/SkcmPhtBsV+VGDJxRWURyDB0Hs6LErSXA+x9JoGHY29coCjB2mx874vkpy7DPW+rzs4UgCYfemyAN8ltNBfpalzIoh43Tox4ppmkYo4lSI5Zxzzum3ePHFF18ctxv2c5/7HEeOHDmm3WOPPZbUPveH5UKxS5cu5U9/+hOPPvooH3/8Mddffz09PT3mLtmrrroqbnPFO++8w1NPPcWuXbt44403uPDCC1FVlR/+8Idx76uqKg8//DBXX301SgK7NNPJIeNpL8d+HqvKEYZijRvoWJsuBiUJejiMp+NiGy0AEM0xax3GOGuaZhrwdh5nhyyhanAwwbG2Uwkjw2N32BsglGByueGVtbVhN0yPXVvEODLuB3bAeOAwPMtDoSmSezim0DNgnTYrI0tSdANFAueyApx55plceeWVqejWsLCchXPFFVdw8OBB7rjjDpqbm5kxYwYvvviiuaFi3759cflzPp+P2267jV27dpGbm8vChQt5/PHHKSwsjHvf1atXs2/fPr7xjW+MppwRYbi27bbYw8hDsdEF354hOsNj1+kL4Q+FcSsDJyEbSel28uIAlEUWrKEaNbEc6gngC6pIkr4g2BGHLFGZ76GhvZfGdt+Q8siioVj7jHVxjstMqj/iDZqe2qGw77DulZ1QYs9rGaI5oC2dPoJh1TQABuNQtw1DsZEHjkRCsU3tRh6lPa9jA6ciEwirBMIqOQm87mhHUrqxnGEHsGTJkn5Dr2vXro3799lnn82WLVsGfc8LLrigXzeqVTFDsTa6KRhUFCQeoorFeMq3a4gu3+NEkSVCqsbhnsCgC/4Rmxrx5ZFQ5MEEdz9D1Ctbnuce1PC1MlWFhmHXy6wJRYO2b7ehx84hSxRnuzjUE6Ct2z9kw84XDJth+nE2zaME3WPpcuiLfnOHj3HFQ9Ni3MNLbRR1Me5BiYRi9xspFTb2ygK4HTI9JO6xsxqWC8UKohih2FKbLfag38iUBENUsTSaHjt7PgHKspRQXpJdvbPGxpYuf4gef2LV5Q/YPNxuYBjtTUMohQHRfMoim421WfIkgTy7A5EFP8+t2C5/NBZZlqiK3IuGGo71BkL0BvWyW3by2Bme5MMJeOz2H9a/k/FDNHitirmBQhh2glQRXezt87RnIMuSuWOwsT3xcKzdQ7GQ2M5Yuxp2eR4neR7d8T9Uw8agoV1f9O26I9bAyB0b6jyPniZjr7EuzdP7m8jOWCMMO64427a5VwZmnt0QN1AYBrDHKZPtso9HujhHN8APD8NjN1RPplVxKSMrUmwVhGFnYcwdVTZ62ovFuBEaT+1DRdO06OYJm4ZiITpuQynee9iGOyUNzB2DCRrwmTDGgOnJaRyiJ8eobWanUCwkXsIHop6cccX2HmOInedDG2fjeyrJcdvKqB1OCaMDhzPjIc2oZRdM0GPX2RukszeY8MaiVCEMOwtjJNTbaat8LEZOzYEESwQc8QbNEIadk3GjoavBb5BHeuxrxEc9VomN836zhp29F/0qMxSboMfOJkVrDYZTjNrw2Nk9RAfR6EGiHrtSm13TZblDO03FIBBSaYrsire7AW947IJhFTWBnPymDh97DvXgC/Z94tVoIww7C2PX8JyBcZHvP5yYx27PoR5A31nrGeRIGytj1rIbJKQRVjXaew0vjv3G2vBYNSVo2O1p08e5piSR/WfWY0wCHjtfMIw/4g0ozLGXx844UWCoBixkmGEXeQDZP8QIhFmuykalTiC6IepQT4CwOrhx09jei6bpIecym2k9GkWWkCUJjcS8doanLtFNgqnCGr0Q9InpyrfpxWLczPclaNjtjRh2NaX2XgzMWnaDPPm2ewMYD4d2TDA3Ng8kEooNhVVzXtSU2tuwMzx2evmWgZ/YDW+dIkvkuS1ZlKBfjHFuTiCX0nioq84Aw64mUq5l76Gh3c/abFicGKKlbcKqNqSSJ4ahW11k/zxKSZJMr51/iIZdWFUJR27gQy2Dk2qs0QvBMQRCKl0+fZeh3W4MBkYi7VCfcA32tEUWfJt7coxxG2xXsHHzLMhyWubGkAhjhxGKbWjvJaRquBWZMfn2DbeDboxnRTzLg9VtNMJzRTku2y2CiXrsNE0zDbtM8NhNiNyPGjt6hxRyi+ZI2+vB3OmQKY5EDlqHUMbIzKO0eUqFgTtBwy4Y1o06hyzhsMgpSfZbRT4lGIu9Q5Zsd36ogZFj19juSyip1AjFTrC5YWecyjBYrkrs0XF2xMyxS8CTs7vNGONsWx4ZF4skSUMOxxpGvh1DVka+a0unD3UIIbpDPQF6AmEkyf4lbUBPrch1K2ja0DaEGREXu+XYQcwGiiHkB2fKjlgDd+QhzR8aWr6cURrFSg/l9ooFfIowbgpF2fY7J9agPM+NS5H15NoEinruiYQ6Jto8FDvUY9XseMRULNEcO33BH8p8zZT8OoOxhVnsOthD4yDeLCMsX5rAyQ1WoTzPjSzpHoq2Hj/leQN7Wncd1Md4bGGWrXNlDSRJYkJJNpsbO9nd5mVyed6A7Y1zsstt6JEuy3OztblrSBsoDK9sqgtQq4EA3a+8ghboPzwsuVzknncesmv4xrTH8NgF450Rd911Fz/5yU+Oaf+LX/6axV/5lrmj1goIw86iHLb5jljQa9lVF+kL3v4j3iEbdnszxGNnHBB/xBsc8FixQzauVwhQke9BlvTaTwe7/Wb9woGIGu/2HmMDw5s1mMeuzaY7JUFPDC/P89Dc6aO5wzcEw64bgElluaPRvVGhpjSHzY2d5oPJQBgPdJU2NexgaDtjTcMuxTtie+s30XDz9wZtN/7RR8mZO2fYn9NfKPamm26KO5L0jjvu4OWXX+aixZcA0eLGVsA6PRHEYbrx8+y3AMRiPMXtG2LCcbs3YNb5svPZkqDnzBmJuAPlqkSPE7Onx87pkM0dg0NZ8CAairX7xgkDIxw9WJFmY6G0YygWEsuz2xkx7GrLMmOMASZGHjaNdJH+0DTNzLe0o2FnGO2tXQOPs6Zppmd2YmlqDfjsWafgrK6G/nJTJQnnuHFkzzplRJ/jijyAh1Q1LoUoLy+PyspKKisruf/++3n55ZdZu3YtZZVjuflbX+XEiVV86UtfGtFnJwth2FmUloghUDHIU7HVMTwyu4a44BuenIp8N9kuezuUJUkaUji2rdveHjuIhlQHW/AMjHaZEoqtGuLOYOOBbahnrVoNwzM5lNI2xoKfSR4742FzsHne0Rs0PT5G+RA7MVSP3cFuP13+EJKU+gdxSVEou2kJ9FdfTtMou2kJkjKydcMhS2a+XF8bKO644w4ef/xx1q5dS01NDYGwyle+eR0P/OnPI/rcZCIMO4tiGAJlNrwpxDK5XL+pb2/pGlL7Ha36U36mhOiMcGzLAB474+ZZbtPFHmBSZLx2tw3umfUGQmapkykVmbHoVw+xZmM0od6eYz0sj12GXMsQvS/tGWSeG/l1hdlOW+YXlg2xGLVhvFcXjU4eZf6iRX177SLeuvyFC5PyOf2FY5ctW8Zjjz1mGnWgFzM+9bQzKcwvSMpnJwNh2FkU44Kyu8duSsSw2xG5yQ+GYQBOrRg4MdkulA/BY2eEO+z4ZG9QYxp2g4/zjtZuNE3PH7WrgXM0Rj7ogSPeAYu62t2wM3a3DnaajD8UNk8WqS3PDOMdovN8sJIndg7DQoxndpDUAiOlYlKKw7AG/XrtkuStM+hrZ+yyZct49NFH44w6TdMIhvS+KA7rbHIUhp1Fae20/2IPUY/dgSNDq/20LWLYTckQw24oodhW02Nnz0UAogveYJ4MgG3N+hgflyFjDPo4Ox0SwbA24GJobp6wae7sUEPu+w7pBm6Oy2FrT/TRlOS4KMp2omnR6EJfGNf7UDYSWRHDgG9q9w34oBLdIDN6XtljvHZJ9taBfooGQG9AX7N+8Ytf8MADD/DXv/4Vj8dDc3Mzzc3NdHl70dCQJQnFQtUrhGFnUUyPnU1vDAYluW7zRrhzCF677S16m6mVmbHoR0Ox/Rt2ZkK9jRfA2KTywWqcfWJ4ZTNkjEHPyxlso1AorJqlbezqsTNOg9l7yIs2wFma2yNGT215ru0KMQ+EJEnmvDUeUPqiuUO/pu3qsavI96DIEiFVG3ADRTryKI/x2iXZWweYBcd9QRVVVfn1r3/NwYMHOe200xgzZoz5s7H+fUA/Y9ZK89ze2ekZiqZppiFg16fd2JpDNQ6ZI0h8uPJ1qsuii8HRNYc6ewM0RJKyjxukRpSVidWef1ACZBp2NdDx3H6zjaHdq8l4I0+FZTYsgWFozfMHUCQZf0hl+z/+SWXMtI0dZ03TeG9/E5AZhl3sWI8JyexCYtur6zhxy7HzvLknhKaB0yGZlf3tgqGzwBdAQqbbH2L3P/5JSYyM2HHe3NgBwLQMGGM46n7mlViPzAdv1TO/YaPZJlZ/Q7tu3BshTbsQq7PCKdPgl9j6z1Vk50fbGDolp5OPWw4Do59Hmb9oEQfv+x3BAweS6q3TVBW1qwunqiGh74wNtHdyaO9es40kSch5eUiyTFu3n8b2XkvVsANh2FmSLn8IX6Q4ol3Dc7E1hyrrvggTT6P++Veo+/jFuHaxNYceqX8JkCnI1iiwabFeiNculUyCs26gseEgjY/9Kq7d+EcfpXXSCfo/ZD+vNrzI4trFo93dERGrdcx5P2B/fgXv3vcQs1u3xbUzxvn5Xc+z6UAXUJARodhY/cUnfx4mncHHK1+lccvKuHbjH32Uf4RaAJn8bNV2RcdjdZZd8GNas4vZeO8DnHh4T1w7Y5xf27kDkFCd+4C6Ue9vsonTXzMPZnyJzfWf0Pj7/xfXztBf37AfkDgU3gYcN/odHiaxOkvOuI6GsslseeSvVB6oj2s3/tFHeamwhcYjGuAY9TxKw2vX+KNbkuqtU729BPbrD+DOvAoCDifdrW3khOK9lq6aiThyc+jy646Ir35xEdu2bKanp4fq6mr+/ve/c9pppyWlT8PBWmamAIjm1+V7FLJc9ttRBfE1h2o7GgHYUVgdbXBUzaGQGuJ/3l+r/7+yn5AaGu0uJ41Y7SW+TgAOe2IfeaPamzv1J3tJ6eT3m35vO92xWid16uO8q6Aq2iBGa0gN8dt3H0YLFQAateX2P2YqVn9lzyEAmnJKow0i+l0zT+bJzS8D0Eujrce5qrsNgMY+dBrjvLVZD8X++8jTttPaF7H6J3Q2A7AnrzLa4Cj9ew7p1/3rzU/ZSn+szvLeIwC0ZBdHG8TM5//7zt8ABw6ll+Kc0V+n8i++mJq//438xcl7GJZzspGcuhvaHdbrqfod8U4GyeVCzslG0zR6Iqdg/Onvj9Pa2orX6+XAgQNpNepAGHYJEQ6po/LTfKQXWYOKPPeofWayf1Rkim9cgopMbUcjsgY7C6oJSw5UyRH393BI5YUdK2k/ko+sQVjZyQs7VqZdQzK0F/m7kTXwKx46XTnHaH95+zvIGihyN42dTbbTHatlUkcTsga7C8bqOo/S+sKOlTQddOl6XS28vn9V2vufTP2VPUeQNX0hPFr/yj2rONKlIWsQ4qCtx3lsz2FkDRpzy/oc579/tBLVn4eswZHQZttpHUz/+K6DyBocziqkw5V7jP5/frKScET/4cAOW+mP1VHubUfW4GA/87n1sH4ty85GVu58ccifoWlaUn4APCedBJDU91TKywEJdziIBPgdLkAyf5SycgA6/B1oqowEhPHr/05SP/r77oaKCMUmQP2qveRmpz58tLO5k3k+hfHdMhtW7kn556UKTT6RI9Mvw9HVzem9MqpUyJbaS8kJ+XDk59MtnYC0cg+qprJ66yZmHzoJLaTg7KpgzTObKJ92PLJkz2cPQ3u4s4tzulV8iovtEz9Hkb/b1K69sIuG95qY55uArOXjbLjAlroNrVVhF/N8Cll5x7NnwgJAitO6eusmTjlyLmGfggPZllr7wtDv8WvM8ym4nNVx+juZxupnnmT24Rm6drnUltoNnZPkIub5FLTimeyZoC92seP8+vs7mec7HsnRi6v5bFtq7YvYa/qzXSF6nB62TL6UCu+R+Hn+0cfM89WBpOJuOc12+g2dY6Q85vkUsvOm9TmfZx0+TZ/PUtbQNSphXOVheruCqH5rfh+a5CGcVYRLk8hRJWRHFn6XHnGRHA7Ckgc6/HT29pIT1jcTSaEsOtu9KB4PEsNPs/AHggR6w2x+owFC8V7Qbu/QasGC8NhZkm6f7rrPcdvb7pZkmew5c3BoKoUBPTRz2JMHaGTPmYMk69Nve/sOOv09aCE9AVdSOugMdLK9fUe6uj5iDO2gkRvS8zC6nVnEat/evgNfwGjvBzRb6ja0Fvn0G0+nK5uQ5OBorV2BTrRQ5AaZAWNsYOjPDehh9YDDSUB2Yujf0blL1x72RNr7bKndHGe/Ps5H3MZDbvw49/Tq9y1J6cKuc7ovYq/pEr++OURPsYjX3+0LR9r3gmQ//YbOnMh87nIaJ0ocNZ9Del6dpHTZTuNASEjIOTkoqj6OqiShRgxWOScHCQl/yB8tAyNpgEpYDeMPDX627mhgb8thlJl5/gTy8/MHbzhCnn6mm/UHQsyeWcKsz9ak/PNSiXZ+NbteXMHz7TmsnzCXMdohzgtvZtKS5UiKQkgNsezZJewvduLtPgtJ6SB3/PNISLRkbeHpBU+jyPacpob2v/WUsL6wjhN9ezkvvItJS5YTlmHZs0vYmfsZQtpY3GX1uIrftq1u7fxqdr64grs4mXZPHp/v3Mzx2eE4rY1VzXT1zAM5RHb1SyieZltq7QtjrLdrdRzKKuQLHR8yJTvM+Bt+zvJ/fYmmsU10ByejykVkVazDmbfNltq186vJXvUAv/DMAI+TbzW+TmFFSfyczjqXUDiEu3w9ruK3bDun+8IY5w2tPtaXLkRWerg4cj8z9O8tHI/PfzKO3N1kj11lS/3a+dV4Vv+BX3hmgsfJdxpeJa+y3JzPjVVNdPXMBUeI7LEvo3hahqTR5/Oxd98esvKceDwW3hme78Tf0UJIc+F3uMhV/eRLIdzlY9GAhvZ9BBQnmpYNsg/Z1QlIhGQftfm1wy59IvtUXFkOppw1Fo8nfuNkZ2fnkN/HHrPMIjgUGYeSeidnQ6cPVYLqkuxR+byUoriouOkGpt/3JCtr5vJB6SQqrj4TJXJRv7DzJQ549xPwnYMqgZK9H1XWn5T2e/fx8v6XbLdT1CSiveLR11AlaMnKp+LbN6B4XKzc+U8OePcTChWgSqC5Dttbt+Ki8qYbmPaPj3m7ajqbiydw/rUXxmkNB6pRNQ84eiGrgbCk2VNrX0TGevwzOziYXcje3DLOv/ELrGpawwHvfjQJQsESkEBztxGWQ/bUrriYcsM3KVlzhIPZRezNK2PqTdeZ47y/Zz9B33g0CaTsPfae030RGeepv/ojqgRbC8dR8aX4azoYOEW/l3ma7atfcTH1+mvIXdtNpzuXxuxiPnPTDeZ8VsPFqFoWSCHwNBOWw0PS6IjUezN+LIskoVSU4znUjc/hwqe4KC4pRpJlOnztBNUAmpqNBkhyMPIijYAaoDPQSaGncJgfq38vfdkaidgCNrcaMpMDR3QXeHWh/XcNgl5zaJZTL2S5o7Aa9Zz5gL4T9v5N9yMhEe6pBcCRvdN8nYRky52iseQvWkSVS3fZt5aMJX/hwjjdWrAQANnZbr7GrrrzFy2iLqTXtdpcfcIxWkM9kwFQcnYiSfp3YletfZG/aBETNX2eH6iaTPaFF0THOZwNqn49yy5996xdtecvWsTkgD7Ou2tOihtngqVo4VyQQsieRvM1dtXaF/mLFnFCjoasqbRlF9J75nlx81wNVAAgu1vM19hRf/6iRdQE2gFoqDk+bj6HeycAIGc1IEWMVztqHAhHQQFZ6Np6nR4cBQVomkZrb6veQNWdE5IUjHtda2/rgMW7RwNh2FkMTdNoiJyxWF2UPUhreyApCtOu+wbjOlvQJIl39un5KfWt9TR0N6CqDsK9NQA4cqJ5GhoaB7oPUN9a39fb2gJJUZh60bkAHBwzEUlR4nRr4UjOmfOI+Rq76pYUhbMXnQHAluIaVNlhatXQCPdMAcCRnVljbCApCiedMQOAxuNmsOnwh6Z2LVAaadOOJOsLn121S4rCrOk1AGyf8Zm4OR00HtA8+02dYF+tfSEpCuNv/I5Z9mRjQ1f0mtY0VH/EsHNFDTs76pcUhamT9dJFB8+8IG4+h726YefIihbutaPGgZAkifyiAn1nrKwQDGt4Q16C4SAgoWmRMihyfF5dMBzEGxr8aMVUIkKxFqOtO4A/pCJLUGmzquUDkX/xxZx9+HWe2NbN6o9bufCkMdSV1XHP2fdQvyfAg9v0wsQ/P+97xHroXQ4XdWX2LnA6deF58PFrNIYUNE0zdR84FODn28ClaCw/+7aM0D37y4sp2PYSHQGVf+85zCkTdK2HugPctlUXeMs5F1Oaf7H5Grtq7Yu6BWfB799ml+oxxzkQDvDOJ/DEXphSXsBNZ95ltrer9rMXnsHv/rCeDT43qhqd079bGeRD4KITJ7Bg5l1xr7Gr1r7Iv/hizjz8Bru3dfHG9oP87ARdf0tHgDu2ysiSxs/PXYIrZoW1o/4T5pwE/9zC7tyKuPm8/B8SjcBVp5zJjIlnmu3tqHEgXEUFZAW68IZUunxBinKyqM6rxuvXOOgDxQFVeWPiXiNJEllKeqNtwrCzGEYYtjLfg8vu+XUxSJLExedM54lt63jpo2b++/Mn4VZcLKhZwMvvvg8c4OKTa7h48knp7mrSqS7KRpEleoNhmjt9jCnIYkHNAt4IHgTeZXxxHhdPPjvd3UwKikPmgulV/H3DAVZ+2MS8SSUsqFnA4+v2oGqbqasu4JqZZw7+RjbFOE3jYJcfrx8W1CwA4JOd24AdzB43gcW109PYw+RQN66ILKeDwz0BtrV0cfyYfM4eO5/vNa0Cwlx32mc4aWxBuruZMiRJ4rzTp/H4tn/z+idtOGUnC2oW8K8PmoCNHD+mgC9OPSvd3RwxM8YVAlC/v93U2Nbtp/HwagC+M/d8256ONBQkSSI/24W300dHb5CSXDcF7gK6vF4gQIHHRaHHepG1zLEcMoR9hyP5dRkSho1l9oQiKvM9dPlDrN6i5yn0+EO8vFkPaVw8o2qgl9sWlyJTEzlL8ZOWbvP3u9v0fKwJxZk11gun60+w//ygid5AGFXVeHy9HrJZXJeZY2yQ41YYV6w/rW9pjO5i2x4Z90mjfKZmqnApMqfXlgCw8kP97N+XNjfjDYQZW5jFCWNSXz0g3cybWILLIdPQ3svOg/r4btirp1ScMr4onV1LGidWFeBSZI54g+b96vVPDkb+lp/RRp1BYeR4y25/iEAojKppdPbqaQb5WdY8+lIYdhZjZ6t+g6gtz4wFIBZZlrhstn6s2O/X7kDTNP73nX10+UPUlGQzK0Nuhn1xXIVe82l7S7TIpDHWk0f5nMVUc9aUUsYVZ3G4J8Bj6/bw7PsNfNLSTZ5b4fJTx6W7eymnrroQgI37onmTHzXqeaUnVmWOF+uSmWMB+MfGBoJhlcfW6cb7F2dV2+4s3OGQ5XJwWsS4fW6TvlFk7Tb9gXXupOJ+X2cnXIpMXbU+Z9fv0jfMrNmqazx3anna+jWauBQHuZGasge7/HT0BgmpKoosW7bWrDDsLMaOyJNfbVlmLfYG3zhjItkuB5sbO/n+399nxepPALj+nNqMXgymlOshum3NUcPOHOsMM+wUh8xN5+obJZav3Mr3//Y+AN/+zCTyPdZ8wk0mhrdm4752AI70BDgQ2RB14tjM8WSdf3wFJTkuGtp7ueIP69iw9whuReY/5oxPd9dGjS/N0h9U/77hAB81dLCrrQenQ+Ls48rS3LPkcU7EgHtxczMdvUFWb9E3hZx/QkU6u4WmaXzU9tGo7EAtz/fw/+77DdXFORTnuKkbV8SJYwtwyDIrVqxI+ecnijDsLMbOVt3dnWmLvUFRjosfLzwegKc2NtATCDNnYjFfmpXZnpyplbph90lrNBRrjHWmeewALptdzRciHh1Vg89OK+e6c2rT3KvR4ZQJhmF3BFXV+LBB99bVlGRnlGGb5XLwwwunAlEj9qbzJmfUpq/BuOBE3bht6vDxufveBGD+8RXkZdA4G6kVb24/yG3PfIQ/pDK1Io+Tq9PrfX5+1/Nc+a8reX7X8yn/rFy3wpIlN7Fmw1bWbNjKWx9s51vf+hYTJkzgS1/6Uso/P1Gs6Uf8lBIMq2YeQ21p5i32Bl+dNwG3IvPMpgYml+Xy/QVTcWSwtw6iht225k4CIZVuf4jmTh+Qmd5ZSZL4zeV1fGXeBFRNY9b4ooz2yMZyYlU+eW6Fdm+Q+v3tvLWjDYgafJnEFaeOJ6zq3pyzJpfyzTMnprtLo4pbcXDrwuP5r7/rXmmnQ+Km86akuVfJZWJpDvOPr2D1xy3883095HzjeZPTWmDYrJsI/H7T77lo4kUpP9VjSnUZlaVFhFSN3yy/k1WrVrF27Vo0TeOcc86htbUVRVG4/fbbueyyy1Lal8GwnMfu/vvvp6amBo/Hw9y5c3n33Xf7bRsMBrnzzjupra3F4/FQV1fHiy++eEy7hoYGvvrVr1JSUkJWVhbTp0/nvffeS6WMYbGtuYtAWCXPo1BdlBnFifvjstnj+J9vzeNnl5yUUV6M/phUmkNRthNfUOXDhg7qI/lXtWU5FFg0AXekSJLErAlFnFpT/Kkx6gCcDplzp+nhq5c2LjRSkgAAFfpJREFUN5s5SedkaE7Sf8wdz2PfmMO1n5n0qRpngy/Nqubey+v4wsyxPHLNHE6oypxwu8FPLz6BSWV63vfX5k1g8cljBnlFalm5eyUN3Q0AHOg+wMrdK1P+mZIkkZ/lZMXdv+B/nniCtWvXUlNTg6IorFixgi1btvDyyy9z880309PTk/L+DISlPHZPPvkkS5cu5cEHH2Tu3LmsWLGCBQsWsG3bNsrLj70p3nbbbTzxxBP86U9/Ytq0abz00kt8/vOf5+2332bmzJkAHDlyhDPOOINzzz2XlStXUlZWxvbt2ykqst7T8/sH2gE9+frTeIPMZCRJ4tSaYl7e0sK/9xymy6dXK5+ZwRtGPs0snF7Jc+838sfXdwHgccqcPSVz8q4E8XzhlGq+cEp1uruRMqqLsln1vbPxBkJpDzPHndyDZp54MRpeu2XLlvHYY4+ZRh3AmDFjGDNGN3QrKyspLS3l8OHD5OSkbwOkpTx29957L9deey3XXHMNJ5xwAg8++CDZ2dk89NBDfbZ//PHH+fGPf8zChQuZNGkS119/PQsXLuQ3v/mN2ebuu+9m3LhxPPzww8yZM4eJEydywQUXUFtrvXyfDXt0L066cxcEqcHYQffy5mbWfKx7ceZNKklnlwQp4vwTKuNyJ7986ngKsjPTMyv4dOCQpbQbdRD11mnomyaMEy9S7bVbtmwZjz76aJxRdzQbNmwgHA4zblx6c8YtY9gFAgE2bNjA/Pnzzd/Jssz8+fNZt25dn6/x+/14PPGJullZWbz55pvmv5977jlmz57NZZddRnl5OTNnzuRPf/rTgH3x+/10dnbG/aSasKrxWqQ+0FniyT4jWTR9DA5ZYuO+drY2d6HIEvOPz8zw3Kcdhyzxp6tmc9FJlXx13nh+dOG0dHdJILA9sd66WFJ9Tu0vfvELHnjgAf7617/i8Xhobm6mubkZvz96nNjhw4e56qqr+OMf/5iSPiSCZQy7trY2wuEwFRXxW6grKipobm7u8zULFizg3nvvZfv27aiqyqpVq3jqqadoamoy2+zatYsHHniAKVOm8NJLL3H99dfz3e9+l0cffbTfvixfvpyCggLzJ9XWd7s3wN0vbuVQT4CibCeza0R4LhMpz/dwSUwR5i/NqqYw25XGHglSycTSHB746ix+cel0slyOdHdHILA9R3vrDFLptdM0jV//+tccPHiQ0047zQy9jhkzhg8++ADQnUGXXnopt9xyC6effnrS+5AolsqxS5Tf/va3XHvttUybNg1JkqitreWaa66JC92qqsrs2bO56y793MKZM2fy0Ucf8eCDD3L11Vf3+b633norS5cuNf/d2dmZUuOu3Rs0c3G+eeZEnA7L2NuCJHPnJSeZmyW+f8HUNPdGIBAI7MHRuXVHk6pcO0mS6Ojo6Pfvmqbx9a9/nfPOO4+vfe1rSfvckWAZC6K0tBSHw0FLS0vc71taWqisrOzzNWVlZTzzzDP09PSwd+9etm7dSm5uLpMmTTLbjBkzhhNOOCHudccffzz79u3rty9ut5v8/Py4n1RSU5rDl2ZV8/NLTuT6cyan9LME6SXXrbBs8YksW3yiWc1cIBAIBANT31rfp7fOwPDa1bfWj2q/3nrrLZ588kmeeeYZZsyYwYwZM/jwww9HtQ9HY5mVxeVyMWvWLNasWcOll14K6N62NWvWsGTJkgFf6/F4GDt2LMFgkH/84x9cfvnl5t/OOOMMtm3bFtf+k08+YcKECUnXMBLuuawu3V0QCAQCgcCS1JXVcc/Z9xAIB/pt43K4qCsb3bX0zDPPRFXVUf3MwbCMYQewdOlSrr76ambPns2cOXNYsWIFPT09XHPNNQBcddVVjB07luXLlwPwzjvv0NDQwIwZM2hoaOCnP/0pqqrywx/+0HzP733ve5x++uncddddXH755bz77rv88Y9/tESCo0AgEAgEgsFxOVwsqFmQ7m7YAksZdldccQUHDx7kjjvuoLm5mRkzZvDiiy+aGyr27duHLEejxz6fj9tuu41du3aRm5vLwoULefzxxyksLDTbnHrqqTz99NPceuut3HnnnUycOJEVK1bwla98ZbTlCQQCgUAgEKQUSRuNE3RtTmdnJwUFBXR0dKQ8304gEAgEgkzE5/Oxe/duJk6ceEypMsHA308idohlNk8IBAKBQCAQCEaGMOwEAoFAIBAIMgRh2AkEAoFAIBg1RAZY3yTrexGGnUAgEAgEgpTjdOrF2b1eb5p7Yk2M78X4noaLpXbFCgQCgUAgyEwcDgeFhYW0trYCkJ2djSRJg7wq89E0Da/XS2trK4WFhTgcIzuCUBh2AoFAIBAIRgXjJCnDuBNEKSws7PekrUQQhp1AIBAIBIJRQZIkxowZQ3l5OcFgMN3dsQxOp3PEnjoDYdgJBAKBQCAYVRwOR9IMGUE8YvOEQCAQCAQCQYYgDDuBQCAQCASCDEEYdgKBQCAQCAQZgsixGwJG0cDOzs4090QgEAgEAsGnDcP+GEoRY2HYDYGuri4Axo0bl+aeCAQCgUAg+LTS1dVFQUHBgG0kTZztMSiqqtLY2EheXl7Kiil2dnYybtw49u/fT35+fko+ww6I7yGK+C50xPcQRXwXOuJ7iCK+iyiZ/F1omkZXVxdVVVXI8sBZdMJjNwRkWaa6unpUPis/Pz/jJuRwEN9DFPFd6IjvIYr4LnTE9xBFfBdRMvW7GMxTZyA2TwgEAoFAIBBkCMKwEwgEAoFAIMgQhGFnEdxuN8uWLcPtdqe7K2lFfA9RxHehI76HKOK70BHfQxTxXUQR34WO2DwhEAgEAoFAkCEIj51AIBAIBAJBhiAMO4FAIBAIBIIMQRh2AoFAIBAIBBmCMOxGkfvvv5+amho8Hg9z587l3XffHbD93//+d6ZNm4bH42H69Om88MILo9TT1LF8+XJOPfVU8vLyKC8v59JLL2Xbtm0DvuaRRx5BkqS4H4/HM0o9Tg0//elPj9E0bdq0AV+TifMBoKam5pjvQpIkbrzxxj7bZ8p8eP3111m8eDFVVVVIksQzzzwT93dN07jjjjsYM2YMWVlZzJ8/n+3btw/6voneZ6zAQN9FMBjkRz/6EdOnTycnJ4eqqiquuuoqGhsbB3zP4Vxj6WawOfH1r3/9GE0XXnjhoO+baXMC6POeIUkSv/71r/t9TzvOieEgDLtR4sknn2Tp0qUsW7aMjRs3UldXx4IFC2htbe2z/dtvv82VV17JN7/5Terr67n00ku59NJL+eijj0a558nltdde48Ybb2T9+vWsWrWKYDDIBRdcQE9Pz4Cvy8/Pp6mpyfzZu3fvKPU4dZx44olxmt58881+22bqfAD497//Hfc9rFq1CoDLLrus39dkwnzo6emhrq6O+++/v8+//+pXv+L//t//y4MPPsg777xDTk4OCxYswOfz9fueid5nrMJA34XX62Xjxo3cfvvtbNy4kaeeeopt27Zx8cUXD/q+iVxjVmCwOQFw4YUXxmn6y1/+MuB7ZuKcAOK+g6amJh566CEkSeKLX/zigO9rtzkxLDTBqDBnzhztxhtvNP8dDoe1qqoqbfny5X22v/zyy7VFixbF/W7u3Lnad77znZT2c7RpbW3VAO21117rt83DDz+sFRQUjF6nRoFly5ZpdXV1Q27/aZkPmqZp//mf/6nV1tZqqqr2+fdMnA+A9vTTT5v/VlVVq6ys1H7961+bv2tvb9fcbrf2l7/8pd/3SfQ+Y0WO/i764t1339UAbe/evf22SfQasxp9fQ9XX321dskllyT0Pp+WOXHJJZdo55133oBt7D4nhorw2I0CgUCADRs2MH/+fPN3siwzf/581q1b1+dr1q1bF9ceYMGCBf22tysdHR0AFBcXD9iuu7ubCRMmMG7cOC655BI2b948Gt1LKdu3b6eqqopJkybxla98hX379vXb9tMyHwKBAE888QTf+MY3BjyXORPnQyy7d++mubk5bswLCgqYO3duv2M+nPuMXeno6ECSJAoLCwdsl8g1ZhfWrl1LeXk5U6dO5frrr+fQoUP9tv20zImWlhb+9a9/8c1vfnPQtpk4J45GGHajQFtbG+FwmIqKirjfV1RU0Nzc3OdrmpubE2pvR1RV5eabb+aMM87gpJNO6rfd1KlTeeihh3j22Wd54oknUFWV008/nQMHDoxib5PL3LlzeeSRR3jxxRd54IEH2L17N2eddRZdXV19tv80zAeAZ555hvb2dr7+9a/32yYT58PRGOOayJgP5z5jR3w+Hz/60Y+48sorBzwPNNFrzA5ceOGFPPbYY6xZs4a7776b1157jYsuuohwONxn+0/LnHj00UfJy8vjC1/4woDtMnFO9IWS7g4IPr3ceOONfPTRR4PmOJx22mmcdtpp5r9PP/10jj/+eP7whz/w85//PNXdTAkXXXSR+f8nn3wyc+fOZcKECfztb38b0lNnpvLnP/+Ziy66iKqqqn7bZOJ8EAyNYDDI5ZdfjqZpPPDAAwO2zcRr7Mtf/rL5/9OnT+fkk0+mtraWtWvX8tnPfjaNPUsvDz30EF/5ylcG3USViXOiL4THbhQoLS3F4XDQ0tIS9/uWlhYqKyv7fE1lZWVC7e3GkiVLeP7553n11Veprq5O6LVOp5OZM2eyY8eOFPVu9CksLOS4447rV1OmzweAvXv3snr1ar71rW8l9LpMnA/GuCYy5sO5z9gJw6jbu3cvq1atGtBb1xeDXWN2ZNKkSZSWlvarKdPnBMAbb7zBtm3bEr5vQGbOCRCG3ajgcrmYNWsWa9asMX+nqipr1qyJ8zzEctppp8W1B1i1alW/7e2CpmksWbKEp59+mldeeYWJEycm/B7hcJgPP/yQMWPGpKCH6aG7u5udO3f2qylT50MsDz/8MOXl5SxatCih12XifJg4cSKVlZVxY97Z2ck777zT75gP5z5jFwyjbvv27axevZqSkpKE32Owa8yOHDhwgEOHDvWrKZPnhMGf//xnZs2aRV1dXcKvzcQ5AYhdsaPFX//6V83tdmuPPPKItmXLFu3b3/62VlhYqDU3N2uapmlf+9rXtFtuucVs/9Zbb2mKomj33HOP9vHHH2vLli3TnE6n9uGHH6ZLQlK4/vrrtYKCAm3t2rVaU1OT+eP1es02R38XP/vZz7SXXnpJ27lzp7Zhwwbty1/+subxeLTNmzenQ0JS+P73v6+tXbtW2717t/bWW29p8+fP10pLS7XW1lZN0z4988EgHA5r48eP1370ox8d87dMnQ9dXV1afX29Vl9frwHavffeq9XX15s7PX/5y19qhYWF2rPPPqt98MEH2iWXXKJNnDhR6+3tNd/jvPPO0+677z7z34PdZ6zKQN9FIBDQLr74Yq26ulrbtGlT3H3D7/eb73H0dzHYNWZFBvoeurq6tP/6r//S1q1bp+3evVtbvXq1dsopp2hTpkzRfD6f+R6fhjlh0NHRoWVnZ2sPPPBAn++RCXNiOAjDbhS57777tPHjx2sul0ubM2eOtn79evNvZ599tnb11VfHtf/b3/6mHXfccZrL5dJOPPFE7V//+tco9zj5AH3+PPzww2abo7+Lm2++2fzeKioqtIULF2obN24c/c4nkSuuuEIbM2aM5nK5tLFjx2pXXHGFtmPHDvPvn5b5YPDSSy9pgLZt27Zj/pap8+HVV1/t81owtKqqqt1+++1aRUWF5na7tc9+9rPHfD8TJkzQli1bFve7ge4zVmWg72L37t393jdeffVV8z2O/i4Gu8asyEDfg9fr1S644AKtrKxMczqd2oQJE7Rrr732GAPt0zAnDP7whz9oWVlZWnt7e5/vkQlzYjhImqZpKXUJCgQCgUAgEAhGBZFjJxAIBAKBQJAhCMNOIBAIBAKBIEMQhp1AIBAIBAJBhiAMO4FAIBAIBIIMQRh2AoFAIBAIBBmCMOwEAoFAIBAIMgRh2AkEAoFAIBBkCMKwEwgEAoFAIMgQhGEnEAgEAoFAkCEIw04gEAgEAoEgQxCGnUAgEGQQdXV1SJJ0zE9zc3O6uyYQCEYBYdgJBAJBkrn//vupqanB4/Ewd+5c3n333ZS8pi9WrVpFU1MTa9asYfLkyeTl5XHHHXdQWVk5rPcTCAT2Qhh2AoFAkESefPJJli5dyrJly9i4cSN1dXUsWLCA1tbWpL6mP8rLy3nuuedYuHAhc+bMYfv27fzsZz8biSSBQGAjJE3TtHR3QiAQCEaDd999lx/+8Ie88847TJgwgSeeeIKNGzfy/PPP89xzzyXlM+bOncupp57K7373OwBUVWXcuHHcdNNN3HLLLUl7TX+sWLGCW265hT/+8Y9cddVVIxMjEAhsh/DYCQSCTwXr16/n7LPPZtGiRXzwwQccf/zx3Hnnndx9993HeLTuuusucnNzB/zZt2/fMZ8RCATYsGED8+fPN38nyzLz589n3bp1ffZrOK/pj3Xr1vGDH/yAJ598Uhh1AsGnFCXdHRAIBILRYOnSpVx22WX84Ac/AODKK6/kyiuv5JJLLmHmzJlxba+77jouv/zyAd+vqqrqmN+1tbURDoepqKiI+31FRQVbt27t832G85r++O53v8v111/PJZdcktDrBAJB5iAMO4FAkPEcOHCAdevWcc8995i/UxQFTdP6zD8rLi6muLh4NLs4YrZv3857773HU089le6uCASCNCJCsQKBIOP5+OOPATjllFPM323bto05c+Ywffr0Y9oPNxRbWlqKw+GgpaUl7vctLS397kodzmv6Yt26dZSWljJu3Lghv0YgEGQewrATCAQZT0dHBw6HA0mSADh8+DD33HMP2dnZfba/7rrr2LRp04A/fYViXS4Xs2bNYs2aNebvVFVlzZo1nHbaaX1+1nBe0xfBYBC/34/P5xvyawQCQeYhQrECgSDjmTFjBuFwmF/96ldcdtll/Od//ic1NTVs2bKFvXv3MmHChLj2IwnFLl26lKuvvprZs2czZ84cVqxYQU9PD9dcc43Z5ne/+x1PP/20acwN5TWDcc455+Dz+bjmmmv4/ve/z9SpU8nLyxuWBoFAYF+Ex04gEGQ8kydP5s477+S3v/0tM2fOpKqqipdffpmxY8dy4YUXJvWzrrjiCu655x7uuOMOZsyYwaZNm3jxxRfjNke0tbWxc+fOhF7zyCOPmB7HvqitreXZZ59l165dnHXWWRQUFPDjH/84qdoEAoH1EXXsBAKBwAYsW7aM1157jbVr1w6p/f33389///d/09jYmNqOCQQCSyFCsQKBQGADVq5caRYwHoz29nbee+895syZk+JeCQQCqyEMO4FAILABiZwd+3/+z/+hoaGBRx55JHUdEggElkSEYgUCgUAgEAgyBLF5QiAQCAQCgSBDEIadQCAQCAQCQYYgDDuBQCAQCASCDEEYdgKBQCAQCAQZgjDsBAKBQCAQCDIEYdgJBAKBQCAQZAjCsBMIBAKBQCDIEIRhJxAIBAKBQJAhCMNOIBAIBAKBIEMQhp1AIBAIBAJBhiAMO4FAIBAIBIIM4f8HF0RrbWbC9t4AAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnYAAAHWCAYAAAD6oMSKAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydeZwcZZ3/31Vd3T3TM9Mzk2ty34GEKyRASEQkIBBCjMcqricoqy5CcAProqi/xWMliwrqCojKKgjrrq4uiJIQQhAwkgiEDMgRyH1MJvfM9PT03VW/P6qf6ppkJtM903V16vN68dL0PF39fOr7HN/nez2SpmkaPnz48OHDhw8fPjwP2ekO+PDhw4cPHz58+KgMfMXOhw8fPnz48OGjSuArdj58+PDhw4cPH1UCX7Hz4cOHDx8+fPioEviKnQ8fPnz48OHDR5XAV+x8+PDhw4cPHz6qBL5i58OHDx8+fPjwUSXwFTsfPnz48OHDh48qga/Y+fDhw4cPHz58VAl8xc6HDx8+fPjw4aNK4Ct2Pnz48OHDhw8fVQJfsfPh4yTHww8/jCRJff53xRVX9PmdBx54AEmS2Llzp72dLRNe6efXv/51JEni8OHDJX/nO9/5DjNnzkRVVeOzyZMn8/Wvf31IfenrGffddx8TJ04knU4P6dl2war3AH2/dxh4HnntHaZSKYLBIE1NTUN+lz7sha/Y+XA9xOb80ksvlf3d559/nq9//et0dnZWvmMOwAo+Z511Fg899BAPPfQQDzzwAOeccw7ACRU7H84iFotxxx138KUvfQlZHngZX7169XHKRjQaZd68eTz66KMDfv9Tn/oUmUyGn/zkJxXoff+wcr4O9R3Aid/7QPPIrncIEI/Hue2227jiiisYNmwYkiTxwAMP9NteVVVGjhzJd77zHeOzXC7H/fffz6RJk/jmN7/JwYMHLe+3j8rAV+x8VDWef/55vvGNb1SVYldpPmeddRaf+MQnWLhwIT/5yU/YuHEj73znO9m4cSPLly/v8zuf/OQnSSaTTJo0qWL9sAJe6We5+PnPf04ul+OjH/1oSe1feeUVAP7jP/6Dhx56iAcffJAvfelL7Nq1i6uuuorNmzef8Ps1NTVcc8013HXXXWiaNuT+9wcr5+tQ3wGc+L0PNI/seocAhw8f5pvf/CZvvvkms2fPHrD9Cy+8wOHDh1myZInxWX19Pddccw233HILmqbx6quvWtllHxWE4nQHfPjwInp6eqirq3O6GxXDa6+9xuWXX86RI0f44Q9/yI033ogkSf22DwQCBAIBG3s4OFS6n26R+y9+8Qve+973UlNTU1L7V199laamJm688cZen48YMYLrrruO1tZWZs6cecJnfPjDH+Y73/kOf/rTn7jkkksG3XenUIl3MNB7H2ge2fUOx4wZQ3t7O6NHj+all17ivPPOO2H7lStXMmnSJE4//fTj/iY+e/PNN7n00kst6a+PysK32PnwHEQ80tatW/nUpz5FU1MTjY2NfPrTnyaRSPRq9y//8i8ATJkyxXC/iHirtrY2rr32WlpaWgiHw5x++un8/Oc/7/f33njjDT72sY/R3NzMO9/5TgC6u7tZvnw5kydPJhwOM2rUKC677DJefvll4/ul/k5bWxv/8A//wNixYwmHw0yZMoXPf/7zZDKZAfmU0o/+sHPnTi699FLS6TTPPvssX/jCF06o1EHfsWulyuVEKOVdid/ZvHkzH/7wh4lGowwfPpx/+qd/IpVKDdjPZ555hnPPPZeamhqmTZvGT37yE+OZff1OX3LftWsX119/Paeeeiq1tbUMHz6cq6666rhYvnL6CtDZ2Tngu9uxYwevvvpqWZvsK6+8wty5c4/7fP/+/QDMmjVrwGecc845DBs2jN///vcDth3MeBxovg4VQ30HA733UuZROe9wKAiHw4wePbrk9o8//ngva50ZYpy+8cYbFembD+vhW+x8eBYf/vCHmTJlCitWrODll1/m/vvvZ9SoUdxxxx0A/N3f/R1vv/02//3f/833v/99RowYAcDIkSM5cOAA8+fPR5Ikli1bxsiRI1m1ahX/8A//QCwW69MFedVVVzFjxgxuv/12w5Vy3XXX8dvf/pZly5Zx2mmnceTIEdatW8ebb77J3LlzS/6dffv2MW/ePDo7O/nc5z7HzJkzaWtr47e//S2JRIJQKHRCPp/73OdO2I/+oKoqH/vYx+jp6eG5555jzpw5lsulP5Qrkw9/+MNMnjyZFStWsGHDBv7jP/6Djo4OfvnLX/b7G5s2beKKK65gzJgxfOMb3yCfz/PNb36TkSNH9vudvuT+4osv8vzzz/ORj3yE8ePHs3PnTn784x+zcOFC3njjDSKRyKD6Wsq7e/755wFOKFczMpkMb731FhdddJGRnNHR0cHq1au54447WLZsWUnuOvGbf/nLXwZsN9C86AsnGt9DRSXewYneeznzaKB3mM1m6erqKoUWw4YNKynG8kTYv38/mzZt4pvf/Gaff//nf/5nQLfY+fAINB8+XI5f/OIXGqC9+OKLmqZp2m233aYB2rXXXtur3Qc+8AFt+PDhvT777ne/qwHajh07en3+D//wD9qYMWO0w4cP9/r8Ix/5iNbY2KglEgnjM/F7H/3oR4/rW2Njo3bDDTf02/dSf+fqq6/WZFk2OJqhquqAfAbqR3948MEHNUD7+c9/Xtb3hEzM/ShHLn2h1Hclfue9731vr3bXX3+9BmivvPJKv/1cunSpFolEtLa2NqPNli1bNEVRtGOXwxPJ3Tw+BNavX68B2i9/+cvjnjFQX8t5d1/72tc0QOvu7j6uD5MmTdJuu+22Xp9t2rRJA477LxgMaj/4wQ9KeobA5z73Oa22trbPv5kx2PHY3/guF8dyKPcd9PWME733cubRQO/wT3/6U5997eu/Ut7Tiy++qAHaL37xiz7//p//+Z9abW1tn2P6oYce0gBt1KhR2qhRowb8LR/ugO+K9eFZXHfddb3+feGFF3LkyBFisdgJv6dpGr/73e9YunQpmqZx+PBh479FixbR1dXVp8vo2N8DaGpq4q9//Sv79u0b9O+oqsqjjz7K0qVLOffcc497zkBu0YH6cSLcfffdnHnmmXz6058u63snwmDkMhiZ3HDDDb3+LWKnVq5c2edv5PN5nnrqKd7//vczduxY4/Pp06ezePHikvkA1NbWGv8/m81y5MgRpk+fTlNTU59jp9S+lvLujhw5gqIo1NfX99tnM0TQ+4MPPsiaNWtYs2YNDz/8MGeffTZf+tKXWL9+fUnPAWhubiaZTA7oWh/seLQKlXgHJ3rv5cyjgd7h7NmzjT4O9F857tb+sHLlSi6++OJeYxr0zNovfelLLF68mKuvvpqDBw9y9OjRIf+eD+vhu2J9eBYTJ07s9e/m5mZAd7FEo9F+v3fo0CE6Ozv56U9/yk9/+tM+2/SV2j9lypTjPvvOd77DNddcw4QJEzjnnHO48sorufrqq5k6dWrJv3Po0CFisRhnnHFGv30eCCfqR384fPgwL730EitWrBj07/aFwchlMDKZMWNGr39PmzYNWZb7jck6ePAgyWSS6dOnH/e3vj4T6EvuyWSSFStW8Itf/IK2trZeWY59udFK7etgx/SJ8Morr6AoCh/96EcJBoPG5wsXLmT8+PHcfffdLFiwoKRnCZ4DHTYGMx6tRCXfwbEodx4N9A6bm5ttS1LIZrOsWbOmz77ffvvtHD58mB/+8IesW7cO0OPsRJypD/fCV+x8eBb9ZTtqA5QSEIVFP/GJT3DNNdf02eass8467rNjT7Sgx0RdeOGFPPLIIzz55JN897vf5Y477uD//u//jDibgX5noP6WghP1oz9r1JtvvommaRWJqzNjMHIZrEzMKMWyORj0Jfcbb7yRX/ziFyxfvpwFCxbQ2NiIJEl85CMfOa5wbV/or6+lvLvhw4eTy+Xo7u6moaFhwN969dVXmTZtWi+FBmDcuHFEIhH27t074DMEOjo6iEQifb4TMwYzHq1EJd5Bf++93Hk00DvMZDIlW8ZGjhw5pKzvdevWEYvFuPLKK3t9vm3bNu666y7++Z//mRkzZtDR0QHoXH3Fzv3wFTsfVY2+NtCRI0fS0NBAPp+vyMl4zJgxXH/99Vx//fUcPHiQuXPn8u1vf5tnn322pN9RVZVoNMprr7024G+dSHnprx/9baQ9PT0DPtMuDEYmW7Zs6WVN27p1K6qqMnny5D7bjxo1ipqaGrZu3Xrc3/r67ET47W9/yzXXXMOdd95pfJZKpfqtv1ZuX08EUZJjx44dAyq7oCs173jHO477/NChQyQSibLceTt27CgpgxbKH49g3VisxDvo772XO48GeofPP/88F198ccnPGswYEnj88cc57bTTjnvGzTffzMiRI/nqV78KFDOG/cxYb8CPsfNR1RA1x8wbbiAQ4IMf/CC/+93v+lSmDh06VNKz8/n8cW63UaNGMXbsWNLpdMm/I8sy73//+/nDH/7Q5+0aZmtNX3wG6kd/EIv5//3f/52YqA0YjEzuueeeXv/+0Y9+BNCv4hAIBLj00kt59NFHe8V+bd26lVWrVpXd32MtkD/60Y/I5/N9ti+3ryeCcBmWchPL/v37OXjwYJ+KhMi0/eAHP1jyb7/88st9KkhmlDIeE4kEmzdvPu4Ktb7G94nal4JKvYP+3nu582igd2hnjN3KlSuPK3OyevVqHnvsMb73ve8Z8mhoaGDChAl+ZqxH4FvsfFQ1xLU+X/3qV/nIRz5CMBhk6dKl/Pu//zt/+tOfOP/88/nsZz/LaaedxtGjR3n55Zd56qmnSnKFdHd3M378eD70oQ8xe/Zs6uvreeqpp3jxxRcNS06pv3P77bfz5JNPctFFF/G5z32OWbNm0d7ezv/+7/+ybt06mpqa+uVz4YUXcuqpp56wH31h5syZLFq0iPvuu48DBw5w+eWXM3nyZC655BJCodBQXvugUK5MduzYwXvf+16uuOIK1q9fz8MPP8zHPvaxE5at+PrXv86TTz7JBRdcwOc//3ny+Tx33303Z5xxBq2trSX39T3veQ8PPfQQjY2NnHbaaaxfv56nnnqK4cOH99l+MH3tD1OnTuWMM87gqaee4tprrz1hW3HbwsGDB3n44YcBPSbsySefZNWqVXzkIx/hqquuKul3N27cyNGjR3nf+953wnalzIsXXniBiy++mNtuu63XPaT9zdcXX3yxz/aloFLvoL/3Xs48KuUdVirG7u6776azs9M4xPzhD38wXM433ngjR48e5c033+THP/6x8Z1sNsvy5cu5+OKL+fu///tezzvttNN8xc4rsD0P14ePMtFfuZNDhw712e7YEgDf+ta3tHHjxmmyLPf6+4EDB7QbbrhBmzBhghYMBrXRo0dr7373u7Wf/vSnvb7f3++l02ntX/7lX7TZs2drDQ0NWl1dnTZ79mzt3nvv7dWu1N/ZtWuXdvXVV2sjR47UwuGwNnXqVO2GG27Q0un0Cfm89dZbJfWjL3R3d2tf/OIXtWnTpmmhUEgDtMWLFw/4vROVOylVLn2hlHclfueNN97QPvShD2kNDQ1ac3OztmzZMi2ZTA7422vXrtXmzJmjhUIhbdq0adr999+v/fM//7NWU1PT67v98dE0Tevo6NA+/elPayNGjNDq6+u1RYsWaZs3b9YmTZqkXXPNNWX3tdx3d9ddd2n19fXHlag4tkTHd77zneNKZDQ0NGgXXHCB9p//+Z+9Sun09wyBL33pS9rEiRP7/I4ZpcwLUdKjr9/pa76eqH1fMHMYzDvo7z30995LnUelvsNKYNKkSScsk3L33XdrjY2NWjab7cVPURTttddeO+55N998syZJUp/lXny4C75i58OHDwNf/vKXNUA7evSo013pFydSuAaL973vfdr06dMr9jwBK/qqaZrW2dmpDRs2TLv//vt7fX6iGnSloq9npFIpbfTo0f3WfHMbrHoP/b33Y9HXPHLbO1y8eLF21VVXOd0NHxbAj7Hz4cOHgZEjR1JbW3vczQnVhGQy2evfW7ZsYeXKlSxcuNCZDg0CjY2N3HLLLXz3u98tKQt3qPjFL35BMBjss6bfyYRS33tf88ht73DhwoXcdNNNTnfDhwXwFTsfPnwAekD/17/+da6++mrC4bDT3bEMU6dO5dZbb+VnP/sZX/va15g/fz6hUIhbbrnF6a6VhS996Uts3rx5yFdKlYLrrruO3bt3V/W4KBUDvff+5pHb3uEtt9wy6Np9PtwNP3nChw8fAPzyl7/kYx/7GHfddZfTXbEUV1xxBf/93//N/v37CYfDLFiwgNtvv/24IsI+fAwGJ8s88uFeSJpWgeqoPnz48OHDhw8fPhyH74r14cOHDx8+fPioEviKnQ8fPnz48OHDR5XAj7ErAaqqsm/fPhoaGlxx/ZIPHz58+PDh4+SBpml0d3czduzYAROmfMWuBOzbt48JEyY43Q0fPnz48OHDx0mMPXv2MH78+BO28RW7EtDQ0ADoLzQajTrcGx8+fPjw4cPHyYRYLMaECRMMfeRE8BW7EiDcr9Fo1FfsfPjw4cOHDx+OoJRwMD95wocPHz58+PDho0rgK3Y+fPjw4cOHDx9VAl+x8+HDhw8fPnz4qBL4ip0PHz58+PDhw0eVwFfsfPjw4cOHDx8+qgS+YufDhw8fPnz48FEl8BU7Hz58+PDhw4ePKoGrFLvnnnuOpUuXMnbsWCRJ4tFHHx3wO8888wxz584lHA4zffp0HnjggV5/z+fz/L//9/+YMmUKtbW1TJs2jW9961tommYNCR8+fPjw4cOHD4fgKsWup6eH2bNnc88995TUfseOHSxZsoSLL76Y1tZWli9fzmc+8xlWr15ttLnjjjv48Y9/zN13382bb77JHXfcwXe+8x1+9KMfWUXDhw8fPnz48OHDEbjq5onFixezePHiktvfd999TJkyhTvvvBOAWbNmsW7dOr7//e+zaNEiAJ5//nne9773sWTJEgAmT57Mf//3f/PCCy9UnoAPHz58+PDhw4eDcJXFrlysX7+eSy+9tNdnixYtYv369ca/3/GOd7B27VrefvttAF555RXWrVtXlgLpw4cPHz58+PDhBbjKYlcu9u/fT0tLS6/PWlpaiMViJJNJamtr+fKXv0wsFmPmzJkEAgHy+Tzf/va3+fjHP97vc9PpNOl02vh3LBazjIMPHz58+PDhw0el4GmLXSn4zW9+w3/913/xq1/9ipdffpkHH3yQ733vezz44IP9fmfFihU0NjYa/02YMMHGHvvw4cOHDx8+fAwOnlbsRo8ezYEDB3p9duDAAaLRKLW1tQD8y7/8C1/+8pf5yEc+wplnnsknP/lJbrrpJlasWNHvc2+99Va6urqM//bs2WMpDx/2IZ3L8+sXd7Nuy2Gnu+LDhw8fPnxUHJ5W7BYsWMDatWt7fbZmzRoWLFhg/DuRSCDLvWkGAgFUVe33ueFwmGg02uu/asWReJq/u/cvnPftp3jmrYNOd8dyfPvxN/nS7/7GJ/7zr/zpJOArEE/nWLHyTb71xzfoSmad7o4t+PWLu7n5N628faDb6a7Yhv1dKe59Zit/2XpyHFw0TeMnz27j2gdeZPP+kydkZm9Hgv99aQ8HYymnu2IbNE1j68FuetI5p7viergqxi4ej7N161bj3zt27KC1tZVhw4YxceJEbr31Vtra2vjlL38JwHXXXcfdd9/NLbfcwrXXXsvTTz/Nb37zGx5//HHjGUuXLuXb3/42EydO5PTTT2fTpk3cddddXHvttbbzcyPueGIzL+/uBOBLv3uVZ//lYmqCAWc7ZRFiqSz/80LR+vrjZ7Zx8amjHOyRffjSb1/l8b+1A7DrSIL7rznX4R5Zi427OvjS7/4GwKt7u1hz07uQJMnhXlmLrkSWD9z7F9q79M3+vk/M5YozxjjcK2vx/LYjrFi1GYC2jiRPLL+w6uW8+0iCJT/6M92pHCPqQ6z8pwsZ1VDjdLcsx/eefIt7/rSNMY01PP6FCxlWF3K6S66Fqyx2L730EnPmzGHOnDkA3HzzzcyZM4d//dd/BaC9vZ3du3cb7adMmcLjjz/OmjVrmD17NnfeeSf333+/UeoE4Ec/+hEf+tCHuP7665k1axZf/OIX+cd//Ee+9a1v2UvOhYinczz2yj7j3wdi6ap2UT6/9QiZvEpY0Yf9izuPcqg7PcC3vI+39ncbSh3AU28e4M326rZu/HZjUYHfejDOxl0dDvbGHvzsz9sNpQ7g31dtJq9WdyH2Rza1Gf//rQPdvLK3y8He2IM7Vm+mO6VbrQ7HM/zwqS0O98h6HImn+cmz2wFo70rxq7/ucrhH7oarFLuFCxeiadpx/4nbJB544AGeeeaZ476zadMm0uk027Zt41Of+lSvvzc0NPCDH/yAXbt2kUwm2bZtG//2b/9GKORr+3/afJBUVmXKiDquWTAJ0Df9asVfdxwB4MPnTuC0MVE0rfhZNeP/Xt4LwOWntbDodD2LfJVJ0as2aJrG2jd1N3tTJAjAX7ZWt5xVVTPk/N0PnUW0RmHnkQR/3V7dvF/YcRTAOKxVuwv6UHea1a/tB+D/vec0AH7fuo9kJu9ktyzHE6/vJ2c6pKz8234He+N+uEqx82EvhFJz8amjuHDGSABeqmLLxuZ2PdbqrPGNnDu5GYCXd3U62CN7sPp1fRH8wJxxXDpLV+yeruL4wj1HkxzsThMKyNx4yQwAXthZ3QrOy7s72NeVoqFGYenssSw6fTRQlH014kAsxe6jCWQJvvDugpwLil614pm3DpJTNc4c18in3zGZ8c21xNM5nttyyOmuWYq/btfl+vHzJwKweX+M7tTJESs8GPiK3UmMl3bqStx5k5s5e2ITANsOxYlV4YTRNM0Irp45Osrcibpit2lP9SqyAO1dSXYe0Te/C2aM4KJTdAX+9X0x4lUahPz6Pt0dd8roes6fMgyAN/bFqvp+6Oe36YrrRaeMpCYY4LLTdAX+z1VswXprv35QmzKijgXThgNUfYjBnwuhMgtPHYksS0aM8PNVLGfACKW48swxjG+uRdXglT3V73YfLHzF7iRFdyrLW4VswXMmNTOiPsz45lo0DV6rwjiVQ91pOhJZZAlmtNRz+lg90/mt/d1VveGLk+4Z4xqJ1gQZFa1hbGONLue26pMzwBuFzf30MY1MH1WPLEFHIsvheMbhnlkHYakSiux5k/X/3X6oh6M91cl7+6E4AFNH1nNqSwOSBAe70xyJV2fcrKZprCsocO8qHNAumK4rtH/ZVr0W6SPxNG2dSQBmT2gy1u6TKdu9XPiK3UmK1/fF0DQY11TLqKieUTVzdAOgW+2qDbuPJgAY21RLTTDA5BF1BAMSiUzeWDSqES/s7L3hA5w1vgmAV/d2OtAj6yGsNqeNjVITDDBpeB0AW6p0I8jmVcOiMW+KvtE314WYPqoeoGoTR7Yf7gFg2sh66sIKk4ZFANi8vzrlvPtogqM9GUIBmdmFOXx+Qd5bD8artozRtkO6nMc11VIfVoxxvbUK96lKwVfsTlKITU4oc6AvkFCcSNUEobyNa9ILVwcDMlNH6Hy3HKjeBUIoOWcWNgLAOPFW6wa4w7ThA8ZGsOVgdcp526E4yWyehrDCjAJXgLmF8IpqVeC3GRY7XXEXchbyrza81lYIJRnTQKiQLNJcFzLWtDf2VacbWsh52qje83lrlc7nSsBX7E5SvF1QZma09KXYVd+E2dtRUOyaa43PZrTofKvVpK+qmhGHdNoYk5wLC+P2KlTgVVVjT0HWk4brFhxhydlTsNpWG0RS0MwxDchysYbbzNHVrcDvOqLLc+oIXbGbUJDz7iqV82uF2NEzxjX2+vyMcbqcRWxptUG43KcVFHixT1Xj+lUp+IrdSQqhzJzSUjzhTxulT5xqPAkJi934pqJiN7WwQOw8Up0bwa6jCRKZPGFFZnLBHQm9Ffhqiy880J0ik1MJyBJjGvUQA7HhC+W+2iAUt1NN1ncoWuPfqkLFTlU1DhRuXRhbmNNCgd91pDo3fBETe8bYYxS7wr//VqUxs8KDJNat8c26nA/H06Sy1V3mZbDwFbuTEJqmGYrdjFHFzUDEIrV3pUjnqmvC9GWxm1j1lhzdNXPq6AaUQHGqTxoeQZKgO5WruoSC3QUlfVxTrcF5fEHmezqqVM77hZx7X30oFL3dRxNVdw3T4Z402byGLMHIhjBQXL92VelBzRw7asZppkSwaoRwrQvLbHMkSG3hdiRzQW4fRfiK3UmIoz0ZOhJ6oO10U0zO8LqQUehzf5VNmLYOseFHjM8mVrnrRmwEs47Z8GuCAUPZ2V5lbnchS+GGhaLFrloVeLGhzzrGYje8PsyIer0Qe7XFF4r1aWRDmGBBgZ84vDifq80S3ZUsZnWb12woWrJ2HulBrbKbRjRNK3pbCpY6SZIY26Rb4/dVceLbUOCqu2J92AOx+Y1prKE2FEDNZIg//TRaJsNoRWZXTuLtlWtpMln8pVCI+ksuQfbojR1iIxjTGDb4NnVngABtR3s48vvHUExXTHqdLxSzxkQsoVnOY/Iye5DY8vTzzHytuBl4nbcY2+Obaw2+DUldzrFUjj3/9xhR06rndb7dqaxhtRDWd7OcJ8kyh5F488k/M2Vk9ci5vbChj47WFOWc0uWcyOTZ839/oDFYbO91vuIANqohTH1YH8AG73QGRZJJZVXe+u0fGGu6NtbrvA/H02RyKpIELY1h4/OxTbVsO9RT1RUNhgJfsTsJITa/CYUTUHJTK23LbwJg2Ds+y65Rp/LmL/+X8Xte6vW9iQ8+SN358+ztbAWQyOToKVy5s/HIM4ze0ULb8ptQkQgtvZ1MIMir37iD0YneVeu9ylfg1X3tgMSh7OvA1F5ybpzzYZg0j7cfW82+t9f2+p6Xeb+4dwsg0a3uIrkpVeS7+Ot0het55Y4fMq1rX6/veJnvw68+AcjUhTUaC9en9ZrPc/4eJp3HG489ydlvPdXru17mvWb7S4AMSmcvvtHF3yAWruO1O77PlFjvWze8zPeRN9YBMtH6oifFzHvsJV9kd3Q0G+/+Tzj4dq/vepn3b15fA8g01GiElYDxucgE9i12fcN3xZ6EEC4p4aKKnDOX4PjxIEmMSnQCcCjSVPyCJBGcMIHIOXNt7mllcCBWcMFJWX7++r2E5pxFcPx4ZAlaenRlrj1SrPPmdb4A2XyWfR26u33Nvl+RU3O95ZzsBOBQbVPxSx7nnVNz/O3AbgA2Hv6TIWckiREFvkdqTG7pKuD78CtPAJBXDpBT9Tg6s5zH9OgFbdvrhhe/WAW8n96+CYDdiVd7yXl4Sk8gOFJjdjd4n+/jb+mH7MO51/uU8/i4fqXY3vpRxS9WAe9fvbYKgIx80OANxYSZ9s7qChmqFHyLXRnI51TyOdXpbgwZew4nkDWY0FRT4CMz7IZltH/lq4xMdiFrcKh2GKpUPCENu2EZKjJ4kP8f3nwWWZORAnHau9tZtXMN7yzwHZPooK2hhf11I1GP7DC+42W+AL9+7QnIh5BROZx+m5VbV7Fk6hJDzqMSBTlHqkfOK7evIp0MIWsQy+7pJefhqTg7NDha01RVfI/GJGQNVPmAIWPzfB7d04Gswf7IiKriHe8JIGuQ0tp6yXlEMsau6FgO1zZXFd/u7hpkDdLs7lPOE7oPIWuwp76lqngfjWn6+JYOmXjDiIg+z4/EUlWxJ5eCcnj6il0Z2LRmF/WRhoEbuh1vdDE/pdC8M8nGVTsB0OTT6TjzKlqkeuanFOoaTmXnpEWARCAaJS6dhlRo6yWomsobm3YyP3UKkhIm1HY5ax9tZeQpf0/XmVcxS2tCSSmkR57LTqkZr/MFnfNfXtnK/NRpSIEkofZ3s/bRVkbNnIVUkHN9Lsj8lEJjeHLVyPmpza2c3302mqoQOnJmLznPpBklpZAZcS47pWFUC99zj8wln1IIyMMMGcuSbMzn+ozE/JRCJDyxquQ8r2MGalYh2DG193ymiWBKIT3ivKqS83kds9ByCsHOSX3KeZzUwPyUQm10FjsnJakW3ucenaOPb6n3+JYO9TA/pdCwI2HsYdWOeKL0rGffFXsSoiulm7Qba4vRxZIsE5k3j9qsfs9iMiCCbTUi8+Yhyd4cKls6t5IoxNdJcgbQiGVibI1tJzJvHpGcbspPKCLi2Nt8QefcU7guUwokEZy3dG415FyX1WNTeoLVwXtL51Zi6TiaWhi3crqXnGsNOYsAbO/z7c7E0PK6S0oKJA0ZQ3E+12f0MISEEiYvyVQNb0POmd7zubB+JYLVI+dYuihnAok+5Vycz6Kck/d563LW1ydJTvXiXRfWrZJibffRG77FrgzMuWwS0Wh04IYuRjav8tRf3kStgTuXTDHuiQXQLhtP8tmH2VAzm0Ypzw27nyQ4bhxTl61AUrw3VHJqjtt+v4ydTaeSzs0g2LiVmjFrkJA4UPsG/3f9//K3Tz/BhprJpGNdfMTjfKHIeUf0NDLZUwg2vUnN6CLnRxY9QuCy8Wxe/SO+UjMfgOvb/8ywUcM8y1twbmtJEI+/C8hRP34lsoQh543/8BQbaiahcZQPe1zOgm/7uHa6U2ehBXLUjnmGYGS3IWNFVtAuG8+2J37AvwbOJRGs5eojG5naGKoO3olz0fI5ImP+hFJzyJBz67VPsqFmEtmuTv6+SuS8b0wH3fGFQI76CY8jy7nj5Kw+/XO+XXM2oaDMDbufJFQFvNvHtdOTm0ReGk5Ny18JRV83eI/uyrD81R2EAir3XDEJSZIGfrDHEYuVfmWc96TuIAKKTEDx5glIYG9XkhwQDsq0NNX2uoIIJcSMaz6M+hJ0hiNomkrLjdej1HgzVX7lttXsTewhp85BlUALxlBl/YS3J7GbNe1rmbHk3ahvwKHaKLKa8zRfMHHOvRNVAsKHe3F+cs9qlk5byoRl/0jk2QTxUISuYC2zPMxbcM6rE1AlkJRutECOPEU5T738ItS34EhNg+flLPhqUoB8rgkkIHyIvJzrJWOUEKNvvJ7hqw8TD9VyNFzPghs/UwW8JfJqBCTQQt0G7zXta5l+xcWom+FwFcxnY1znx+jjOhBHU1LGuDbL+YzPfgI2qKSUILFgDadXAW9kyOUb0CTQQrFe4/uyiVeiSpBSVXqyqpERXs0oR/fwtpbio2zsOSqKPR6j1BUw8b1XImsqmiTTM3kG0SuvtLuLFUFOzXFP6z1ISGg5vY6bpBSLtEpI3Nt6LxPffQEAR2obCU6Y4Fm+0Juzmm0CQAp2GH8XnHNqjuiSJQzL62MhNnGaZ3n35qxb0yWlGIsiOI9fqFsnj9REPS3nXuM62wjIIGUNzmYZA0SXLGGkpruhO8ZNqQ7e+Qj61qUiBXRXs+A94ZIFQLXJuQkAKdhp/P1YOQ9fuoThGX19OzJ5ZlXwBtDy+totB3qPbyWg0VCj26UOxf3M2GPhK3YnGdq79M18rOnOVDOUUJBhocKk+uS1njTlA2w6uIm2eBsaGlpOT3gxK3YaGnvjezmY12M2eoK1RK5f5lm+cAznwmYgmzYDwXnTwU1IikJLSzMAuSUf8CzvvuQsB4suC8H5UH47AB3hBoYv866czXzVnF7SQ1K6EJ4os4z1vylMmDERgMSFl1YFb+OgFkgiSXqmoOC9P6vLuTsUobla5DzAXAZdzuNH6OM/8b4PVwVvTVVAxNgV1m4zb3GV3KHu6roWsRLwpvR9DBrFGxhq+m0zakQjh9tjJOeeb1e3Ko7ZI2fzvYu+Ryaf4d/aJQ4k4bNnf4RTxn7EaBMKhJg/bg4NNX+iO5Uj8Y6LHezx0CE4J7MZbtqs7/RfveB6osXbtQgFQsweORuAMVPGwSvtxGec5kR3KwKznP/4osTqA7Bgwul8+ILbjTahQIgLx56NJK1FlQNkL363gz0eGsx8X9oKD+6C6SOG84V39uYrZAww8cxTYO1WOsZMcqLLFYGZ91ttcPcOaGmI8NVjeF8wdjaStBYNmXyVyPnRv0qsPQDvnHQ6H1zQv5wnTRvHptZ9HJ06y4kuVwRm3ke74ba3QJE1bn/XvxqHF8F7RP1Gth/q4VA87WynXQhfsTvJsD+mK3ajo/0rdiMbwtCOpy+IDwVCLJq8CIBv5NYAGa6cfhGzxhyf/DKmsYbuVJz9sTTTW7xbzkZw3tuRQNP+RDAg8dHT39Onyx1gVIM+Bg5ViZyff+VvwG7OGXsKS6edclzb4XVhDsfTHIqneyUNeQlmvnv3bAM2c8bo8Syddna/3xndqFvn98e8uwGaeWvxfcAmJjUPZ+m0Bce1bY6EONqT4WgiUxVyfuKvLwPtvHPSaSydNrXf74iC83s7vHsbg5l3655O4C+MbKjlvdOPV9KFxe5wt3fHtVXwXbEnGYTFTiz2fWFEfcHEXQUnIU3T6EzoNzA09RNgK96FcFN7He2GVbbvOEqBoivD+3IG6OjRFdThdX0HjY+o1z8/4mFF1oz9hfF6Ius7wOjC38W48DqOFtal4fV9y1nIv1rkLK7NGt/c/5oN+nyH4hrvdQiFTexHx2KEkHNPdaxflYSv2J1kaC/BFVs8CXl/YezJ5Mmp+uXnTbV9bwSjozrfalkQxUYw0IYv5Hywuzp4H03o47W5H8VOKAJHe7w/rqG0uWz++/4qObgcMRT4fjb8giJwuAoOpgBtHSeOixYY3ajzPlAl81kobCP6UeCbIvrnHYWDu48ifMXuJMOBgiu25QQuCjGRqsFi11nY7EOKTE2w7+FedEl6ny/AvsL9ieMG2Aiq1WI3LNL3RjCsrro2fLNl9kQYE9X/3pHIksp6v6CrCBHp12JX+NzLoSQCubxqrEsDyVmsY/u7qmN8C/n1Z7FrLnhgxBrvowhfsTuJkMrmjdPuiU75zYWNsRomjHDDNkeC/RaxNCyUVbPhFyx2TSe25BgKbbUodgNZ7Oqq02I3egCLXbRWMQ414mDnZRztEa7YE1vsjlTBfD4cz6BpoMhSvyEGAuKwfqQnTTbv/ftTxbo0oqEfxa7wPjp6fIvdsfAVu5MIBwvB0yFF7jfeDKC5Tv9bRxUpdv25YcEUU1glCo5wxQ7kuhlWWBg7k1nyBXe1V6GqmuGSGTaAYlcNsVeZnGocRAaSsyRJVeWeFPLrT9GpJjmLMIkR9eETxsuCzluRJTStOuQsOPQn56Ir1vtyrjR8xe4kgsiIHdNYc8IrWIwJUwUnoc6kPulPVJm8aLGrjgVCuGLHDuC6Ecq9pkFX0tuy7k7lDOW0v0PLMJE8UQUWO2F5Cymy4ZI6EYqKnfe5C4trvwq8sNhVQVC9OIyPivZttTJDliVGNVRPvLBQ7Eb2Y7Eb5it2/cJX7E4iCBfdiUqdQHW6Yptq+9/8jJjCarHYDVCEWiAYkI3q7V53T4rEifqwQlgJ9Nmm6Ir1vpzNiROl3JNZTRY7cQjpT4Gvphi7g4U1aVQ/ys2xaCm45Q94uLSNQNEy2zd3If+ORBZN87bHodLwFbuTCPtLjMkRFoCeTJ5MztuxGgNtAlA8EcbTOZIZbweXp7J5Q5ltKeGUL6weXj/1CsVUhBH0haIlx9tcoeiia2korU5btZR60TSNzuSJwytGVJPFriDnkSXKWYyHaoilHGjtFjF2mZxKsgqSgioJX7E7iWAUJx4o2LomiAjnEK5Mr0JYHZv6yZQE3cojgsu9btEQVseQItN4AiulgLDOet1iN1BGLBSV2KMeV26gWOOrPzfVsagWi108PbDLXSix1VCuqWyLXeEwV02KXX/rWF0oQDCgb1R+yZPe8BW7kwgHSrh1AvRYDTGZOj0+YUT/T6TkmIPLD3rcHStKI4ysD5fkojMSKLxusRsgIxZgRMGl053Okc55+4R/aID4o2NhKDseV+zEfA4rMjXBvl3uYgwks3nPl3cpJ8YOqscVm8rmSRe8RdF+1m5Jkkzx4N5evyoNX7E7iXDIOP0NbNZvrpIJI9w2zSew5ED1lDwpdyMoWuy8rcAfLcFiF61VUAqmaK9bKI1SEP3UcjsWI6okQWggKw5AQ1ghIAtLjrf5Hiq4YktZs6F6XLGxlC5nSdLl2R+Ktey8vX5VGr5idxLhUBnuG3NgqpfRNcB1YgLVUvLEbLErBcOqpLRNR8/AFjtJkoy/ez3WTChopVrshldJceZSYmYlSTKSpby+4R8s0+Uuatl5XrFL5gBdqTtRmZdmPzO2T/iK3UmEck751ZIZK2IET5QVC9VjsTtUWNBLtthVSdHegUpgCBg1zjzOt5xDmt5OxJ15e3yXUpcSzAdT78pZVTWTl6VEl3tDdYxvwzI7wIG8WvapSsNX7E4SJDI5egoZn6VZ7KrjHj4jxu4ksdgdLMPdDtXjcjdunRjA5V68L9bbcj40wAXpx0K0i6Vyns50L3/D9+761ZHIGPdclypnYZntSGTIefj2iVhBztGaAeRc8Dh4PZSk0nCVYvfcc8+xdOlSxo4diyRJPProowN+55lnnmHu3LmEw2GmT5/OAw88cFybtrY2PvGJTzB8+HBqa2s588wzeemllypPwMUQGWI1QZn6E8QsCFTDPXyaphVP+CXG2HldsSvXklMtrowuI5aytA3fyxuBqmpGKY9S5RytCRrxhV4uA2IUHB/AAl8NFjsRVtEcCRJSStuq9asT9aLjXj6Uixi7geVcHetXpeEqxa6np4fZs2dzzz33lNR+x44dLFmyhIsvvpjW1laWL1/OZz7zGVavXm206ejo4IILLiAYDLJq1SreeOMN7rzzTpqbm62i4Uociot6SKVlSzZXQX2zdE4lUzi1RmtOrMyOrJKswXLLIxTr2Hl3E4CiYtdfBp2AUOy6PDyuu5JZsnndktNf8dZjIctSsXCvh8uAdJVQcByKG76XLXaiLE9/d+L2BSUgGwlEXlbgS0mSMf9dKII+dAxsurERixcvZvHixSW3v++++5gyZQp33nknALNmzWLdunV8//vfZ9GiRQDccccdTJgwgV/84hfG96ZMmVLZjnsAhwqLeakmfbFBevmqqe6UHoArSVAXOvFQF4un12PNigVNy0ue8DpvEWw9kOumGpKChCWnqQxLDuhK7YFY2tOHtc4Sk6GqweNwpMS40WMxvD7EkZ6MpxOESnXFGopdYf770OEqi125WL9+PZdeemmvzxYtWsT69euNfz/22GOce+65XHXVVYwaNYo5c+bws5/97ITPTafTxGKxXv95HeVmSwoLl1COvIh4Wu97fejEmVVQtOR4OehYVTUjW7LcGLuuZNbTMTmlnvCrwXVjFCcuw5ID1eF2L8bYDZQ84X1LtDhsDS9XsauCDOhSYymF4hfzsAHCCnhasdu/fz8tLS29PmtpaSEWi5FM6vdlbt++nR//+MfMmDGD1atX8/nPf54vfOELPPjgg/0+d8WKFTQ2Nhr/TZgwwVIedqDc2CtjwnjYxN1TUOzqSogpFItndypH1qMKztFEhryqIUnFJIGBYHZdelWJN18pFK09sayFJcfLlmhxSCvV+i4gAs29zL3cGDsvW+xKzfQ+FtVwV27RAn/i+Szmu5f3KSvgacWuFKiqyty5c7n99tuZM2cOn/vc5/jsZz/Lfffd1+93br31Vrq6uoz/9uzZY2OPrcHhMivViwnj1c0ein2vH2BxAH2jEEY9r2aICuV9WCREMFDa1A4GZOpCegV/r2743aZFvaFkV6w3ZQzlH9IEGmtFBrQ35QzmcifVnxU7WIudcVduNVjsBpCzb7HrG55W7EaPHs2BAwd6fXbgwAGi0Si1tbUAjBkzhtNOO61Xm1mzZrF79+5+nxsOh4lGo73+8zrKLY/QUAUTxnDFlmCxk2XJ8+7YcouZCjR6PJ5S9Nt840B/KF5B5E2uUP51YgLNVaDUllKg2Px3L3M9WkLR7b4g6pR6Ocau1GSoYvKEdw0QVsDTit2CBQtYu3Ztr8/WrFnDggULjH9fcMEFvPXWW73avP3220yaNMmWProFg3fF5tA0zbJ+WYl4urDhl2CxA1OGqFcVO6M4cWnxdQJRj2eWiUV9oE0AescUehXlHtIEmqrADW0odgMUKK4Gi53Iai3fFev9GDuxFg00p8Xf4+mcp2OEKw1XKXbxeJzW1lZaW1sBvZxJa2urYV279dZbufrqq4321113Hdu3b+eWW25h8+bN3HvvvfzmN7/hpptuMtrcdNNNbNiwgdtvv52tW7fyq1/9ip/+9KfccMMNtnJzGoN1xeZVzYhf8hriqdItdlA8GXvVYleMvSpvI/B6BnSsxNM9FF148bR3C/WWe52YgNcTR9K5PIlCkfWSY+ySWc8eTIVVudSSNgLCdXvYo+sYlO6KNR/avRw2VGm4qtzJSy+9xMUXX2z8++abbwbgmmuu4YEHHqC9vb2XC3XKlCk8/vjj3HTTTfzwhz9k/Pjx3H///UapE4DzzjuPRx55hFtvvZVvfvObTJkyhR/84Ad8/OMft4+Yw9C04tU0J8qkUzMZ4k8/jZbJoGkQQCaPxN7fr6Sl8DUpFKL+kkuQQ+UpD04gbiRPBPptY+Yc7ZIBibYNG+naVSxg7RXOwvVSSkyOmXddgff+DRvp2uk93l2FgPr+Aq2PHdcSMhoSex79IyMK1LzCFYqxU8MGcEdCb+7howABDrcdpOuxx4w2XuEuNnsJqO9jTpu5ynmAAHlVo+2RP9BQGBpe4QpFi51IejkRzNxrugECHDrY4Uk5g+mwNsChPBiQiYQCJDJ5Yqls2W7raoWrFLuFCxee8HTV160SCxcuZNOmTSd87nve8x7e8573DLV7nkV3Oke6YJ04kfsmuamVtuVFa2fd4m8QC9ex/Tt3ke8uxjJOfPBB6s6fZ12HK4RN+zcDEodSe4Gz+2xj5hya/Xcw5R3sWfUU+zY/2audFzi/un87IHEwvQ047YRtzbwDc/8eJp5H2x9WsW/Ln3q18wLvdXteBmSS6pE+/37suK6/8ht0h+rYcsddZDw4rvd1dQESb3S9wCUsPWFbM/fMsMnwrmUc3X+YfQ/f0audF7iLzV4L9LBy5+Msndab+7FyDr/ndtJKiLf/7Q7GJI4an3uBq6pqhWvvJDYdfo7Tx5Yu52xkOFx+K0d6suy75Su92nmFu54QJfHXg88wveXE3KM1QV2x82vZGXCVK9aHNRDWuoawQm2of+tV5Jy5BMeP1yv6ApGcXjKmJ1iI2ZIkghMmEDlnrrUdrgByao4X9r0KwGtHXyKn9j3pzZwbMz0AdIXqig08wjmn5njjkG7NfuHQ0/3yFTDzrs/oco4Ha4sNPMT76Z0bANjVs7lP3seO62gmAUB3KKI38AhX0Pl2FjawR7Y/VJacBe+YB8c3wJEePYZUkpPc23rvcdyPlXN99hi+HuJ6NJFE1XQeD711X1lybk53A5BWQiQDwiTtHe4dyRQaOvdfbh6Yu3/7xPFwlcXO7cjnVPIejMs52JlE1mBUfWiA/ssMu2EZ7V/5KkjQkE1xUIPuYB2qpCuEw25YhooMLn8PK7evIpHKI2uQyB1m5dZVLJm6pI+WRc6Naf09dYfqDb7gDc4rt68inQogaxBLt52Ar0CRd302haxBTzDiSd7diSyyBqn80X54HzOuMwlkDbpMcvYCV4BH316FlA8iAYcSO8uUcxpZg6RSQ1ZSCKB7R7zCfe3WDciajCwn2Rdr74N7bzk3phN01DQR86Kc31iLrMkgp9gfL28+h9Q8NbksmUCQzppGwgVrpVe4//7Np3TuUqYk7o1hfd3rjGc8uT+XinK4+YpdGdi0Zhf1kQanu1E2th3oZn5KYVw8wMZVO0/YVpNPp+PMq8jHujkzH2VkSqGnZQE7a6cQiEaJS6chDfAMp6FqKk9tbmVexxTUjIJydAZrH21l1MxZyNLxRmrBuYE65qcUhtdOYeekRYDkCc6C7/mxs9BUhdCRs07IV0DwHhZoYn5KobFuhid5n3dkJvmUgtI5oV/evca12siwlEJi1Hx2hid6givofJ957Q3mp84GSSXcvrAsOWe748xP6Uv+1ilLCKs5T3Hf9fIe5qemIatRgm2X98ndLOfZagOjUwrdLQvYGZnqKa4bX9nK/NRpSAGZUD9cj4WZ+zuTEglFYe+Ed5NMdXuK+0uvvs381BlIcr4k7qcc0VBSCgc2HGDjnpTNPbYP8UR3yW19V+xJAJHVGjmBG1ZAkmUi8+YBGsGCCTwrK4BGZN48JNn9Q2ZL51a6MzHQCnylHLFMjC2dW/tsLziHc3oQfkq4LzzCeUvnVmLpGJpW6LecOSFfAcE7lNddGJmAOOd5h3d3JoamFfotZ/vlbR7X4bwu50wgiFe4QoFvWu+7JGVB0sqSs6ypxpxOe5B7MltwyUk5oG/uZjmLcZ31INeeTMGtKGfpj+ux6D3GxZz2IvdCNu8J5GxGOKjzSlexta5c+Ba7MjDnskmeLFb8l7Vb2LCznSkzGzhn8eQB22uXjWf7Ez/g94kGNowYximJrczIb2XqshVIiruHTE7Ncdvvl9E+rp14dhpqKkrtqBcINrzNgdo3eGTRIyjy8Ry0y8bT8+x/saFmNs1kuGH3kwTHjXM9Z8F339gjdMcXAir1459AlrMn5CugXTaeXR//PRtqZjE9FeNaj/FuH9dOjzqOvDScmpGbCDW29stbjOsn4yE2jBrFuPQu3pt/3fVcoch3z4g6Eqm5yOED1I1bg4RUspy3P/EDtmiz2V8znA8efZkZkbynuO9snkE6N41g4w5qxvTP3Vi/klHPrl+7ho0jlTmdQP1uIoOQc1t2Eq82TuOCrjeYIR32FPfdw5tJps8iUNteEvfHcz1s6Ohg7rQ6zrlssv0dtwnl3Fnvbkm7DAFFJqC4/9RzLI4ms6gSDGsIl9Z/JUTLjdcTeeh5VAniSg0tN16PUuP+VPKV21azN7EHZFC1MKoEajBJXs6xJ7GbJ/esPi6bDgAlxLRPXoX6MnSG65DUnCc4C76q2owqAVIWNZBEkzgxXwElxIT3L0Z9HbqDtcge440MeVWXs6b0nFjOhXEd/flTqJLO1wtcocg3p52NKoGk9KDqNT1KlnPLjddTt7IdVRpOXAnTcuOnvMVdPUOfz0ryxNyrYP3KqdNQJZAHKef6376uj/FQDS3XeYy7NrowxgeQcwGNdSFUCbrSOU/uz6WiHG7V+xZ8GBjMZdLRJUuMgq+p5hFEr7zSkr5VEjk1xz2t9yAVMqo0Vc/mleRCNh1Sn9l0AhOXXgFAXg6QmTzN9ZzNfLW8nvknBXpEUuCAfAXGXHIRAD3BWoITJniKN4CmFrJ5A3p274l4R5csMQr1xhu9N64NOSsJ4++lyjm6ZAlRWXdX9Ywe7znuHDOfoX/u0SVLjGzJpAfXLyFnWYkbfy9Hzk1BfW70jBjrOe5FOSeNv59wTvtZscfBV+xOAgzmahpJURh9gV7vKDvzdNeb8QE2HdxEW7wNrZDtp+X1mn2SrPPX0Ngb38umg33XPaypDROR9e/Kn/6c6zmb+Wo5seEXN4KB+Ao0NegLaTxYw4hlyzzFG4C8rtiJjeBEvCVFYdyluiKbmjTN9VzhWDnrJVqkQI/x91LlLCkKI6dO0L9z8WXe4y42/EBRseuPu6QotHh4/dIKYxqTclOOnMfMOQOAzNzzPMtdCpTGPVoF95pXGu6XuI8hY7BX04w8dw7sfJXksFFWdKvimD1yNt+76Htk8hlUFf7pTf3c8tUFX6ShsE6GAiFmj5zd7zOGN0ZIdCTJnP9OO7o8JJj5bngb/msvnDpiHNe/83ajzUB8oVgHSpUDyJdfZmmfKwEzb02Dm96SyANfnv9PNNfrbU7Ee+yF82HLi3TXeiPD3cz31+sk1h2BS6cs4Mpz5httSpEzwPDpk+HIbrLTTrWwx5WDmfu9qyTejMGHZi5h/inF8hf9cW85by7sfIVEs/fWr58+KfG3Lvi7mYu4YGbxJqVS5dxy9unQ9iaJUeOs7HLFYOb+m79I/PkIvHvyO1hybvHe9/64i+svY/6VYgZ8xe4kwJFBuGKheA9fT8Ybd8WGAiEWTdYXQd0sr98e8cGZVxJWBs4IBhhWH2ZPR5IOD1webubbtncbsJlZI8ezdNrZZT0nrMiEAjKZvEp3Ok+0duDvOAkz70QmR15dDcAHZy6mroR7gYcVDjidHjnhm/muXL8R2M+CCWewdNrksp/VIKwbHtkEzdx/Lv8F6ORdE89j0bTRA37Xa4VrzVwfktYDR3nXxHO5ctqYsp/VXAg38OIYX/PCJmAf5449jaXTpg74XWGx8+pd11bAd8VWOVRVMy79Llexqw8XLkz3yCZghuhzKCCXrNRB8f7NowX3tVcwmDhKAUmSjDiVLg8otGaIa4QUWSqpnA8UN/yOhPcuiBdyFht3uRDWjW6PKDtmiEveG/q5E/hYNEa866LrLNx/LMZquRD3y4q130sQini0RO5GjJ0H5WwVfMWuyhFLZcmr+uZVymXSZtQVLtqOpz2o2BX6XF/iJiAgrDnCyukVHIkXFLv6wW34jYUN32unXtHfaG0QSWSNDABxUXgmpxo1Hr2CwR7SBIx4JE8qdgVZ15S44XvYkiP6PFjFTiQIiTAcL6Fc7qKdF+VsFXzFrsohFJSGsFKW5QqgvuDW8qJiJ0739SW45sxoLpzyOz1muRIWxuGD3PC9ujiKzb5UKw5AXShAMKArgd6Ts97fwVvshHXDu3O6ZItdbdHt7DXLrBiXg7bYCVesBy12xmGtRAVejId0TiWb94sUg6/YVT06egZvyRHWrp609xZGoYyWEnNlhrDmeG1BLLpiy0uQEagvLKJeU+K70+Vt9qC7nhtrCxYND8lZ0wYfViEg3pPXLHa5vEqiEOvbUKrFrmCFzquaZ+KEAVLZvHGLQlNksIqd/r2eTJ6Mx25kEIeOUpVa8xrvxbAhK+ArdlWOI0OIyRETJqdqnruupUds+GUqdub4Ky9hsAkyAmLDj3tswxdyrguVJ2exYXrJQhlL5YywisFu+MIK0u2xDdB84ChVia8NFi2zXoq/EmMyIEtlexwEojVB5EJkgpcOqZqmGbJqLHGMBwMyNYVrxbw2rq2Cr9hVOYQlZzAuOvNm6TVLjji5lRtj51UXxlDkDEUF2KtyLsdiByY3nYc2fCHjulCAmmB5YRUCjbXetNiJDbsmKBMMlLZtSZLkyZhCc4xZqXGjx0KWJU8eUtM5lUzBnRotY04LK2532jtcrYSv2FU5hpItGTBlGvZ4bMMXLrrBxth5aTFMZvKGm2qwyRNCMfLaiXewLncvxhQeHUJYhYC5mKuXwitiRixleZbKRg9mew81vk5AHFK9FG4g5qMslbd2i4Op19Yvq+ArdlWOoWZL1nl0wgzWYtdkWOy8sxGIm0WCAals17OAKG3T7TEFPj5IBV5sml6SsxEvO8jECSgqRqrmnfqUUH7ihECDKYHCKzBneg8FTUYimPcUu3Ky3MEcSuIdOVsJX7GrchjB1oPcDISi4DWLXbxgki93wzcvhl6xaAjlpDkSGrTrpt6jC+NgFXhPWuwKc7l5kO52EK5MfYx4qZZdUbEbpMXOQ3IWfW2qmMXOO9xjgyzzIua/74rV4St2VY6hBtULi11PxmMbflq3RpTvitXfU07VPBNvZlbsBouiK9ZbC6MYl/VlJk94ccPvGGJxYjgm7sxDJU+KNezKk7No76VYSmFhG6ortsnDrthyuTd4uJi+FfAVuyqHUd9skK7Yeq+6YgfpoqsNBQgr+rTwiptOLNyDzZQE7yZPdJ9EFruhFq0VMGrZeUiJH6wr1otyFkroUOaz+fue4l5mEWqBeqOMj7fWL6vgK3ZVjqPxodU3Myx2ae/E40CxbEe5Gz6YM2O9sSB2VkCxq/d48sRgY+y8tOl1VmjDb/CgFcsoRB0uj7sXldjOCinwXsz87hpk4ogRY+exg6lV8BW7KoamaYYrdtBlMIwJ453FAYoTfDDJBE1GZqw3XBiVccV6s75ZzyAVOy9aM8SmN9TYKy/WsosNuayNd7hWyjLrRe5CzqK4dKkoZsV6Zz5bCV+xq2IkTRXMBxtwXbwv1lsWO7FplVsGA7yn2Ing6FILevYFr14fd1K6YodosYt6sJZd9yDLnXjxvthKlTuJevD+58FmBItx4cfY6fAVuyqGKHUSUmTqQoMraFrn0axYI6j+ZHDFJoceVB81uTK8kg0MJ5srtuByrx28nKF3LTuvYLCWHC8qsZW22HlpjA+Wu1dDSayCr9hVMcy3EQy2DIYRVO+xCWPcSDAoi53HFLsKuOjEwphXNZJZ71hnB+uKNW96quoNRbazApZZMN8X6505PdRyJ15SYo1yJ0M4qAGevHVDyKnc5Akjq99jBgir4Ct2VYyh3DohICx2cQ+VO9G0YqmSwVjsvOeKFckTg5dzbTBAoHC5pFeU+KHIWbh6NM07m0HFsmKNGDvvbPhFV2y55U68q9j5FrvS4dXqDVbBV+yqGJVQ7Oo9aLFL51Syed0KM5hLtJs9VrG9y0ieGPxGIEnFC8e9Yskxy7ncWMqaYMC4ONwLm35e1YxNa8jJEx4Mqj9Zyp1ommay2FVKzt65Pq7och9kjJ3Hkvysgq/YVTE6K2DSr/dgjJ05AaCuzMK1YC7s6Y1FohIWO/BeAkXPEOXspU3frHxWKqjeSy667kHWNxMKQk8mT65wubyb0ZPJky+EBpTL9ViIcaJq3pnTg715wr9SrDd8xa6KYdQ3G8JGUOexzR6KG35dKIAslx9baCRPeGDDV9XiCX8oFjvw3uIYN8k5MAg5e+m+WDEW68MKSmBoy7aoBecFS6XAYC125psqvGCJFjIJBiTDojxYhBWZUGGseIE7DOHmCVPyhFesk1bCV+yqGMKSM5QNv96DhR8HWwJDwEuXZ3encojY/0oF1Xsl9mooJW3AWxa7Sl0zBd4LNM/lVRIZPaGn3OQJJVCsCOCFcW3U36wJDjrhTUCSJMNi2eWBw0surxr8y706TngbcqpmlPg6meErdlUMI1vyJHXFDia+DoqKsLib080QJTAioQBhZXAlbQSMAGSPyLpnCAkyAI2FsiFeUOwqFVAPxffllTltPlSWa7EDb8UUCuVzsGvXsWj0kNvdnPhQboxdXUhB6MFe4Go1KjN6fLgSRcWuvEmiZjLEn34aLZNBSwME6E5m6HrsMaONFApRf8klyKGhxXVZgcEsjmbOcgYgQCyV48jvH0MpLBhu5CwSZAYbaG3mHT4iATKHX2qla98mo40becPQ5Rw5rPM9sPEVug60Gm3cyHeo18b1mtMpgADd8ZQn5rTY8MOKhFKCy93MFaAuKwMS7U8/y8QmvY1buQpX7GAUWAEz/7pkgfuzf6HrtWIbN/IXCllNsDQ5myHLEvUhhe50jngqx6gGK3roHfiKXRVjsIVrk5taaVt+EwDxYA0s+TdymsTOL3+FkFqscTbxwQepO39e5TpcIfx5z4uATFLtLPk7Zs55SYb3fQeALf/vGzRmEkY7t3FevX0dICMHkoP6vpm3PPuDMGUB+1atYd9ba3q1cxtvKMo5NUg5y2e8F6a/i7annmXfG4/3auc2vuv2bAJkEurhQX3fzLs7VAdXfoOEKrHnli8ToBiT5DbeUNzwM1oXf9z+R5ZOW3rC9mauAOF3Xg8jprLrgYeZsO9vxudu5Prs7hcAmYzWNehnmPmH5v8DjJ7Fnv/+X/btfqlXO7fxF1bptNZRkpyPRUONrtj5JU9c5op97rnnWLp0KWPHjkWSJB599NEBv/PMM88wd+5cwuEw06dP54EHHui37b//+78jSRLLly+vWJ/djI6ewRU0jZwzl+D48SBJ1GbTxucJpUb/P5JEcMIEIufMrVhfK4WcmmP19mcBaE9sJ6eWNsnNnAOaSiSrK0rdoTq9gQs559Qcv39bV8COZveWzNUMM+9ILgVAQgkXG7iQN+jcn9j+DAD7Binn+oKM46HaYgMX8s2pOZ7Z9QIAO+NvVEzOACkhaxfyFuhM6GuQFEhxb+u9A/I3cwWoK/DtCRbk7FKuOTXHqm3PANCe3DEoOUM/Yzzo7jEO0FGmnI+FF+PBrYKrLHY9PT3Mnj2ba6+9lr/7u78bsP2OHTtYsmQJ1113Hf/1X//F2rVr+cxnPsOYMWNYtGhRr7YvvvgiP/nJTzjrrLMG3b98TiXvocDMWE8GWYPGkFJmv2WG3bCM9q98FUmC2myGtBIiEYwQzeqL5LAblqEig8vex8rtq+hKpJA1SKtdrNy6iiVTl5TwzSJnJGhKJ0gptXSF6xnbcxRwH+eV21fRGc8ia5BTO8vgakaRdySbRtYgGaxFlYrxem7jDTr3WELvb2aQcm7I6OOkJxhxNd+V21fRncgja5DKHx6ynBUNQrkcuYBCPBihNq8fAN3GW+CZHX9F1mRkKcW+WHsJ/HvP5YasLud4sM6Qsxu56muXGNODnc9g5l9f4N5t4g7u5P/sjheQNZmAlCxRzr0RDSnImr7veWmfLhXlcHKVYrd48WIWL15ccvv77ruPKVOmcOeddwIwa9Ys1q1bx/e///1eil08HufjH/84P/vZz/i3f/u3Qfdv05pd1Ee84bzPqxpnxiRAoe35/RwJlhdYr8mn03HmVeRj3bwjFSCpKLSPv4RUOk4gGiUunYa0aqclfR8sVE3lqc2tnNdxBvmUQkAaw9pHWxk1cxayNLBx2sz5nGwtR1IKR8a8i50Nh13HWXA9t+MsnSsjy+JqhuDdFGhifkqhKTKNnZMWAZLreIOZu5Dz2EHJuZ465qcURtZMdi1fwXXe0VPIpxSUzklDlnM+1s0FqQDpgMK+CZfSk+lxHW8BVVPZ/fJe5qemIquNBNsuL4m/metEZTTzUwqBpjPZOSniSq5DXbuOheA/NtzC/JRCTfQ0dk7S4+3cyn/vxjbmp6Ygq00ly9mMU46ohFIK+zccZOPu1MBf8Bjiie6S27rKFVsu1q9fz6WXXtrrs0WLFrF+/fpen91www0sWbLkuLb9IZ1OE4vFev3nNaRyeiycJEFoENmSkiwTmTcP0FAKcXVZWQE0IvPmIcnuGzpbOrfSnYmBVjivSDlimRhbOreW9H0z53Bej0/MyEHcyLnIteBml7NlcTVD8A7mdReGLmdwI28wcy+M60HKOViwVGUC7uUruGqqGNNDlzNoBFUh6wBu5C2wpXMryWwhy1HKAVpJ/HtxLYxrXc7u5DrUtetYCP4hY4yLcBz38k9mCy5UuXQ5mxFSdE6ZKrTWlQtXWezKxf79+2lpaen1WUtLC7FYjGQySW1tLf/zP//Dyy+/zIsvvljyc1esWME3vvGN4z6fc9kkotHokPttB7Yc6GbDC1toigQ578rJg3qGdtl4tj/xA7Zpp7C9ZjxXHN3EjFAPU5etQFLcNXRyao7bfr+M9nHtJNqj5LQxhIa/Ts3wdRyofYNHFj2CIg/cZ8H5t6lhbBjexOmJbczIb3cV515c9zWR08YQHvEq4WHry+JqhnbZeLZ/4g9sqJnJzEQnn979JMFx41zFG46VcwM5bSyh4a8NSs4df/41G2rOoiWf4vMu5Gvm2pObTF5upmbUi4SibwxNzk/8gG3qTHbUjGXx0VZmhBOu4i0g+O9sPoV0bhrBxh3UjFmDhFQSf8H15c4kG8ZNpDa3n4/mX3cd195jurEwn18jPOwvg5Yz6PxbP/UkG2qmku86zMdcOMahyH9H0xlk8lMINr9NTUvpchZ4JN3Nhq5O5p9SzzkXT7a+4zajHAOTe6RrAfbs2cM//dM/sWbNGmpqakr+3q233srNN99s/DsWizFhwgQCikxAcddJpz/EMnlUCRrrQoPvsxKi5cbrqfnDblQJUgGFlhuvR6lxT4q8wMptq9mb2AMyqFoIVQJNSZKXc+xJ7ObJPatLy7IqcK7/rw2oEsSCYVo+5y7OZq55tbbAtad8rmYoIca+9wrUN6AnWIOs5lwp695yDurcA6lByXnSRz+A2gqxcK0r+fYp52B8yHJuufF6asWcVtw/p3PqGagSqEoCVda9ByXxF3P53v9DlSCuhF3JtdeYVsM618Ag1q5joYQYd/nFqG9DtwfmdF49x1i3y5JzAQ0Rfd3vzuQ8s0+Xg3I4eZr96NGjOXDgQK/PDhw4QDQapba2lo0bN3Lw4EHmzp2LoigoisKzzz7Lf/zHf6AoCvl8vs/nhsNhotFor/+8ho4KVaqPLllCJKhnl2VHjSZ65ZVD7lulkVNz3NN6DxJ6PzVVz/ST5EKWFVJZWVbRJUtoEkVch7W4ivNxXPMRAKRCuZNyuZox8l3vACCphAhOmOAq3tCXnPXDmhQYnJzHXaGHZvQEa5EnTHQV3+PlrGc1VkLO0SVLiBSKM6ZHjXUVb4Fe/IWc5WLcVKn8o0uW0BjV50iivsl1XPsf0zrXocgZYPQF5wP6GHf7nNbU3mMcyuPvtbuurYSnFbsFCxawdu3aXp+tWbOGBQsWAPDud7+bv/3tb7S2thr/nXvuuXz84x+ntbWVQGBolfrdDHGFzFDvD5UUhaapkwAIXHypq0z4ApsObqIt3oZWqMel5Xsrdhoae+N72XRwU7/PMENSFMa+4zwAMjNPdxXn47kKxa5H/3eZXM1oiOjvLamEGXnjMlfxhj64FxR4BinnpoZiCYia625wFV8zV00DTRVy1msqDkXOkqIwbJo+p+WF73YVb4Fe/PO9lR0onb+kKIx7j56Ql2oZ6zqux8/n3krsUOQM0FivPy8erHX9nDYOL3JRsSuHv1DsvHIvrpVwlZTj8ThbtxaDJXfs2EFrayvDhg1j4sSJ3HrrrbS1tfHLX/4SgOuuu467776bW265hWuvvZann36a3/zmNzz+uF5stKGhgTPOOKPXb9TV1TF8+PDjPq82FO+JHbrZvXHyRDiyl/wpM4f8LCswe+RsvnfR98gUEh7+rV3iQAo+e/YnmTFGbxMKhJg9cnbJzxw9by7sfIV400grujxoHMv1lm0SSeCmedcxuklvUy5XgUhIXw5SNXVEl7rrZA/Hc799v0R7Ej5z1ic4dZzephzuwYBMJBQgkcmjvusSq7o9KJi5ZnLwz5v1M/jXL/gSwpM2WDkDNE+bBEf2kJ1+aqW6XFGY+d+7SuLNbrhq5ns4/5T3GG1K5T/6kgvhzeeLdexchGPH9Df2ShxOw3VzPsXUQvj4UOQsPDY99U1El5ZeccIumPl/71GJXT1w9Zkf4sxJHzLalMpf3NYR9xU7dyl2L730EhdffLHxbxHnds011/DAAw/Q3t7O7t27jb9PmTKFxx9/nJtuuokf/vCHjB8/nvvvv/+4GnYnIzoSgytO3BfEJeviIm63IRQIsWhyUeb/pj4FpLl8yrs4Y1zjoJ7ZXKfvnh0uuzzbzDWXV7kxswqAvzv1cobXh0/01QEh5JxVIZvXCIm71FyCY+W8Ql0LpLh86oWcNb5pUM9srA2SyORdd8o3c23vSgJPo8gSH5r5niFfDg/6JfPgjTn9c/kvQCcXTjyPRdNGl/0scSew22QMx4/pf80/CWRZPG0hp7QMvbSWUHZSeY2cqhEMuHdO36U9A/Rw6ZQLmDdlWNnPEly7/bti3aXYLVy4EE3T+v17X7dKLFy4kE2bSjdTP/PMM4PomffQNcjrxPpCJKS7rHvS7twEjoXo51Au0hbvTdzR6UaYL6+vxOXwdaFiaEJPOkdIcVeQ9bHoLsTS1A1Bzo21Qdq7UnQm3bsZCDk3RYIVUepAvzQdiu/QzRBXRA32/lRxoXw8nSOXV1EC7oxA0jRtyFyPhXkNjKdyxoHVjRD35EZrB8ddHFb8GDuPx9j56B/iOrHBXhpuRtFi5/4Jo6qaMbHrh7A4FhU79274QhlpCCsV2ayUgExNUH+O2xdHTdPoKfSxYYiKHfRWkt0GMQajFVDeBeo95LYSFphozeD4m5UkN4/rVFYlp+qGjYZBcj0WSiHcAHD1HaqaphlzcLCHVKHEupmnXfAVuyqFiLFrqoDFTlhyelzqtjGjx6R8DsViJ1zYyWyeVNadvIsn3Mpt+MKS0+NyJT6ZzVPYA4ekwHtJsauEVVagwUMZhEO1YgVNyk0s6V6+QoGVpN7W86GimFTg3jGeyOQNpXaw49yPsSvCV+yqFGKjGmpWLEBEWOw8sAmIjSoYkAgPoZZRtEYhIOtuL7du+kM94fYFYZ3tcbmsxeItS1Bb5nV5Zoh3F3OpjKG4IVshZ7crdrm8asQBDsWKJax9blZuRAxgfVipmMsdTAqPi2Ut5KLI0qDns2GFzuRQ1f5Duk4G+IpdlcKw2NVWwmInrDjutFyZITb8uiEujpIkES0sFCenYuduWcfTlZGzCFVwcyylsFgN1hXZF7ziijW71YYSdybittyswIsxXUk5A9QXnudmF6V5LRvsfBbvTdPc73GwGr5iV6UQ7ptKxNhFwvoJygsxdkZ83RDcsAJNLo+zEyf8wQYb94X6sEiUcbes4xWIrwNvuGKFMlKpgHrwTjFXoYzUBGWCQ4gj9YLFTrhiKylnwDigxtPu5S5c5EMJKwkrMkrBy+JmJdYO+IpdFSKZyZMuXIRciSwow2LncisOVFaxE5u+W605MQssdqKWnds3fLNldijwhGKXqnwspVAe3K7AxwxlZ2jcBV93x9hVNiNWwAtJBV0ViBeWJMlU8sS9XO2Ar9hVIYQbVpGligThFsuduH+yxCu4OLp907fCFVvvlRi7CmQ+Q3EjcauMwRpXrFCI3V7upFLKjpCzNyx2lXXFekHZMRLBhijneg/EE9oBX7GrQhTdsKGKBOG6vUCxGd0VdcW6e9MvLoaV3PC9kQFdKcus293tYK0rNpNTSefcK+tKKTuGK9alcxmKilcl1i4zGjwWYzcUNIQFV/fK2Q74il0VotModVKZDb+42edOWEDaDaiUiw6gyXDFunORMBbDCskZPJQVWyHFzgtZsYbFzgLLLLg7xKJorRyqxc7994jGLHfFuneMV0qx8y12OnzFrgrRWcFSJ1CMsdM0vYimm2EE1Z9ErtiKWuxCJ6di51YZgznOrHIbfkCWPBFiMdTixAJeSJ4ohpFY44p1s7JTqThSoz6jixV4O+ArdlWIShYnht51wtyeRt5TyeQJ4aZz6aZvbX0z91pxoPLJEz2ZPNm8Ow8tVsTYgSnOzsWbYMVj7FydPGFNVqwXYuwq5or1AFc74Ct2VQgjxq5CG75sOt0nXL7hF2Pshs69yeVZsZXIJDsW9R4pbVMpy6zZxedWq11Rga/whu+BkifdFZOz+y12lXI7HwvjDlUXKztGuZMhHl6EK9btSUFWw1fsqhBCEankhc8Rj1w1JRavoWZLgvvjr7oSld/wvXIjQaVcsUpANhQcNyp2vS+Gr3ThWvfXN6tY8oQHChR3F+RQibXLDKPUi4uV2kqVbhIHejcrsXbAV+yqEB0VLE4sUOexwrXC8jQUGLcSuHAzUFXNOJVW0mIX8UqMXQWTZNxc8iSRyZMvXI9U8RsJPOB2r1RCQdQDmaFCDpXwNpjhhWLUlXfFum8u2wlfsatCdFbwOjGBiEeuFTMsdhVYHN0cWN+dziESlCt61ZRHrhQTluOKJsm4MPvZfIdmTbCyy3WdBwLNK2WtjLrc+g7Fw1Qlao+a4YVyJ8XkiaHNZy8kitgBX7GrQogYu0plxUJxsUm4fMJUqnAtFMuIdCWzrrtUWmxQYUWmZpCXZvcFc2kbNyNewZpfbq5XaC51UsmL4cEcY+c+3gKVquEXNcVe5V02lwXE2loJK7QZZmXHreWqKlbuxAMJQXbAV+yqEJXOigVTfTO3W+wsuFJM09y3UFhx6wR45+aJ7gpugm62zFpRnFjAGxa7yvA3W/zcyjdusWKXVzWSWfet39m8ahS/H6r3wbBOunz9shq+YleFEBuUFTF2J0u2JEBYCRilXty26VtxTyxAxCuuWAtuGHFjIWqrSp2ANw5rleIfUmRjLrsxiUDTNEMOlb55ojYYICDr1l63HVCht3t8qPHCRjyhC2VsJ3zFrsqgaZqxQVlxObzbN/xKBtWDOYHCXSVPrCh1AlBfkHMmr5LJubOuG1T2TmA3J09UKvaoLxjhFS4+rFWqjh0U36Eb5ZzOqYaLuK4CiV9mSJLkahelkSATVgwFdLDw69jp8BW7KkMymydXWCAqWrjWA5tAOpcnUygyW6lTb2OtO605VhQnht6bilvdsapatG6cNK7YCmdKgvuLUWfzquE6rESplwYX17IzB/uLQ3Ql4eZs0UoeUv3kCR2+YldlEJNEMRUVrgQiHkiZN1sTK63YuW3TtyrGTgnIhBV9WXBrAoW5XxVxxRayx7tcZpWFojXDEotd2N0JUeZYuIpY7EQ9NxfePiEOUWa3aSXh5pInlVTsBE9zmaCTEZVfLXw4CvOGP9QsOjWTIf7002iZDIG9EiDTuWU7XY9tM9pIoRD1l1yCHKpcosZgITaCmqDEUNZGM++6LhmQ2P/XjXTteslo4zRvYUGsxIZn5gsQQSaNxP4nnqKhTm/jNF8zxOYUkCEUGJygzZyDhwECHNl7gK7HHjPauIFz0WJXmaXazFs6rM/prn3u4w1Fd1pYkVAGOaHNfCMxfS4fWP8iXduLm74b+IpDaTiooWlaRTKge3FPFLj/eT1dbxbbuIF7rHCgqsSNG+ZqCPFUzqhscLLBV+yqDF0VjK9LbmqlbflNAGSnvhPOej9HXn6FfT/9r17tJj74IHXnzxvy7w0VonJ7Wuvij9v/yNJpSwf1HDPv4NlXweTz2fPH1ex7e22vdk7y/tvBrYDEwdRO4IwhPcvMFyB82a1QN5zd/3EvdR27jM/dImehwOelHh7f8fig5NxrbI+cARf8I0fbDrDvoe/1auc059cObgMk2lPbgdOH/Dwz72TLTFjwGbp27WXfL3/Yq53TvKHoMs0MYT6b+SrnfAwmzKXt0T+wb9ufe7Vzmq+wQndlDw5p7TKjF/f518Lo09j769+xb9cLvdo5zX3d7pcBmaR6ZMjPCisBQopMJqfSnc6etIqd74qtMlTSrB05Zy7B8eNBkqjNpQFIKeFiA0kiOGECkXPmDvm3KoGupN5H5DT3tt5LTh2c28HMuz6bBCAerC02cJh3Ts3xyv63AXj58F8GzVPAzBcwZJ0QsnabnFN6/6QhyNnMuSGTAKDbRTIGXc6vHtwCwMZD64YsZ+jNO3KsnMEVvAU6C/NZCqQqIue6bAqAHpfJGSCWHPqYPha9ZF3g7jZZ59QcT+/aAMCuns0V4e2FO5Cthm+xKwP5nErexZmCAJ3xDLIGjWGlAn2VGXbDMtq/8lVqcjlkDVJKDapUjN0bdsMyVGRwwXt5dvtfkTUZWUqxL9bOyq2rWDJ1ySCeVOTdkEkiaxAP1bmG98rtq0imJL1f2QND4ClQ5IsEkVwaWYOkSdZukvOftq0vyDk9BDkXOdfl9DmTCEZcI2PQ5ZxKgaxBd+ZgBeQMZt7hfBZZg0wg7CreAs/uqMR8LvKtz6b0OROsdR3fdbteQtZkAnJmiGuXGeYxrs/pHheO8e6EPg5T+SMV4R0NB+iIQ1dPxvX7dTkoh4uv2JWBTWt2UR9pcLobJ8TR3R3MTylMPZRn46qdQ36eJp9Ox5lXIefDzE8pDA+MZuekRYBEIBolLp2GVIHfGSpUTWXny7uZn5qOnG8k2HY5ax9tZdTMWchS+YZpwbtJbmR+SqE5Ms0VvFVN5anNrZwfOxU1qxA8MmtIPAUE33ysm1laM40phdTIeewMT3CdnLdu2sX81AzkfMOQ5Cw4p+JJ5qcUQGHb5MUENM1xzlbJGYq8E6kc81MKQa3RFWPbDFVT2f3yXuanpiKrQ5vPgu8IZTjzUwoN9aeyc1IWt/BVNZW2jW3MT01BVpuHvHaZIbiPDbUwP6VQEz2NnZMCuIG7GOPnHZlJPqWgdE6sCO/Z3TJjUgo7n2tHGhGrYI+dRTzRXXJb3xVbZUgXtHqR2ThUSLJMZN48ggUTeVYWpz2NyLx5SLI7htCWzq0ks4XMVSkPaMQyMbZ0bh3U8wTvUL4QtxcQrm1neW/p3Ep3JoamFs5kUnZIPAUEX9BQVD2QOycrOM33WPSWc46hyFlwVtQcEnowfSYQxA2cj5dzriJyBhPvvJCz++a0FXIWczkrC3uGO/hu6dxKKle5tcsMY/3O6+t3xkXcjTGuFfokV2YtCwV0TukqstaVC99iVwbmXDaJaDTqdDdOiJV/TLBhX445ZzRyzmWTK/JM7bLxxJ/7LzbUzGG4luTG3U8SHDeOqctWICnOD6GcmuO23y9j57CppHMzUBp3UDtmDRISB2rf4JFFj6DI5fdTu2w8+/7yOzbUnMakdJzPOsxb8Gwf10534hy0fJjImOdQag4MiaeAdtl4tj/xA36fbGDDyOGcktjCjPxWF8p5MunsKSgNu6kdNzQ5C86vyfPoDtXxyUN/ZVo06CjnXnJOzkXLVVbOoPN+/cm72VBzAQA3t/2JhtGjXCFrQ87Np5DOTSPYtJ2a0UOX81uf/CMbak4h3tPJ1S5Zw3pznVoRrsdCu2w8L356LRtqpiAfPchHXMDdPMZ71PHkpeHUjNpIKPrqkHnff+QIG5LdXHl6I+fMm1jhnjuHWKx066Pzq7WHEFBkAhWyhFmFrnQOVYLGulDl+qqEGPexq1BboScYRlZztNx4PUqN86UvAFZuW83exB7y6kxUCbRAClXWrRF7Ert5cs/qwWWZKSEmfWgp6t8gFq51nLfgqUmQ12pBAi0YJy/nhsZTQAnRcuP11Dy8HlWCZCDoTjlrM3Q5KxWQc4Fz3ZoOusJ1xJUwLTde5yhnwRMZ8mqNLmclUTk5gz62r/8c2noVTZJJywGmu0TWgn9OPRNVAjWQrIicx79nEeqbEHfRGlYc06cXuFZo7TJDCdHy7nehboWEEnIF995jPFxYtyszxutrg6gS9GTzrt+vy0E5XKqHtQ/AusK1LZe/G9CzYpUJE4heeWVFnz9Y5NQc97Teg4SEptYAemaZgIQ0pCyzcZddDEA8GCHoIG8zT7QgFNwXkqxnuw2Vp0B0yRLqI3rmXLp5hCvljFrYkCok5+iSJTRI+maaHOPs2O41nrUAaDpXKVBZOQM0vmcJtWrBPTlhsitk3VvOYj6njL8Phf/oi94B6MkTTs5lgV6yzutzrpJrlxkj550DQFIJO869l4wBLV/IUg7oFQiGytu/VsxX7KoORrmTCl8aXlfY7FVJJnr9MsfdNQKbDm6iLd6GhoamFlL5TRuBhsbe+F42Hdw0qOc3RfVFJ62EiN7gHO9ePMVCSN5QbobKU0BSFEacr28C6ulnuVPO+eMV+KHwlxSFYWNH6f//ivc4yrkvnoAxpislZ9B51xWsNjUf/6QrZN2nnAOVmc+NdfrzeoK1jLzR+TWsr7WrUmP6WIjDWlIJO87dzBsAVV/PpIJiN1Te9f61Yr4rttpglcXOfH9h4NLLK/rsoWD2yNl876Lvkcln+M+nJFq74H2nLOJdpy0y2oQCIWaPnD2o59eHFGQJVA20iy+rVLfLhpln+1G4fSvUhWVWXHi70WYoPM0YfvaZsPsNMi1jh/ysSsHM/8GnJV7qhCXTLuGSsy4x2gyF/4hJ4+DVdtKnDr0I8FBg5nmwC761BWqCGisu/LbRplJyBqhvrOfQ4R44/4KKPG+oMPO/Z6XE5m64auZ7OP+U9xhtBstf1PZMBGupX7K4Yn0eLMxcf/qkxN9i8P5TFvPOWcW+VUrW4l7gzNjxRJcuGqC1tTDz1jRYvllPXfrK/OU0Fm66GdKaXbhX+WS22PmKXZUhVsECxWYEZInaYIBkNk8y655so1AgxKLJ+kL1m2f+ChzmHePnsHTa+Io8X5YlGmuDdCSydKVytDRW5LFlw8zzxcBRYD0j6utYOu3iiv9WXWFhTGTcczm8mf/v170IHGTeuNksnVaZ4GhRoT7m8J3AZp6v7u0E/sKwSC1Lp73bkt8z7ovNukPWZv7/Kf8F6OTCieexaNroIT9buOg0IJ7J01jrrMPKzPW/lQ3AERaMm8vSaeMq/lv1BTn3qHJFrisbCsy8u1NZVO1JAD4060pqgkO/37zoinXX/d52wnfFVhmssthBcRNw6+Xw4oRWF6rseaUpIi6Jd8dCUclr4/qCsQm41JUh5FxfoftTAZpq3SVjKF5W31DhsAozxFxxo6zFxlyJ+5BBv25KlIFyWoE/FuL911VwTJshntuTzqFp2gCt7UOsMJdDAbliJboafFesuxS75557jqVLlzJ27FgkSeLRRx8d8DvPPPMMc+fOJRwOM336dB544IFef1+xYgXnnXceDQ0NjBo1ive///289dZb1hBwGKls3qjdY8UdeRFjE3DH6f5YiIlcX6GNQEBYPzsT7tgMxB2aVil2ERdv9lA8WFRSzuJddrpowxeKTbTWOseK2PATLpzTQoGvZLywmMsxl1lzegrWcXF4rjTEISinaq6q7yYOqdHaYMUsifX+lWLuUux6enqYPXs299xzT0ntd+zYwZIlS7j44otpbW1l+fLlfOYzn2H16tVGm2effZYbbriBDRs2sGbNGrLZLJdffjk9PT1W0XAM4hQqS3psWKURCRXcNi612AlFpCFcWYWnyVDsMhV97mBhVYKMgHG6d6mc4xZY7IRi5yqLXcpaOUNR1m7cBIViVymLHUC08CxhDXULxNpVyTFthtmL4aYDW/GQWjnewsLtx9i5BIsXL2bx4tKDWu+77z6mTJnCnXfeCcCsWbNYt24d3//+91m0SPfhP/HEE72+88ADDzBq1Cg2btzIu971rsp13gXoMsXXyXLl4yjM5nw3wtjwK2yxc9um32VRHKWAEXflQisOmCyzlVTsIu6SMZhczhUez2bUufSwls2rJAtxf5V0RYs547b4q7jFrlhZloiEAiQyeXrSeYbXW/IzZcOKtUysCyezYucqi125WL9+PZdeemmvzxYtWsT69ev7/U5XVxcAw4YN67dNOp0mFov1+s8LsNqSIyx2bnTFqqpGPCMWx8q6M5pctukLa4NVLjpxunejFQcsUuyE8u4SdztYw/NYFC127prTcdOmXFmLnXDFumdsa5pmucUO3GmdtSIm3E+e8Lhit3//flpaWnp91tLSQiwWI5lMHtdeVVWWL1/OBRdcwBlnnNHvc1esWEFjY6Px34QJEyredytgdeyV2PDddroHPatPxARb54p1x0JhtYtObADpnEou7554HNAtOalCVna1u2KtskCb4VaLnbC21AYDBAOV26aMGDsXyTmVVVELa5c4PFsBN8aexSwwRgjFLp1TybgontBOeFqxKxc33HADr732Gv/zP/9zwna33norXV1dxn979uyxqYdDg5UZsWCOvXLX6R6Km2BAlqgJVnZYR1226VtV0kbAbPF0m6zNYQCVdFsJq2xnMuuarMG4ETN6cllxoHh4qaS1Dkwxdi6y5pjffaUz+s2oc2G2e8yCPcu8LriJq51wVYxduRg9ejQHDhzo9dmBAweIRqPU1tb2+nzZsmX88Y9/5LnnnmP8+BPXOAuHw4TD4Yr312pYXQajGHvlvslidltVuk6TKHfilozJYragNdM3FJBRZImcqpHI5CwbT4OBkHNYkQlV8B5IwTGvavRk8pa6xEpFtw3uuYhLs2ItU+wMi5171jBhLY2EApbERgu40mKXqnxYSTAgGzVXu1M5muucv//YbnjaYrdgwQLWrl3b67M1a9awYMEC49+aprFs2TIeeeQRnn76aaZMmWJ3N21DlxF7ZXEZDJdZccDaeKQmI/7KHVmx3WlrXbGSJLk2UcYqOdcGA4QKLj+3WGatrm0GppqFLnXFVrqGXzHGzh0yBusTJwTqXTinrfIyifAFsVaebHCVYhePx2ltbaW1tRXQy5m0traye/duQHeRXn311Ub76667ju3bt3PLLbewefNm7r33Xn7zm99w0003GW1uuOEGHn74YX71q1/R0NDA/v372b9/f58xeF6H5a5Yl8bjgDUlMATcljFZLFxrfeyV2xJlrIo7kyTJVK/QHQp83IJyH8fCrTULrSh1AkXLkJti7MQcs9pK7Ea3u1UJfyJ8Ie6iJBk74SrF7qWXXmLOnDnMmTMHgJtvvpk5c+bwr//6rwC0t7cbSh7AlClTePzxx1mzZg2zZ8/mzjvv5P777zdKnQD8+Mc/pquri4ULFzJmzBjjv1//+tf2krMBxdRxaxaIiHHic9dmDxAvnMysCDRvclnx2mJFfuvrm7ltw7fSMitqablFgS9ytePmCXfN6WJx5uq32BUts9YlTujPd5+srTJGFDNj3bV+2QXnA0lMWLhw4QkDl4+9VUJ8Z9OmTf1+xy2B0HbALoud2zZ7sOaaKQHzPaKqqlkaBzMQNE2zzJphRsSliTJWuq30WMoe11hzbKlj53JXbKXjSN0YYyfGdMTCxAkwx9i5Y3yD9a5YN1kn7YSrLHY+hgbLr5py8Y0ERh0oCzZB8T5VrRjQ7hRSWZVcoTaClYqdW++LNdyTlljs3FXWxrg6zUJLjlsts0K5rnyMnfuyYu2oYQfm+pTuOaxZVWzdKFLssnFtF3zFropgReq4GcUYO/csDAJWloYIKwFqgzp3pwvYCheVLFlbGqGYKOOuhdFKi52batlpmmaKG7XB5e6yOd1tkQIvFEW3WGXBfE+sxRa7Gvcp8da5Yt15w4hd8BW7KoJtdexctDAIdFucWeaWTV9YGurDii2lEdwm67gNllmnZQyF4tAFy6wdBYozOZWsi4pRG5nflY6xqy1aclTVHWE6RYudtTF2brPCp7J5o4CwCHepFOr95Akf1QLrY+zcF3wrYGVWLJgL2DqbMRmzqAzEsXDr9XG2uGJdoNgJi5UkQSRo3YZvjutyUy07y7JiC/NG0zCuIHQaRvKExTF2bsuKFVZTWYL6CnM/2ZMnfMWuSpDNq4aL1LK7Yl0aaA0mV6xF1g23xF/ZkTgB7rXY9WSss8y66U5gw4oTstYyG1Jko36fWxQdsC7GriYYMApbu2XTt6uOXZ3LYqTN8XWVHuMNfvKEj2qAeTOyqkCx2OwTmbzrso2tDkB2i5uu2+J7YgXcWoza0uxnoxC184qdXZu9/hvuu1HGygNM1GVxdnaVO3Gbe9JKD5OIS3WL8m43fMWuSmCccMMKAYtO+MI9l1c10i67XNnq0hBuseZ0W3AFT19w472SYHUdO3fIGOwpdSIQCbnPumFcNWXBAcZtRYpFlqrlFjuXZcVaqdgVXbHukLHd8BW7KoFVaeNmmONx3LrhW7U4GvfFOnwrgVUuqmNRZ1hn3SXnHgtd7m5R3sFaBfZYmC3xbkG3RXfFgrlIsTvGdiJjj6wbXJYVa6nFznfF+qgGWJ04ARCQJaPsh+uC6i0sdwLusebYFWPntkBrAcHfynInTivvYK0CeyxE7KxbZJ3O5Q2PgDUWO5e6Ym1Knkhm8+RdkBFspTGiwaXrl13wFbsqgR2KHbh3w7fqDlEB9yRPWGfJMMOtNQutLHciNhg3lMLotmmzB7PFzh1z2hwXZYmcXVak2L7kiWIMnxsSKKy6JxbMdeyc5+kEfMWuSmB1cWIBI9DaBQuDGd0Wu67c4qbrtqnciWsVeAsts2LuaJrzG4LVBxUzROysW2KvzAkyVsQLu+1aMeH9sNoVG1YCBANS4Ted526LK/YkVexcdVesj8GjaNaurEjVTIb400+jZXT3VE1KBiQOPruOrlf1NlIoRP0llyCHQhX97VKRyalGoctKLo5m7konQICjB47Q9dhjRhu7uccstNiZ+WpxgADxrrijfM3QNK3iGYTHjW9ZJqVK7PnjKqjR2zjBudtUiNoKmHmHDkqAzNFNr9J18BWjjVOyFtxrQhqapiFJQ1fuzHzDe3W+h17fTFfiTaONU3zFmI6EKm9nOXZ8RySZLiTaV60hEtHbOMVbZJ83WpAIJuZNJq+SzuUJK9ZmHLsNvmJXJRCBwJU+/SQ3tdK2/Cbj38o7r4cRU9n74H+xb9+rxucTH3yQuvPnVfS3S4X59PlM22reP2NpRZ5r5p5pHAcX38TRI13su+XferWzk/vOjgOAxJauV4FJFX22mW+8bgRc9mXiPSn23fL/erVzStbpnEo2r7tI17Wv5cNNQ5fzseO7/vKvkYo0se2uHxHo3Gt8bjfn1w5uBSTakzuA0yv+fDNv7awPwNQL2L96Lfs2r+7VzglZC4vd0Uwbf9z+R5ZOq7CcZ1wMpy/hwIaX2Pfj3/RqZzdfTdOIZ7KAxPr9zzBtVGXWLoFjx3f48q9AZBi7fngPtR27jc+dkPPbR/YCErvibwLTK/ps84GoO5UjXH9yKXa+K7ZKUDz9VFaxi5wzl+D48XoJfKA2lwYgqYT1BpJEcMIEIufMrejvloPOZKrQlww/efVecmplzO9m7vXZJADxYKTYwGbuOTXHnq7DAKzd+8eK8RQw863N6yf8lBLGiDZzWNZdQs7Az1//cUX4Hzu+67MJAOLBWr2BA5xzao7WA5sB2HTo+YrLGY6RdWFOpxSTxcZBWXckCnKWU9zbWpn5bOZbl9Wf3yNkDI7xjaczaJo+9n65+WeWzmmASIG70+t3Ts2x7Wg7AH9uX11x3gFZMuKET0Z3rG+xKwP5nEreZfXbBGI9GWQNoiGlwn2UGXbDMtq/8lWQoC6n/05SqUGV9Ikz7IZlqMjg0LtZteVZZE1GktPsi7WzcusqlkxdUoEnF7nX5dLIGmQDIVKBMKHCQmQn95XbV5HLBpA16EjuqyBPgSLfcD6HrOmfJZUaavL6wcFJWf/xraeRNRnkNO3dleLfe3w3ZFPIGsRC9Y6N75XbV5FKq8gadGcPWyBnMPOuLczplGlOg3Oyfn73JmRNJiBVcj4X+Uay+lxOBCOO8/395if1MQ3sj++xdE7r67fOvUepdXT9Xrl9FdmMjKxBZ7qSa3YR0bBCMp2nqydDvql24C+4HOXs675iVwY2rdlFfaTB6W70ieiOBPNTCrwZY2PHzoo+W5NPp+PMq8jHupmojGZ+SkFuPoudapRANEpcOg1pVWV/s1SomsrfXtnG/NQspECYUNvlrH20lVEzZyFLQzdIC+65WDcLUgE0JLZNvpLafMZW7qqm8tTmVs6PzwFNIXTonIryFDDznZ/Sl4edk66gJp91VNaqprLx1beZnzoDSc5XVM7m8X2a1kRDSiE9ch47g2Nt5yzkPK9zOmpWIXjkVEvkDEXeTYFm5qcUmiPT2DlpESA5JmtVUzn00n7mpyYia8MJWiDnYD7E/JTCsOAYR/mqmsr6195kfmo2SHnC+y6zdE7nY93M0pppFOM7PMEx3k9tbuX87tloqkLo0NmW8D6nJ8DRlMLWZ9tIN3dU7LlOIZ7oLrmt74qtEqQK2nxNsPIilWSZyLx5gEawYKnKSQqgEZk3D0l2bhht6dxKIpsudDQHaMQyMbZ0bq3I8wV3CY1QXueeCQSxm/uWzq3E0jHQCmcxKVdRngJmvoqqZ+tlZedlvaVzKz0Za+RsHt+hgmUyE3CG85bOrXRnYmgWyxmKvJXCnM7KwnrlnKy3dG4lldX7I1kkZ2MeyyJsxRm+Wzq3Es/ortFKczXDPL6LczqAk7x7jXE5awlvcSdwxqVeNivhW+zKwJzLJhGNRp3uRp/459d20pbNcfNFY5kzobniz9cuG8/2J37An7s1NowZx/DMbj6Uf52py1YgKc4Mo5ya47bfL2P38BEk02cQiOwnMm4NEhIHat/gkUWPoMhD75vgvkU7k301I3n/0ZeZUZu1jbvguW/MEbrjCwGoH78aWc5VlKeA4Pu6fB4dNQ187NAGZjQEHJO1IecRUZLp2cg1B6mrsJwF57VxhQ0tLYxJ7eb9No9vwbN9XDvx9GmomQi1LesJ1u2yRM6g837rk39kQ82pnNHTwad2P0lw3DhHZC3472g6m4w6kdDwtwiPrLycM888yIaaudTLWf7JIb6C656RIRLJc5BCR6m3YO0SEOP798kGNowczimJrczIb3WM974xB+nuXgjkqB+3BjmQqjjvu/cfZEM6zt+d0cw5c8dV5JlOIhaLldzWV+zKQECRCSjuNHJ2prOoEjTXh63poxKi5cbrqb1/NaoEycK/lRpnSpwArNy2mr2JPeS0MagSyIEUqqyfSPckdvPkntUVyagT3Ose34cqQY8SouXGz9rGXfBUiaJKAHnUQApNqjBPgQLf8JoOVKmBpKzQcuPnHZO14J/nbFQJJCvkXOBc/59rUCWIB2tsH9+CJzLktTCaBFowSV7OWSNnACXEmCWLUDdDQgkhqznH5rUxn9XzUSVQAwlL5Dz5mo+iboR4qAbJIb7GmNZOLaxdaWvWLgGxfj+8Xl+/A86s38W1rL6wlqmoSg+apFWcd30kqK/Xubxr9+1yUA4H77P1QV7VjBIBVhYoji5ZQn29HoSabmgieuWVlv3WQMipOe5pvQcJCdRChpdczJqUkCqWUQc692hAN+knRo+3jbuZp6YWCqsFUiLJreI8BaJLllCrZ0+QHWMf32PRm78uZymQNv5eSf7RJUtorNN/o6dxuK2ce41nMGQtFca0VXIGGPnOBYC+2QcnTHBE1r3nc4F7wJr5PO49VwCgSjK5SVNt59trTGuFMS0Xr7Gzck7X1+qKXKrZ3vENx/DOF5IZ5DSSpK8zleZd79Ii63bAV+yqAN2mq3GsVOwkRaHl3RcBkJsy3TEXLMCmg5toi7ehoRU3QdOGr6GxN76XTQc3VeT3JEVh5LSJ+rMXXmobdzNP8r03e6g8TwFJUWhsGQlAcMlSx2TdW85CgbdGzpKiMO5SfXynJk2zlXMvnpr5sKJztUrOAHWFzT6phBl54zJHZN2Lv8XjvKYmRLCgTIQ/84+28+3N1doxbYakKIycf67+G6ef5ShvCoqdFEgaf680b3E7j1uujrMTviu2CiBunYiEAgQD1urqI+afB1tfJtM4zNLfGQizR87mexd9j0w+w+/WSzxzGBZOnM97551vtAkFQsweObtivzlixhQ4vIvUlFMq9syBYOb5+h64bxeMiw7jS++83WhTaZ4C0TGjoPsQ2plnV/zZpcLM/48vSqw+CO8YN5erLphjtKkk/9HvnA9bXqSnzt5YWjPPZAZu0cvY8a0Lv0qwkNNglZyFZSPd0ER06eKKP78UmPl/55DEngRcc+bfc8bEvzfaVIq/JElE68IciWdQ33nRkJ9XLsxcn/4bPLIfzm6ZyadsmNPD55wFu18nM2pMxZ89EHqtZbvFWtZs2VpmWOz8OnY+vAgr79w7FuIOUafvGgwFQiyavAiAP296BdjL2aNnsnRaZSuYm9FUa/99sWaeancb0Mr4xuEsnbbA8t+uK1xb1pNx7g5RM/+Nr78O7OTMluksnTbTkt9riujWK1Hw2y6YebZ3JYGnCQYk/u6UCsfU9YGIuP85r6FpRi1bW2Hm/z3tT0CCy6ZcwLmTrTlANtYEORLP0J2yf2ybuW7fsQV4m1OGT2LptDMt/+16B+e0mXc+pq9lE5tGsHTafEt+T1y76LtifXgSxj2xFl8MDybFLuOeySImrtWXaDcWNv1OGxU7M0QcZYMNcgaMyu0JBxU7M4pyto6/E8r7sRAWBqvHs4D4HU2DVM55WdsxzhsKco45KGcorqP1Fbr7eCDUhXRZdztsxbLDGCEUO6e5OgFfsasC2GqxCwmLnfMbgEC3TRuh2PQ7E5kBWlqD4oZnz4Zf57LgY0PhsZC/mEM9mTzZvDP1r7rT1vM0ozYYMKx0Tsta0zQjZtjKcR4tPNvp+CvxviMhm5T4Gnd4XOzYs8QB0HfFDoApU6YgDcJOv3z5cr7whS+U/T0fpSGW1Adu1BZXrH6ydHphMCNu00bYFHHWmiM2PDsss1BU4hMukbWQc4OFCrx5DnUls4yoD1v2W/2hxwbLpBmSJFEXUoincyTSeXDwcp10TiWb1xMbLFXsXGKxS9jkbRCod0kojS2KnUuUdydQ1mh64IEHBvUjkydPHtT3fJQGJyx26ZxKLq+iWJysUQp6bNjwwXnFLmYodnZb7NxhnRWWrDoL5RyQJRpqFLpTOccUu6Ir1h73HOiJV/F0znGLnRjjklRca6xA1MiYdJavmFtWjmkz3GKFN8KHbHDFOs3VCZQ1mi66yP4MIh8Dw4nkCdDdVY21zit2YiO0enFsLJSF6LQ5sF7A9hg7EVTvknjKHrtiKWuDhmLnBLpttuKI3zrYnXbckiO8Dw1hBVm2LosjWluw5jgdY2ccVuxR4g2LXSaPpmmD8sBVArbE2LlEiXUCzu/KPoYMOxW7kCITKljpnN4EBOyKSRLvN5bKklc1S3+rL9geYxdy18IYt4m/YZl1SIEvxhLao8CDKTPW4USZYnydtdyjLqlxVkyesNdil1c1Ulnn7lC1J3lCf3Z3Koem2b9eO4myFbsjR47wxS9+keuvv55XX33V+Hzv3r3E4/GKds5HaYgZk8SexSHiojg7TdNsib2C4iKkab2LQtsFuzY9gTqXbPYCtmU/O5wZa5dl0gy3KPF2HV6M5Imk065Ye7wNApFg0TLopKxjNsbYOa3EOoGyFbvPfOYz/PSnP2XDhg1ceOGF/PWvf+Xss89m0qRJDB8+nJtuusmKfvo4AeyIVzDDyIx1wYafyOQRhzGrF8eQIhslQJxwx4pNL2qTAu+WmoUAqqrZlyRjuNydyX4uKrD2xdgJWTvtdjfGuNUWu1qXWOyEYmdTVqwsS8Ya5uS8tmPPipiyvbvTJ1cCRdmK3XPPPcfvfvc7Xn75Zb73ve/xgQ98gKamJh555BFWrFjBAw88wEMPPWRFX330A7E42eGKBXdlxopNUJb0AHCr0eRgLTtxyrXLYhcxFHjn5Wzug/X1CgtlbRyPsbPPFeuWRBkjQcjiw4tbXLEJI3nCfiW+2i12siwZa8XJVsuu7NnT0dHBmWfqFbKvueYarrvuOh555BHOP1+/yqm5uZl7772XT37yk5XtqY9+YWeMHbjLkmOuYWdHIHBjbZC2zqQj1hy7Y+yKpRGct8yKPiiyRFixNjS4WSh2jsfY2emKLbjdHXfF2hRjV+v8hq9pmu0xduK3nEyUyeZVw9tj9Z7VENYz3E+2WnaDWiFlWf9aKBQiEokwcuRI428XXXQRW7ZsqUzvfJQE2xU7F1lyjPg6m6xYTpU8UVWNeMZexS7iApeNQLzgSqmvsV6BF67YDoddsVbHjJphWHFc4oq1PsbO+Tp2yWwe1aYwEjOcvj3I/M6tLt1Uf5KWPBmUYverX/2K1tZWcrnjX1ZdXR0dHR2D6sxzzz3H0qVLGTt2LJIk8eijjw74nWeeeYa5c+cSDoeZPn16n7X27rnnHiZPnkxNTQ3nn38+L7zwwqD650aoqmaLWduMoivWeUuO3dcvOaXYxTM5I5bQrgLFxuXwhZqFTsKu20WgKGPHLHY2B9Sbfyvh8Jy2TbEzYuycy5gUcpZsCiMREOu3U253sXbWhxXL66AWM2P9GLsT4sILL+S2227jnHPOoaGhgUQiwW233cZPfvITXnzxRRKJxKA709PTw+zZs7nnnntKar9jxw6WLFnCxRdfTGtrK8uXL+czn/kMq1evNtr8+te/5uabb+a2227j5ZdfZvbs2SxatIiDBw8Oup9uQjyTM059tiVPuMgVa7bk2IHGWmc2fbHhhQIyNUF7NoGIKe7H6UQZuzJiAZojDidPOOiKdXpOx2y6XUU8P69qjmV9i4NxXcieMBIBp2+fsNPD5MfYlYhnn30WgC1btrBx40ZefvllXn75ZW699VY6OzsNN+1gsHjxYhYvXlxy+/vuu48pU6Zw5513AjBr1izWrVvH97//fRYtWgTAXXfdxWc/+1k+/elPG995/PHH+fnPf86Xv/zlQffVLRC1tkKKfRu+m7Ji7Y47c6pIcTFxwr7NPqwECAYksnmNnnTONotwX7CzBIiw2HU4bLGztdyJCwLqwVSg2GLFriYoG2M7lsraah0VEGPaTmsdOH8wt7OKgzgc+YpdiZgxYwYzZszgIx/5iPHZ9u3b2bhxI5s2bapI5wbC+vXrufTSS3t9tmjRIpYvXw5AJpNh48aN3HrrrcbfZVnm0ksvZf369bb00WrYnRELzi8MZti9CRpuuqS91hy7FViBSEihK5l1TRkMO6xYTU5b7NL2y9otNQuLyRPWcpckiWhNkCM9GWLJHGMaLf25PuFEvUJwXonvsrHuavQkjbGr6JudOnUqU6dO5aqrrqrkY/vF/v37aWlp6fVZS0sLsViMZDJJR0cH+Xy+zzabN2/u97npdJp0Om38OxaLVbbjFYTdiRPgHrcN2K/wNInitba7Yu0tdSJQH9YVO6fLYNipwAvlPZbKOXIfsiMWO5cUKI4ZtRqtH+fR2oJi51D8lUhesNta6BZXrEhSshINLkiScQJljagpU6YMKhZg+fLlfOELXyj7e05hxYoVfOMb33C6GyXB7sQJMGdVOe+Kdc5i50yMnV3FiQUiLimDYdd1YlBU3kHfhIbXhy3/TYF0Lk8mpyeqOJI84bBl1s71rHj7hFMud/tr2IFZiXdm/RZhLGIttRKGjE+y5ImyVo6+Mk5LweTJkwf1vYEwevRoDhw40OuzAwcOEI1Gqa2tJRAIEAgE+mwzevTofp976623cvPNNxv/jsViTJgwobKdrxAcsdi5qEBxMVvSHv4ixs7urFjDYmdj0Vpw3m0jIMpw2FGhXwnINNTo9a86bVbszJnmTsTYOZ3pbud65vTtE865Yp1dv0UZIRHyYCWcvh7QKZQ1oi666CKr+jEoLFiwgJUrV/b6bM2aNSxYsADQ6+ydc845rF27lve///0AqKrK2rVrWbZsWb/PDYfDhMP2LeZDgTOKnQtj7Ko8KzbmUIydW2Kv7M4UbYoEdcXO5jg7wTMSChCQ7cuUNMIrHLTY5fKqMZ+trm8Gxbnk1H2xPQ6UtQEXuGLttNgJ5d3hO4Hthr3BIwMgHo/T2tpKa2sroJczaW1tZffu3YBuSbv66quN9tdddx3bt2/nlltuYfPmzdx777385je/6XVf7c0338zPfvYzHnzwQd58800+//nP09PTY2TJeh1GhpGtgdYuKlBsU7C1QLGOXcbW+lcxh2Ls3BJ7ZbfLvVjyxOZ6hQ4H1Dt5WDNnLtoSY+dw/FXcyIo9uZInOo0YO/sUO99i5yBeeuklLr74YuPfwh16zTXX8MADD9De3m4oeaDH/D3++OPcdNNN/PCHP2T8+PHcf//9RqkTgL//+7/n0KFD/Ou//iv79+/n7LPP5oknnjguocKrECcRe5Mn3FHMFOyv0i8Uu2xer39l12nbqaxYt8Re2RljB0U3kd0lTxxT7ApzOpvXyORUQhZf29YXxOZbFwoQtCFhxWlXrLCC19scY1fv8MHcCVesH2PnIBYuXHhCK0hfMX4LFy4csLzKsmXLTuh69TLsrAkkUKxc7rzFzs4yGAC1wQChgEwmr9KZtK/+VbeN2YJmuOWWEbtvY2gyXO42u2JtLrgtYA7g70nnCCnWb7rHwu7STVGHXbFO3DBi/j2n5rStrtga32Lnw4OwK8ZOzWSIP/00WiaDmgQI0JNI0fXYY0YbKRSi/pJLkEP2bQpC4bEyqN7MHSAqyxzOS+xdtYb6Or2N1dy7RYFiG073Zr7KbgmQOfrGW3QliyWC7Ja1YcmySc6RAzrvA6+8TlfHa0Yb6+Vsn8Xu2HEdlmXSqsT+x59ArtHb2ClnsZaFgnk0TbPkNgYz52C7LuMj23fT9dhOo41dnHuMtcveOU0PQIDurrgj67edrlixL8bTOVRVQ7YxbtVJ+Iqdx2GXYpfc1Erbcj12sTtcD4u/TiKn0XbLlzBPlYkPPkjd+fMs7YsZHckEILHx0DrmTlpqyW+YuQNELvkiREez456fEj28zfjcSu67Og8CEm91vQJMtOQ3BMx886deCrOu4PDzf2Xfj3/Xq52dsj4Q7wIkXjn6VxZivZwDMy+HmZfT9ucN7Hvl/3q1s5L3+raXAZl47rAlzzfj2HEdXvx10uF6dn73+9C93/jcLjmLtWxP4i3+uD3N0mmVl7OZc278HDj34xzZvIV9P/9pr3Z2cN7W0QZIbOt+A5hm6W+Zeccjw+DyrxBPZth3y1d7tbOat6pqdCTSgMRLh55l5hhr5rKAKA+laboRoNEGK6Eb4KrkCR/lw666T5Fz5hIcPx4kidqcfsLXJJlUoHC6kySCEyYQOWeupf0wI5vPkkjrrvtfb3mQnGqNS8XMHaAho9+H3B2K6A0s5p5Tc7TFjgKwZs9jlvEU6C1rvVB3UjFlidss65yaoyORBODRbf9ji5yLMq4rNrBBzmt3Pg/ArvhbtsoZIHKsrG2Wc0eP/vuSnOTe1nst4W/mXJ9NARAP1hYb2MQ5p+bY3tEGwHNtaxyZ0ykljCqO5Tbx7kym0DT9Nx966yeW8w4rAWqCuppzMrljfYtdGcjnVPKF4qFuQXcii6xBQyhgcd9kht2wjPavfJWgmkdRVVRJpicYIazqsRrDbliGigw2vaPfv/0EsqZP2oOJ3azcuoolU5dY8EtF7kjQkE0ha9AdrEeVdDeKldxXbl9FPqsga3A02WYhT4Ei39qcPr5SSo3BFeyV9crtq9ByQWQNDlvKv8i7IZNE1iAejNjGe+X2VXQnM/r7znfYKmckqM2mkTVIBGtsGdfH4sW9ryFrMrKcZl+s3SL+Rc51OX0e99goY4GV21eRyYCsQVfqgK2yrsnnkAuh7D3BWuoKip4dvB958yl9zZYy7I/vtYE3NNcEOZBJ09mTZlxjjaW/ZSXK2d99xa4MbFqzi/pIg9PdMKABpx7VUDWF9vUHidcctfb35NPpOPMq8rFuLkjKZGWFtgmXEssmCUSjxKXTkFbttLQPAqqm8szrrzM/NQfQCO9byNpHWxk1cxayVHlDtJn7dHkEckohP3wuO6VhlnJXNZWnNrdyfs85oAUIHTrPUp4Cgm+ICPNTCi2h8eyctAiQbJW1qqmsefMV5ifPAyC8f4Etcg7lQ8xPKTTbxFvI+byjs8inFAJdE2yVcz7WzVlqlDEphfioBeyMTLddzj2tR5ifGkNAGo2iXm4Zf8E5m8ozP6UQkobbOraNOd19BlpeIXh4tu2yfkcygCpJ7Jq0iEguYxvvja9uYX7qdCQ5R6jNOhmbcW5PgCMphbf/1EZqWIdlv2M14onuktv6rlgPI5dXUQtZxOGg9aKUZJnIvHmARrBgpcvKAUAjMm8ekmzfcNrSuZV4OlnoWB4kjVgmxpbOrZb8npl7OK+b9NOBIFZz39K5lVi6G7SCRUHKWcpTQPAN5nU552RxBrRX1ls6t9It5IyGJuVtkbOQcUYWIQ7Wy7k7E3NMzqChqGZZ2y9ncZUaUg6wbj4XZayHlGRkBQ0Juzi7Q9a6C9ROWW/p3EpPIVEHOYuVMjZD7I1pl3nbrIRvsSsDcy6bRDQadbobBvZ3Jdmw/i0UWWL+ksHd41sutMvGs/2JH/C2dgZ7a0bxvqMbmVGTZeqyFUiKPcMpp+a47ffL2DtKoic5D0nppH7cGiQkDtS+wSOLHkGRK98Xwf2vXVk2jBlHY3YfH86/bhl3wXPfmE664/qtL/Xjn0CWVEt5CmiXjefguv9lQ82ZjM/GuW73kwTHjbNN1kU5Z+jpeQfIKRrGP2mLnNU//YINNedQo+RZbjFvwbN9XDuJtuHkGEV4xKuEm1+wTc7bn/gB/50ZyYbhjZwdf4sZ+d22y3lbw7vI0UJ45KuEmtdbKmftsvFseeKHbKi5EIAb9q9j5MgmyzmbZR3rmQ9qgLqxzxAIddgq683SHA7WNHPV4ReYUYdtvHcPH0kyfSaBSDsRG9ZsgJ8cOsyGVJylpzVyznnuvBq0FMRisZLb+opdGQgoMgEHCnf2h+5sHlWChkgQJWhTkUslRMuN1xNe2Y4qQUpWaLnxsyg19pU4WbltNXsTe8gxDVUCWUmhyrq1YU9iN0/uWW1JRp3g3nDfY6gSxEI1tNx4vWXcBU9Va0aVACmLFsiQx2KeAkqI8Ve9D/Vv0BMMIas5S/keC8E/z3hUCaSAfXKedu3HUV+ERDBMDo3xNsgZGfJaGFUCTUmSl3O2ybnlxuup+fUmVAmSAYWW6xyQs8G9x3o5KyHG3vh5Is8miIci9CghzrBhbAuumgSqFgIJVCUJNss6vPpwYf0O2rJ+G2u2Or6wZtsg4wKidSFUCbqzOVft3+WinL57l6UPo9CjnbdOAESXLCFS0CMzLWOJXnmlbb+dU3Pc03oPEhJavhAIK6eNv0tIlmXUgc69qV7/3Z76Zsu49+Kp6r8nySnj71bzFBj57oWAnikZnDDBNln3yT+QNP5uNf+xS69E1nTXTXLyDFvkDKCphYzUwpi2S87RJUuoC+vrSHrYSGfknNezUyXZHjlHlywhququwcT4KZZz7iVrLYTYfiUHZB0pZE9kRo+zlbeW1ysJSIGE8XereTeehNeK+Yqdh+HErRMAkqLQOGkcAMplV9jmggXYdHATbfE2NDQobIJmhUdDY298L5sOnvg2ksFCUhTGv0e/si45erxl3M08hQJrVmys5inQENHfcUoJM2LZMttk3Sd/G+UcCAVpDOrKlvLJT9siZwCO4WqXnCVFYcTcs/T/P/dch+RcKDti0ziXFIXm4Y36/3//By3n3JurKB+kgqSv43bKunGcfqWmsniJzbyPV+ys5i1uGDmZFDvfFethOKXYATRNHAcd7agzT7f1d2ePnM33LvoemXyGZ1+D37bDWS2ncO07bzfahAIhZo+cbVkfxlx8Ibz5PN3m+lcVhpnnqzvhZ7thQuNIvmgjT4BI4QYEVZIJXbFogNaVg5n/+s3wqzaYOWIy19nIv6mpno7DPWTnvcOy3zDzBPjX3RIdGVg29zNMHKm3sUPOAM2nz4S2t8mOs7YAthlm/l/eLtED3HTuPzJmWLGNlfxHjBsFbx8ic8YcS55vhpnrwU741laoCUqsuNDeOQ3QNH4MdB1APe1My3/LzPuXf5J4sQOunH4R7z7rIqONlbyNO4EdujrOCfiKnYcRK1xJY7crFjDcNj0Ze+8bDAVCLJqsKxi7dm0B3ubU4RNZOu0s2/rQXKfHo3RaeAI088x07gVeYWLTSJZOO9+y3+wLEVPsZiKbNxQ9q2Hmf2DfduBNZgwfx9Jp1m/AAs2RIDuALgs3BDNPgK/kVwM5Fk+7mKkj6y373b5QvBzevjkt+GuaxvLsKkDjfadeRkvUnnpjzRFxJ7D11hyzrP+2twtYR1NtLUunvdvy3z4Wdq7fZt6/e+4F4BDvGH82S6fZk8gQ9V2xPryE4nVi9uvn4n7Dnoxzp6BucX+ozZdoN9Xqil0ikyeds35h7C5cjt5g88XwALIsERGyTjsja3GAaaix9wDTHCko8ImMLb+naVrxTlwHZB0xLoe3X87xdI68qruj7TyoNhVk3GGTjAWEnCM23P3cF+rDzsxpoUDbebWXGE+xlK/Y+fAA7LpOrC/UObgJCMRTzmyCDTWKuIXJllNgd4Fn1GbFRqAoa3utswJinNut2IrNp8MGaw7oB4VCWUoawvbLut7BOS2U91BAJmxj5mKTsNjZbM3pcehQKiDmdNxmWYv1Uhya7ICfPOHDU+hyVLHTT3wJhzZ7KC5Kdi+OsiwVFwsbNn1hmXTCYgfOW2e7nbbYJe2x5ojNXpYw7re0E0XLrP1zWsyjaG3QlnqcAnZbZQXEXKoLOavY2a3EC8tok40WO3EgPpli7HzFzsNwVrHTF4ZuBy12xQ3f/sWxycZTYNFi5bTFzinFTmz69srZiL/qseekbw4tsFO5ESjG2NkvZ6fCSppsjLEzQyjPdQ5Z7OodsNipqmbI2U7FTljeY8ksmjCJVzl8xc7DMLJiHdjwnXTbCMQdsuRAUZm2Y0NwUoGFolXBMVdsyhnFttHm+CsnxzNAxEE5O3VILcbYOeWKdSbGruiKtU/W3amcEWpgp5xFuZNMXiWVPTmuFfMVOw/DyRg7oWTYHaNhhlPJE1Dc9O2IzXFKsREQbnfnXbEOWexsis0Rm32dYwH1TsbYOVO6qZgV60zyhHMWO/uTJ8QBKRIKEFbsG+P1YYWArFvAT5YECl+x8zCcrGNXXwjuFlYGJxBP6/ydyCBsqrVvQ3DaYudktiSYk0ecyX62a9N38qACxQzNZDZvZKjaBacOqUUZn5zJE3bO6U4HEicAJEk66YoU+4qdh+FkjJ1QMpyMsTNcVw4sjiJGxJ6sWOfKnQDUF1x0CZtrFgoYMXY2WyybbM6KLWZ5O2OZNSsZCZuts465Yuv030tm86Sy9o1vI3niJMqKFRY7J/arYpFiX7Hz4WKksnnSOT1ewM6aQAJG8K1DFjuna341ORBj51S5E2HJccLtrmmac3XsCoWouxL2BF2Lzd6puKuwIhsuK7uV+JhD8cINYQWlwNlOq13cJckTdlrsROZzc51zMdG+xc6HqyEWQlkqWlTshLAeJbN5cnn7A1LTOZVsXt9snYyxs7OOnWMWu8L7TTig2JndgnbzF8p7Jq/aougIOTvlnpOkYjFqp+qb2W3NkSTJVMvOvjg7tyRP2JkoI0IahPvbThglT/wYOx9uhjm+TpbtL41gPmk6YckRm6AkOVMLyrDYWazYZfMqyYKLyDGLXcj+DDoBIeeA6QYMuxAJBQgF9CXSjszYYl1GZ+Ss/7Yz8ZROhpWI3+ywqawNmG6ecKiOnTAGZPIqmZw9B/MOB26dELCz7qgb4Ct2HoWTpU4AggHZKKLa7YA71tgEQ4ojim1xobB2wze7up1wOUPRqmB33BX0vnXC7tpuvaw5NmwITltxwLkixcLdbnetQnCmSLHzyRPFMWaXEl+8dcK5GDsr7312E3zFzqMQJmUnTrgCRmasE3dLOnSdmIBdVxEJpbk2GCAYcGa6Fi12zl015ZQb2k7FzukxDc5b7JzI8G+ysXSRgHDtOxVjp5iubrNrXjvpijXqjtrobncSvmLnUTjpuhBwspZdtyh14tDCaNeGH3M4IxaKm48TWbFGRrBD7skmG68V63aBK9YoUmyzdVbMIyc2/WL2s32bftzhmoVg/00jwhVr560TAs0O3TDiFHzFzqMQsQLOWuycy4x12rrRWNiAYqmspTW/nE6cAFOBYgdjKZ1w0UFxQ7Cj5InTBYr137Y/qF7TNMOa40TGpBObvtOuWLC/lp1hsbO5jh04dyewU/AVO49CxAo44boQEIuSE7XsnM4gFAq1phWtSlag2+FbJ8C0ATgRY+cwf6OAbY99yRNuUOLtjKeMp3PkCocjZyx29m76qqo57oo1/7ZdSVFHC+93WJ2TVlnfYufDxXCDK1ZYy5yw2HU7dAWRQEiRqSsEmltZ8sQVFjsH7xB1mr8oYGtH/JVhhXbQFetE4VphKQsrMrU2Zz6D/Zu++YDkpMXO7mvFRNaxM4qdb7Hz4QEUg42dWxgajE3A/lNQzOGivWAKyLVwQ4g5dOuCGcVMSQcVeIctdnaWO3HUFRsSFjs765s5c9WUgN1uOnFACsiSkcDgBOxU4tO5vPE7wxxxxdp777PT8BU7j8IVWbEOWuyKleqdU2wbbcimc9piBUWrQjqn2l6MOiZCDhzib2f8leGKPcksdh1G7JVTCTL2xtgZCnwoYHsJHzPsjLET1rqALDmyljWZCsrbfQ+yE/AVO4/CFa5YF8TYORljWLxWzLqTvtP3xELxSjGAHpszY52OMbTLhZM3xV25odyJnbeMiIORU4qdsNjZlRVbTJJxTs5QLFJsh2J3tBCj2hwJOVp3VNNOjvtifcXOo4i5QbErbEBOFCguuiidWxzFRmRPjJ1zcg4rAYIBfTE+mW4kAPusOea4KyddsU7cMuJkfTMoxnx1JLKoNlhz3KLY2Zk80WEkTjgXEy0OLXaWtXEKvmLnUTi94YEpxs6R5AnnFR47Nn03uGKhuOHbffuEsOY4cQ0RFDf9ozbdMBIKyIQVJ8ud2B9P2eng5fBQtNjlVc2Wu0TjLlHs7EyeMFvsnIJdReXdAGdHVh+45557+O53v8v+/fuZPXs2P/rRj5g3b16fbbPZLCtWrODBBx+kra2NU089lTvuuIMrrrjCaJPP5/n617/Oww8/zP79+xk7diyf+tSn+NrXvuZofMNQ4ZRip2YyxJ9+Gi2TQT4kATKde9vpeuwxo40UClF/ySXIIesmsfmqKTth5l/TpvM/+NpmunreNNpUkr9R7sPmTcDMEyCSl+lCYv+aPzGyQW9jh5y7HIilNHNXMgABuhIZjv7+MQqGy4pzF5t9TUiv62bn2tRL1kcBAsQOHrZtTnf0CIudfWvZseO7PiATz0vs+sMTSLV6G6s4GzXsHMgANvMOFNavjm076Hpsu9HGCt5He9IANDuQESvQFAmytyN5UmTGukqx+/Wvf83NN9/Mfffdx/nnn88PfvADFi1axFtvvcWoUaOOa/+1r32Nhx9+mJ/97GfMnDmT1atX84EPfIDnn3+eOXPmAHDHHXfw4x//mAcffJDTTz+dl156iU9/+tM0NjbyhS98wW6KFUE2rxrxOHYrdslNrbQtvwmAzOjTYP61dOzYw74H/6NXu4kPPkjd+X0r5JVAe3cnIPG3oy/wbpZa9jvHwsxfmr4QzngP+/+6kX0//nWvdpXiv6frECCxuasVmDDk55UKM0+A4CVfhOho9vz4Zww/vNX43Go5H+yOAxKvHl3Pgmn2yNnMPSfJ8L7voCHx9v/7Bo2ZhNGuktyFYtedO8Qft/+RpTZxhd58UyOmwTs/T6z9IPse/m6vdlbJ+rWDOwCJfcmtwKyKP78vHDu+Gy79MvH6EWz54Y8JHd1pfG4F5w1tmwCZ7tzhij63FJh5ZycvgLM/yJFXXmffzx7s1a7SvDfsfQ2dc3vFnlkujFjKnuq32LnKFXvXXXfx2c9+lk9/+tOcdtpp3HfffUQiEX7+85/32f6hhx7iK1/5CldeeSVTp07l85//PFdeeSV33nmn0eb555/nfe97H0uWLGHy5Ml86EMf4vLLL+eFF16wi1bFYY7pstsVGTlnLsHx40GSiGRTACSC4WIDSSI4YQKRc+Za1oecmuNoIgnA77f/DznVPreRmX99Vu9DdzBSbFBB/jk1x75YBwBP7v69YzwBanP6iTupFGRtg5yz+SzxtJ6F+79bH7SNv5m7oqnUF5S5WKhOb2AB966k/n4lOc29rfc6JusaIeeAPXM6p+Z449AuAF44+CdHZAzQmIkD0BW2Tsag83161/MA7Iq/ZaucoTfv2py+fhtzGizhnVNzrN/7NwA2d71kO2cBJ+4EdgqusdhlMhk2btzIrbfeanwmyzKXXnop69ev7/M76XSampqaXp/V1taybt0649/veMc7+OlPf8rbb7/NKaecwiuvvMK6deu46667yu5jPqeSz9lb7qEvdHSnkbWCG1LVbE7flhl2wzLav/JVavMZZA1SgRpUqehWGHbDMlRksOhdPb5tFVo2hAwcTu5h5dZVLJm6xJLfOh5F/vXZFLIG8VDEEv4rt68in1WQNTiabHOMJxJEcrqsk0pR1lbL+ZHNTyCr+m8dTOyykX9v7k3pHhLBCJ3hBsb1HAUqz/3PO19E1mQCUpp9sXbHZF2bzyFrkFbCtszpldtXkU7JyBp0ZezkfayME3ofQlFLx/fK7f+/vTOPk6K6Fv+3qquX2RdmY4ZhGxBQEZBdjRhFUXDBZ9QYXzTkxUQjJj7yYjBPJTG/SHzyDMYQTXwvSvQl0cQ1RlREcYmgkUVFBNmXYRZmmJmemZ5eq35/dFd1N8zA9EwvVcP9fj7zUbpvVd9T51bdU+fcc+4q2rsiz81Qa5r1DHG6DgbC/VBS+/x+ZfcqPF0SsgaeUGMGZA5T6Aw/S1s7fKaYxxMlkT6bxrBramoiFApRXl4e93l5eTnbtm3r9pg5c+bw4IMPcu6551JTU8OaNWt47rnnCIWiWT6LFy/G7XYzduxYbDYboVCIn//851x//fU99sXn8+Hz+Yx/u91uADat3kdudl5/xEwKdW1eZngV8iU7G1btTfvva/JptIy/Gk9XkBleBbtWwN5hcwAJW34+HdKpSCnql6qpvPH5x8zwTgXAWX82a17YTNnYcchSehzQuvxKUGGGV6HAVpl0+VVN5Y1tm5neORk0G47DUzMmZ8jdzinSILK8CoGSKexVKtKi53e2bGWGdyJIKs5DX06r/LGynxnMYqhX4cjgc9mbdzjpsquaysENB5nhHYmsFmGvvShjum73+JnhVZC03JTf08YYbz8dLaRgbx6fMR2PlgYhexWCJWeyVypOicy6vFOPjCXkVbC1DUm7niEqN/rzSy5Pma51mae1jEINKNiPjMqIzAAl+8PzZuDTVjYE9qb1t5NBh6e9121NFYpNlIceeojRo0czduxYHA4HCxcuZMGCBchyVKxnnnmG//u//+OPf/wjGzduZOXKlSxbtoyVK1f2eN6lS5dSUFBg/FVXp29tU2/wBsOGa6aqlkuyTPa0adgjLvWArKAhARrZ06Yhyanr147WnbR7vZF/aWhSELffzY7Wncc9Lpno8jtCYZe+z6aHw5Mn/47Wnbh97aBF3qQzKCdoKGp4zAVlG2nTsz8SnpQCIGlplT9WdmdEz36bnVTIvqN1J95gJDwlBYH0ygrH3tOaJBGSZFKp67CO3Wha5P6R/BnXsdfmIFUy6/KiRfwpUijteoao3Irx/Na9dakZ23E6ltOr41hc9rCc3kD6t0ZMN6bx2JWUlGCz2WhoaIj7vKGhgYqKim6PKS0t5YUXXsDr9dLc3ExlZSWLFy9m5MiRRpsf/vCHLF68mK9+9asAjB8/nn379rF06VJuvPHGbs975513smjRIuPfbreb6upqJl04jPz8/P6K2m8OfXyI9Z/vZ8aQfCZfMjwjfdAuHMK21x5mvescAG4/9DaF5YMYuXApkpKaYRVUgyx5cSEHywN0emaC7CFvyGokJBqytvL8nOdR5PQMae3CIdjW/A/rXVOxqRqL9r+Oo6oqKfLrctZWtNHRMQuA3CGvIktaRuTc/epyXvFksb6slOGe3YwOfZ4WPR8oceHpmozsaCKnKv161mV/0ZPP+kFFjOnazejQzqTKrsu6t3AMvuBI7IW7cVVkbkzvePUh1rvOBeDWuncpLS1Mia51uQ9V1tPefi4QJKfqDWxKZ0Z0vLGli/WVQ8gKNfDV0GdJl1mXt66qDk9tMUHKcJZ8irNofdr1DGG5g2+tZL1rCjm2AP++/3XsSXp+6cTK3N41CS0YJLviHZSsuozIfGBTLev312ErsWVs3uwPeuSwN5jGsHM4HEyePJk1a9Ywf/58AFRVZc2aNSxcuPC4x7pcLqqqqggEAjz77LNcc801xncejyfOgwdgs9lQ1Z7j1U6nE6fTecznNkXGlsG9/XTc/iCqBPk5jsz1R3FQvfA7yO8FCdoUvDYb5bd9F8WVunT2V3a9xkHPAUJUo0ogKV2ocvjt64BnP68feC192YSKg1E33YD6Iag2G15ZoTpJ8utyqhSjSoDkR7MFCJEZOctv+y5Zf3gXVQKvYk+bnoPa6ZnVc0T2vD+8hypBmz2L8m8lV/ajZVVt3oyO6crbbsH+rh+f4sAnp+6e1uXWyEKNhOQ0ewchKZQRHRf8+q+oErQ6slMisy4vMoQ0B6oEms1LSA6mX88Qfn5/4zrUDdBpdyKpwaTLbehYgpCaDRJojvaMyVyc50SV4Ig3YIp5PFES6bOppFu0aBGPPfYYK1eu5PPPP+eWW26hs7OTBQsWAHDDDTfEJVd88MEHPPfcc+zevZt3332Xiy++GFVVueOOO4w2l112GT//+c/5+9//zt69e3n++ed58MEHufLKK9MuX7Iww64TAPnz5pGjhmsC+YaMIH/u3JT9VlANsmLzCiQktFC40JQkR9dBSkhpzyYsu3werkgIxzNsVFLkj5NTDScGSTav8X0m5MyfN4/c7PCLjregOO16xtZlfJ9u+fPnzaMoK7LDSnFZUmWPlRU1fH0zPabz580jWwuP6cCQYSnRdbyOIxnlshdJChu0mdBxcX74XnPnFiVd5jg9g6FrIrrOhJ4BKubOCXdHklGHJvf5HSez5oBIKFaydYb/mwGZ070ncCYxlWF37bXXsmzZMu655x4mTpzI5s2befXVV42Eiv3791NXF62D4/V6ueuuuzj11FO58sorqaqq4r333qOwsNBo8/DDD/OVr3yF7373u4wbN47/+I//4Dvf+Q4/+9nP0i1e0mjLcDV+HUlRyMsNT76Oa69LWWgOYFPjJmo7atHQYgye6ISvoXGw4yCbGjelrA9HIykKhZFJX/7a15Mif5ycoYicctSwy5ScJWdND//+uNPSqOeIAW+L1o5Lt/ySolB17kwAvDXjkip792M687rOzQ0bW85rvpoSXceP8fBvZfJelhSF4VdeCkB7UVnSZY6VF0A7yojPhJ4BcrKiUansb9+curEd1EvI+JHk8NyVCZmL0rTvsxkwTShWZ+HChT2GXteuXRv371mzZrF169bjni8vL4/ly5ezfPnyJPUw85hhOzGd/OICqHOjTZmR0t+ZUDqBZbOW4Q/5ee9zeLoWTisdyU3n3Ge0cdgcTCidkNJ+HM2gkgLqD7kJTJ6elPPFyvnJXnhsPwwtLOUHmZZz8kTY9ym+ku7XuyaLWPlf+lBidSOcU30mV82cZLRJt/yVZ0+D3Rtw5xYm9byxsv72NYktbrjqlHnMHBstBZEJXedF7mlSdE/Hyv3Zfnh0LwwpKOSODI7xoZfMhi1radWSvxtErLwAP62VaPLBzRO/wcjI7ZQJPcuyRI7DRqc/hDTr/KSeO1bmfYdh2S4oyrZzbwZ1rHvsOv0h/EEVhwXDsb3FdIad4MQY2yyZwLDLjWz11JHiPUQdNgdzhodDBwcP7AK2MXpQNZfVpPdheDRGNfMkufdj5fS3HgQ+prqglMtqkmM49hV9X8tU7xUbK//7H38K7GdSxRguqxmd0t89HoNykqtjnVhZn7StA45wdvUU5tUMTurvJIq+X6wnRdmDsXIH2sJjfFhhZsf4oNzIUoOAiscfNPZGTgax8gL8VF0N+Llo5CzGDc5sMl6OU6HTH6LTn1xdx8r8VrAR+CeVBQVcVvOlpP5OIuS77MgSqFrYa1eW7zrxQRZl4JqsAxgzeez0PUz1TczTQbtXN2wz/15SlKJJH2LkTPPuIt0R3TA8faUComtJM6tnQ8edqQvh6PdPbpr3Pu4O3YjvSMPm8Pp9U5jhZSXZDpvhwWnuSG2oTr+uuWne/7k79D50plDX+n1TnMF9YiHsodTnzIG++4Qw7CxIW1f4JjSDYWd47NIwCei4IwZPurdT646iyISUikm/PTLZ55lgstc9GKmcAI6mtSuyOXx2ZicE3WPX7gviT1HF+k6/Ptmnf2P4o8mJ6NqTBl23RdY7FWVYx5IkGXo+kkIDPhhS8QbCYyjHBIad3ofOFHri9euZaR1D9FmSypc0MyAMOwtilqxYiL7xtafVYxf+rXwTGDzRUGwKDDufeQw7Q89pNOzM4pnWQziQuoXXhsfOmfl7Wg/FJjs81x1m8dhB1KOUSsMu9prmmMGIj/Qhlc9v/dmYaY8dRMdZKiIsZkIYdhbELBMeZMhjZ6I1hkUpTKFvN5FnUg8H631KB/o1zXT2tyxLhgF/JEWGnW4wmyEUq3tn0xOKNYdXFtJk2EWuqd0m4VQyb9hFQ7GpM+KPdIbvYzN47PQ+tHUJj53ARARDqvHANYPHSp/w07nGzm0mj10KJwO3iUKxeh+8AZVAKD0baJvpBSaVevYHVSPEm5vERft9Rdd1OsLu+vUcZAJvTjoNu2QmZ/SHnHSuscvNvI4Ls4THTmBC3DEGlBk8VvobnzuNnhwzJRWkNBRrGHaZlzPWk5QOIz6kaob8hSYY58XG2pzkj/PYSdUM4bncNCZEHTHJwvrYPjSnMknGRIkTkJ5EGd3LXWwGj10aEqHMgDDsLIbuxchx2LDbMq8+PTM1nWvs3F3mMXhSadjpIWczeOzsNpkse+rX4+i4Y7LWzPACU5QT7kMqQrH6pJplt6GY4J7W7yt3GvTc1GEewy6aPOE7Qcu+02GidbOQnqxYI3kiJ/P3sT7OmlKc+ZxpMv8UESSEmRInIOo1y4jHzhTlTqKufU3Tknru6Bq7zMsJ0X6kQ9etJnuBKU7hm74+2ZshSxJi182mVs+qqhkvRINMEKaLhttTJ3eHiZZXQDQDOpVZsWYpdwLpMd7NQOafmIKEMFNxYoj2w52mukDBkGpklpkpFOsPqniSnEUYzf7NvJwQnYzS4bE7YqJ1ORDVcyrWX5nNi5MuPbu9AUJq+GXoZJn0271mC8WGvfAdKUqeiDXezRCK1QtRp3IdpRkQhp3FMNOCcoj12KUnFBs72Zgjg9CGI+JRSnY41myGXW4aM2ONt3wTTAYQ47FLRSjWZJN9XpoKFOtr2fKciikyRItzUj/pR7OfTXJPpzgU6/YGiNjupsp8TuU6SjMgDDuLYTrDLhIOdXclPxTZHXoYMMtujhCdJElGODaZJU8CIZWuyJZOZvHk5KfTY6cXrjWBJwfS47EzQ+IERNfYpVrPZvPKpiV5wmRGfKrLVcUa72bYmzUdRajNQOavtCAhTGfYRSaBoKoZhkgq0eU3Q0FTnVRM+h0m80xC1MBMR32zIyb12KXSsDNDcWKImexTbNg1myhxAqL9aPembocRfd2iGUo1QerLneg6LslzpuT8iaK/RHj8IbxpmK8yhTDsLIbZkieyHTaUSFn+tjSsszOK1ppEfkhNZqzuLTGLZxIgz5n+UKxpPHapTJ4w2YJ6vR/+kIovmMrCteapYQfhsjqp3mHEbGvsUh2Kbe4Ir1c0i47znAp2W1jJAzkca44ZQ9BrzOaxkyQpJoEiDXtLmkx+iMmMTeKDwm2yjFjIUPKESSaE4hTuPGG2UGxOTPHcVOpaT1Iwi45jdxhJVTkMM+0wAlFdpyp5okk33k0SbpckKep9H8AlT4RhZzEMw8ZEocj8DJTBMFMo1thYOolr7NpN5sWB9NY3M9P+khA13r0Bla4kZz+bLRRrk6W0FCluNox3c4TpIGqANKcoM9Z0a+zS5bHLNY+O9fHWNIBLngjDzmIY5U5MklUF6S15ov9GYZY5JnyIenOSGb4x0z6xOlGPXer1bBQ1Nckau9yYEE6yvXZmC8VCdMJPpcfOWH9lEm8OQEnEAGnqSJFhZ5S2Mcd9rXuJuwIho/RMMjF0bJIXNIiON+GxE5gGM4Yi01mkWDeezOSx1L2HRwa4xy73JA7FxoZwkr3OriNSHDbHYY5QLMToOoVFis2mY4gads2pCsWabIlFbFHsVBQp1j2f5vLYDfzMWGHYWQyzFSiG2JInJ+caO/1BkQqPnak8s5nIijXBNkQ6qSp5YoTnTKTrdKynbDahYaeHYg+nymNnslCsU5GN5LdUhGP1tYpmWWMHJ0ctO2HYWQwzGjYFaQzF6lmxZlpjl4oJ34weu7w0FSgOhFRjHZ9ZQrGQuiLF0TV2JvLYpWGNnZ48MchEa+yMUGz7yZE8IUlSSkueRLNizaPjk2FbMWHYWQhV1YxJwEyGXVpDsSY0bHUjM5kFittNts0UpC8rVr+OkmSOavU6RSkK4ZhxPWV+io14TdNMV6AYoFQPxaZg0te06PM7zyQeO4gx4lOQGat77ErzzKPjdOwwkmmEYWch2r1B9M0dzGTY6GHhdNSxM2XyRAo8OWac7NO1I4F+HQuz7Nj0wmImQE+SSfYaOzN6Z3NTvK1Yuy9IIBR+mJmlxhlASZ5e7iT5hl2nP2Q8v810X+sJFMn22PmDqjEnmMljJ0KxAlOh3yRZdpsptmfRMcqdpGGNnRkLFOtepWRWM3ebcLKP3XkiFRl0OkdMVpxYx/DYpWhPYDNN9oZ3NkWGnZ6RmO2w4bKbJwStGyCpCMXqYW2bLOGym+f5nZMiI15/QbPJkqme1/p6P+GxE5gCM66vg5hyJ2kIxZpxS7F8l2J4lpIVjjXbDiMQb2SmMoHCbNuJ6RTr2c9JnBBCMcsrzGTEpzoDutlkhWt19K2vmjt9Sd/7Wt9OLNepIEnm8USnqpad7vUsznEgm8jzPugkKFBsnieJ4ISYybBT/X463nwTze/H1gJgo6W+ibaXXjLaSA4Hueefj+xIzsPbGwgZ+9HqmbiZIlZ+gAKbzBFVYv8rr5OVE27TH/l1XWd6sj9aTrskE9Ak6l5eBZHoSrL1rC9qNoPHLlb+rCYJkGncV5e0cR5rIGc6eSJWVvuhsKwtu/bS9tIeo02ydK0vqjeD8R4ntwpgIxDSOPj838iP3H7JkFs3kp12FU3TMmrcxcrsaJYBiaZ/bqLt4EajTX9lbmo313ZiOrpXtt0XxBcM4VTM4zFOFsKwsxBmMuy6Nm2m9vZ/B8BfNAxm3UZLYzOH7vhFXLuhK1eSM31aUn4zmnWrsrb2Na4YdVlSztsXYuUHyDn/hxzJL2fXisfIa9ppfN5X+evcrYDEZy3/5ELMI2f2JT+hzZnL7gd+ieauNz5Ppp7XHfgUkOkI1Z+wbaqJlV8rqYFzbqHhYCOH/vBAXLu+ym8kJ0gBVu9fxWU15tB1YOhUOPNamrZs59D//G9cu2To+s29/wRkQnJrv86TDI65l+f9jE57Fp/ft4zqjsPG5/2VWzfsmnwHeXn3y6bRtXTmtTB0KnUvr+LQjrfi2vVH5jV7PgBkNJu7v91NKvlZCoosEVTDCTyDC7Iy3aWkI0KxFsJMNeyyJ5+JfcgQkCRyAl0AdNpjbhBJwl5dTfbkM5P2m82d3vCpbV08+vFvCKqpX9PXE7HyAxT4OwFwO3R3Xd/lD6pBjnjCsr64+8+mktPQteIKN0iynoNqkPcPfgLAF20bMyo7xMtf6OsAoNWVG23QT/lbPWGvhiR7+c1m84zpnGB4/HmUmEXvSdJ1UA3yxu4PATjYtdVUOgYMPbc488INkiR3W5c5dZ0VDPerK4m6DqpBXt31DwDqur7IuI5jkSTJiAakqhB1phEeuwQIBVVCQTVjv9/a4UfWoMCpZLQfYWSKb11I3Y//k+xguF9dShYhyYYeYCi+dSEqMiSpr6/teBdZk5FkD4fcdbyycxXzRs5LyrkTJyo/EuT7PcgauB25qFLYtd9X+f++axVawIEMNHUdMJWcuQEvsgad9px+y9kdr+xeRacHZA08oYYMyw6x8uf5uwzZ/bIdRQvL2x/5V+98LzKmvaYa01mRe9qjuAw9Q3J0/cruVbR3hnXsNZmOkaDI20FdTiktzoKkjvF1BzYhazKy5DeVrrMD+vM7ebp+Zfcq3J0qsgY+ralbWUOhEIFgAFKXh9UjYwc5cGpBjrS201mQeUcJEtgVOzZbz2HhROZ8YdglwKbV+8jNzsvY73t3HmGGV6Gi1seGVXsz1g8dTT6NlvFX42/vZIY3PJR2jpiHXQ1hy8+nQzoVKUn9VDWVbZv3MsN7ClIwG0ftRax5YTNlY8chS5lxPOvyh9ztjJJLwKugDprEXgr7LL+qqbyx9RNmeKcA4Gw4y1Rynq4WUOJV6Cyfwd6s4UnVs6qpvLFtM9Naa1D9CkrLqIzLDlH5g+52ZnptaEjsGHEpWSF/v+RXNZXtxpjOMdWYVv0SM7wKOXIpe4fNAaSk6FrX8dQjp6D6FJS2YRmXGY4e4/nkexW6yqaz11GZNLkPf1THDO8wZG0QdhPpepB9EDO8Cvk5o5Oia0PHzeMIeRWUtqqjZNWQcr0ouSGkDCVV3DIhj5Cai6uzmR3bWzLSh6PRVI1ghw2twwUce106PO29Ppcw7CyELxC22J0mKXUiyTLZ06YReuMNZE1FlWT8soJdDZI9bRqSnLx+7mjdiccfKVwrBwENt9/NjtadjCk6JWm/kwi6/O1vvIEzFO6bz2YHtD7Lv6N1J+2+rsi/NDRCppLTHgmpBGSF/sjZHTtad9Lud6Opjsjv+jIue7gfMXoOBvAqDryKg6yQr1/yh8d0OBQkSeYa0/Z31gG6niFZuj5ax5hQx65QWCdexUEy5dZLIZlO1x99ASRP18fq2B8nq5TrxVGoUlpShtORlZEkkg5vAF9QJdtpI8ueeTNI0zR8/i4ONx3Gjxeto3/r/jIvkYWYdOEw8vPzM/b7K1tbWN8cZPakQUw+a3jG+hGLduEQdr+6nK3SVFpdeVzf9CGj82yMXLgUSUnO8AqqQZa8uJC9RcPxBcag5O8lq3I1EhINWVt5fs7zKHJmhrIu/8bWLtZXVuMKNfLV0Gd9kl+X82BZiE7PTCRbB7lDzCXni135rC8pZkznDkaHdiVNz7rsdVV1tHvORFOCZFe8jZJVn3HZISr/HnUc+1yDmdvyMaOdXX2WX5d3X/FQvIGxKHkHyKoyj67/ueZ3rHdNR9Y0/mP/6ziqqvqt6zgde8ej2YJkVbyLPftAxmWGqI7XtYVYXzGYgmAdV/XxXo5Fl3tP4QT86lDsxV/gKjOPrj+98VXWu0bhczfz9f2vY++HrmN13BGoQZULySr7AHvedhqytvLX2X9l7549lJUNZtCgQSmQqHd4W720dfrIzXVSlO/KWD/iyceRpdDobGTUWdXHhGXd7t4noQjDLgFsiowtg94ytz+IKkFhriOj/YhDcVB+23fJev0IR6Q8OmwOym/7DooreSnur+x6jYOeA4S0sagSaEonqhx++z3g2c/rB17LXIZZRP6CFX9FlaDNkUX5bd/tk/y6nEGGoUogKV2mkzPrqXWoUnhRfV/l7A5ddk2SCKk5IIHmcBOSg5mXHQz581/aE6PnBX2W39C1VoMqgWozl66H3/QN1A9BlWQCkkx1EnSty4wMoVBuONrkaDOdjgsfeRFVghZnTlLGePT5NTXy/PKaSteVF1+Auh067Q5kNdgvmY/WsXbUfbz2wFuMkEaQk5OT0XIvik1CA4KhzJadORr9uqhaCIcSv/YvkTnfJNaBoDeYqdxJLPnz5pEvhR9UXZVDyZ87N2nnDqpBVmxegYSEFgq7pyVbl/G9hJTxDLP8efMozgu/9blzi/okf6ychLKBcPacjlnkzIuMva6ikqTpOV7H2UD4TVVSwtmJZpAdInqWw8sh2sur+yx/nK7V8LiRbObSdfllc5EjySG+YSP7res4HasO0MIZmGbUcUmkaHJb3qDkyh2KyGyy+7r87OlAuKqBvTo541rTQAuFs8clW1THf9r2p4zX8ANQbGHTJ5jCHXT6QrKuizDsLIRZDTtJUSgZUg6AdtHcpIVgATY1bqK2oxYNLTLpgyRHDTsNjYMdB9nUuClpv5kokqIw/MpLAWgvKuuT/HFyGpO9+eQsmzkVgOCp45Om5zjZg5FSIrZOJClsWJhBdgjLP/i00QD4Z5zTZ/njx3RE1zGTvRnkle12cpXwJOO6YUG/dR2vY72MiA9JDq9nM4PMENbxiPmXAOAeVJFcufX7Wo7uQ2sGufNzwv3qVFyU3rYwKeMa1QFaeJ7SjXcNjYbOBvxq5kuMKLbw2A6GMl1dIjWYLhS7YsUKHnjgAerr65kwYQIPP/ww06Z1XyAxEAiwdOlSVq5cSW1tLWPGjOH+++/n4osvjmtXW1vLj370I1atWoXH42HUqFE8/vjjTJkyJR0iJQ198/FCE1RrP5rSEdWwqRbv6HFJPe+E0gksm7UMf8jPr1+R2O6Ga0+dy9TR0bdKh83BhNIJSf3dRBl6yWzYspYW1danN9JYOddugWcPwRnlo/nmOfcZbcwgZ/mUibDvU7oGlSftnLGyb6+FX++Birxs/tNksgMMPmMs1H9Bx+ChfT5HrLxPvCmxoRXmjTqf88efb7Qxg7x5edm4W7tQZ36p3+eKlXlXPSzfBSV5DpaYUMdD51wAW97miNr/6TFW7gdflNjTCf962lVMGHGV0SbTcudH9ijuyi0k/7JL+nyeWFkPu+HeL8ChaCw996dGmyyycPgyP3/ZI9m4AZN57JKFqQy7p59+mkWLFvHoo48yffp0li9fzpw5c9i+fTtlZWXHtL/rrrt46qmneOyxxxg7diyvvfYaV155Je+//z6TJk0CoKWlhbPPPpsvf/nLrFq1itLSUnbs2EFRUVG6xesXIVUzNoY30z6pOnrBx9au5OyVquOwOZgzfA4Aj6jvAm4uGDmDWTWlSf2d/qLvMekLqnT6Q8b+i70lVs7de3YAXzC2ZBiX1YxPdlf7hf5SkUw9x8quttcCmxlePIjLamYm7TeSRWluZC/RfhQ2jZX3uXc+BA4zs2oil9VUJ6OLSSM/y05taxftSdhDNFbmVzx1wEaGFxVzWc1Z/T53simNLKbvCoTw+INkO/o+TcbK/bD0NtDBl4fP5OyakmR0NSno2zN2hTSCqobd1rdwYKysG/a1AO9Tnp/NZTXRFxav18uePXt6OEP60EOxoVDmt3dLBaYKxT744IPcdNNNLFiwgFNPPZVHH32U7Oxsfv/733fb/sknn+THP/4xc+fOZeTIkdxyyy3MnTuX//7v/zba3H///VRXV/P4448zbdo0RowYwUUXXURNTU26xEoK7piJ1GyhWIDCSJ9aO5Nr2MXS4jHn5vAA2Q4Flz18O/V3c2m315whd4j2qS3JBrzO4cj+kiW5zhO0zAyDIv1q6kxOOEnfZirTewJ3R0Fkwk+2rnUdl+aZU8c5DptxLze1Jy9sqOs60Ze+VBPbH72P/aVJ3ws4x5w6ViIeO43er7Nbu3Ytw4cPT/i3+npcfzCNYef3+9mwYQOzZ882PpNlmdmzZ7Nu3bpuj/H5fLhc8anKWVlZvPfee8a/X3rpJaZMmcLVV19NWVkZkyZN4rHHHkuNEClEN2rynAp2m2nUZlBoeOxSs35C0zSaI5NpUY75DB6Ibi7d3Ok7QcvjE906zlwTAEQNO3eKDLumiFFs1kl/UK6+FVH/dKwTNezMN6ZTZcSb3bCTJMl4sTicJD1D9J4xw5aQsSg2mWxHOGEpWfe1ruMyE+tYidTpC4b6Ho6dNWsWkiQZf8XFxcyfP5/Dhw+f+OAUYhoLoampiVAoRHl5/Nqd8vJy6uu73wx8zpw5PPjgg+zYsQNVVVm9ejXPPfccdXV1Rpvdu3fzyCOPMHr0aF577TVuueUWvve977Fy5coe++Lz+XC73XF/mUYPfRWYMAwLUBTpV4snNRO+xx/CH9lSZZBJ3wKLI8btkX56c9wmTZKB6DKAVk8ATUv++hT9Td+sHruSnP6HYmNpj3hnzemxS40Rr+u41KQ6hhjPbJIMu2AovEQDzHlf6+vskuWxM7vxDjEJFGrfEig0TWPTpk0sW7aMuro6amtr+dOf/sSaNWtYunRpMruaMOZ7miTAQw89xE033cTYsWORJImamhoWLFgQF7pVVZUpU6Zw333hRbqTJk1iy5YtPProo9x4443dnnfp0qX89Kc/7fa7TNEWMZjMuL4OoDAr4rHzpMZjpxtLLrtMlqPn/fQySXGSNpY2PHYm9uIEVQ2PP0ROksNKZp/0dY9dMtZfgdlDsan12JWYeNIvzU3OvawTazCZUdd5LoV6d/RFo7809tJjp2kaXZEdOdKNvpSwrx67HTt20N7eznnnnUdFRQUAlZWVjBo1Co/Hk6xu9gnTjLCSkhJsNhsNDQ1xnzc0NBgX7WhKS0t54YUX8Hq9NDc3U1lZyeLFixk5cqTRZvDgwZx66qlxx40bN45nn322x77ceeedLFq0yPi32+2mujqzC5v1UGyRCdeXQdTgTJXHTjfszLi+TscI0/XXYxeZBMwWsgHIstuw2yQCIY22rkDKDLuSPHPqOTuy/sobUGlq9zN0UN/lV1WNDr8FQrFJvqcPm9x4h6jHOFkeO904znbYTLmURn/WuJNk2PXWY9cVCHHqPa8l5TcT5fXbzwUg0EeP3YYNG3A4HIwfH05w8/l8/OEPf2Dnzp095gWkC9OMMIfDweTJk1mzZo3xmaqqrFmzhpkzj58d53K5qKqqIhgM8uyzz3LFFVcY35199tls3749rv0XX3zBsGHDejyf0+kkPz8/7i/TtHrMG56DaFZsW4pCdEd0wzbHnBM+wCAjFNu/ycDMoVhJkigwvLPJN+LNnjwhSZKxFKCpn3ru8AfRbxUzenFO1jV2kHzDzswJURAdf+6khWLDdRnNbLxHa9n1bb7auHEjgUCA4uJicnNzycrK4u677+b11183qnJkClM9TRYtWsSNN97IlClTmDZtGsuXL6ezs5MFCxYAcMMNN1BVVWXErz/44ANqa2uZOHEitbW1/OQnP0FVVe644w7jnP/+7//OWWedxX333cc111zDhx9+yO9+9zt+97vfZUTGvqKvsTNrKFZfY+cPqSkJ0emZpsUmNuyKjeSJ5KyxyzfhZA/hbMmmDl/SJ3xV1YzQl1kNO4CSXAe1rV39DtPp4TmHTcZlN9/ygvwUGHaqqkXD7SY27HTve9IMu66IF96EnlmIeoyTnjxxgn1Ys+w2tt47Jym/mSgd3iAdvmC/DLvrrrvOWLZ1+PBhFi9ezM0338ymTZuQ5cz5zUw1c1x77bUcPnyYe+65h/r6eiZOnMirr75qJFTs378/7mJ5vV7uuusudu/eTW5uLnPnzuXJJ5+ksLDQaDN16lSef/557rzzTu69915GjBjB8uXLuf7669MtXr9oNXkoNstuw2GT8YdUWjz+pBt2RqkTExt2g5KQPBFSNaNumBlDsZA6T05bV8AoPaBPrGZkkFHLrn+TvpkTJyA1em7rChAImV/HhscuSeVOdI+dGTPdIfoSmYzkCU3TouH2ExjvkiT1e51qX9GT8fqaPLFx40buu+8+Ro0aBcCoUaNYtGgR8+fP5+DBgwwd2vci5v3FdKNs4cKFLFy4sNvv1q5dG/fvWbNmsXXr1hOe89JLL+XSSy9NRvcyhtlDsZIkUZhtp7HdR6snwJAk13/WjSWzGrYQWwqj75NBR8yD1axv93qR4rYkl7bRvSP5LgWnYj4Plo5uwPfXM2vmxAlIjWHXEAnRFWbbTa1jfdF/ssqdmHU7SJ28JGbFtnqixnuJiY13vZZdoA8eu927d9Pa2npMyHXXrl0oihLnXMoE5nyiCI4hGoo1741SlO0wDLtkoxt2g0zssUtGuRN9Asiy23AoplkCG0fK1l51mD9bEpJXCiPqsTPnZJ+KcicN7vA1qzhBiC7T6CHEBrf3BC17h9vEme4Q9SQmI3lCv4/Nbrzru0/0xWO3YcMGJEmirKyM+vp6Ojs7eeedd7j33nu55ZZbMr4uXxh2FiEaijXngwGiNfZaUlDyxPDYmdiwS0aBYrMvsoY0LKo38fo6iHohkrXGzuweu3ZfkJCqYZP7v+1SQ1vYUCo3u2EXebnw+EN0+IL93i0iGoo1530d9dj1/55udJu7OLGO7rELqRqqpiEnsK3Yxo0b0TTN2MGqqKiI0aNHs3z5cm644YaU9DcRzPlEERxDq8nr2EHU6ExFLTsrrLErjkz43oDa5xpnZt51Qkef8JPtmdUnBLNP+vr6q/7uMOI2uWEXa4S4uwJJeamqj3jAzO6xy3Eq5DoVOnxBGt1ecktz+3W+NpPuOqGTzDV2hzsiGbEmN+xscni3CE3TCIY0HErvDbulS5dmvAjx8TBnrEdwDLqxpJeaMCP6+rdU1LLT1zOZ2bDLcdhwRsKnffXmmD1kA6nz2Olhr4oCc0/6yVhLCeYPxdptMjmRYuDJ0rVu2JWbXMcQ9TjpxXb7QzQr1qRGvJ4Vm1SPnbl1HN5WrH+7T5gVYdhZgGBINd7urRCKTcUauxYLGHbhGmf9W1h/ModiG0y+v6SOUccuSTuMnEy6joZiza1jiHqckrHOzvyh2CR67CxQp1DH3s9admZFGHYWILZopJknAd1jl+xQbEjVjOQRM2fFQjQc29cixWYP2UB0OUCqPHamD8XmRXUcUvs+IZi5ELVOsmvZ6VmxZg/FQjSB4nBSPHbm1nV+EhNlGi2yVhZAiZRPC4RO7LEbPnw4t99+e8K/0dfj+oMw7CyAbijlORUjk8eMFKUoeaK504emgSyZ22MHMUWK+xyKDRvxZp0AIPWhWLMbdoNynMgSqFr/atmdjB67+jZrrKMEKE9iKNbM+z9DvMeuvzsHRYsTm9+w0z12vSl5Igw7QVLR16wV5pjzoaCje9OOJDkUqxcJLc5xJiUzL5WU9LPkSWukNpxZ1+JAagw7TdNiDDtzTwg2WTJKnvRn0j/ZDLtASDUSTsy+jhKihkljUkKxetFxc97XusEZVDW8gf6tN2u0wHZiOvq+vb3x2FkJYdhZAL0QbKGJEycgeRX5j8aob2biYpc6xf1cYxfNfjavrAUxoVi1H6HIWNzeoDGhWMGbYxSwFYZdr2lsD3ve7TaJYhOPbx198b9ee68/mD0Um+2wGS/N/U2gsJLHThGGnSBTWKHUCUTf0PqbLXg0VlqMW9zPjEld10Um9s7qk5OmYWx/1l90r0hBlt2U+6YeTakRpuu7N0fXtZnXUyazSHF9JHGiLM+FbHLPO8R47PqhYwBvIIQvsn2VWXUtSZJRq68/tey8gZDhnSzNNf8LWiKhWCshDDsL0GIBLw5Ey0B0BUJ4/MmZ8MFahl10v9i+veW3WsA761RsZEWMr2QlyjQYNezMr2OIKYXRD2/OSeexs0ioXUf32PV3jZ3uAZMkyM3Qvqi9QQ8Tt3X1/dmtP6sdimzasHMseig2KDx2gnTT5tEne/NOABB257vs/avj1h361k1WWLOhJ0/0dY1dS6c1vLN6yDlZNQvrLZI4oaNP+n3dSzSkakZpCVMbdknMgK63SJ1CHd1j1+4N0uUP9fk8ekJUnlMxtacyz9n/3SdiM2KlBHZyyBS6YRfStH5luJsNYdhZgOg+seadAECv45acfTRjsZTHLrd/a+zauqzhndVDxX31TB6NVTJidUr76bGLnTxNbdhlJS/T3WrGe55TMV5U+xOONWpTmvz5nQzv7GE9ccICz2oIJ0LZJD0cO3C8dub3lQoMr4hZJwDV76fjzTfR/H4KgzK1SOx/811GFkfbSA4Hueefj+xI3GDRDTuzJk/Eyu/wAthoavPQ9tJLRpveyO8PqnRE1qwVmjCMEStnfqcMSBx870Pavoi+6fZVz7phZ+bixLHy5zYD2KjbX5ewniE6ebrskrHOxyzEyulsBbDRXN/cJzljqbfIPrGx8pfaZA4EJHavWkNhzL7uicjf2qlnupvv+R0ra05r+J6u/2Ajbfs3GG0SkbWuzVpeWQgnUISCoXA41gLre3uD+WYPwTHo65jM6sXp2rSZ2tv/HYCcGd+EilPZ86dnOWXfh3Hthq5cSc70aQmff8+RJkBiZ/smYEgSepxcYuX3Kk649Od4VYndd96FKxR9+z2R/NE3ZZV3Dr3OFaMvS2W3EyZWTtfk66B6MvteeIVDO9fGteuLnj+u2wtIHPbvAMYmpb/JJlZ+iofBubdRX9/CoSfvi2vXG/l1Xfu0Fl7e/TKX1ZhH17FyBgoq4cuLaG52c+iOn8W1S1TPWxtqAYk671agJok9Ti6x8uef810oGcmO3/8fFYc+iWvXW/nf2vchIBOS2lLR3X4RK6t9wlUwYiYHXlnNoe2r49r1VtZ/7P8MkOjS6lLR3ZRgt0n4ggMrgUKEYi2Avl5rkEmL82ZPPhP7kCEgSRT4OgBodcRsmi1J2KuryZ58ZsLnDqpBIwzyyv4/E1STl5SRLGLlzw76UELhPrbp16CX8jd1dIX/x9bFo5/8xnSydqfnNkdOtEEf9RxUg2w/XA/A+42vmk5unVj5i73tALS48jCmgwTkP9IZHtOSrYvfbDaXruP07O8EwO3M6ZOcOkE1yL6WVgDeOvSiqeQ9mjg9+8J6bnbFuut6L39QDfLarn8AcKhrh+nkjpU1L+ABoN2RHW2QoKwfHtgOwOdt75tO1p4YiLXshGGXAKGgmpG/tg4/sgYFLiVjfTjen4pM8a0LUZEp9HUia9DqzEOVbOG/mO8TPfeL21dBMAtZg6auPbyyc1XG5T2e/JpkY5C3HVmDFld+QvK/tuNdZA1sUheH3HWmkzVWjny/B1kDtzO333p+ZecqAt6wjtv8+0wnd3fyF0TGeVC20+7ISVj+t/f8M6xr2Ws6XcfKkev3ImugSgod9sTl1P/+vmMVQW92+L7w7zaVvMeTv9jrRtbgiKugT+P8lZ2rcHcGkTXwqc2mkztWlryIrjv08dwHWbu6HOFzhA72KKumaab6s9skJMKGXSrO/6Mf/Qin08nXvva1Xh/T0zXuLSIUmwCbVu8jNzsvrb+pASMPhxiqKjR/eJgNn7am9fd7iyafRsv4q6lQipnhVcjOG8veYQFAwpafT4d0KtKqvQmdU9VU3tqylRneiYCKs/4c1rywmbKx45Alc72T6PKH3O1M8ztolhUaq87DUdDUK/lVTWXbpr3M8J6CFMzCUXuRKWXV5SyW85nhVSjIGcXeYXPoq55VTeWNzzczvWMqIOE4PMmUcuvE6vlcD/hlhV3D51Lg9/RaflVTqd1QywzvCGS1ELsJdR0r5zkeiaBsY/fwS8gLdCWsZ1VTeWPrp8zomgyAs3Ga6eQ9Gl3+IcogZngVnAWnsXeYRiLjXNVU3ti2manN4wh5FWxtQ0wpty5rgZTHDK9CUdbIhO9pXdZpbaejhRTszWO7l1UJ4SgL0dUeQPWZ4xrY/Bo5qgRdITxSz0lC7/3jXR56+Jds+ngT9fV1/OmpZ7hs3uXHtLv51psYPLiSJXf9FIDvf/cHlA0azH/86N9Z/B93UTOy52UIPn8Af1eIz96thWD8er8OT3uvZTLHlRX0SCCkEoykYWc5zLuwU5JlsqdNwxUMJzr4FD1srJE9bRqSnPhQ29G6k3afP3L+AEgabr+bHa07k9XtpKHLDxquULjPXpuT3sq/o3UnnkAwcq4AYE5ZdTmdwbCMPlv/9LyjdSdurw+QAA1knynl1onVc1ZkrHcpvdczhGXuCkTKZ5hU17FyOkO6ru30Rc9hHetj2w9SyHTyHo0uf7yOIVE9t/vdaJo9ck6/KeU27unIemC/TU/ySExWt8+Npoavk2TzmlLW7tDFO1G1E4/Hw+mnj+fBB5b32CYUCrHqtVXMu+RS47OCggJu/Po3kGWZz7ZuSUKPT4zw2CXApAuHkZ+ff+KGSeTgEQ/r123HocjMmDfC1LWBtAuHUPu151jvGsdwXyff3P869qoqRi5ciqQkNtSCapAlLy5k/6B8urxnIrvqyKlajYREQ9ZWnp/zPIpsruGrXTiE3a8u5+WOXNYPKqLGu5dLQttPKL8u696ikfgCp6Dk7yGr0ryyahcOofm9p1nvOp2KUBff6aOedbkPlNrweGYiKa3kDnndtHLr6Hqu8w/jk/waznZ/zmipqVfy6zLvKRiPPzQce/EXuMrMqWtdzn3qaHa6qrmo9RNG2zsS0rNxHxfn09U1Gdl1yPT3sY524RDqr/sr611jqQ54E3qe6XLXVdXRGRpKSBqEq+wjHPmfmlJu7cIhNL33DOtdp1MZ9CR0T+uyHhrcQnvHeUCQ3CGvIMuhY2T1er3s27+XrDw7LpcDTdNQM5S0INskJElC8oc45PWjSBpDCnpexz7/K5cx/yvhJKevff1anNkK2Ue1f/fdd3E47Hzpy2fFzdUh2Ud2djY7dm8ju+DqnvvkVXFk2Rj9pSpcrvjMYrfb3WvZzDOyLIBNkbEp6XVytvqCqBIU5TpQzJ6KrTgY+ZVLUT+BFlcushqk/LbvorgST/p4ZddrHPQcIKhOR5VAtrtR5bCX44BnP68feM1UmYQAKA7Kb/suBU+sRZWg1ZlD+b+dWH5d1pB6KqoEmuIxt6yKg5FfvRJ1c1jGvurZ0HFoPKoENkerueXWiei58JlPUKXwWC//9jW9kt/QtTY1rGubiXUdkTPvhZ2oErgdWZQvvCEhPUd1PCN8H1tFxwCKgzHXXo66GRqyC5ESGOe63MgQUrMi93UHITloTrkVB8OvnY/6MbQ5sxO6p40xHSpHlUCydaIpPkIcq2ObIoeNqcifGtLY+Oq+FAvXPZMvGY6sSNgVGQ0IqCoaIPfSeaLLEMvf/vY3LrvsMuSjvJx33303HR0dfPbZZ8d1zujn7M7WSMT2EKFYk6NnxBabNCP2aIZdfAEQzpa0VVeTP3duwucIqkFWbF6BhIQWKABAskdLBUhIpssk1MmfN48SV2S7raKyE8ofJ2sonI0m2TzG92aVdejcCwHw2LPQhg5PWM/xOi4EQLK3Gt+bVW6d/HnzKLGHPQ1tJZW9kj9e11lAOCtWx4wy58+bR5ESlrOjrCohPcfJGywEQFJaje/NKO/RjL78YiBcxsg3fFTCegaOua/NKveQi2cD0GHPQq4emviYDkae1UrUs2RWWWNR5KiB1t+txV588UUuvzx+3d2GDRt49NFHmTdvHlu2iFCsAOsZdsX54YeYKttw3rww4RAswKbGTdR21IbPYzwsooadhsbBjoNsatzE1IqpSeh18pAUheEXngtfQMfQUSeUP1bW7gw7s8pakJuFDY0QEspNtySs5zgdRww7OcawM6vcOpKiMHT6RNgHnadP6pX88bo+1rAzo8ySolBx+hiog8D0sxPSs9V1DJCd7aRQ0WgNSgRvvClhPcOx97VZ5S7MC49JTZLJuvnWhGVVA4k/q2WbxORLhieh94kjRwqDS5KEwybjC4bwBzX6up3v559/zqFDh7jggguMz1RV5Tvf+Q4LFy5k+vTp/Ou//iuBQAC7PbXFqoVhZ3KsZtg5FJnCLDutXQG6zjqvT+eYUDqBZbOW4Q/5efjvEl+0wbWnXcS00RdFf8fmYELphCT1OrlUn3c2fLGeltgabz0QK+uvXpbY0Q5fPfUypoyKhmnMKKssSxTlOmnq8BM4a1bCx8fK/djrEp+0wBVjz+XcU8812phR7liGTD8T9n1Ma0Fpr9rHynx/o8RBD3zjjGs4rfoao40ZZS4fPxbqvqBz8NCEjouV98GXJPa44frxc5k0MuoJMqO8R1NZWkBrnRv3xOm9ah8rtz8IP/g8HBj7yTk/RI9smlFuhyKT47DR6Q8RPPf8Xh0TK+srG2BVPUyvHsN150SLdh9P1nDYMfPrxvUixf5+eOxeeuklLrzwwri1cQ8//DBNTU3ce++97N+/n0AgwLZt2xg/fnwyut0jwrAzOc0WM+wgvGVQa1eAxnYfYwcnfrzD5mDO8DkALA+sBTq5ZPRMzqopSWo/U0VZZMskfSu04xEr6wrtHaCd80fMYFZN74yFTDIoJ2zY6VveJUKs3L8Nvgu4uXjUNC6oKU9yL1OHvjWWvh3aiYiV+RehN4EuLhp5DmcOLUpVF5OC/uxJVM+x8t7nXQN4uXzsl5hYXZjkHqaWykIXW+vcxnZZJyJW7trWLuBN7DaJr4y91NTJbxDe3ajT39Xr/WJjZX3/40+AA0wbcgqX1ZySwl4mH4cig69/RYpffPFFvv3tbxv/rq2t5e677+ZPf/oTOTk5jB49GqfTyZYtW4Rhd7Kjb7JebNLtxLqjvMDF9ob2Xk94PaFpWnTvQZPvLxmLvqdtpz+Exx8ku5e+ff1hWmTyzcJ1inLC/WzuPLEBezwOtYZ1XFmY1e8+pRN9P8wGd+Lyt3jMvZtMLHofWzp7rvF1PAIh1XgWVBZa5z7WGVwQHpd1bV0naHks+jUrzHaY3qiD8D1d29pFax9e1vRn9WAL7ROro+8+4T9OEeCOjg527oyWb9mzZw+bN2+muLgYl8vFRx99xEsx+yl/73vf45JLLmHevHkAKIrCuHHj0rLOThh2JudIZ/gGK841/wSgUx7ZyL2/hl27L4jHH86gs9Km0rlOBZddxhtQaWr3M3RQ724zfbIvzLKGrgflhvXc3NG3CR+gyx8ylhtYzbDTJ7AOXxC3N9DrTd69gZAxrossYNgVRV4qj/TRsGtwe1E1cNhkSnKcJz7AZAyOGKO99djFohtIVnlZ0589+rMoEeoj16fcQi/hOo5ebCv20Ucf8eUvf9n496JFiwC48cYb+dKXvsS0adMoKQlHlV5++WXefPNNPv/887hzjB8/Xhh2gqjHzgpv9jrREFX/PDn6g6Igy95rr5cZkCSJ0jwnB450cbjDy9BB2Sc8xhsI4Q2EHyoFFpkESiOGXWMvQs49cSjiBcl1KuS7rKNjgGyHQkGWnbauAPVt3l4bdvqkqcgSeU7zy6yHYo/0YbKHqEd2cKELWTa/1+poKnWPXWvihp3xsmaRiEth5NnTF49dvVv32FnrBQ0ioViOv8buvPPOQ9O6r7l3+eWXx2XDXnrppbS0tBzT7g9/+EM/e9o7RLkTk6O/JRdZ5MEA4VAs9N9jZ2XXfknE6Dnc3rvJUNez3SZZxsApy9cNu77r+VBr2LCrLHRZIlR1NPrYTMSbY9zTOVYJz4WfPa2eQJ/KQRg6tuCED9FoQZ9CsRHDzipLaaKGXWJGvDcQMoxBKy2b0bEbHjutR+PteJxzzjlcd911ye5WnxGGncnRJ4FBJ2Eotj7yILVSGFZH92Yd7uidN0sPZxZbZLIHKMvrfZJIT0QNO2tP+vUJTPot+vIKi0z2RdkObBFPW1/CsbUW17HhsWvzJjzp6/e1FULuEHUgJJooo9/HWXYb+VnWeDGNxW6TwrX4NI1AH3bCuOOOO6iurk5Bz/qGMOxMTCCkGnssFltobUp/FpXHYmmPXZ7usevdNWgyQu7W0XNZRMbGfui5tsXak74edjqUQJhOD2nqySdmxyZLxlKQvoTd9Um/yoKJEwDlBeFx7guqCRu2TZEXu1KLvJj3dT2lbrwPKcqyzItpLJIkYY/UtetPZqxZEIadidEzqiQpvM7MKuhr7A53+AidaGfl46CvaanIt96kr3vsmnrpsTvSYT3PbDJCsfuPhIu2Di0+8TpEMzLY8Nj1/hq0WLCEUWmCLyqxWN1j51RsxtKKRBMo9Ptff9EzO8YLaS+fWzr6C1pVkTV1DGDvxTo7qyAMOxPTHLO+zmahRceDchzIEoRUjeYEHxCxHGgJT/pDLPiwSHQibLZikkwkFNviCRy3TMDx2DdADLu6BJYdWK3oOMR4Z/tgxFvdeIdomRbd+9hbmiIvbLphaHb0Uk29fSHVqTW8stZ7VusYmbF9fJaZCWHYmRgrTgAAik02DJv+hGN1w67aghNCSYIeu2ghamtMABBeaK0/DBN9w9fZ32ztSd+ocZbAhG/c1xZZYwd999ipqsbBI+FrY8X7WEc34BM37CIeO4sYdkakIUE9DwSPXW8yY62CMOxMjP52XGYRN34seji2vo8JFMGQaqxbqi623sMiYY+dBUOxelkXgMY+6LnDFzQM2t6UhDEjFX0IxUbX2FlH131NlGlo9+IPqSiyZMm1sjrVReHxebAlQcOuXTfsrKFr3QB1e4MJeeH16zIQPHZ9jT6YCVMaditWrGD48OG4XC6mT5/Ohx9+2GPbQCDAvffeS01NDS6XiwkTJvDqq6/22P4Xv/gFkiRx++23p6DnyUV/iJaehIZdXZuXkKrhsMlGyM9KGFmx7b5eZdIZ2c8WmuyBfnlmdW9dUba91zXgzIZurLT7grR7e5dJaOU1dokmT+g6rirKQrGZcrrpFfqLhx5W7g1d/hCdkULUVlljV5BlR4ks+0lkR5nY5AmronvsfMKwSz5PP/00ixYtYsmSJWzcuJEJEyYwZ84cGhsbu21/11138dvf/paHH36YrVu3cvPNN3PllVeyadOmY9r+85//5Le//S1nnHFGqsVICrphZ0WPnf7mVpvgG66OHoatKsqyZFFTfSL0BaOZzcdDX4s4yCIhG50ywzN5cq69yokprNxbr50Va1OW9TEUOxB0DNEwciKGnR6GdSiyJQpRA8iyZEQNmnpZgzMYUo0X+CFF1tWzU4nuPqH2I+nPDJjOsHvwwQe56aabWLBgAaeeeiqPPvoo2dnZ/P73v++2/ZNPPsmPf/xj5s6dy8iRI7nllluYO3cu//3f/x3XrqOjg+uvv57HHnuMoiJzb7qtY2WPnf7mdrCl9w/CWPR1OVZ9A8xy2IxM5t7U82u2oBcHYjNj++CxO9IJwNBBOUntU7oZHFPnrDcYRWstpOu+euwOHLHuOtlYdMP0wBFPr2vZHTZKnTgtVQJEL7nU2/XB9e5odKXUYi+msdhkyUhStPo6O1MZdn6/nw0bNjB79mzjM1mWmT17NuvWrev2GJ/Ph8sVH6rLysrivffei/vs1ltvZd68eXHn7gmfz4fb7Y77ywTGg8GShl3f1qToWDlxQieRXQmajew560z2EM2M7Usx6qg3x5rGu46+l2hvPHaaplkyKSp2zWgiRXqtnvWsU1WYhSRBZ8zexifCauvrdBIteaJHZay6ZZyOJEl9DsceOOJhT1MnXf4TR2fSgan8w01NTYRCIcrLy+M+Ly8vZ9u2bd0eM2fOHB588EHOPfdcampqWLNmDc899xyhUMho8+c//5mNGzfyz3/+s1f9WLp0KT/96U/7LkiSMDx2udZbYxb12PXRsNPf9C3s2i/Pd7Gtvp2GE0z4Hn+QrkB4vFppsgcYXJh4gV6dfZH1V8OKre6xi2RM9mL3iRZPwKhsb5VMSYgadl2BEB2+IHm9XBOpG+/DLG7Yuew2KvJd1LV52X/E06slE1YrdaKTaMmTdJU6Uf1+Ot58E83fs2EtORzknn8+sqNvz1GnzUYXIfzBEBA/xu+77z7+8z//85hjfvnLXzLn2m8SCKnGrkuZxlSGXV946KGHuOmmmxg7diySJFFTU8OCBQuM0O2BAwf4/ve/z+rVq4/x7PXEnXfeyaJFi4x/u93ujGwXYuVQrG6QNXX48AZCuOy2hI4/0KKXSLCuN6e3HjvdW+dQZHItshZHx1hLmWAZCIhO+lb2ykL0GvTmJUa/p4uy7YZ3wApkOxRynQodviCH2329NuwGSigWwjLoht2koSdezmO1Uic60ZInvfNMpisjtmvTZmpv//cTthu6ciU506f16TeO57G77bbb+OY3v2n8+5577uH111/nqquuojXysmaWBCFz9CJCSUkJNpuNhoaGuM8bGhqoqKjo9pjS0lJeeOEFOjs72bdvH9u2bSM3N5eRI0cCsGHDBhobGznzzDNRFAVFUXj77bf51a9+haIocZ49HafTSX5+ftxfuvEHVWO/PisadvlZirFguC/r7HYf7gBguIXXXxmlMNzHn/BjM2KttBYHop7Z2tauhBYc+4IhY9IfWWpdHUPUaDnQi4X1egkjK97T+nrK3iaJdPqChtfKquVsYhmagJ7Bui/midbgPGgUkk+tjrMnn4l9yJDwVkzdIUnYq6vJnnxmn39DT6DoruRJXl4eFRUVVFRUsGLFCl5//XXWrl1LxeAqvv+t6znn9OF87avX9Pm3k4mpDDuHw8HkyZNZs2aN8ZmqqqxZs4aZM2ce91iXy0VVVRXBYJBnn32WK664AoALLriATz/9lM2bNxt/U6ZM4frrr2fz5s3YbIl5ktKFnmput0kUWmg7MR1JkoxilQcSDMe2dPoNo9bKk35Ffu/WXjVaOPu5PN+FJIUfhM0J7C+5t8mDqkGeU7Gk3LHoE1pvJvxoprv1llfoHplDvTTsdI9sQZZ1y9nEMjTBzFjdU19hsfp9iW4VuDeypGJ4SWoNO0lRKL1tIfS0xlPTKL1tIZLS96hHb9bY3XPPPTz55JOsXbuW4cOH4w+pXP9vN3P/Q7/t8+8mG1MZdgCLFi3iscceY+XKlXz++efccsstdHZ2smDBAgBuuOEG7rzzTqP9Bx98wHPPPcfu3bt59913ufjii1FVlTvuuAMIW9mnn3563F9OTg6DBg3i9NNPz4iMveFwe9SNb9UFqX1NoNjdFPbWVRa4yHZYKzQZS0UvQ7F64kFZvrUmAAg/CPUEikTCsbsiHtmaslzLeSmPRp/w69zeExY3bbSoFwegskBfT9k7Pe8+HM56tvLLWSyJGna6p95qhZl7+0Kqs7cprOdhaYiu5M+b173XLuKty587t1/nP1HJkyVLlvCHP/zBMOr0tlNnnpORyF5PmM6wu/baa1m2bBn33HMPEydOZPPmzbz66qtGQsX+/fupq6sz2nu9Xu666y5OPfVUrrzySqqqqnjvvfcoLCzMkATJwapu/FiMBIoEaj8B7GrUJ4TcpPcpnehlME5UpFnftcGqnivdM5tIzcKdjRHDzuI6hvBi8yy7DU07sdFj6dqUCerZMN4HgI4hGk7eEzFkTkS9RT12seV7TpQB7fEHjZeVEWkw7Hr02iXBWwfxJU98wfhlWkuWLGHlypVxRh2EDTvAKOxsBkzpDlm4cCELFy7s9ru1a9fG/XvWrFls3bo1ofMffQ4z0thuzYW3sehvuHr2Y2/Z1aRPCNZ+09fffFs9geMmkOi6Lregxw7CIboN+1qobe29nvVJf1SZ9Sd9SZIYUpTFjsYODrR4GF7S87i18gtbpRGKPTkNO12OBrePdm/guAkkvmDIWF+oG0pWobwgWly9xRM4bqa+/mwvzLZTkJ2ecHv+vHkcfvjXBGprwwaeJGEfMqTf3joI38suxUanP4g3qJIVEf3//b//xyOPPMJLL72Ey+Wivr4egKKiIiPLXbGZx7AzncdOEMaq6zNiqYlM2voDvrdEQzjWnhDysxSyIsbc8cIaeii2PN96kz1EJ/y+eOwGgmEHvd+ZwMrJE5WFiYXcB1ootiDLbuht1+Hje+0a3dFdJ4rSZPAkC6diM0qenMgDva85fWFYnWO8dkny1um47JF1dpESVJqm8cADD3D48GFmzpzJ4MGDjb9PPvnEWH5hJsPOlB47AdRFbqhKCxp2er2hUrcfsLH3cDvNL76EEjPue6o3pGkan9c3A9adEGLrLZXZZPYFJHauWkNRQbRNrPz6PqtWCs/FyjioXgJk9mzbS5u022jTk45DIZWdje2Atb2ysdegvDV8DXZ++AltDR8bbY6+BtHalNbTdX7kfj7U3EHriy/FLXM6Wk5VVdnRGC7sbnWPXayeh0kyh5HY8tq7jCiLhgOPll83iAbnuyyzhjTuuaXJNCGxa/XbVBdH2xwtpx6WHp7mrGfDa3fwYFLW1mmqitrejqZpOCI1hrs8PoJa+H5t3rcPSZKQ8/KQ5Hh/2I6G8LNMkc3jJxOGnUmJeuys5caHaL0hDQnHZffht9nZfO9/UdnZHNeuu3pDL+x4mYNHNMBmWY9dbL2lwrNvZl/pKLavfJqqgxvj2unyH2htAyS2uT/ky1yWgR4nTqyMOaWj4ezvsHv/YQ49/l9x7brT8VOf/h1fUMYma5bekSD2GuTVfAnGX8GuDz7h0Iqn4trFXoPa1g5A4rPWdZxlMV2HZBtcfj9eVWLb3T+lwB/vnYyV86lP/443ICNLGsMsXuokVs/lZ/wLjDyLT155i8lbV8W1i5X/lR3vAzIOZ+/W45mBWDkLpn8DBp/OF0+/yCl73o9rFyvnO3u2ARJ+uRaYlLa+6l67Qz9anBRvnerpwn/gAAA2xQm5pXgDQQLN9XHtHMNHYMuNfxn1h0J8+7r57Px8Cx6PhyFDhvCXv/zlhJU8Uol5TExBHPo6Fit67PR6Q7IEVR2HATiYWxZt0EO9oaAa5KEPngZsyDYvZXnWfO+IrbdU0tUKQEN2TEHTGPm7An7au8Jv9M/tfpygao4taU5ErIy6jutyBhGUIo+U4+j4dx+9AoDibAbJunsyxl6Dcs8RIHwNDI66Bi2eLryBsK7/uvsxy+naoakUecNeuMas7sczhHX82MYXAVCcrUgW1jHE67m6I1xj9UBezO5I3cgfNuygwb/dcnqOfW41uWLDDMfK+fGhWgA+blmddjnzL7+c4X95hvzL+v+CJOdkI9nDXkhHKFxqKyArqES9rZLDgZwT/5ISDKmEVPjdn17g/S/W09nZycGDBzNq1IEw7BIiFFTT8hcMhGho8SJrUJ7rTNvvJutPRab41oWoyAxtP4yswYG8ClTJFv6L+T72uFd2rqKx2Y6sgc1Rx6pdr2Zclv7KP7jzCLIGjdmDupX/mU9fQ9ZA1kI0ePbwys5VGe9/ojIWezvICvjRJBv1OaUn1HFziwtZA82+3zLynugaVHhaI3ou7nGc//njN8K6ljup77SO7LFylHtakDWo0/XcjZyv7FxFU4sNWQNs9ZaRszfyD+loQtagNqfsuPK7O8Ly+zXryB8rR0mXG1mDpuyi48rp8+Qja+AO7eq1nJqmJeUPwBUpWZaMcyllZYCETdNQ1BAS4LfZAQmQUErLjvmtI13uyLcqAdVHm68tKbL1dO16izVdIhli0+p95Gbnpfx3vIEQE9olQKHhg0aaTZRG3Vs0+TRaxl/NWIoIeBX8JZPZG8wCJGz5+XRIpyKt2mu0VzWVN7ZtZvKRswh5FWySizUvbKZs7DhkyXrvH7r8FeQyw6uQnTeWvcPmECu/9spuPvhkBzO8pyHJQRyHLrSUzLqMIXc753eGaHEq7Bl2Mf7OpuPqeErTmag+BUUptJS83aFfg2BHJzO9NjQK2DbyMlyhQNw1UDWVjzfvZYb3FCRFxlF7kaVk1+WcHMim2KvQVnE2ex2VHH0/Gzpunh6+j+U8S8nZE7r8To+fGV4FSRnM7mGXIKN1K//U5lNR/QpKW5Wl5NflLCGbGV6F3JxTjnlu6XKu3vop0zsmA+BsGt87OZUQjrIQXe0BVJ+5rocmuQhlFaGFQuSpEEDC78hHCgWQbDZCkgupLVqEXUOjy+MnR3WCBJK/AHerB8XlQqJvc7bPH8DfFeKzd2shGF9FocPT3uvzmOvKCgBo94Zd2ll2m6lq4ySCJMtkT5tGvi+c/djq1NfLaWRPm3bsAtTWnbT73WjBsOEsKe24/W52tO5MZ7eThi5/biC8DqnDrq+VjMq/o3UnHb7wW5hk8wKapWTWZQSN/Mh6q3ZHNr3Wsc3aOoboNVDUEDmB8LpYtyOHo6/BjtadeHRdy9bVdb4/vGbM7dTXGR0rZ7vfjRoM3+9Wv491dPmzg17sahBNkiLXoHv5tVD4fpdsHkvJr8uZ5+/5uQVhOd1dWuQYL8hBS8nZHRISck54XNu08L0aksPGlZyTc4yx5gv6COlONEkFNEJqCF+wd1uxpRLhsUuASRcOS0t16be2NbD+492MG5zF5EuGp/z3UoV24RCCb63kv12n4lQcfGv/alxVlYxcuDRusWtQDbLkxYUcqqyjvXMa2IJkV72O4qqnIWsrz895HkW23lDVLhyCfc3vuNd1JrLTxq0H3iCrcjAjFy4lJMOSFxeyt7AGn38cSv5OsipXIyFZSmbtwiHsfnU577VorC+9gEKtictCn/Ws44oW2tvPA3uQ3KF/Q7Z5LSVvd+jXoKWrig15Y5jStZuzQ4eMa6DLvqdgPP7gKOxFW3GVW1PX27/+Mutdw2n1eLhu/+vYq6qOkfNQZT3tHWeBEiS76lUUZ7Ol5OwJXc9Huobz2aCRzOjaw1StoRv5G2hvPwfsQXKGvIbN7raU/NqFQ8hd/Rt+4poC2PjOobcpLC85Rs59hUPweidiy9lFdlXvxrPX62Xf/r1k5dlxuXquj5cx8u342hrwB4J02osIqRrFdOEsq4rb7ULTNGpb9+O35aDhQFI8SEo7IBGUvdTk1/QpG1r2qjiybIz+UhUuV/z6erfb3evzmH+UmQibImNTUu/krOvwo0owuCgrLb+XMhQHk266Due7XrrsLg7lFDPztu+iHHVDv7LrNQ56DqCGilC1bJCC4KojJIc44NnP6wde47Iaa2QQxqE4GPedb6D8I4DfZqfJmceUiPyrdv2Ng54DBANnokqA4wiqHK6bZCmZFQflt32Xql8/gyrB/twSyr/Ws46D/pGoEkj2FjR7ByEsJm936Nfgyff5Z/kYDuSWUH7DfOMaGLIHz4nousWyuj7jyotQP4GDuaXIapDymPvZuI+DJag4QPaDq5GQpFlLzp6I6HnkU+/zaclIdhVUUP71q46VP1SEKikgBdAcLdaTX3FQ891vkbe2gzZnLg1ZBYzpRs8B/yRUCWyu+l6PZ5siI0mS8Wc6JAmlvAzXoXo0wGuzYystOyb60OZrI6D60bQCNECS9MQRDb/qx+13U+gq7MPPh69Ld7ZGIraAha2Ggcv+SNHHocXWrfGlU3jpPGq84TIne0eOP6beUFANsmLzCiQkQl3DAJBdh5AiDwoJid9s/o1lMsuOpuDSeQz2h9+0moaPJX/u3DiZ1UA4u1CytxjHWE3m/HnzqHGFwzJ7C6vIu+SSuO/jdTwUAJtrv/G91eTtjvx58xiuhNff1JYOM8Z5vK4LAZDsrcZxVpP99PlzgHAo1jN8dLdyhnyDAZCd9UhSJFxnMTl7In/ePMbI4YoFu8tqetBzODNatrdYVv78efOoCkQyoIeO6V5OXzgz2OZsMI6zmpzdYSsowGGTkTUVTZII5sSX3dI0jcauxsj/R3xjcry8jV2NJ9yOLZUIw86E7I1s0zK8xNr1nyBcb+iM0eEH/cGzLjqm3tCmxk3UdtSioRmGnS17n/G9hsbBjoNsatyUvk4nEUlRGFYZNt7aL74CSVHiZNYihp3siBp2VpNZUhSmfvNaFDVIh+Kitj0Q9333Oo4adlaTtzskReGMeecBcLBsmDHO43Ttj0z4jiPGcVaTPSfbRbkjPGF1fv1b3cqpeisBsLmie3pbTc6ekBSFafMvAGBXQSVaZA1WnPwRPUuOaN1Oq8kvKQo1IyoAaP3yJcfoWdU0w7CTYww7q8nZHZLutYuUPfEE4veM9QQ9BEIBNE0GTY4cE2/YBUIBPMHEttJMJiIUa0IysU1LKjnznIn88a+fsN056JjvJpROYNmsZfhDfu5/TuIg8PVJZzNp5NlGG4fNwYTSCWnscXKpGTeSd97fS31VDRCV2Rf084MvJFTghzO+SWlMySiryTxo/uWcsmM1W48E2FLbZmyxBVF5vUE/dz4p4QFumzmPYaXzjDZWk7c7zpg/Bz5bQ51fossfIsthM2Rv6fSz+PPwJHDvrIU4Y3aZsprspwwrpWFHEwdqon2OvY9/9bLEDuCq06dy9ripRhurydkTE66+FOeW1/CEYG9zJyNLc+Pk/8s/JN6ph/NGjmX+9PuM46wm/6gJY+CNHdSVVhuf6XLWt/lZsi1cgPpnX74VR4wlYTU5u8NWUEB2sAOPN0SXPwQxU3GWksWQvCF4/BqHfWC3weDcyrjjJUkiS8nc5gLCsDMZqqoZGyune5uWVDFpWNgr9fHBNryBEC57NI3bYXMwZ/gc3N4A3z/yOgDfnnahpffIPZpR5WFXvr4/qi7z4XYfgdAbSBJcf8ZcnIrteKcxNZIkcUZNBVuPHGDLoTYuGT/Y+E6Xd2djOx7fO7jsMt+Zegl228AKGAzKdTIox0Fzp5/tDe1MrC40ZN+w7wiwjsoCF18Ze0Gmu9ovTq8q4N0dTWw5FF3MrcsZDKnc0fQ6EGLBlPMYU5H68lDpxq7YGD+kkI/2tfDR3hZGluYa8gM8+cY64Ajzxk7kspohme1sPxhdHtbdjoboXt+6nKs+rQM2Mm5wAVeN+VKGepg6JEkiJ8dFk7eTTl+8x06WZAqcBfj8XsBLtsNOoctcTpiB9WQdADS0e/EFVRRZoqrQetuJdcfIkhxK85z4gyqb9rd22+b9nc2oWrjtQDLqAMZEHpBf1MfXIdp9OPzArCrMsrRRp3NaVdjl+Glt99lb7+1oAmBSddGAM+ogPBlEr0Fb3He7GsNe+Joya26TF8vplWEZPzvUdsx32+rb6QqEyHMqjB4AsvbE9JHhDVQ/2HMk7nNN09hWFx7/YytSX0EhlZw6ONz/bfXtBEPxxXE/PhjW/RlDCtPdrbSR4wg/k33BEIHQscWBvf7wZ1l28z27B97T1eLsbQp766qKslAGyOQnSRIzR4bDsOt3N3fb5u0vwttSnXtKadr6lS70N99DbV7avdH1Zzsjht2oATIBTqouBGDjvpZjJgKAdyKG3awxA0/HOmdEDLstB48y7JrCuh5ZYq43+74wPiLjtrp2/EdVw9+4P7xWdNKwImSL1uDsDdNGhJ9nH+yJf57Vu724vUFsskRNmbV1PbQ4mxyHDV9QZXdT/J63nxxsBWDCkIJujhwYKDbZMNo6fMcmg3j8kXqzDmHYCU7AjsawV6emdGBM9jozIobdP3Y2HfOdpmm8vT2cZTQQJ/2CLDvl+U4AvogJa+ghjlEDRNenDs6nIMtOhy9ovNHr+IIh1u0KT4KzBqDxrnN6Dx67z+vC97Vu5FuZ6uIs8l0K/pDK53Xx3ln9/p4yrKi7QwcMk4cVYZMlDrZ0cbAlukj+4wNhvY8uy7W8F16WJcZFvHax3llfMGREXiYNzZyeNU1jS9OWlGaf5rrCq9U6vUHuu+++uFIt4yoLmFBdxGOP/Dplv99XhGFnMvQJYNxg608AsZwXMdg27G+hwe2N+27DvhYOtXnJcdgMz95A45TIhL49Jhy7a4B57GQ56pldtyvegH/niya6AiEq8l2MHYDrrnTGRzwYXzS0441k02maZng4zhgAHg5JkgyP1fu7oh6rQEjlHzsHvvEOkOtUmBjxUL+5rdH4/MNIaHbK8IFh2OovKhv2RbP2N+1vpSsQoiTXwSnlmXt2vbz7Za77+3W8vPvllP1GrjNs2Ll9QRYuXEhdXR11dXVs27WPq752I1VDhnLN1Ven7Pf7ijDsTIb+Bqy/KQ0UKguzOHNoIZpGZOFtlOc31QIw5/SKuMSKgYQ+oeuhKk3T+Cyy+PyUAWTonD26BIDVnzfGff7C5rCOLz1jsDkLkyaJygIXZXlOgqrGxshkeLCli1ZPALtNGjDJBOeMOtYD/9HeFjp8QQblOIxw7UBmzmnhch+vbqk3PtNDs7rha3Vm1kQM+J1RA/79iM7PqinJ2L2s19MDUlo3L8epYJMlgiEV2ZlNRUUFFRUV/OY3v2HdO2/y7N9fQ9M0zjvvPE499VTOOOMM/vKXv6SkL4kgDDsTEQyphkfH6gtvu+PSM8Ip4X/+5wHDfd7q8RuG3VVnWjeD7ERMGRZebK2/+R440sWRTj92m2QsUh4IXHxaBTZZ4uMDrYZHsrHdy+qt4VpXV0ysymT3Uo4kSZwzKmzcvhuZAHVjfmxFvuXDczrnRAz4D/ceoa0rvG70xYjxfv7YsgG9vk5nzmnhOm8f7DlCo9tLbWsXnx1yI0kwY0RxhnuXHGaMHIQswe6mTg61dqFpGqsihmwm10Ov2rOK2o7weDvYcZBVe1al5HdkSSLfFa5N1OoJFyC/++67+evTf+R/nnmZ08aMQlEUli9fztatW3n99de5/fbb6ezsPN5pU44w7EzE1jo3XYEQ+S6FEQNgkfXRXHXmEHIcNrbVtxsT/W/f2Y3HH+LUwfmcVTMw3nK748zIWpQ9TZ00dfjYdCA82Z86OH9AeSlL85ycG5n0//D+XgD+5909+IMqk4YWcnrVwDFie0I3et6JJATpiUFnjRo447umNJdTynPxB1X+9vEh2roC/P2TsCf+qskD9wUtlmGDcpgyLLyf6Mp1e3kh8oI6bXgxZfkDI7O/IMvOhEjIedWWerbWudnR2IFDkbko4rFMN7G7X0Dqd7soytYNuwB3330PK//wJP/zzMsMGzacHIeNwYMHM3Hiv/bqxQAAFrxJREFURAAqKiooKSnhyJEjxzlj6hGGnYnQM0anjSjGNgDfeAuy7fzrzPDOA/e8+Bn/8+5uHntnNwDfnz16QIfoCrLthmfuzW2NvL09PNlPGyBv9rHc9KWRAPzxw/08+Pp2fv/eHgBuO3/UgNaxzrmnlKLIEp8dcrOlto21EV3PGj1w1p1JksQ1U8KFax99exf3/m0r7b4go8tymTZ84I3pnvhWZKw/snYXD67+AoBrp1Yf7xDL8S+Twl72J9ft5b9fD8t44anlhicr3ejeOo1w1Eff7SJVXrscp0KWw8avl93H4ytX8sRfX6aqeijFOY5jnmcbNmwgFApRXZ3ZMSAMOxOhe7FmDNAEAoDvXzCakaU51Lu9/L+/f05Q1Zg/sdIIawxkLjk9LOP/fbCfNz4P6/r8sZl5600lZ40q4ZLTKwiENH715k6CqsblEyoHpKzdUZLr5IJxZQBc/uv3ONLppzzfOeCM+OumDaUi38XBli6e3XgQgDsuHntShGF15pxWzgVjy1A1CKkaE4YUcPmEyhMfaCHmT6qiJNfB3mYPb25rRJJg4ZdHZaQvR3vrdFLptZMkiSd/80ueefL3/OLX/wM2Oy1Nhwl2HMHn8xntjhw5wg033MDvfve7pPchUYRhZwI6fUF+9NdP+OfeFiQpuhZtIJLtUPjzt2dw2YRKTinP5Zbzavivr1h7+5neMn9SFUpk/ZnbG2T4oOwBN9nrPHjNRG6YOYyxFXl8+9yRPHD1GZnuUlr5zqwaJAnUSCWGb50zcsDUpdTJcSr87obJVBdn4bLL3HnJWC489eQw3nUkSWLF9Wfyn3PHsejCU/jDN6cPOD3nuewsv3YS+S4Fu03i3stPy1hy39HeOp1Ueu00TeOhX/43Lc1NfP2Ki7hg8ljOm3QK1UOq+OSTTwDw+XzMnz+fxYsXc9ZZZyW9D4kiaaksAjNAcLvdFBQU0NbWRn5+8gf0kU4/Z/5sNQBfmTyEZVefHIbOyciDr2/nV2/uRJbgt1+fctJNhCcTz3x0gCf+sZezagax+JKxA27Cj0VVtZPKU3cy4g2EUDWNbEffdyL1er3s2bOHESNG4HIltg4xqAa59PlLOdRx6BjDDsJeu6rcKv525d9Q5PTtlqppGl/72tcYM2YMP/nJT/p1ruNdn0TsELFXrAlw2WW+c+5ISvOc/OuMYZnujiCF/PuFp3De2DLyXfYBU79O0D3XTKk21qENdIRRN/DJdJLXpsZNRiZsd+heu02Nm5haMTVt/frHP/7B008/zRlnnMELL7wAwJNPPsn48ePT1oejEYadCch2KNw5d1ymuyFIA5IkGRmyAoFAIOgdE0onsGzWMvwhf49tHDYHE0rTG/E655xzUNVjt1DMJMKwEwgEAoFAYGocNgdzhs/JdDcswcBd9CEQCAQCgUBwkiEMO4FAIBAIBIIBgjDsBAKBQCAQCAYIwrATCAQCgUAgGCAIw04gEAgEAkHaEOVzuydZ10UYdgKBQCAQCFKO3R7eX9bj8WS4J+ZEvy76deorotyJQCAQCASClGOz2SgsLKSxsRGA7OxsJEkUt9Y0DY/HQ2NjI4WFhdhs/SsGbUrDbsWKFTzwwAPU19czYcIEHn74YaZNm9Zt20AgwNKlS1m5ciW1tbWMGTOG+++/n4svvthos3TpUp577jm2bdtGVlYWZ511Fvfffz9jxoxJl0gCgUAgEJz0VFRUABjGnSBKYWGhcX36g+kMu6effppFixbx6KOPMn36dJYvX86cOXPYvn07ZWVlx7S/6667eOqpp3jssccYO3Ysr732GldeeSXvv/8+kyZNAuDtt9/m1ltvZerUqQSDQX784x9z0UUXsXXrVnJyctItokAgEAgEJyWSJDF48GDKysoIBAKZ7o5psNvt/fbU6UiayVYxTp8+nalTp/LrX/8aAFVVqa6u5rbbbmPx4sXHtK+srOQ///M/ufXWW43PrrrqKrKysnjqqae6/Y3Dhw9TVlbG22+/zbnnnnvCPiWy+a5AIBAIBAJBMknEDjFV8oTf72fDhg3Mnj3b+EyWZWbPns26deu6Pcbn8+FyueI+y8rK4r333uvxd9ra2gAoLi7u8ZxutzvuTyAQCAQCgcDsmMqwa2pqIhQKUV5eHvd5eXk59fX13R4zZ84cHnzwQXbs2IGqqqxevZrnnnuOurq6bturqsrtt9/O2Wefzemnn95tm6VLl1JQUGD8VVdX908wgUAgEAgEgjRgKsOuLzz00EOMHj2asWPH4nA4WLhwIQsWLECWuxft1ltvZcuWLfz5z3/u8Zx33nknbW1txt+BAwdS1X2BQCAQCASCpGGq5ImSkhJsNhsNDQ1xnzc0NPSYKVJaWsoLL7yA1+ulubmZyspKFi9ezMiRI49pu3DhQl5++WXeeecdhgwZ0mM/nE4nTqfT+Le+DFGEZAUCgUAgEKQb3f7oTVqEqQw7h8PB5MmTWbNmDfPnzwfCodM1a9awcOHC4x7rcrmoqqoiEAjw7LPPcs011xjfaZrGbbfdxvPPP8/atWsZMWJEQv1qb28HECFZgUAgEAgEGaO9vZ2CgoLjtjGVYQewaNEibrzxRqZMmcK0adNYvnw5nZ2dLFiwAIAbbriBqqoqli5dCsAHH3xAbW0tEydOpLa2lp/85Ceoqsodd9xhnPPWW2/lj3/8Iy+++CJ5eXnGer2CggKysrJO2KfKykoOHDhAXl5eyooput1uqqurOXDgwEmdeSuuQxRxLcKI6xBFXIsw4jpEEdciykC+Fpqm0d7eTmVl5Qnbms6wu/baazl8+DD33HMP9fX1TJw4kVdffdVIqNi/f3/c+jmv18tdd93F7t27yc3NZe7cuTz55JMUFhYabR555BEAzjvvvLjfevzxx/nGN75xwj7Jsnzc0G0yyc/PH3ADsi+I6xBFXIsw4jpEEdcijLgOUcS1iDJQr8WJPHU6pjPsILwWrqfQ69q1a+P+PWvWLLZu3Xrc85msVJ9AIBAIBAJBSrB8VqxAIBAIBAKBIIww7EyC0+lkyZIlcdm4JyPiOkQR1yKMuA5RxLUII65DFHEtoohrEcZ0W4oJBAKBQCAQCPqG8NgJBAKBQCAQDBCEYScQCAQCgUAwQBCGnUAgEAgEAsEAQRh2aWTFihUMHz4cl8vF9OnT+fDDD4/b/i9/+Qtjx47F5XIxfvx4XnnllTT1NHUsXbqUqVOnkpeXR1lZGfPnz2f79u3HPeaJJ55AkqS4P5fLlaYep4af/OQnx8g0duzY4x4zEMcDwPDhw4+5FpIkceutt3bbfqCMh3feeYfLLruMyspKJEnihRdeiPte0zTuueceBg8eTFZWFrNnz2bHjh0nPG+izxkzcLxrEQgE+NGPfsT48ePJycmhsrKSG264gUOHDh33nH25xzLNicbEN77xjWNkuvjii0943oE2JoBunxmSJPHAAw/0eE4rjom+IAy7NPH000+zaNEilixZwsaNG5kwYQJz5syhsbGx2/bvv/8+1113Hf/2b//Gpk2bmD9/PvPnz2fLli1p7nlyefvtt7n11ltZv349q1evJhAIcNFFF9HZ2Xnc4/Lz86mrqzP+9u3bl6Yep47TTjstTqb33nuvx7YDdTwA/POf/4y7DqtXrwbg6quv7vGYgTAeOjs7mTBhAitWrOj2+//6r//iV7/6FY8++igffPABOTk5zJkzB6/X2+M5E33OmIXjXQuPx8PGjRu5++672bhxI8899xzbt2/n8ssvP+F5E7nHzMCJxgTAxRdfHCfTn/70p+OecyCOCSDuGtTV1fH73/8eSZK46qqrjnteq42JPqEJ0sK0adO0W2+91fh3KBTSKisrtaVLl3bb/pprrtHmzZsX99n06dO173znOyntZ7ppbGzUAO3tt9/usc3jjz+uFRQUpK9TaWDJkiXahAkTet3+ZBkPmqZp3//+97WamhpNVdVuvx+I4wHQnn/+eePfqqpqFRUV2gMPPGB81traqjmdTu1Pf/pTj+dJ9DljRo6+Ft3x4YcfaoC2b9++Htskeo+Zje6uw4033qhdccUVCZ3nZBkTV1xxhXb++ecft43Vx0RvER67NOD3+9mwYQOzZ882PpNlmdmzZ7Nu3bpuj1m3bl1ce4A5c+b02N6qtLW1AVBcXHzcdh0dHQwbNozq6mquuOIKPvvss3R0L6Xs2LGDyspKRo4cyfXXX8/+/ft7bHuyjAe/389TTz3FN7/5zePuyzwQx0Mse/bsob6+Pk7nBQUFTJ8+vUed9+U5Y1Xa2tqQJClu68juSOQeswpr166lrKyMMWPGcMstt9Dc3Nxj25NlTDQ0NPD3v/+df/u3fzth24E4Jo5GGHZpoKmpiVAoZOx3q1NeXk59fX23x9TX1yfU3oqoqsrtt9/O2Wefzemnn95juzFjxvD73/+eF198kaeeegpVVTnrrLM4ePBgGnubXKZPn84TTzzBq6++yiOPPMKePXv40pe+RHt7e7ftT4bxAPDCCy/Q2tp63D2cB+J4OBpdr4novC/PGSvi9Xr50Y9+xHXXXXfc/UATvceswMUXX8wf/vAH1qxZw/3338/bb7/NJZdcQigU6rb9yTImVq5cSV5eHv/yL/9y3HYDcUx0hyn3ihWcHNx6661s2bLlhGscZs6cycyZM41/n3XWWYwbN47f/va3/OxnP0t1N1PCJZdcYvz/GWecwfTp0xk2bBjPPPNMr946Byr/+7//yyWXXEJlZWWPbQbieBD0jkAgwDXXXIOmaTzyyCPHbTsQ77GvfvWrxv+PHz+eM844g5qaGtauXcsFF1yQwZ5llt///vdcf/31J0yiGohjojuExy4NlJSUYLPZaGhoiPu8oaGBioqKbo+pqKhIqL3VWLhwIS+//DJvvfUWQ4YMSehYu93OpEmT2LlzZ4p6l34KCws55ZRTepRpoI8HgH379vHGG2/wrW99K6HjBuJ40PWaiM778pyxErpRt2/fPlavXn1cb113nOgesyIjR46kpKSkR5kG+pgAePfdd9m+fXvCzw0YmGMChGGXFhwOB5MnT2bNmjXGZ6qqsmbNmjjPQywzZ86Maw+wevXqHttbBU3TWLhwIc8//zxvvvkmI0aMSPgcoVCITz/9lMGDB6egh5mho6ODXbt29SjTQB0PsTz++OOUlZUxb968hI4biONhxIgRVFRUxOnc7XbzwQcf9KjzvjxnrIJu1O3YsYM33niDQYMGJXyOE91jVuTgwYM0Nzf3KNNAHhM6//u//8vkyZOZMGFCwscOxDEBiKzYdPHnP/9Zczqd2hNPPKFt3bpV+/a3v60VFhZq9fX1mqZp2te//nVt8eLFRvt//OMfmqIo2rJly7TPP/9cW7JkiWa327VPP/00UyIkhVtuuUUrKCjQ1q5dq9XV1Rl/Ho/HaHP0tfjpT3+qvfbaa9quXbu0DRs2aF/96lc1l8ulffbZZ5kQISn84Ac/0NauXavt2bNH+8c//qHNnj1bKykp0RobGzVNO3nGg04oFNKGDh2q/ehHPzrmu4E6Htrb27VNmzZpmzZt0gDtwQcf1DZt2mRkev7iF7/QCgsLtRdffFH75JNPtCuuuEIbMWKE1tXVZZzj/PPP1x5++GHj3yd6zpiV410Lv9+vXX755dqQIUO0zZs3xz03fD6fcY6jr8WJ7jEzcrzr0N7erv3Hf/yHtm7dOm3Pnj3aG2+8oZ155pna6NGjNa/Xa5zjZBgTOm1tbVp2drb2yCOPdHuOgTAm+oIw7NLIww8/rA0dOlRzOBzatGnTtPXr1xvfzZo1S7vxxhvj2j/zzDPaKaecojkcDu20007T/v73v6e5x8kH6Pbv8ccfN9ocfS1uv/1247qVl5drc+fO1TZu3Jj+zieRa6+9Vhs8eLDmcDi0qqoq7dprr9V27txpfH+yjAed1157TQO07du3H/PdQB0Pb731Vrf3gi6rqqra3XffrZWXl2tOp1O74IILjrk+w4YN05YsWRL32fGeM2bleNdiz549PT433nrrLeMcR1+LE91jZuR418Hj8WgXXXSRVlpaqtntdm3YsGHaTTfddIyBdjKMCZ3f/va3WlZWltba2trtOQbCmOgLkqZpWkpdggKBQCAQCASCtCDW2AkEAoFAIBAMEIRhJxAIBAKBQDBAEIadQCAQCAQCwQBBGHYCgUAgEAgEAwRh2AkEAoFAIBAMEIRhJxAIBAKBQDBAEIadQCAQCAQCwQBBGHYCgUAgEAgEAwRh2AkEAoFAIBAMEIRhJxAIBAKBQDBAEIadQCAQDCAmTJiAJEnH/NXX12e6awKBIA0Iw04gEAiSzIoVKxg+fDgul4vp06fz4YcfpuSY7li9ejV1dXWsWbOGUaNGkZeXxz333ENFRUWfzicQCKyFMOwEAoEgiTz99NMsWrSIJUuWsHHjRiZMmMCcOXNobGxM6jE9UVZWxksvvcTcuXOZNm0aO3bs4Kc//Wl/RBIIBBZC0jRNy3QnBAKBIB18+OGH3HHHHXzwwQcMGzaMp556io0bN/Lyyy/z0ksvJeU3pk+fztSpU/n1r38NgKqqVFdXc9ttt7F48eKkHdMTy5cvZ/Hixfzud7/jhhtu6J8wAoHAcgiPnUAgOClYv349s2bNYt68eXzyySeMGzeOe++9l/vvv/8Yj9Z9991Hbm7ucf/2799/zG/4/X42bNjA7Nmzjc9kWWb27NmsW7eu23715ZieWLduHT/84Q95+umnhVEnEJykKJnugEAgEKSDRYsWcfXVV/PDH/4QgOuuu47rrruOK664gkmTJsW1vfnmm7nmmmuOe77KyspjPmtqaiIUClFeXh73eXl5Odu2bev2PH05pie+973vccstt3DFFVckdJxAIBg4CMNOIBAMeA4ePMi6detYtmyZ8ZmiKGia1u36s+LiYoqLi9PZxX6zY8cOPvroI5577rlMd0UgEGQQEYoVCAQDns8//xyAM8880/hs+/btTJs2jfHjxx/Tvq+h2JKSEmw2Gw0NDXGfNzQ09JiV2pdjumPdunWUlJRQXV3d62MEAsHAQxh2AoFgwNPW1obNZkOSJACOHDnCsmXLyM7O7rb9zTffzObNm4/7110o1uFwMHnyZNasWWN8pqoqa9asYebMmd3+Vl+O6Y5AIIDP58Pr9fb6GIFAMPAQoViBQDDgmThxIqFQiP/6r//i6quv5vvf/z7Dhw9n69at7Nu3j2HDhsW1708odtGiRdx4441MmTKFadOmsXz5cjo7O1mwYIHR5te//jXPP/+8Ycz15pgTcd555+H1elmwYAE/+MEPGDNmDHl5eX2SQSAQWBfhsRMIBAOeUaNGce+99/LQQw8xadIkKisref3116mqquLiiy9O6m9de+21LFu2jHvuuYeJEyeyefNmXn311bjkiKamJnbt2pXQMU888YThceyOmpoaXnzxRXbv3s2XvvQlCgoK+PGPf5xU2QQCgfkRdewEAoHAAixZsoS3336btWvX9qr9ihUr+PnPf86hQ4dS2zGBQGAqRChWIBAILMCqVauMAsYnorW1lY8++ohp06aluFcCgcBsCMNOIBAILEAie8f+8pe/pLa2lieeeCJ1HRIIBKZEhGIFAoFAIBAIBggieUIgEAgEAoFggCAMO4FAIBAIBIIBgjDsBAKBQCAQCAYIwrATCAQCgUAgGCAIw04gEAgEAoFggCAMO4FAIBAIBIIBgjDsBAKBQCAQCAYIwrATCAQCgUAgGCAIw04gEAgEAoFggCAMO4FAIBAIBIIBgjDsBAKBQCAQCAYI/x/XCrXFmC8O+gAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnYAAAHWCAYAAAD6oMSKAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOy9d5xc1Xn//7532u5sX2nVVxIqIEQRICxECyVgIWS5xMbBTmzcvwRQgkmMQ+wEx0lMXGPHgB0H22D7lzhuYGwkQHRjRBNamiTQqku76rs7Mzt97v39cefcuSNtmdm9dfZ+Xi9etmbPzD2f+5zynKcdSVVVFR8+fPjw4cOHDx+eh+x0B3z48OHDhw8fPnyYA1+x8+HDhw8fPnz4qBH4ip0PHz58+PDhw0eNwFfsfPjw4cOHDx8+agS+YufDhw8fPnz48FEj8BU7Hz58+PDhw4ePGoGv2Pnw4cOHDx8+fNQIfMXOhw8fPnz48OGjRuArdj58+PDhw4cPHzUCX7Hz4cOHDx8+fPioEfiKnQ8fPnz48OHDR43AV+x8+Jjg+NnPfoYkSUP+d9VVVw35nXvvvRdJkti1a5e9na0SXunnl770JSRJ4siRIxV/52tf+xqLFi1CURT9s7lz5/KlL31pXH0Z6je+//3vM3v2bDKZzLh+2y5Y9R5g6PcOo88jr73DdDpNKBSitbV13O/Sh73wFTsfrofYnF9++eWqv/vcc8/xpS99if7+fvM75gCs4HPmmWfy05/+lJ/+9Kfce++9LF26FGBExc6Hs4jFYnz1q1/l85//PLI8+jL+yCOPnKBsNDc3s2zZMh544IFRv/+xj32MbDbLf/3Xf5nQ++Fh5Xwd7zuAkd/7aPPIrncIkEgkuP3227nqqqtob29HkiTuvffeYdsrikJHRwdf+9rX9M/y+Tz33HMPc+bM4ctf/jKHDh2yvN8+zIGv2PmoaTz33HP88z//c00pdmbzOfPMM/nLv/xLLr30Uv7rv/6LjRs3ctFFF7Fx40ZuvvnmIb/zkY98hFQqxZw5c0zrhxXwSj+rxY9+9CPy+Twf+tCHKmr/6quvAvCf//mf/PSnP+W+++7j85//PLt37+aaa65h69atI36/rq6O6667jm9961uoqjru/g8HK+freN8BjPzeR5tHdr1DgCNHjvDlL3+ZLVu2sGTJklHbv/jiixw5coRVq1bpnzU2NnLddddx6623oqoqr732mpVd9mEigk53wIcPL2JwcJCGhganu2Ea3njjDd75zndy9OhRvvOd77BmzRokSRq2fSAQIBAI2NjDscHsfrpF7j/+8Y9597vfTV1dXUXtX3vtNVpbW1mzZk3Z55MnT+b666+nq6uLRYsWjfgbH/zgB/na177Gk08+yeWXXz7mvjsFM97BaO99tHlk1zucPn06vb29TJs2jZdffpl3vOMdI7Zfu3Ytc+bM4bTTTjvhb+KzLVu2cMUVV1jSXx/mwrfY+fAcRDxSd3c3H/vYx2htbaWlpYWPf/zjJJPJsnaf+9znADjppJN094uIt9q/fz+f+MQnmDp1KpFIhNNOO40f/ehHwz5v8+bNfPjDH6atrY2LLroIgHg8zs0338zcuXOJRCJMmTKFK6+8kldeeUX/fqXP2b9/P5/85CeZMWMGkUiEk046ib/6q78im82OyqeSfgyHXbt2ccUVV5DJZHj66af567/+6xGVOhg6dq1SuYyESt6VeM7WrVv54Ac/SHNzM5MmTeJv/uZvSKfTo/bzqaee4txzz6Wuro758+fzX//1X/pvDvWcoeS+e/dubrjhBk455RTq6+uZNGkS11xzzQmxfNX0FaC/v3/Ud7dz505ee+21qjbZV199lXPOOeeEzw8cOADAqaeeOupvLF26lPb2dn7729+O2nYs43G0+TpejPcdjPbeK5lH1bzD8SASiTBt2rSK2z/00ENl1jojxDjdvHmzKX3zYT18i50Pz+KDH/wgJ510EnfccQevvPIK99xzD1OmTOGrX/0qAH/2Z3/G22+/zf/+7//yH//xH0yePBmAjo4ODh48yPLly5EkiZtuuomOjg7WrVvHJz/5SWKx2JAuyGuuuYaFCxfyla98RXelXH/99fzqV7/ipptuYvHixRw9epRnn32WLVu2cM4551T8nJ6eHpYtW0Z/fz+f+cxnWLRoEfv37+dXv/oVyWSScDg8Ip/PfOYzI/ZjOCiKwoc//GEGBwd55plnOPvssy2Xy3CoViYf/OAHmTt3LnfccQfPP/88//mf/0lfXx8/+clPhn3Gpk2buOqqq5g+fTr//M//TKFQ4Mtf/jIdHR3Dfmcoub/00ks899xzXHvttcyaNYtdu3bxve99j0svvZTNmzcTjUbH1NdK3t1zzz0HMKJcjchms7z11ltccsklenJGX18fjzzyCF/96le56aabKnLXiWf+8Y9/HLXdaPNiKIw0vscLM97BSO+9mnk02jvM5XIMDAxUQov29vaKYixHwoEDB9i0aRNf/vKXh/z73/7t3wKaxc6HR6D68OFy/PjHP1YB9aWXXlJVVVVvv/12FVA/8YlPlLV73/vep06aNKnss69//esqoO7cubPs809+8pPq9OnT1SNHjpR9fu2116otLS1qMpnUPxPP+9CHPnRC31paWtQbb7xx2L5X+pyPfvSjqizLOkcjFEUZlc9o/RgO9913nwqoP/rRj6r6npCJsR/VyGUoVPquxHPe/e53l7W74YYbVEB99dVXh+3n6tWr1Wg0qu7fv19vs23bNjUYDKrHL4cjyd04PgQ2bNigAupPfvKTE35jtL5W8+6++MUvqoAaj8dP6MOcOXPU22+/veyzTZs2qcAJ/4VCIfXb3/52Rb8h8JnPfEatr68f8m9GjHU8Dje+q8XxHKp9B0P9xkjvvZp5NNo7fPLJJ4fs61D/VfKeXnrpJRVQf/zjHw/59x/+8IdqfX39kGP6pz/9qQqoU6ZMUadMmTLqs3y4A74r1odncf3115f9++KLL+bo0aPEYrERv6eqKr/+9a9ZvXo1qqpy5MgR/b8VK1YwMDAwpMvo+OcBtLa28sILL9DT0zPm5yiKwgMPPMDq1as599xzT/id0dyio/VjJNx5552cccYZfPzjH6/qeyNhLHIZi0xuvPHGsn+L2Km1a9cO+YxCocBjjz3Ge9/7XmbMmKF/vmDBAlauXFkxH4D6+nr9/+dyOY4ePcqCBQtobW0dcuxU2tdK3t3Ro0cJBoM0NjYO22cjRND7fffdx/r161m/fj0/+9nPOOuss/j85z/Phg0bKvodgLa2NlKp1Kiu9bGOR6tgxjsY6b1XM49Ge4dLlizR+zjaf9W4W4fD2rVrueyyy8rGNGiZtZ///OdZuXIlH/3oRzl06BDHjh0b9/N8WA/fFevDs5g9e3bZv9va2gDNxdLc3Dzs9w4fPkx/fz8/+MEP+MEPfjBkm6FS+0866aQTPvva177GddddR2dnJ0uXLuXqq6/mox/9KPPmzav4OYcPHyYWi3H66acP2+fRMFI/hsORI0d4+eWXueOOO8b83KEwFrmMRSYLFy4s+/f8+fORZXnYmKxDhw6RSqVYsGDBCX8b6jOBoeSeSqW44447+PGPf8z+/fvLshyHcqNV2texjumR8OqrrxIMBvnQhz5EKBTSP7/00kuZNWsWd955J+eff35FvyV4jnbYGMt4tBJmvoPjUe08Gu0dtrW12ZakkMvlWL9+/ZB9/8pXvsKRI0f4zne+w7PPPgtocXYiztSHe+Erdj48i+GyHdVRSgmIwqJ/+Zd/yXXXXTdkmzPPPPOEz44/0YIWE3XxxRdz//338+ijj/L1r3+dr371q/zmN7/R42xGe85o/a0EI/VjOGvUli1bUFXVlLg6I8Yil7HKxIhKLJtjwVByX7NmDT/+8Y+5+eabOf/882lpaUGSJK699toTCtcOheH6Wsm7mzRpEvl8nng8TlNT06jPeu2115g/f36ZQgMwc+ZMotEo+/btG/U3BPr6+ohGo0O+EyPGMh6thBnvYLj3Xu08Gu0dZrPZii1jHR0d48r6fvbZZ4nFYlx99dVln2/fvp1vfetb/O3f/i0LFy6kr68P0Lj6ip374St2PmoaQ22gHR0dNDU1USgUTDkZT58+nRtuuIEbbriBQ4cOcc455/Bv//ZvPP300xU9R1EUmpubeeONN0Z91kjKy3D9GG4jHRwcHPU37cJYZLJt27Yya1p3dzeKojB37twh20+ZMoW6ujq6u7tP+NtQn42EX/3qV1x33XV885vf1D9Lp9PD1l+rtq8jQZTk2Llz56jKLmhKzQUXXHDC54cPHyaZTFblztu5c2dFGbRQ/XgE68aiGe9guPde7Twa7R0+99xzXHbZZRX/1ljGkMBDDz3E4sWLT/iNW265hY6ODr7whS8ApYxhPzPWG/Bj7HzUNETNMeOGGwgEeP/738+vf/3rIZWpw4cPV/TbhULhBLfblClTmDFjBplMpuLnyLLMe9/7Xn73u98NebuG0VozFJ/R+jEcxGL+m9/8ZmSiNmAsMrnrrrvK/v3d734XYFjFIRAIcMUVV/DAAw+UxX51d3ezbt26qvt7vAXyu9/9LoVCYcj21fZ1JAiXYSU3sRw4cIBDhw4NqUiITNv3v//9FT/7lVdeGVJBMqKS8ZhMJtm6desJV6gNNb5Hal8JzHoHw733aufRaO/Qzhi7tWvXnlDm5JFHHuHBBx/kG9/4hi6PpqYmOjs7/cxYj8C32PmoaYhrfb7whS9w7bXXEgqFWL16Nf/+7//Ok08+yXnnncenP/1pFi9ezLFjx3jllVd47LHHKnKFxONxZs2axQc+8AGWLFlCY2Mjjz32GC+99JJuyan0OV/5yld49NFHueSSS/jMZz7DqaeeSm9vL7/85S959tlnaW1tHZbPxRdfzCmnnDJiP4bCokWLWLFiBd///vc5ePAg73znO5k7dy6XX3454XB4PK99TKhWJjt37uTd7343V111FRs2bOBnP/sZH/7wh0csW/GlL32JRx99lAsvvJC/+qu/olAocOedd3L66afT1dVVcV/f9a538dOf/pSWlhYWL17Mhg0beOyxx5g0adKQ7cfS1+Ewb948Tj/9dB577DE+8YlPjNhW3LZw6NAhfvaznwFaTNijjz7KunXruPbaa7nmmmsqeu7GjRs5duwY73nPe0ZsV8m8ePHFF7nsssu4/fbby+4hHW6+vvTSS0O2rwRmvYPh3ns186iSd2hWjN2dd95Jf3+/foj53e9+p7uc16xZw7Fjx9iyZQvf+9739O/kcjluvvlmLrvsMv78z/+87PcWL17sK3Zege15uD58VInhyp0cPnx4yHbHlwD4l3/5F3XmzJmqLMtlfz948KB64403qp2dnWooFFKnTZum/umf/qn6gx/8oOz7wz0vk8mon/vc59QlS5aoTU1NakNDg7pkyRL17rvvLmtX6XN2796tfvSjH1U7OjrUSCSizps3T73xxhvVTCYzIp+33nqron4MhXg8rv7d3/2dOn/+fDUcDquAunLlylG/N1K5k0rlMhQqeVfiOZs3b1Y/8IEPqE1NTWpbW5t60003qalUatRnP/744+rZZ5+thsNhdf78+eo999yj/u3f/q1aV1dX9t3h+Kiqqvb19akf//jH1cmTJ6uNjY3qihUr1K1bt6pz5sxRr7vuuqr7Wu27+9a3vqU2NjaeUKLi+BIdX/va104okdHU1KReeOGF6g9/+MOyUjrD/YbA5z//eXX27NlDfseISuaFKOkx1HOGmq8jtR8KRg5jeQfDvYfh3nul86jSd2gG5syZM2KZlDvvvFNtaWlRc7lcGb9gMKi+8cYbJ/zeLbfcokqSNGS5Fx/ugq/Y+fDhQ8ff//3fq4B67Ngxp7syLEZSuMaK97znPeqCBQtM+z0BK/qqqqra39+vtre3q/fcc0/Z5yPVoKsUQ/1GOp1Wp02bNmzNN7fBqvcw3Hs/HkPNI7e9w5UrV6rXXHON093wYQH8GDsfPnzo6OjooL6+/oSbE2oJqVSq7N/btm1j7dq1XHrppc50aAxoaWnh1ltv5etf/3pFWbjjxY9//GNCodCQNf0mEip970PNI7e9w0svvZTPfvazTnfDhwXwFTsfPnwAWkD/l770JT760Y8SiUSc7o5lmDdvHrfddhv//d//zRe/+EWWL19OOBzm1ltvdbprVeHzn/88W7duHfeVUpXg+uuvZ8+ePTU9LirFaO99uHnktnd46623jrl2nw93w0+e8OHDBwA/+clP+PCHP8y3vvUtp7tiKa666ir+93//lwMHDhCJRDj//PP5yle+ckIRYR8+xoKJMo98uBeSqppQHdWHDx8+fPjw4cOH4/BdsT58+PDhw4cPHzUCX7Hz4cOHDx8+fPioEfgxdhVAURR6enpoampyxfVLPnz48OHDh4+JA1VVicfjzJgxY9SEKV+xqwA9PT10dnY63Q0fPnz48OHDxwTG3r17mTVr1ohtfMWuAjQ1NQHaC21ubna4Nz58+PDhw4ePiYRYLEZnZ6euj4wEX7GrAML92tzc7Ct2Pnz48OHDhw9HUEk4mJ884cOHDx8+fPjwUSPwFTsfPnz48OHDh48aga/Y+fDhw4cPHz581Ah8xc6HDx8+fPjw4aNG4Ct2Pnz48OHDhw8fNQJfsfPhw4cPHz58+KgR+IqdDx8+fPjw4cNHjcBX7Hz48OHDhw8fPmoEvmLnw4cPHz58+PBRI/AVOx8+fPjw4cOHjxqBr9j58OHDhw8fPnzUCHzFzocPHz58+PDho0bgK3Y+fPjw4cOHDx81Al+x8+HDR01CVVWOJDJOd8OHxVi/+SD3b9qHqqpOd8WHD1fAV+wmOHIFhdf29ZPM5p3uii0oKCo3/c8rnPGlR/jFy3ud7o5t2HlkkLWv95LOFZzuii1QVZU1/7uJc//1Mf593Vanu2MbBlI5th9OON0N2/DImwf49E9e5rP/9yq/3LjP6e7YBlVVKSgTS5FVlInHeazwFbsJDFVV+X8/3ci77/wj777zj6Sytb/pr329l9+/1ks8nefLv9vMQCrndJcsx7aDca7+zh+44f97hU/e99KEsGy8vLuP37/WC8APntnOoVja4R5Zj809MS766hP86Tef5qsPTwxl9lcGZe5/X9zjYE/sQ/ehBJd8/SnO+vKjrN980Onu2IJD8TRX/MfTvOPfHuO1ff1Od8f18BW7CYwN24/yxNZDgLZY/GZT7Z94Hypu9gCJTJ4ni/xrGXc92U2qaKn7Y/dRnu0+4nCPrIdxw1NUeOqtww72xh788+/eJJ7WLO/fe2p7zVvucgWF5wxjedOefgaStX9Q+/yvX2PPsSTxdJ6/++WrxNK1z/nuJ7ez4/AgxwazfGXtFqe743r4it0ExgNd+8v+/cibtX36Kygqz23XNoLz500C4Om3a3vDj6dzrH3jAABnzmoB4LddPU52yRZs2H4UgNntUQBe3n3Mye5Yjl1HBnlh5zFkCU6b0QzA/71U26EGu48OMpgt0BAO0NleD8Br+/ud7ZTF2NwTY+PuPgCi4QADqRy/e7W257Oqqqx7o3Qgf37HMQ7Fa98CPx74it0Exh+7tc3vi6tOBeCFHUfJ5GvXHbvnWJJYOk8kKPOZP5kHQNfefmc7ZTFe2nWMbF5hdnuUv79qEQB/2Ha4pt2xuYLCWwfjAHz4vNkAvNkTc7JLlmNdUXm/cMFk/urS+QA1b41++6BmkVwwtYmzOtsAeG3fgJNdshy/f01T4laePo2/+dOFAKx7/YCTXbIcbx9McDCWIRoOMK+jAYBXisqtj6HhK3YTFD39Kfb3pwjIEtcum01bNEQmr7DtYO26b94ubvYLpjTq1qudRwaJ17Ar4/kdmqXqgvmTOGdOG6GAxMFYhr3HUg73zDrsODxINq/QGAmy8vRpgCb7fEFxuGfW4cWd2iHtslOmcNGCycgSbDuUoHegduUs1qqFUxpZNK0JoObdz8/v0OR8+aIpXL5oCqAd3mo5KeqN/ZqyfvqMFt3TstFX7EaEr9hNULy0S9vwT5vRTGMkyOKi+2ZzDVs23j6gKXYnT21iUmOEGS11QG1bc17cqcn5vHnt1IUCnDFTU2g37qld1+TWA5o8F01rorMtSjgokyuo9PTXpvtGUVR9ozt3bhut0TCLpmnz+dUatkgLJW7hlEZOmqxZcnYcHnSyS5ZiMJPXLZLL501iwZRGpjRFyOQVNu3pd7ZzFkKsz4tnNHN6cf16u4YNEGbAV+wmKLYWlRyx0S+erm0Eb/bUrivj7UPaYnDyVO10f0qNn/IVReWtopzPnNUKwGkzNHkL+dci9hxNAnDS5AZkWaKzTYu/2n2sNjf97sMJYuk89aEApxbnsZjXr++v3fnc069ZI2e1RXUX3Y7DiZoNM3h9/wB5RWVGSx2d7VEkSeKc2ZoL+o0alvOWXk2xO21GM/M7GoHaXbPNgq/YTVAI65VQboSy013DE2b3UW1jF5vA3OIpf9eR2tzw9xxLksoViARl5k7SuJ5clHctu9z3HNMUu85i4sScInfxea1BbOpnzGohFNCW9NNnCcWudq3RQrGb3lqnj+9YOk9fjWbGbu0VlqsW/bMzZtW+Ai/m7byORuYX1+79/akJUZ5rrPAVuwmKtw+V3JJQ2vx2H63NzQ/QXXEzWzULjnDf7DxSm5yFVW7h1EYCsgTAyVO0E+9bNWyx29unyVNkxIr/3VOjY1u4pU4pzmUoZcYKZaDWUFBUDsa1W0VmtNRTFwrQ0RQBYH9fbcYVivl86vQT5VyrFrtsXqGnGCc6uz1Ke0OY1mgIVdXio30MDV+xm4AYzOT14Hmh2M2dpG1+Pf0psvnaCzLP5Av69VIzioqdOOXvOlqbC4SINTtlarP+mbDQ7u9PMZipzdtGxNgWJTDmFMd2rR5aug+VFHiB+ZO1/38oniFRg3I+FE9TUFSCsqQrdCJmtlYTRrYUFTsRPwnosdG7jg7WZALF/v4Uqgr1oQCTG8NIksSsYmiFsNj6OBG+YjcBIQKMJzeGaW8IA9DRFKE+FEBRYV9f7W2ABwY0a10kKNMWDQEli92eo0mUGryqRmQBi4xBgNZomJZ6jf/eGpRzNq/oG7twxQoLbW+N3j7xtp4dWpJzSzTEpOLcrsVQA2F9n9pcp1ujp7cU5TxQe3JWFPWE8BmAjsYITXVBFLU2Dy7CDTu7GFMIRjn7it1w8BW7CQgxWYT7FUCSJN1ltbsGY5GMbtjSAlGHLEG2oNTkZfFioRcxhQLCklWLJU96B1IoqqbAdzRqlpypzZolpxavFUtlC7qCfrLBYgcluddioLnY1Ge01umfTSta7HpqcMM/FM+QyhUIyJJugQZt3Z5XTCjYUYNyPj5eFkqW2Z4aVODNQtDpDviwH8ZTkJLNknjiCdRslmlZmbeQ6H76Bc55q2TBksJhGi+/HDkcdqrL44YeaN1SV8Z5ckjmUFZi2+8eJVI6CHues6qqekxZZ1t9uZxTMm8gse2ZF1nWXVtyFpbZqc0R4o88gprNEs0CBDg0kOLYbx8koOn1NcFXywKFtmiISY2RMjnPTEq8hMzWP77CpXs26t+pBd69xfk8tTFM7OGHUbNZ2vdLgMzeN7sZyG3T29YCXxEuMrO1nlBALpPz7LTEq8i8+YeXuWBnbc3nvcdKa5jAdGGB912xw8JX7CYgxAm/s62e1KYu9t/8WQAaz/wzmHcBO9Y9Ts+WR8q+M/u++2g4b5ntfTULT+7cBMjkA0fKOLf/yU0cap/Llnt+SnvvG2Xf8TLn/mSOeDG26vWBp5m5e6rOueW0d8HCS3nr8Wfpef3Bsu95mTPAI9ufA2QChWPsv/kfAShIMvK7/52CJLPln/6V9kwpccTrfO/f8gwg09KYBSgb220LL4PTVrHluS56Nv5P2fe8zvuF/VsAiYGBt9j/r/8KQHjmEnjHR9izdRc999xd1t7rfH+3VRvX0XpNwStbw06+HBZfzZZnX6HnlZ+Xfc/rvF/p2Q5IHMvvAE4DtMM5+Ba7keC7Yicg9hrM29Gl5xCaNQskiUlpLbPqSF1rqbEkEersJLr0HAd6ag7ySp5n97wOQHd8I+Gzz9Q5T05pnA/Xt5a+UAOcdx7VlBcpOMA9b9xdxnlaUitOfDDaXvpCDXDOK3l+v+0PAByR9yF3zgRJIqAqtKW193G0rhh4XiN8H3zrjwAcy28jr+TL5vPUopxrbWznlTwv7dcugt+qbNHlXKtzOa/keXibZnE9kH3jBDnPTGj3X+9vnFz6Uo3w3nxoHwAvHX6MvKIdVEXymx9jNzx8i10VKOQVCjWQMbrv6CCyCjNb6lCQab/xJnr/4QtMTsWRVTha34IiBfT27TfehIIMHuW+dsc6kkkJWYVk4QDrdq3noiLnjtQAsgpH6ttqivODm59DVmUCwWP0xHrLOE8Z7EdW4WB9e01xXrtjHbGEiqxCVj1M16f+hNO/9AuQYFI6Rl9dC0fq25gf0+7WrAW+A/GAxpde1navY9W8Vfp87kjFivO5tsb22h3rSKZkZBUS+QO6nNsz2ro2EGmiIAUoetxrgm88EUZWIcPeE+Q8NdmnrWF1tSfnbErjPZDbp/PuqNc+OxrLkM8V9JjpWkc1uoev2FWBTet30xhtGr2hi6GoMKs3z3QlSKqrj41b46jyafSdcQ0NhRDL00FawrPZNWcFIBFobiYhLUZat8vpro8Jiqrw2NYulvUvRMkFCR1bwOMPdNFx8p8zcMY1zAq0sTwdJNxyGrvmFKgVzvteOsTy9CxkGgntf2cZ52BGYXk6SCQ4vebk/I6jp1FIBwnGZvDc7mM0nXENaizOWfkGJqeDxKZdyK66OTXE91SUbJDgwEwef6CLKYtORSrOZyWZZXk6iCRNZuecq5CgZngv61+Emg8SOnYyz+UyNJ1xDbnEIMvTQSBI90mrCCmFmuH7jmNFvv1zT5BzYTCt8ZYmsX3uSgKqWjO8z0ucjaoECR85U+edV9D4puH5h3YSDkwMx2MiWXnt0YnxRnzoSGTyFBSVgCzRENH0ekmWiS5bRjSnxSwkQyLTTCW6bBmS7N1hsq2/m3g2hqpqJT6Qs8SyMbpjOzTO+SLnYG1xzmS1/ktyClDLOee0DOBMIERBkqkVzvFsDFUpBooX5Xxw6WxApT6vcU4FI9QWX80tJQVSxLIxtvV36/O5Pp9BVlVUSao53hw3nw8unU1QKRBUtFpu6UCYmuKrFNenIeQcKWR13to6Vhu8Y5kEqiLknNF5hwOyfsNK0r99Ykj4FrsqcPaVc2hubh69oYvx8u5jPP/yNma31/OOq+fqn6tXzuKNR+/iC3XnAbBm/1M0T+tg3k13IAW9OUzySp7bf3sTvTN7iSfPRQ3miU5/imDdIQ7Wb+Y3N/ySvj/8nOfrTmOKkuMzex4lNHNmTXDublhBgSnUTX2RUMsmJCSd8+6Hv83G0HJygRCfOvQCs9qjNcG5d2YviewpKHIL9VP/SKhxOwcb3+Sbj+V5bqDA89Om05br4f2FN2uCb8+MXuKD50MwT8OM9QQixzhYv5n7V9xP4MpZ7Hj422xXlnCwoZ0/6+tiYbRQE7x7Z/YSS5wPap6GGY8TCPfrcu5Wl3CgbhLv69vEwvp8TfDtmX6IePxSIE/DzIcJBFMnyHlPfjF7mqdx9cAbLIykaoL3/qlJEok/ASlP46y1yJKk89755i729WX57LmT9ftyax2xWOW3yHhT8g4hEJQJBL17CgI4lMiiSDCltb6cSzDMSTd+msgzaVKhOvoiDSxccwPBOu+myq/d/gj7kntRJYmCEgUJ1HCMgpxnb3IP63sf5+S/+DOUV+BIXROSkmdqjXAu5JtQJFDDfSiydqoVnP9kzQ20PTbAgYZJ9EWiLK0RzshQKDShSqCGB4py3svrn/kALT/agyJBfyRaMzJW1SiKGtHGdeSYPq4f3fsIq+evZuqaG5j0u930NrZzuK6ZqWs+VBu8CaFQ5B2Klcv50Tg9jZMYCNUzdc1HaoKvorShSICUQw3FKUicIOeO+7exq2Uah+pbmHrjx2uCd0GZhSKBFIyjBgoUKPFub2pnT3+KY6mc5/fkSlENz4nxRnzoOFgs0jqtue6EvzWvWkV7Qcs0SnTOo/nqq23tm5nIK3nu6roLCQm1EEUMdSmgZQRLSNzddTedq67Q2geCZOYuqBnOSl67HFwOlu6QFJyjK1cwSdVckwMza0jOqoxa0Iq1SsFiVjASP5Y30NaobXSxpkk1w1fJaZYKKRhDkrWMQSHjvJKnedUqpklaGZRj0+fWDG81XyzELOVA1vgJObcGtPcQmza7Zvgqec1LJAVjiDyBE+RcfA9Hps2pQd6l2DLBu71Bc9EeTWQd6afb4St2EwyigKuo0m6EFAzS0dEKgPLuP/OsKR9g06FN7E/sR0VFLRRvXggMIklaZpGKyr7EPrbEN9MY0Ip6Sh/7dE1wVgphPSZHCpXM94Jz17HXmTF7GgDpK1bWBGcVtbThU9AVeI3zfvIrlwAQnzKjZvgquVYApGC//nch402HNiEFg8w58xQA4udeUDO8xXyWAoO6oiPkHF6glfzIXnhp7fDVD2knzmUh53nnng7AwJnn1hBvbT7LBsVO8CZQLF9UgzcGmQHvjgAfY8KBWOmOxaEwpXMabD5IctGZdnbLdCzpWMI3LvkG2UKWbT3wnztgalOUL170Fb1NOBBmSccSJrf+kcTRJKl3XOBgj8cPwXnPkSz/9jbUh1Xu+JMvlbURnGcuisJzu4jNXuBMZ02CUc77jsJXu6G5XubfLv43vU04EGZW+Fy++vbz9ONdFxWU833mTfjlfjh9WiefHmJcA8w653TYv5lYxwynumwKjLzf2AP/tQtmtbZw63G8X93aydNP7SQxc65jfTUDRr5PvAb374clM+by8WHkPHf5ObDnVfqaO5zqsikw8l67UWLdAThv1mKuPY73pi3TeYKdNXkVpBnwFbsJhpFcsQCTivdrHhvM2dYnKxAOhFkxdwUAvx/sATYxp3USq+eff0LbjqYIu44mOTrobbO+4PyH3GHgRTrbmlg9/5Ih25buT/X2wmiU8x/VI8ALTGs+kbc42fencuQKip5V5zUY+b7V/RbQzVnT57J6/ulDtp/SpMn5cLx25Jzq2wu8xvxJU1g9v/xWhYO9uwA44nEXnZFv15bNwE6WzpjH6vmLh2w/teiBOejx+5CNvF98/Q1gN0tnLGT1/FPK2u3ftxPwvpytgjdXNx9jhrDYTWuJDPn3ycVYpKOD3t4IjDhWVNjaG4a21kwuKrNHPL75CZTuSx1aeQeY0qRxPhj39kZghJBzW/REObdGw8hFt11fsjY2g4OjWN9BO7SA9xU7I/rEfB5CzpMainO5hiw5pTW7ftg2QoH3+kHNCDFPW4eQs1jLa2Uumw1fsZtAUFWVg8WJP9xmMKk4YWopKLU/qVkf24oBt8dDV+xqhLNQ7KYPEUcpMKmxFuU8vGIXkCX981rhfLCorAklfSiIvx2qIcVuIKXN55boifNZbPjHamjDPzgwspcFYGqzJud4Jk8ym7elX1ZjpHW7tSh70cZHOXzFbgKhL5kjW7yWRJzwjsekxto78YqNoLl+NMWuNjgfGMXdDiXLxjGPu5+NEOEDwynwQpmtFc6HinKeUoHFLpktMJipkQ1fKHZDzGch+1ra8EfzsgA0RoJEw9p1YrVitRPzdCiLnfhMrO0+yuErdhMI4tLkyY1hwsPUxNEtOTWy+YHhhD+cYtekca4ZxW5gdNdNe2PJlaGqqi39shp9I1jsoGTNqRU5CyucsNYMhQbDhl8r7lgxn1uHUuyKsu9PZlEU749rVVV1RW0kl7skSaXwCo/H2QmMZIEXsu+vIcusmfAVuwmESmJyhCWnltLIR1Xsiha7wzXiousdGP2EL+KTcgWVeK1YckZR7IQ1uhZcsZl8QbdoTB3G+i5Qa+7YgeTwrljholNUiKe9P65j6TzZguZlEevUcBCW21qRc59wxY4g58FsQfdC+SjBV+wmEA4MaBN+RBedbsnJkS/UxoSpVLGrleSJQ3rs1fByrg8HqA9plpxjNaDoABzTY3KGUewaascVK6xv4YCsb3LDodYSKEoWuxPlHAkGdAtlf8r7chYH7MZIkLrifB0O4sBeCxa7dK5AKqfdmDPUfG6qC+k1DH137IlwlWL3zDPPsHr1ambMmIEkSTzwwAMjtu/t7eXDH/4wJ598MrIsc/PNNw/Z7pe//CWLFi2irq6OM844g7Vr15rfeQ/gUHz0mByjtaNWJkxsFMVOWDSOJDKed0sWFJVjxYzmjhGC6qH2As1LFruh5SzcN7UwrkUSVEdTBEnscMOgVPLE+xs+jB4zK+TcVwNxdiIkRhy4R8LUGrLMihjJoCzRFDmxKltAlmiuE/O5NtYvM+EqxW5wcJAlS5Zw1113VdQ+k8nQ0dHBF7/4RZYsWTJkm+eee44PfehDfPKTn2TTpk28973v5b3vfS9vvPGGmV33BERsUccIi4Q2YbSJ1F8DGyCUFonhFDuh4GTyCslswbZ+WYG+ZBYRWjRceRcBPZmgVix2IwRbA7SI+KsaGNdCSRspvk6go4Y2fCgp8MPNZyH/WiiFISx2k0aZywBTmmsnxq5U6iQ07MGlzc+MHRauKlC8cuVKVq5cWXH7uXPn8p3vfAeAH/3oR0O2+c53vsNVV13F5z73OQD+5V/+hfXr13PnnXfy/e9/f/yd9hBEbNHkUSw5rdEwsXS+ZibMaK7YaDhAOCiTzSv0JbM0DHFC9AqE8t4WDY1ahFdYZ2vBNQmlBX44hbaWAq5HK1tkRC3V/CoopZjQ4VzQpcxY7/MVJZgmjRJfB7VVy26kGnYCLdEwHE3WhGXWbLjKYmcFNmzYwBVXXFH22YoVK9iwYYNDPXIOYtMfLQhXLJi1YOLO5hU9VmM4xU6SJP301+fxGzd05b2CjWBSDblis3mFRHHDH84VW0ulMES8XCVybquh2MJ4OoeIlhjVYufxuQzG+Ty6xa6Wyvn0j5A4IVBLBzWz4V3TRIU4cOAAU6dOLfts6tSpHDhwYNjvZDIZMpnSqScWiw3b1kvQT3+jmPVb6mtnAzTGUzXVDb9ItEXDHIxlPK/kVKq8gyHGriY2Ao2DLKHH3hyPlnrhivU+32pir9prSNER87khHBjWIl1y0dWCnIUrtpKDWqTsO17GaGEV2t9qJ2bWbNS8xW4suOOOO2hpadH/6+zsdLpLpkBkfVbiioXaUuya6oIE5OGDzIWS4/XN4HCFMoZSLbtaKP8h3DGt0TDyMHKupWr1IkGmEhddLSXJjBYvC6UQg1pw0R1NVK7AGysaeL2G32iJUGC02Hlfzmaj5hW7adOmcfDgwbLPDh48yLRp04b9zm233cbAwID+3969e63upuVI5wp6bMqorlgxYWrgJDRafJ1ArcSbHanCddOuc/b+CV9sBEMVrRUQf4un854v5XO0Qus71JZldrSMWDAcTGtg/RIW+EoUeLGGFRTV81asUg27UWLsqA0LvNmoecXu/PPP5/HHHy/7bP369Zx//vnDficSidDc3Fz2n9chXDfhgKxnvQ4H3cRdAyf80UqdCIj4qz6Pb37VuGJraQOMFYvRjrThG8dAzOPFa4WSVoliZ0wmKHjckqPXsBvBklNbrtjiQa0COYeDpbXd6+7YSpInaqmsjdlwVYxdIpGgu7tb//fOnTvp6uqivb2d2bNnc9ttt7F//35+8pOf6G26urr07x4+fJiuri7C4TCLFy8G4G/+5m+45JJL+OY3v8mqVav4+c9/zssvv8wPfvADW7k5DeGGndQYHrXuVcsEtNi114j7pqTYjb4R1FKMSqwCS04wINNUFySeztOfzI5aDsbNKFlyKlDsimNbUbX3NFwBZy9gpHtiBcS4roUs4KNVWOxEu1g6z9FElgVTrOyZtShluI9+UIvVwPplNlyl2L388stcdtll+r9vueUWAK677jruvfdeent72bNnT9l3zj77bP3/b9y4kf/5n/9hzpw57Nq1C4ALLriA//mf/+GLX/wi//AP/8DChQt54IEHOP30060n5CLoQbgVbfi1F2M3mmInOHs9DqmarNhaWhhj6aJiV4E1Op7Oe1qBz+YV3eJYSVB9yKDQHktmPa3YxUa4dUKgVrJi8wVFH6eVrNugWXB3Hhn0vNu9EotdU3Gu18LVcWbDVYrdpZdeOmLl/3vvvfeEzyq5KeCaa67hmmuuGU/XPI8j8co3/IkYY1cryRPVuGKN2c+qqo5qyXUzYqnRXbGgKQR7SXm6lI/Y9AKyNOq4FmhvCGsK7WAWOqzsnbXQixOP6IqtjbksDpmSNHKsmRFiHTviccVO3Ac8Usxssx4z6/19ymzUfIydDw2Hq4q9qp0Yu4qTJ/QAc+8uEqqqVlyEGkpyziuq52/cKFnsRrPMej+TTsi4LRoaNgP4eNRKclAl81koA4PZAjkPJ8mU5BweMaPfiFq5TUafzyPIWVjsvB4vawV8xW6CoJqYHH3zqwGLXSWxV4ChQLF3F8RYKk+2uJFVElRfHwoQCmgbhtfj7GKGsjYjoRZqNFZT20ygVm6fqKTciXEMeNlNV0mR3uNRK7XsKkmGEoc432J3InzFboJAnP46KnLRaZvAQMr79ZDEbQSjbfhthvslK3HvuxHCKttUF6QuFBi1vSSVXHmeV+wqOOFDbRxahNWtmuQPMb6PevjgApXJORiQaSxeC+jlcS3CBUaKMzseYkx4Wc7pXIFsXjugjrRuC8UunVP09j40+IrdBMFYYq9U1dsnXigpdg3hURS74oKYMVxB5jUIGVeivAs014AFC0rjdLTkiVqIvzpSRdFaAb14rYc3fCjJebSDmhgHXk4M6qsgzux41IIrVshYkqBxhHW7scwy6105WwFfsZsgqMYVGw7KRMOaxcfrxR+FYtc4ykbQEA4QLl5R5NU4pGqq1Au0TjCLXS24YvVbJ8ZgsfNyDClUrsCLcRDz8Ibfb7hNpVLUgitWyKwxEhwxhjQgSzQU9ymvGyDMhquyYn1YhyOjlMFQslkSTzyBmtXaNSCTRKL3kcdpbdTaSOEwjZdfjhz2TrmERFpY7E50TR7PuSUgc7ggsW/dYzR5kLNe82qUDd/IuyEmAxIHNrzEwI6SC9pLvMGQFRs5cUkz8o0ckgCZI7v3M/Bg6UYZL/EVc3k0V6yRd91BjfehHXsZeHC33sZLvMFwUBtFzg3J4rj+wwYGtpTaeIlv6TaVkbdpI+/wIECAI8fiDDz4oN7GS7yFklYfVkfN1m+uDzGYLXhagbcCvmI3AVBQVH2RGG7TT23qYv/Nn9X/XXf556B5Krvu/gEtR7brn8++7z4azltmbYdNxJHBOCDRdfR5Llq4uuxvx3NuuOwWDrfMoPt7P6Tl8Nv6517h/ML+1wGZWOHAiO2MvINLPwSdS9n324fo6X66rJ1XeAMcGRwEJF458keWzh1ezvlpi2H5Jziycy899/5nWTuv8N18aA8g0ZN6Czh52HZG3oXpp8N5H+PI9t303HtnWTuv8FZVlYFUBpB44eDTnDJteDmHzvsYTD+dPf/3G3p2v1DWzit8Xzu4HZA4kN4BnDZsOyPvdF0LXPWPDGQU9t/6eYwqkVd4C/f5kcw+fr/j96yev3rYtk11QXoHfIvd8fBdsRMAsVQOkQMxnFk/uvQcQrNmaYENQEM+BcBgqE5rIEmEOjuJLj3H8v6ahbySZyCtWbF+0/0/5JXyyX8855ZsEoBYpEFr4CHOeSXPc3tfA+CtgY0ncDXCyLupyDkeqi818BBvgFwhRzKjDfD/23bviHIWfGPhaKmBh/jmlTzdRzTF/dkDD1cu55w2nxNh78p5MJuloGhz9Wdv/feIcm7IpbXveHRc55U8rx/cAcDGI89ULOfm7CAABTlAMlj0zniIN0BfUluzpUCKu7vuHpF7U13tFFk3E77FrgoU8goFD2bfHImlkVVoigQJwDAcZNpvvInef/gCSNCYyyCrMBhqQJE0N2b7jTehIINH3sFD29dBPowMHE7uY233OlbNW2VoUc65OZtEViEeavQc57U71jGYAlmFZP7gEFyNKPFuzGljI2GQM3iHN8D9Wx9GVrUz6qHk7hHlLPimgvWe5Lt2xzqymRCyCv3Zoca0ESXeDUXeSY/yBnhgy6NFOSscSOytSM6Doagn+a7dsY5MRkZWIZY9ULGcQ6pKXT5HNhAiFmmivqApRV7hDbBh7yZkVSYgZeiJ9Y7IvSUc0N7RYM6Te3M1qIafr9hVgU3rd9MYbXK6G1WjZyDF8nSQFinExnW7hm2nyqfRd8Y1FGJxFkqTCKeD5Cedwy65g0BzMwlpMdII33cTFFXhsc2vsTx9LgCRAxfx+ANdTFl0KrJUMlQbOc+Tp1BIB1Hbz2KX2uwZzoqq8NjWLpb1z0fJBgn2LRySqxGC96RAmzY2Gheya84KQPIMb9C4P/PGZpanzwJJIdJz+YhyTiQzLE8HkWj2HF8h5+WDZ6MqQcKHz6lYzslUjuXpILLa6jneoHHf8MZWlqfPBClPpOfKEeU8PdzB8nSQuuZT2TUHvMRXn8+xxaj5IKGjp1Us50IszkUpmWQwyP5ZV5DKxD3DGzTuR186wPL0bGQmE9r/zhG5zzlUYHk6SN/Gw2w8XNvu2EQyXnFb3xU7AZDKapp+fWhkcUuyTHTZMkAlVDR/Z+UQoBJdtgxJ9s5w2dbfTbzodgMVVSoQy8bY1t9d1s7IOaxo5vxsIIiXOGtcY6iK5paQpOyQXI0QvMOFImdZnPG8wxsEd83tJkl5kNQR5Sz4qkjkZO/JOZaJoypFWcnVy1mRZPJSAC/xBo17ImOQMyPLOVS0VOUCIkvaO3zFfKY4n5FyFcsZVF3WmYD31u5t/d2k81q5qZHkLBAJarwyNW6tqxa+xa4KnH3lHJqbm53uRtXY+fI+nn9rD5fMbWXpyrkjtlWvnMWOh7/NE/EAz0+dxrTMbhYW3mTeTXcgBb0xXPJKntt/exP7pmYYHLwA5DRNsx5FQuJg/WbuX3E/QbnERXDe2J/m+RmdRPMHuNYjnAXX3pm9xNNnouaiRKf/gWD9/iG5GqFeOYtdf/Fbnq9bxMJ0jI/veZTQzJme4A0l7ns7wiRT5yKFj9I4c/2Ict7+8Ld5OXQR+UCQTx98jpntDZ7gK7j2TO8nnrgEgMZZDyNLSkVy3v7wt3kxfCGKHOD/Hfwj0yc1eYI3GOVcTzJ9DnLkCA2jyPn16x7h+br55GJH+QsPjWvjfI4lLgQ1T8OMJwiE+yuS846Hv82+/FzeaJnHxQNvslA+6gneUOK+o2UpOaWTcPsWIh2PDytngCcDGZ4/cpRT5taPurd5HbFYrOK27pe2ixAIygSC3jj5GNGfyaFI0NYYGb3/wTBT19xAww/Xo0gwGIwwdc0NBOvcnyYvsHb7I+xL7qWgzkSRQApkUGTtFLg3uYdH9z5SnmlV5Nx49/0oEsTC9Z7hLLgiQ0FpAAnUUIKCnB+aqxHBMJ3vXYnyppY8ISt5z/AGo5wXoUggB9KjynnamhtoeDJJX7CZVCDkGb6Cq6JOQpEAOYMayFJgGK5GFHlHn0oRizSSDIQ9wxtK3PPq6cX5PLqcZ1x1OcpbEA9FPDWuBVeVEAqh4nyOVzyfp665gcZfb0GRIBGKMPUGb/AGw3xWzkeRQA2mRpYz0BQNoUgQzxY8uTdXg2r41fab8AHAsWR1V9M0r1pFU6OWDZtqaaf56qst65vZyCt57uq6CwkJVdGywiS5VKxTQhoy06p51Spam7QMusHGVk9wLucaAME3oGXGDcfViBmXa9afRChKqLPTE7zheO7aWJUCKf3vI8m5UdU+S82c4wm+ZVwL2hiV5KT+90rk3LxqFU2q5qJLz/IGbyjnLsY3clr/+3Dcp120HPDWuB5KzlCA4vpVqZxbQlrmcLJjuid4w/Hzuci9kvnsZ8UOCV+xmwDo0++WrOxqGikYZPrlfwJAdu4CT5jxBTYd2sT+xH5UVMNGUFLsVFT2Jfax6dCmsu9JwSCd714JQKpjuic4G7mqBVG+o6BvfMNxNaK5WLB6MFTH5Jtu8gRvOJ67UHZKG/5Icm7taAMg8J73eYLvUHI2KrGVyFkKBmmb3AqA/J4/8wRvOI67rsCPLueWBq3tYKiOjjXeGNdDyzkpqjFVLOepSxYDkDt3uSd4w3HrdqEo5wrms7hazq9jVw5vSN3HuCDuHGyr4gqijvOXQfdGUk2tFvXKGizpWMI3LvkG2UKWl7rhJ/tgQfss1lz0Fb1NOBBmSceSE747408vgc3PEg/W2dnlMcPIdf9R+PduaKqX+crFo3MVEHWgCnKA8FUrLO+zWTByf/gVeOggLJt5Bh+qQM7tM6bA24fJn362nV0eM4xcX+6G+/bCgknTKxrTRrRP74BtR8h6hDeUc1+7EdYdhPNmLOHai87U2wzFvbl4W8NgtJnm1d6wWhm5vt0D390JU5oa+WKVcp565qnQ8xap6Z1Wd9k0GLnfcVCiJwWfXPJhFs0stRlSznXevzrOCviK3QSAsNi1VXHnoJgw8Yy3TkLhQJgVczUFZeDwbuAN5rZOY/X8c0f9bmtR8R1I5ka9ysYNMHJ9Tj0CvMC0piZWz7+k4t9oCAeQJVBU7bqm6BBXNbkRRu6vbd0M7OSMKfNZPf/UUb8r7hEd8Mgp38j16IGdwGYWTprB6vnVFZxtKc5/L90LbOTetUWT8+lTR5ezkHFW0TIm60InXinoNhi5rkv2Aq8wq6Wd1fMvqOp3Wj0u5zsKjwNp3nnSxSzpbB3xe0KB9y125fBdsRMAIsauGsWuFkzc+r2So1wYLtAqNoOCQipXsKxfVkC3ylYhYwBJkvR7N2MelbV+T2x9ZaEG4gJ5L8bl9Bf73BKtjKsRLfXe5Q0QL1plxKFzJDSGg4j7473ItzSfq5ezWMf6k97jDaU9p5L5LDwOcd9iVwZfsZsAEBN8tEvDjWiugQkzOMKF4UMhGg4QLO4GXjrtgkF5rzCO0givL44xfcOvTM4t9d5134i53FqhEmuE4O21sS0gDmpNFchZlqXSdVNelHNKm88t9dVntAqLXV9xTfASCoqqe4kqkbNoE0vnUVXV0r55Cb5iV+NQFJV+3WJX+WYgJkw6p5AreLP4ozj5VarYSZJEa9Sbp91Sgkz1G4GQdcJjbncBXc4VKnbCEiAsfV6CUMpax2Sx87ZiV+18Fm66AS/KOTl2OYvveFHOCYPXoBLFToyFgqL6RYoN8BW7GkcsnUMpHmQqLXcC5ZukV92xwmLXUEXcWItH3Rh9VZa0McLrbve4bpmt1BXr3Y1PHNJax2LJqfde7JURIlSgqQJXLHi7FIaQUcsYLLPGw6nXrFjCuloXkokER4+LbAh7f5+yAr5iV+M4VrTkNEWChKsocBgKyNQXA4696qJLVOmKBe9aNXSL3ZgUO2+7Yqt1uXvaFTsOi12zR8e2gBiflVhywNty1uPMKuRqhFDg84rKYNZbscIxXcaVjW9ZLsUID3rU42AFfMWuxqFbcsYUe+VtS85YFLtSRpm34lOOjcN143k5pyuPyYGSi86Llhw9xm4MCrxXDy0CVcvZwxa7ahUcI+rDAf0OVXHg8wrGotA2RDQDhFdDSayAr9jVOPoGi4kT43DRefHEC6WJXo0r1qsZZcJFN54YO69mxVbrcvfyhq+7YscVY+dNOZc2/QpdsXqMnffkLMZmpZnex8OrcXaCdzUKrTi4e/VgagV8xa7GUcqWHI+LzpsTZrCK7CoBr7qrhMt9fHL2FmcAVVVJZKsNqhcuOm+Na0VRS8kTY8mKjZYUWq/FXuUMJYgqlXOTR2txwvhcsVByx3rtgFpNqROBxqKcfYtdCb5iV+MYS3FiAT1b0mMboMBgRtsIqrLYicBjjyl245Gz2Ci9KOdktoDQUaqNsUtk8uQ9lPEdz+T1RKix1LETSkK2oHgug9A4NivNfvZyiMF4XLFQGh/9HgspqbZ0EUBj0RXrx9iV4Ct2NY6xFq6FUsbRYNabE0ZYoKqKsRMWOw+ddDP5gh4kPZaCps0e3gDFKT0gS9SFKlvOmjya8S3GZDQcqChj8Hg0hIP6vaNeC68Qcq4PBQgFKpOzl110paLbY7PYNXvU2yJ4j8kV6yt2OnzFrsZRqm9W/YYvLF1eNHGraikjrKqsWA/Gpoi+SlLl8UdGlFxW3uEsoMdRhgMVXwEXCshEw5pi5CUFR0+EGmPclTGD0GvW2ViVGbHg3SLr6VyBbNGSPNYYO68mCOm3i1Sh0IoyR14b01bCV+xqHMfGUd/MyybudE6hUPRbVeq6AUNsiodcGHqgdV0IWa7+flsvu6wSVdY2E2jxYJHi0nVi1c9lAa9acqotQg3eDSURSqwkaVejjQXNHr11I1bFtXECXt6nrIKv2NU4xpMt2aDXB/JWLSQotzJGq7gAvMWDN0+Ivo6lmCl4O0mmlBFbnWvSi0WK+8dpsQPvuifjY1DgGz16YBGHjcZIcEwHNfDu7SpjSRpp9PjNOVbAV+xqHCJbcizlEbw8YYw17KpZHL1Y62s810yBcbP3DmeB+BhqFYLBVeUhzuOVMxits97hDZDIVB9U79Vs7/gYrFbHo9mjparGkjQiXLFeU+CthK/Y1ThEzaqxXEHk5YreY7XkCGtIPO2djMnxXD8EteGKrSbzGYyuWO9sfOMpTiygy9pjc7pksaveFes1rrExlPw4Hs0eHN9gLHfiZ8WOB75iV8NQVVWf2GMpjyCyYr1osYuPc8MH79Q5GxhnMVNhGcjkFbIeK4MhMrar2fDBmzFI43W5g3fd7nqMXRXzucngcVAU79TtKxXpHVt8HRgtdt6SszFeuFJ42bNkFXzFroaRziml7KoxLBINNWCxa6pSsQsGZH3z8Io7drwbfmNZ+Q9vcBYYy4YP3ixELZTQ8Sh2jR51xY7FRddUdNGpqrdKNlV7w8ZQ8OrtKrGxxFIKV6wH9ymr4Ct2NQyxGAYMZQ6qQWMNJE9Ua7GD0sYpgtXdjvHcRgDa+Ggolv/wmiWn2uvEBLwYXG6GJcerbvdq74kFqAvJBIvxtV7iGxtDyY/j0VzvPcusqqpjLHfiXQOEVfAVuxqG7qKrC1Zc48sIL1+unBhjUD147/aJ2Dhj7MC7GYSJMVpmvRhcXtrwx2/J8VoJkLFkxUqSVOaO9QrG4o48Hl4MNUjnFHIFzWU+lgLFXhvTVsJX7GoY4w2q109CHnJjCAyOQ7HzWmD9eOUM3s0gHKtl1pOuWHEbwTgsdqUq/d7hDaVxWa0C78VxPd57YqFk8UpmC+Q8kgQmZCRL6B6ESuDH2J0IX7GrYYgriMZ6wjfG2Hnt0nDdYjeGxbHVY7XszFHsvJlBmBhD4VrwnvIOJWVsPBY7r7pix5IVCyVF1ktJBGZYZo0HWq/I2si7Gg+TbrHzWJKMlfAVuxrGeIOthWKXK6jeuzR8XDF2xdsnPKLY9ZtqsfPGJiAgrMlVJ0/orirv8C1Z7CaenMfiitXae0+RNSOW0pgE5pXDy0BqfMo7QDLnvXhwKzD2kePD9RhLGQwlmyXxxBOo2Sx5FUAzifc++BDtxZ+RwmEaL78cOTz2elpWQ7fkVFjHzsi7br8EyBx+cysDyS16G7fyHqvFrozzUY3zoZc3MbD/Fb2NWzkL6GVtKnDdGPnKgwAB+vviDDz4oN7GrXwVxRBYXuXGV8Z7ACDAwJE+T/AWENbKSuazkW99vwxIHH5hIwO7X9bbuJnvWK2TRt4AjapMAomeRx+nrVFr42reY4wtrAvJBGSJgqKSSOfHFH5Ta/DfQA1jLBt+alMX+2/+rP7vyLu+QiYYZue/fZV08pj++ez77qPhvGXmddZkbDu2F5DYGd8KLBy1vZG3tOBSOP1d9L7wCj3f+3lZOzfy7kumAYmXDz/DaTNXV/y9Ms5nXQNzz+PAQ4/Q8/bjZe3cyFngYKIfkHjt2EtcwcjcjXxT0TZ45xeIpfP03HpbWTs38h3M5hFepj/0ruf9zWOTc7JlBlx2CwPHYvTc+i9l7dzIW6AvmUIb489y1uzK5Swv/RB0LqXnwbX0dD9V1s6tfPfHjgESm/s2cjUzKv7e8Wt33WW3QMsMdn3vHtoOb9M/dyvvp/a8AMhk1YGqvidJWtWHgVSueENJnSX98xJ8V2wNY2AMJ6Do0nMIzZql3UAN1OczAKSCEa2BJBHq7CS69BxzO2si8kqebUf3APDH3sfJK6O7YYy8m3JJAOLhaKmBS3knMhnyBU1W/9/b/10RVwEj5xPkDK7lLJBX8hwdHATgdzt+MSp3I9/GbAqAbCBEVi6eb13MV1PeASnPf79+95jl3JDTfmcwVF9q4GLeANl8jlSx8tD/bbu3KjmX+Bo2exfzzSt5Die0Mf37Xb8as5wBGovcE0LWLue9bvtTAPSmdlTFG4xxdr4rFnyLXVUo5BUKHoo1GxjMIqvQHA5W0W+Z9htvovcfvgASNOQyxCJNDIbqUSTNDdJ+400oyODSd7F2xzoyWZBVGEgfYm33OlbNWzXKt0q8G3IZZJUyzuBO3r/Z/CiyKgMFDiT2VMhVoMS5Pq+NlVSwzvWcBdbuWIeSDyKrcCS1vwLuJb6RQp6AoqBKMrFwI+2ZOOBevg+99RSyKiPJKXrjveOQcw5ZhVwgTE4OEVA1nm7lDXD/1oeLYxwODu6uSs7RXNozcxnEmA4hq3A0tXfMckbSFDuNe9T1a/faHev0/SqrDFTJG5rCAWQVYoNZT+3R1aAaXr5iVwU2rd9NY7TJ6W5UjGj3IMvTQSLb4mxM7qr4e6p8Gn1nXEMhFufsQpQ56SAD0y5iV9OpBJqbSUiLkdZV/nt2QlEVHtvaxXnxxaj5IKGjZ/D4A11MWXQqsjSygVrwDuaDLE8HaQnMYNecFYDkSt6KqvDC62+xPH0GkqwQ7nlnxVwFBOdJwXaWp4O0NixwNWcBRVV4bEsXy5OaSyl88PyKuBvH9sVJiWwgyL7ZVxLLJl3LV1EVXnt1O8vTpyIFIoT3j13OuXiC5Wlt2d8+92rCSt61vEHj/oc332R5+mxAIdJzeVVynhycpM3lhoWuH9djHdNGGMf3AnkycjpIYdI57JImuZv31i7e0Xc6hXSQgDS9at6nD0B7Osi+Px5g47aExT12BolkvOK2viu2hpHJaRp+JFh5TSAASZaJLlsGqAQVzbSdk4OASnTZMiTZvcNmW3838WwMFOFeyxPLxtjW3z3qdwXvcEFzYWcD4tzjTt7b+rtJZDUXKlIeUCvmKiA4l8sZ3MpZYFt/N7FMsvRBhXI2ju1w0d2TdfnY3tbfTbIYEI+UYzxyllVFl7U2vt3LG4rzOaO5FCU5D1Jl3AXfUFHGXhjX2phOlT6QcmOWM6g6dy+M7/I1u3reoYDGK+uRmn1Ww7fYVYGzr5xDc3Oz092oGP+0bS9vp/P8v4umsnRBR1XfVa+cxY6Hv81PstN5qa2JZbHNLFR6mXfTHUhBdw6bvJLn9t/eRO/MXmKDy0AJEp3+NMHIUQ7Wb+b+FfcTlEfuu3rlLKQnfsjzde8gqKh8ds+jhGfOdB1vwXXPpBZS6bOQ6w7QMHM9ElLFXAXUK2ex+aNreb5uIan4UT6651FCLuQsILjvnzZIYvAioEDjzEeQpcq4i7G9QzmZHXWzuKrvVRaGB13JV3DdPXkq6expBBp6iI5Dzjse/jZvyufSV9fMhw+/wMKmgCt5Q4n73o4gydQ7kEJ9NFbBXb1yFluK43ow0efqca2P6akpEoMXgpSladaj45LzszGV56fNYFJ2Lx8ovOlq3r0ze0n2tJFnGpHJrxNp31AV7/v6+3h+MMaVi5pZesFc6zvuAGKxWMVt3SVllyMQlAkE3XfiGQ796TyKBG2Nker7HQwzdc0N1P3ydRQJksEQU//fDQTr3JcmL7B2+yPsS+5FlUBRIyCBGkxRkPPsTe7h0b2PsHr+KNmEwTALPvURlBc1i0ZOkulc4z7egmtB7UCRQAqmUGTNElMxV4FgmOkrr0R5CwZDEWQlz1QXchbQuaNxJ5BGDRQoUCH34thueHAXigSDwTBT11znSr46V6UTRQI5kByXnKeuuYH6R49xVGomGQgzdc3/cyVvMMr55CL3dHXcg2FmXn0lylb3j+vSfJ5hynyeuuYGGv57nTa+Q3Wu540MBSWCIoEaTFa3ZgON9SGNa77gqT26GlTDqzbfgA9g/AWKm1et0gv8Ztun0Hz11ab1zWzklTx3dd2FpGlziPp7kqy5KiUk7u6qLJtw6uqrdXdVes581/E2clULWuauFCi5cKrhKjDlwuWAlhUb6ux0HWeBMjkrWgavJGf1v1fKvXnVKpqCWv2Q1JQZruRbLmctq1MKpPW/j0XOzatW0Shp7qrM9Fmu5A3HcVfGzn3qxecDMBisc+24HpKrPH45tzRqv5VsanM9b0DnTpF7NbxL14r5WbHgK3Y1i1xBIZnVBvlYFTspGGTSmadp/3jHea4z4xux6dAm9if2o6KWFgiA4qavorIvsY9NhzaN+ltyKERzRJsawY98zHW8y7lqpQyMil01XAUao5qSlAxG6Fhzk+s4CwwlZ+MmWCl3KRhk8snztX9cfKkr+Q4lZ8bA1QgpGKR15hTtp1a+y5W84TjuhbHLualBG9eDoTrXjush167igRTGLucZ77wcgEznSa7nDcBxCnw1vBv0cifeuGXDarhP2j5MgfFy82qv4TGiffHJ0NtNrnOuCb2yDks6lvCNS75BtpDl8AB8eRtEQip3XPxveptwIMySjiUV/V5bayPHDg+SX3aBVV0eM4xcf/lHiWeOwOVzlvOud5ynt6mGK0BDsaJ/prmN5tUrTe+zWTByf3Un3LMH5rRO45aLvqK3qZT7pFPmw+GdpOcusLLLY4aR6//3tMTzx2DFvItZcfbFeptq5QzQ2jkDBg5QOPUMs7tsGozcH3sVfnsAzp62mI9WKWex9qXqG2l6lzvHtZHrS9vgJ/tgQXsna8Ywpo2YevH58PaLJF1aycHIG+Af90j0Z2DN0k/SOVlrUynvJqHYeejqOCvhK3Y1CqHYNUWCBOTKL1Q+Ho0RbWEcdPnl8OFAmBVzVwDwxv4B4Fla6+tYPf+KMf1eazQMDJYpyG6BkevjL20Cejh3xmJWz5835t8UBT6TeXdfom3knunfB7zK7JYprJ5ffSV9YckWV3W5DUauDz23ETjAeTPPYPX8ueP6XXElWdzFc9rI/a3ut4BuFnfMZfX806v6HXEtV06BbEGlzoU+KiPX/sO7gTc4qW0aq+efO67fFXdeu/U+ZCNvgM/nHgYKrFpwOXMmNVT1W74rthwuHOY+zEBsDPfEDoUGD1b0ThQ3rIZx3BkoNn03KnZG9I/xntjjId6VokLKIxdpi8PGWO+GFO8slnLnxmeEiJcd73yG0mEt4WLFzgjRz7F4HhrDpbERd6mCY8SgCWuXQHO99hsxl69hAHlD6NBY5Oy7YsvhK3Y1irFeDH88hIvO7RY7I4Q5fjyXQbcW31t/0t0LhS7n6PjkHA0HxE1EntvwxypnfeNzqcXOCKGUVHtB+lBo9NicFvIR1rdqIMuSPj7capk1YryHFSOEgjSYLZB3eX03o9I9FjnrrliPjGmr4St2NQqzFLtGD06Ywez4F0ehKPW7/LRrlpwlSaKhaN0Y9Ih1dryWWaEkud0qC+NTbo5Hg8fmtNj0G8fIXbwzL1jszPA2CBjXP7fPaSGbaDigFxuuBror1gMytgO+YlejKLlix7dAiAXGK6d7mFiu2JhJih2UNgKvyDoxzg2/5Ip1t4zBvNAKMCh2HtkE47pSOzbuTXXeUWTN8DYIhIMykWLts7jLXZR6qMEYZSwOpV4KGbISvmJXo5jIFjuxODaZ4IodcLErVlVV0+QMJbe7FywbYIi9GrMrtqjYuZyvqqp6H81xxRYV+Ky7eQuUYuzGJmdPuWKLMmkIV3cN5HDwilI7Xot0iaf7ZWwHfMWuRiE2ArOC6kVgqxdgRgCylhUL/ansKC2dQzJbIFfQslhbxxljBx602JnoilVV92YDJ7MFCorWv/Fa4MF4WPPGnC7FF4510/eGAg8lmTSaoMCDQdYu5y4SmMZqkRY80znF9fGEdsBX7GoUwtJkWvJENu/qzc8IUcZhrC468IYrVvQtFJCoD43/hN/gNUvOOF2xQkkqKKqrDy7CmhGUTZazRxR4PcYuMk5XrMuVGzAmT5hlsRMlfdzNfbwWuwYPxRPaAV+xq1EMmBSTI05C6gQqgwGG5AkXu2KNcSmSNPZahQJeC6ovJcmMbROsDwUIBbT35ubMWKM1www5e84ymx6fK9Yryg2YW+4EDG5ol8t6vFnf4aBM2CPxhHbAV+xqFGbFXtWHJl4ZDPBGjF18nBve8fDqhj9WS44kSfpG4uZadnETM2KhZIX3wnxO5wpki6618cZfeSHGzsysWPBOtqhIDhrPGPdLnpTgK3Y1CrMKmnqzDIbWTzNi7OKZvGtjNsabLXg8Shu+V+QsNsGxu62aPeByH2/G4PEwKvBuD68wbtIN4TEqdnryhPs3fDPr2IFR2XHv+AaDxW4c+5VQYr1yMLUSvmJXozAzWzIa9lZB00RxIxzP4mgM1HZr0LXZFjuvxV6VsmLHPsabPVDypOSKNVfOXrhlJG4o/yGP8WpEr2SGgvkWO6/U8DPj8NLoIQXeaviKXY1Cj7EzszyCBxZGKFkWx6PYBQOyftrtT7ozMzZmsmLX5CE5GxMexmWxq3P/7RNmW+y8dMvIeOPrtO+KrFj3yhggky9luTeO0Tp5PBq9otiZ4Ir1WoywlfAVuxpEQVH1iWxOfTNvlTwxw0UHpQQKt7rp4iZv+F5aGI2Zu+PJfvaEK9bEQxpo4RWNHgmviJtgffeKcmOUxXjXLgGv3AtshitWdzu7XM52wFWK3TPPPMPq1auZMWMGkiTxwAMPjPqdp556inPOOYdIJMKCBQu49957y/7+pS99CUmSyv5btGiRNQRcAmOQsJmuWLcvDgLjLWgqIN6dW68VEy4682LsvGOxE30MBSQiwfFY7NyfPKEXJzbJFQvekXXchLnsleQJIYu6kExwDNdqDQXPJE+YkCDU6CGXu9VwlWI3ODjIkiVLuOuuuypqv3PnTlatWsVll11GV1cXN998M5/61Kd45JFHytqddtpp9Pb26v89++yzVnTfNRCbVH0ooKeAjwdecsWqqmpayQBR9NetmbFmZ0t66ZYRs65e0q8Vc/Gmb7bFDrxzy0jpnthxxFHWecNqZUY2//HQE0e8kjzhx9iZAvNGkAlYuXIlK1eurLj997//fU466SS++c1vAnDqqafy7LPP8h//8R+sWLFCbxcMBpk2bZrp/XUrzEycAIjqhWvd7bYByOQV8sUq/eNdIFvri7dPuDTGzqrkCS9kxeqb4Di5CyuYm5Mn4uMsxDwUvHJYS5hwePFKAoHZNezAO8WZxcGqZRxWaT8rtgRXWeyqxYYNG7jiiivKPluxYgUbNmwo+2zbtm3MmDGDefPm8Rd/8Rfs2bPHzm7ajlJxYrMsOd7JijWjPIJAKf7KnbzNjrHzopzHLeM698fYldyRZlrsvHHLiH54GU+MnSFG2K2li8C8MW2EFwoUq6pqOKSaEGPnYq52wdOK3YEDB5g6dWrZZ1OnTiUWi5FKpQA477zzuPfee3n44Yf53ve+x86dO7n44ouJx+PD/m4mkyEWi5X95yWYbrELe2MTgNLJtCEcGHN5BAHhinXrfbFxk2OvvBJ3BeZkS4Kh3ImLXbFmlO85Hl5JlDEjXtaoLLiZrxWuWC/E2JXdhTwOxa7BA0qsXfC0YlcJVq5cyTXXXMOZZ57JihUrWLt2Lf39/fziF78Y9jt33HEHLS0t+n+dnZ029nj8KJm1J15QvZl1oNx++0TM5ALFnoqxM0nOeoydS62yYF4ykBFeccXq9z6Po1ZhOCgTEddNuVjBGTQpvMAIUePRzbyNdyHXhcaukjT6WbE6PK3YTZs2jYMHD5Z9dvDgQZqbm6mvrx/yO62trZx88sl0d3cP+7u33XYbAwMD+n979+41td9Ww6x7YgWEiy45gWKvoLTpu9VNZ9WVYpm84mqXFZin2Ik6dm6VMZiXKGJEo0fiKc0a416oZWfGjTnHQ7y3VM69bmhjqZPx3IXspULUVsPTit3555/P448/XvbZ+vXrOf/884f9TiKRYPv27UyfPn3YNpFIhObm5rL/vAQzixNDyRXrhQlj5pU8JVesOzcDM+JSjDBuKG6vbybkPJ7YK/CGK9aMkh/Ho8Ej1g3dDT1el7sHEihKa5c5NezAG3O6lPU9PhkLq67brdB2wFWKXSKRoKuri66uLkArZ9LV1aUnO9x222189KMf1dtff/317Nixg1tvvZWtW7dy991384tf/ILPfvazepu/+7u/4+mnn2bXrl0899xzvO997yMQCPChD33IVm52wuwYu0aPBFqDuQHILS7Oii0oqukuulBA1svjJFwua7OsG2KOJDJ5FMV996YqBjmbmxXrjUQZM5InwBuZsYMWJE+UuaFdWvLErJASrxSitgOuKnfy8ssvc9lll+n/vuWWWwC47rrruPfee+nt7S3LaD3ppJN46KGH+OxnP8t3vvMdZs2axT333FNW6mTfvn186EMf4ujRo3R0dHDRRRfx/PPP09HRYR8xmxEzPXlCbALuPPEZYY0r1n0LhdF6anbs1bF81vUbvlmlIcS7U1XNMmbWnDELyVwBtahvjudO3OOhW+xcr8CbY5UW33dzkWKz74kVaKoLkklkXavwmJUE5qUYYavhKsXu0ksvRVWHPzUff6uE+M6mTZuG/c7Pf/5zM7rmKZhhsVOyWRJPPIGazcIAQIDYkT4GHnxQbyOFwzRefjlyODzOHpsHY1bsWGDkHcgABOgfTNP/2wf1+zXdwFtsUOGgRHgcVerL5AzU52VA4sBjTzK1SWvjBr7HQ/Afi5yP51wny6QViX2/Wwd1Whu3cBbjWZYgEhxflreRt3xQAmQG9vQw8OA+vY1beAsIa85Yrtgy8q3v08b1oZc2MbDvFb2Nm/iadRXi8eM7Kub0408xoxhV5CbeIjltvFZZo2Knquq44vW8Dlcpdj7MQcyE5InUpi7236y5tJOtnXDp35A42k/Prf9W1m72fffRcN6ysXfWZGw6sAWQOJrdD5xd9feNvNOBMKz+CnlVYsc//CP1hZJL1mneIoszp8b4/Y7fs3r+6jH9jpEvQPiyW6BlBnu+/0M6Dr+tf+403+OxvW8/ILEzvhmYX9V3j+ccXfGPpOtb2PHN7yAP9Oifu4Fzoug+U6QkD+18aMxyhnLemRlnwrKP0te9k5577y5r5wbeAn3JFCCx8fCznD27Ou5GvvJZ18Dc8+h56BF63i6Py3YL3+3HtDG9I1b9mDbi+PEdueRvoK2TPf/9Y6Yd3Kp/7hbeL/W+Dsj05w6M63eEl6agqKRzCvVjPNzXAlwVY+fDHJhhsYsuPYfQrFkgSdTnMwAkg5FSA0ki1NlJdOk54+qrmcgreV7o6QJg87FXyCvVm+SNvCOFLMGC9huJcDHL2iW8+1Np7f8E0tzddfeYuEI5X0CXdSpUlLVL+BqRV/JsP6ZZmZ7pWV819+M5N+a0mpeDIXfJGKA/pclDGqecoZx3NK+NH13O4CreALlCjlRW8+D8/O17xyXnhiJfXcbgKr55Jc+Ovv3A2Ma0EceP76i+fgtztLt4/3Gv5nF7e6BrfLxDAd2rMtHdsb7FrgoU8gqFvDtTxo2IJ3PIKjSFAuPor0z7jTfR+w9fIFLII6uQDYRRpNIpqP3Gm1CQwSXvZO2OdSRTBWQVBvNHWNu9jlXzVlX5KyXeSNCSTdJX10ws3MikdAJwB++ndryArMrIUpqeWO8YucLxfBvyWWQVUoF6XdZu4GvE2h3ryGZBVmEgfXAM3Ms5N+VSyCrEQw2u4/zE9g1FOWfGKWcw8q7Pa2tEOlDn2jn9wFsPI6ua7eFQcs+45BzNZZBVSIbqXcm3fEwfME3O2pwW3KOuG99rd6xjsLhmJ/NHx8kbmkNB4pk8scEs7S6Llx0vqtnLfcWuCmxav5vGaJPT3RgRKnBqHyhqkN7nDxKPHB37b8mn0XfGNaQSKZang0CQ7XNXElBVAs3NJKTFSOt2mdX1cUFRFR7b2sU7+k9CyQQJ9i3g8Qe6mLLoVGSpOsO04F2IxVmWiTBAkEMzL0Nq63MFb0VV2P3KXpan5yMrLYT2v3PMXKGc7wJpMqF0kMKkc9gV6HAFXyOEnM+Ln4ZaCBI6smRM3I2cF6tttKSDpKacx65Ip2s4K6rC9k27WZ5eiFxoGrecocQ7nVFYng4SoY1dc1YAkmt4g8b96TffZHn6bEAl0nPZuOTcHmhjeTpIa3S+6/iWxvTp2pg+epZpci7E4syTOyAdRG0/i120uY73O/rma2t2/7xx816eCRJPw+bH93G0OTL6FzyERHL427KOh++KrTHkCgpKMQFFpLmPFZIsE122jJDBPJ6XA4BKdNkyJNk9w2dbfzfxbAzU4llFyhPLxtjWP3wh6uEgeINKWNHc2lk5iFt4b+vvJpUrZvdJOUAdM1co5xssyjrnFTnLY5NzmYwL2rvMuUjGcLyc84xXzmCY0wUtwz0vi7O9e3hDUc6ZYriBnAdpbNxLfI0yBjfxLY3poiVxHGuXgHF8h/Q57b7xXb5m58bNO1RMJMsW3F/BwUr4FrsqcPaVc1xfrLinP8XzG94iFJA4b9VJ484MUq+cxY6Hv80roYvIBkJ86sBzzGqPMu+mO5CC7hg+eSXP7b+9id6ZvSTyc1HkFuo6XibcvIWD9Zu5f8X9BOXq+ip4/yQ7nZfaGnlH/C0WKj2O8xZcd7UtJJNfQKhlJ3XT1yMhjZkrlPg+Ohjm+alT6UzvZGHhTcf5GmGUc2xwOSgBGqY/RSDcNybugvPDg3U8P6WDOemdLCxscQVnXc7tc8nkTibYvJv6GeOXM2i8u9Z/j+frtELuf7f3MepnTHcFbyhx3zslQDL1DqRQH40zx85dvXIWO/7ydzxft4iTUwN8fM+jhGbOdAXf8jF9/rjHtBFifD8Th+enzaAjs4f3u2ROl6/ZJ2lr9pSXCDdtHRfvO3b18Oq+JNedNYmli6eO/gUPoZo7652fxR5CICgTGKcVzGrEswUUCZqiIYIhE7KCgmGmrrmByFNp0sEQ6UCAqWtuIFjnfJq8wNrtj7AvuRdkUNQ6FAnUUIqCnGdvcg+P7n2k+mzCIu/G/+tCkSAeijD1M87zFlzzyukoEijBFIqsnU7HzBV0vvX3PoUiQSoQcq2cVUlCUeugyJ+xyrnIuaHIORGqcw1nwbWgnKyN54BJcgYIhpl7/SdRXtD+mZEDzHUJbzBwVxeiSCAH0uPjHgwz891XoWyGwVAdspJ3nZy1MR0Z/5g2oji+o/c8giLBYCjiOt7IoCj12hgPDo5vzQYaoyGNa77g+r26WlTDp7aY+9DrPpl1TyxA86pVRFXNnJ+f0Unz1Veb9tvjRV7Jc1fXXUholklV0eIqJLmYTYg05mzC5lWraIloU2Rw8jTHeZdxVbQMN0lO638fD1fQ+DY2aL+baZnkOF8jyrmXxvZ45dy8ahXNUW2jS7mEs5GrWpQzRZ4wfjkDTFq9quSim32SK3jD0NwlE7hPu/QiAAaDdYQ63bGGlY/pkrIl5rQZcm5etYqmRi0TON3U5j7egFooyjkwft76LUkTPCvWV+xqDGZfJwYgBYM0tbcAEPqzDzhuxjdi06FN7E/sR0WLK1TFAlncDFRU9iX2senQ8EWsh4MUDDJ16RIA8kvOcZy3kau+6QVKit14uILGd8rFmnuucPKpjvM1opy7CIouFGMMx85dCgaZfsmFAGQXLHIF57IxLQ4qgZJyM145g8a7sVjnK/KX17mCNwwjZxPGeEvxwDIYqqdjzU2u4Dv8mNaUErPkPO1PLwEgN3e+63gDBgVek/N4eAvFLj7BFTvnpezDVAzoFyqbm+rd3NEOu/tQzz7X1N8dL5Z0LOEbl3yDbCGLqsLNWyUU4O/Pu5m2Rq1NOBBmSceSMf3+1LPPgH2bSXbMMK/TY4SR693rJLbE4AOLVrH85FJ5gPFwBZh07jmw81Uyk9x15Z6R+8F++NduqA/L3HHxV/Q2Y+U+9fxzYccmki3tJvZ47DBy/dHjEpv6YfWCK7j09Cv0NuOVM0BTcwN9x5Jw/kXj7LF5MHJ/4jW4vxfOnrqI6y4an5zF1XGZYJj6q68ytc9jhZHrgX74NxPHtBFTLlgG3RtJNbWOr8Mmwcg7X4DPbtHsS/904eeIFvXbsfIWRYoTLr0+zS74il2Nwex7YgWixZNQMut8fSsjwoEwK+ZqdwOncwUU9WEA3nvKVaYot20NmgVQKMxOwsj1x/IfgX7+ZPY7WDF/mmnPaHCpK8PI/dW9/cAfaauvZ/X8Px33b7fUazKOuUDGUM71V0+/CBzm/Flns3r+LFOfo8s6654MQiP37h1vA9s4ZfIcVs8/Y1y/a7w7OpEp0B50/lYCK8e0EeKeXLcoO0beRxMZ4DEAPrDoXQTk8SX7+ffFavBdsTUGK1yxAI3F+wvdtuEbYZzMDWFzziwiVtENip0RsbS4HN3cs1mjrsC7Z7M/HoMmX5Yu5oq4ps1NEGO60eSL4bXfdPecjutjfPxrWSggU19MJhP3DLsJZo9pI4RS60b3pL6ORYLjVurAoNi5RIl1Cr5iV2OwymInFKXBrHsnjFgco+GAKYsEQGvxPfYn3bUZiM3JbJe7uIDczSdeXdkxSakV7zDmwg0/YZECDyUlwq2yFvfkmsW9ub6o4Lhw009YqNg1RbTx7UaFVuxXZslYd8W6dEzbBV+xqzHoMXb15i4QbnXRGSEWbDOtG61R97hijYhbbLFzs5zF4cIsOYu5kswWyBXcFWogNmMrLHZun9Nmj3Fh+XOLy90Is8e0EULZSecU8q4b3xpvs6o4+K5YDb5iV2OwyhXboLtt3O+iM3NxFO8xkcm7ZtPPFxTdVWqGm8qI0mbvXjkLK5ZZ7nbjO3Tbph832TppRGPY3W4rs93QQkGMuZBvwoJDqYBYu8Fd8ZRQspKbp7z7ih34il3NwSrFLhp29+kezHfRATQbfsstm75x0TLbYieUpWxBIeuCi+CHQqKodJrltgrIEk0R9236qqrqsrbCFau7rVwaXhEzMcbO+DtudEmaPaaNiAQDhAJaaIrb1m+zQ0oaI+5KFHEKvmJXY4iZbNoW0F10Lt0EwBCnYpIlByAYkPVNtd8lip0I8q8PBfS7Ec2C8XSfdKmsBy1Qdprr3eemS2YLFK991uOkzITbXbEJk93Q4pDmxhi7krfBmmxdt8ZTirXMrP1KrF9uTBSxE75iV2Owqo6dJ1x0FgUgt7gsM9Zs94URwYBMpHh1jds2AYGSnM3bBMW7dIuMocQzIEvUhcxfqhtdHl5htrWyyc1JMhYmT4B7Y89Md8X6FjvAV+xqDpbF2IXdXRoBrLHkALRGi4qdSzJjrUqcEGh0uRJvxSaoW+xctOkbEyckyZwsbyPcasURMHuce8FiZ7Vi57b1W0+eMMsVW5RxKlegoKim/KYX4St2NYR0rqDHRbVELbLYuSz41ohSnIq57ozWYgHb/lTW1N8dK+L6Kdd89xxA1OUlT6xMknFTLTsrsryNaHBx3GxBUU1PEGrSFTv3KO8CVmbFgnvd7maXOzGu/W5dv+yAr9jVEMQkkaVSxptZaHB5MVMwZpaZq/C0TDCLndjw3RpjZ0XRXmExcKMr1jI5u3Szh3JXmlkHNWGVdaPFThxKrVbs3Mbd7JjwSDBA2OWhJHbAV+xqCKUadiFkkwr0CoiFwa2bPZhf0FRAWHPckjyhZ5KZ7G4XcKvbRsAaV6zIinWHjMHa4sRgOKy50AofL87lcFAmYtL1X00udsWKRBHrXLHuPJjHLCi0LjLcJ3Kcna/Y1RCsSpyAkhXHzacgERMm4gHNgttun9BPuRZbchIujbGz1hXrDhmDoYbdBIu7AmPslXncRWC9m5R3gUGLLXaNLg2lMdsVC8b1y31ytgu+YldDsCpxAkqTxY3VywVKxVzN5a8nT7hk07c6xs7NGz4YFHgLXLFuqmOnhxZYJGc3J09Y4W53tcXOgkxvI9wqayvCShpdfjC1A75iV0OwVrEz1DfLuXPCWFULym3lTvTF0KLTfVRkQLvU7W5JjJ3LZAzWJ08YFXhVdVcGoRWHFzcXKLY6ecKthzUr7jbXC2+7UIG3C75iV0OwYpIIhAMyQdmd1csFLEueEFmxSbdkxU7coHrjbQzmJk8UY+xcpNgJV5LVLndF1SzxboIVSm0pjtJ949rqcicNLow7Kyiq7mUxc89q8l2xvmJXSxjQq3ibvzhIkuT6IsVWXCkGJVesW5InYrYlT7hPzpm8otenMtNt1eLCOnZWKLBGREPuLQ1hxeFFWOyyeYW0i7wOmXyBXEEb01bcCQzuLFBsPESZuZY1utjlbhd8xa6GYMyKtQJuL1KcsNgV6xZrjtl3aB4Pt8bjQHmfzLw6zo1XiulWK4s2e1mWXDunrTikGRVkN236xgOUmWPaCDdeCSn2q4awuVcjulGJtRu+YldDsDLGDtzvoivF2FmTPNGfzLkiFilu4ZVi4O6ahbrLKhwwtaRPs6FAsRtkDNZb7MC9SrzZl8ODdjWbeJduirMT7tH6UICAyWWqBNyY6W7VfuXWeEI74St2NQThRrJcsXNZyjxoLrq8BS46KN08kVdUV3C3q0CxG7geD8HdqvuAswWFTN4d8WZWyxnce1hLWJQ44sZrxay+J1b7bfcd1qzyMPkWO1+xqylYWccO3Lk4CBgXarPdGXUhmXDRVeCGrEkrrBlGuHWzB2tq2EHRAlg0lrjFHZuw2OUOxiLF7pK1VUptU537YilLGbHWlDrRftt9yROWKXYuVN7thq/Y1RCszIoFoyXHfRPGKhcdaIkjLbo71tnM2FxB0TMYrVLs3OzKEGPPbOuGJEmuK3liiytWvy/WXdbZuEWJUG6sZWeHxc6Nc9pqV6xvsfNRE5jIMXZWZcQKiNsnnL4v1rghWcVVWHHcuDBaeadms8usOcIya5WcwZ0bPlhXhLuk2LlDxmB9qRMoT55wSwypVaFDTX4dO6wbST5shxWKnZLNknjiCdRsllCPBMgce20zA/1v6m2kcJjGyy9HDodNe261EEpIKFhAVVUkafxWOyP3hpQMSPT+4TkGNpfa2M1dWGXrQxJmGiaNXJUkQIBEPMnAgw/qbdwg57h+p6Y5bisj78ZMUcZPPctAW6mNE7zL6vWZfEWekXP4iDanj7zyKgMHuvQ2Tstaj7EzgbuRb/1Rje+hja8y0Nult3GSr1XxhEbehQJAAEWFAw/8jmjxtTrJWxySW0w+uIjkOTceTO2Cr9jVCHIFhWQx2N3MmIXUpi723/xZAJTTVsHCyzj01B/oeeN3Ze1m33cfDectM+251UIsjj3Jnfx+x+9ZPX/1uH/TyD1y3sdh+mns/vlv6Nn9Qlk7O7kLi11a7TeNJ5RzTdS3woovMpjJ03PrbWXtnJbzSz2vATL9uYOm/J6Rd/iCz8CUk9nz05/Ts29TWTu7eadyBYq5QPyh9zE+0GKOnKGcM0veDyedz4F16+l5a31ZOydlfSAxAEi8duxFLmd83I18pTP/DOZdQM/Dj9Oz9ZGydk7xfbHnVUBmwKQxLWDkrQLSe76GKsns+NK/0p6J6+2c4v36oe2AxIH0DuA0037XzR4Hu+C7YmsEZcUeTTwBRZeeQ2jWLJAk6vMZAJLBSKmBJBHq7CS69BzTnjkWxNJa3yQ5zd1dd5NXxj+pjdybckkA4uFoqYED3PtTae3RJvKEoeWcC4TIS8UlwgVyzit5/rD3JQC6B94wXcYNOe3dJkL1pQYO8e5Lpov/r8A9b5gnZxha1ikXzem8ktf5/3bH/42be5mM8ykAkqG6UgMH+eaVPM/seRGA7bE3LZOzBNTltfhgff12mPfrB7sBePnwH0zlrbtiJ7Bi51vsqkAhr1BwSSmE49EXzyCrmjlfUjGxnzLtN95E7z98gfp8DlmFTCCCIpVcJO033oSCDA6+mxf2voqsygSkHD2xXtZ2r2PVvFXj/NUS96ZsClmFRCjqKPend76IrMrIctpEnmDkGinkkYvWosFQlKacthk6Lee1O9aRSGljMF04ZrqMm3PukDHAQ28/iazKIGfojZspZzByjuaz2vsM1jnOWeCh7etQcyFk4EhqrwncS3wbcto6mQzVu4Lv2h3riKc0GaTyfZbJGQkac2kywboy7k7yTqclZBXiuYOm8o4GApqMU3nyuYIpYTluQDV7uq/YVYFN63fTGG1yuhtDoncgzfJ0kGZCbFy3y9TfVuXT6DvjGhqlZpang0yun8uuOSsAiUBzMwlpMZLJz6wGiqpw7OUDLE/PRqaD0P538vgDXUxZdCqyND6jtOA+LdTB8nSQ+uZT2TVHxQnuiqqw55V9LE/PQ1ZaTOUJJa6FWJwLUzIFSWbP7BU05NOOy1lRFR7b2sWyYwsppIME++eaLuOZoWksTwcJt5zOrjlhnBrfiqrQ9do2lqdPQwqECZssZyhxbgu2szwdpCU63xVzWlEVHtv8GsvT5wIQOXCBKdwF3xa5heXpIO318xznWxrTpxTH9BzL5FyIxTk3V8+AFOTojEsItvY5zzt2Kmo+SOjoYlN5ZwsKy9OaavPi2l36HedeRyIZH71REb4rtkYgiqpGQuaLVJJlosuWESyay/P6SVclumwZkuzsMNrW3006r8UXSlIeUIllY2zr7x73bwvu4YLmxsjKIn7Rfu7b+rtJ54ruBZN5QokrqCVZywHcIOdt/d3EszFUtXgWlQqmyzhU5JwNOCdj0LgOZjPFzpkvZzDM6YKQszjjOyvrbf3dxDMpvS+qlDeFuy7jghayknUB39KYFpkM5nA1Yqg5nXN4Tgve6HM5ZyrvkCwjjHRuKTZuN3yLXRU4+8o5NDc3O92NIdH7Wi/Pb9nNsplNLF051/TfV6+cxe4ND/B83WIWpAf41J5HCc2cybyb7kAKOjeM8kqe2397EztbziardBJuf4tIx3okJA7Wb+b+FfcTlMfXP/XKWWz56Fqer1tIMtHPRxzgLnjual1EJj+PUOt26qaZyxM0rjse/jZvsYQDdZN4/9GXWBhVHJWz4N47s5dBZToFaRJ1HV2EW14xVcYvffxxnq+bi9x3iD93aHwLrnsmtZHKnEmg/gDRmebLGYzj+mTOSBzjOofntOC+b2qeweT5EBikaZZ53NUrZ7GnuIbNy8QcXcPKxrQ6lYI0mUjHq0RaN1oi5x0Pf5v/zs/mtboGLux/g4XSEcd5xwbPAyVPdPpTBCNHTeX9xsvbiGfy/OuF05gzucGEnjuPWCxWcVtfsasCgaBMIOhOI2csm0eRoLkhbE0fg2FmvvdqlDe14FtZyTN1zQ0E65wrfQGwdvsj7EvuJa+ehyKBEkihyJr1bm9yD4/ufWT8maPBMJ1XX4myFWKhOke4l3ieiSKBGrSAJ0AwzNQ1NxB5+BCKBGk5yNQ1n3JUzoI7MihqWJdzQc6bKuNZV/wJyjaIheodG9+Ca4EpKBJIgbQ1cgYIhpleHNfJYNjxOa1zV2dbwz0YpvN9V6O8oSXIOMl3qDGtBk0e0wLFOV3/m60oEqSCYabe4CxvVZJQ1AhIoIYGTeddXxdkIJsnWVBcu2dXi2p41AZjH5bfOgEw5ZKLAS2DLtTZSfPVV1v2rEqQV/Lc1XUXEhIoWqaXJGf0v0tIpmWOTr/0AgAS4ajt3Mt4ForZfHJa/7uZPAGaV60iWsyeyE6b6aicy7gDqi7nYnawmTK+UCv5EHdAxlDOVVU0OUsB6+QM0HHhcsD5OT0kdwvG+IzLLwE0xc4pvsOP6WJmvwVybl61ioZimE5m8hTneSt1CPVDkjXXu5m8J/q1Yr5iVyOwQ7FriGoLUDIYoWPNTY66YAE2HdrE/sR+VNTS4hgoKXYqKvsS+9h0aNNwP1Ex2hq1EhjxUL3t3Mt5nrjpmckTQAoGaZk1HYDgiqsdlbORO5y4CVoj46gj47tMzoUTDypmyxmgqTinUw7P6XLumhyMSq1Z3FuatPkzGKpj0k3O8B1uTGPBmBaQgkEmnbZI+//LL3Sct5AxUhapaJU1k/dEv1bMd8XWCKy6UNkIUfgxHaqj6V0rLXtOpVjSsYRvXPINsoUs3/ytxK5B+MvTrmHJ3Gv0NuFAmCUdS8b9LKEwp0J11F991bh/rxoYed65VuKtOPz54nfzjgXv1tuYxVOgpXMGDBxAWXy6ab85Fhi5A9y2UyKRg78593pmtGttzOLeWrwPONHURvNq+8e3kesDL0g8fgT+ZPYy3nveO/Q2ZstZXGOVbmp1hLOAkfsfNsMveuC0KfP49EVf0duYwV1cG6dKMtKVV47rt8aK48f0F3ZJxIC/XvoZZk3S2pgtZ4C2RQvg4A7yc+aZ+ruVwsh77xH42nZtXf1Xk2UMxlp27rk6zk74il2NwOp7YqF0YbgKpPMK0bCzBt9wIMyKuSsA+K70NJDg8jnnc8H8yaY/y6gwx9J5Jjeae83TSDDy/G/pWWCAS2Yv40/nT7XsmaW7JZ29HN7IHeBv8+sAhavn/ymd7dHhvzgGtBQVu3RBJZNXqAvZJ2Mo5/rcq68De1gy9RRWz19o2TPFYS1ZcPb+UCP3vXu7gbc4ZVInq+ebq9zUhQJEgjKZvEI8nac1an+c2fFj+vOFh4ECV8+/nDmTrAv0L90L7MycNvL+o3oEeIGpTU2snn+J6c/SLXa+K9aHl2GHYhcNB/Q0cqcWh+Gg37do0YXpAVnSb/ToTzp3ChQxI2Zfjn48Glx4OXyuoJAtli9oskDOTZEggWLNq4GUsyd9cSeuFTyNEBugqqJfSeg0Yilrx7hYI52WMYCiqPp7bzD5rtjj0eAi96TV+1WJqzvGtN3wFbsagR2KnSRJutXOTRs+QLzYHysXR2HRcXJDsGvDF5YcNynwxjFnhZwlSdLnj5PKO5Q2X6s3+/pQAFk/rLljTsfSIqzEGu5uUuwGs6V33mixrN0Ud2b1flXi6ryMnYCv2NUIrF4MBaJh912wrKqqvik1Wbg4ttZrbpuBVNayZ4yGmG6xs+d075bNHkpjLhyUCQWsWbpEnF1/0jkZQ+m9m3nv81AwHtbcMqdFIljzBLDYiYNTUJaIWFyWo9FFc9rqmHA9xm6CumKrWjVOOumkMd27dvPNN/PXf/3XVX/PR+UYSFpvsQNtcTgUz7jGbQOQyhVQiiFCVlo4Spu+MxtCOlfQXZFWJsmAMcbOPQujUDystGy0Coud465Yeyx2ANFIgHgm7xrrrOBu1Rh3k2InLEoNkaDld5pOJFesWCPiLuDqBKpaNe69994xPWTu3Llj+p6PyqAoqj6Ard7wo7qLzj0TRixUklSyKFqBZoc3BLHhSRI0hi222IXdF6OSsMFaKYLpnbbY2aHECmgbfsYVGz6UvA9Wydldip02v+yTszsOa5Yrdr7FrnJccon52Ss+xo94Oo9atFhZ5b4Q0GPsXLA4COiJE2FrT72tDsdfifi6xnAQ2eKLrd3oihWKrS0WO5fE2Fntcgd3uejAeles0wc0Iwb1WErrM7DdlClqX4yd81ydgB9jVwMQJ9xIULa8RIMbN3zhQrIqI1ag1eHkibhN8XVgTJ5wj5zjNig7IkHGSVesqqqlw0rE2oMauO+wFtNdsRPBYmefy12sj25wuVuuvBd/1795okIcPXqUv/u7v+OGG27gtdde0z/ft28fiUTC1M75qAx2ZMQKlBQ75xcHgXgxTsVqd0YpecJpxc5GObtkswdsUXaEjJ202GXyCvli0Kgdlhy3zWlhmZ4YyRP2udxF+EbWUDbIKVi9Z4lDgTB6TDRUrdh96lOf4gc/+AHPP/88F198MS+88AJnnXUWc+bMYdKkSXz2s5+1op8+RoCdil2jCy05YkOy+tRbKoXhTPxV3KbMZ3C+mOlQKG341ifIOJn5bHQfNVgcSwnumtOZfIF0ztoEITGPYxNMsTMeEpyWtb5nRa3KinWPjJ1A1YrdM888w69//WteeeUVvvGNb/C+972P1tZW7r//fu644w7uvfdefvrTn1rRVx/DwE7FLiqC6t1kycnYU9vNaTedExY7N8Wo6AkFNih2TlrsEoZYQqtjKcFdsja6zqxSdtyk2CVsOpQCBAOyXlLFaVlbbrEzuGJV1dlbVZxA1aOpr6+PM844A4DrrruO66+/nvvvv5/zzjsPgLa2Nu6++24+8pGPmNtTH8PCCVds0kWWHLERWm3dEIH1Aw5t+lZnCxrRUMwuzuYVcgXFsrpx1cCOGMNSVqyDip2NVhzjc5y24kBJ2TLeAmI23FBoXCBhUxiJQGMkSCafdVSxU1VVl7NVe5ZYI/KKSipX0A0SEwVjWq1lWftaOBwmGo3S0dGh/+2SSy5h27Zt5vTOR0WIWVzs0Qix4bthExBI2JQ84fSGYFdxYii3ILhFiY/bEmPnfIHihI2Zktpz3BNPaXUNO3BbjJ2w2Nkj61IChXOyTmTyet1RqxS7aDigHwwmYgLFmBS7//mf/6Grq4t8/sQX1tDQQF9f37g75qNyOJI84YJNQMCuU68eWJ/KOWLeL10nZr2cQwGZsHDbuETWdlyn1uqCrNjSvcfWyxncda+mHVZp4aaLucBNZ2dWLOCKW0bEfhW2sIqDJEn6GHKDy91uVD2aLr74Ym6//XYSiQThcJhsNsvtt9/ORRddxDnnnMPkyZOt6KePEWD19SxGuDGoftCmIp9i0y8oKolM3hYFywg7y52A9j6P5bOusc7aUdtNKO/JbIFMvkAkaI8lxQidp22bvXus8LGUuErNeoudU/PYCDuTJ4zPcXL9tssQ0VwXoj+Z0z0dEwlVj6ann34agG3btrFx40ZeeeUVXnnlFW677Tb6+/t1N60P+2Bv8oT77orVXXQWKzx1oQDhoEw2rzCQyjmg2FlbBuJ4NEQCHBt0j6ztUGyb6oJIEqiqNq+mNNmv2MVt3uzdlDxhx53XdSGZcEAmW3BmHhthdzylcPkKL4cTsGu/0i12E7DkyZhH08KFC1m4cCHXXnut/tmOHTvYuHEjmzZtMqVzPiqDXtDTxir1SZe458BYvd16/q31IQ7FM/Qnc8xqs/xxZRDWDLssdnrhWhds+GDcBK3bEGRZoqVeO+kPJHNMaaqz7FnDIWHTQUXATckTdhxeJEmiuT7EkUSGgZT989gIO9cuKLn3nXS7i+SzVhssduC7YseNefPmMW/ePK655hozf9bHKLDVYucCU/7xsNN11RrVFDsnAq9FIWb7LHbukrUdMXYAbdEw/cmcY3F2drvn9Ez3rPNy1l2xFq9lLfVBXbFzEnaFkQi4oWZhn1DsihnoVkFYfSdi8kRVo+mkk04a012cN998M3/9139d9fd8VAarU8eN0BcGF1ns7AxAdjKjzu4YO7ddH2fHXbFQknHfoDOZsc6555yXs10lfdxSy86p5Akn53R/sfh3q0XFiQX0IsW+K3Zk3HvvvWN6yNy5c8f0PR+Vweoq3kZEXbAwHA87N8IWB6+csrNAMbhLic/mFTLFa5Cstlg6nRlrV8yogJtcsVbfISrglpInpbXL3tI2TirxYu1ss3i/msj3xVa1clxyySVW9QPQbrX4+te/zsaNG+nt7eX+++/nve9974jfeeqpp7jlllt488036ezs5Itf/CIf+9jHytrcddddfP3rX+fAgQMsWbKE7373uyxbtsw6IjbCWOzRDhedWBhyBZVsXtFLYjiJhI2WrNKmb681R1VVW68UA8MtIy7Y8Muu2bJ4E3S6ELXdRWuNrlhFUW257WI4lOrY2WWxc7ZQr+0xdi5Q7IQl3GpX7EQud+L8rmzA4OAgS5Ys4a677qqo/c6dO1m1ahWXXXYZXV1d3HzzzXzqU5/ikUce0dv83//9H7fccgu33347r7zyCkuWLGHFihUcOnTIKhq2Ipkt6BeG21LHLuye+wYF7FwcnTrpZ/IKuYImZ/ssdu65ZUQotdFwgKDFt2Dot084dF+s/XFXpec4bZ2N2ZT57QaLXSav6Gu3bbJ2QYFiYQm32hUr4jT9cicOY+XKlaxcubLi9t///vc56aST+OY3vwnAqaeeyrPPPst//Md/sGLFCgC+9a1v8elPf5qPf/zj+nceeughfvSjH/H3f//35pOwGWJhCsqSXorESoj7BjN5hUQmT1uDtaeu0aCqql5A147F0Slrjjh1ylK5cm0l3BR7ZVd8HZQ2faeuFbO73EkkKBOQJQqKymCm4Gj5D/uSJ5xX7IzKldXXIerPcYHFTtzq0maTxS4+AWPsXGWxqxYbNmzgiiuuKPtsxYoVbNiwAYBsNsvGjRvL2siyzBVXXKG3GQqZTIZYLFb2n1thzIgdS2LLWNDooiy6ZLaAKB5vi2Ln0CXxMYNiY5ec3ZQ8YWfiiNMxdoniRmRXjJ0kSfphwWkl3q7kiWZXKHba+hkNB2xzf5eyYp1bu/v9cieWw1UWu2px4MABpk6dWvbZ1KlTicVipFIp+vr6KBQKQ7bZunXrsL97xx138M///M+W9Nls2FHqRMlmSTzxBGpWO2nV5WVA4uDjTzKtSWsjhcM0Xn45ctheC57YiGQJIkFrFkcj/9ARCZA5ureXgQcf1NtYzV+cOuvCKqqqWqbcGbkGejWu/bv2MvDgbr2NE7IWcg4EcpbwN/KOHC7KeHcPAw/u09vYxduOgPrj53S9IhND4uD6J+hwcE5baZk1cg4fEjLez8CDe/U2dnIWco6EsG1OMwAQIHa039b1y4i+osXO6mS/Zt1i5/zB1G54WrGzCrfddhu33HKL/u9YLEZnZ6eDPRoedlwnltrUxf6bP6v/O3zZLdAyg73fv4eOw9v0z2ffdx8N59mblCIWR0VK8dDOh1g9f7XpzzDyz085GS74DEf39tDzk/8oa2clf7E4Hcns4/c7fm8JTyjnmuk8F5Zey7HNb9Hzw3vK2tkta6HYbo+/we93pE3nXy7jRXDBpzi8ez899327rJ0dvAdSaUDixYN/4PSZ1ssZIHz556B5Knu+99+0H+nWP7dTzrmCos/nFw89ybwO62Scm34anPdxjuzYQ8+93y1rZxdnwbU/d8C2OT3YMgMuu4VYf5yeW79c1s4O3qqqcmwwA0hsPPwMp82whjMYY+wmnsXO067YadOmcfDgwbLPDh48SHNzM/X19UyePJlAIDBkm2nTpg37u5FIhObm5rL/3Ao7LHbRpecQmjULiifK+nwGgFQwojWQJEKdnUSXnmNZH4ZDfzKtdSGQ5u6uu8kr5p/OjPwbsykA4qFoqYEN/PtT2juXAinLeEI512hee7e6nMExWQ8UExkkOWMJfyPvplwSgHjYXhkDZPM50jltnv3v2z+2Rc4AURfM6WODaf3/37vle5bKWMzjRKi+1MBmzrF0cU5bNKYFyuZ07jg5g628B9IZFFUbc//fWz+wjDMYY+x8i52ncP7557N27dqyz9avX8/5558PQDgcZunSpTz++ON62RRFUXj88ce56aabqn5eIa9QKNbScgsGEllkFVoiQQv7JtN+4030/sMXQIJoXntmKliPImnuovYbb0JBBpvfzxPbNyCrMrKUpifWy9rudayat8rkp5T4N+YyyCoMhqI6d7Ce/3N7NhV5ZizkCUaudYUcsgrpQMRWrkPhlZ43kVWZgGX8h5Bx0F4ZA9y/9WFkVTtvHxzcY4uctTmdKc7pOsfm9INbH9e4yyl64z3WyrjIN2nzPDbi2d0vF8d01sY5nUdWIRuIkJeCyGgBynbxvn/zek3GUo4Dg3st5AwNwYC2fmUKpDN5QhZn01uNavZ3Vyl2iUSC7u6SG2Dnzp10dXXR3t7O7Nmzue2229i/fz8/+clPALj++uu58847ufXWW/nEJz7BE088wS9+8Qseeugh/TduueUWrrvuOs4991yWLVvGt7/9bQYHB/Us2Wqwaf1uGqNN4ydqIpLbj7E8HWRmT5aN63ZZ9hxVPo2+M66hEIuzQJpMOB0kP+kcdgWmEGhuJiEtRrLw+UNBURW6N+1meXohcqGJ0P538vgDXUxZdCqyZO4kFvxTgymWp4NAkB1zViKjWs5fURWOvnSA5enZyOpkS3mCQdY5meXpII1yB7vmrAAkR2StqArJrqMsT08nIM0gqFjDX/BODqaLMm5kx5yrkMEW3oqq8Ic332R5+mxAIdJzuT1yjsU5WZpEfTpIbvK57ApOs13Oiqqw6bVtLE+fhhQIErZojOsyTmZZng4iqy2OjG1FVejZuJ/l6ZOQlTbb5nQ2Plgc27D9pKsJKQXbeCuqwkuvvc3y9OlIcsEyGZeep+pcX3hoJ/Uhe6oJWIVEMl5xW1epsC+//DJnn302Z599NqApZWeffTb/9E//BEBvby979uzR25900kk89NBDrF+/niVLlvDNb36Te+65Ry91AvDnf/7nfOMb3+Cf/umfOOuss+jq6uLhhx8+IaHCq0jnteymiMWDVpJlosuWASohRXtmXg4CKtFly5Bk+4fStv5uUrli/ISUB1Ri2Rjb+rtH/N5YIPiHCnmk4ik3G7CH/7b+bl3OkmwtT+0ZGtdgQXNh5GQxtpyR9bb+brJF/lbKWfAOF0oxOdlACLt4b+vvJp4puiPlAkj2yFmb05qs83IAJ+S8rb+bwayYyznskrEiSeQl+zlv6+8mra9dBeya0wG1gFQsI5CzWdaajIu1IWXrZCwgS5Jupcu4zNNmNSRVFcUifAyHWCxGS0sLx472uS7e7pZfdPG7V3v5+6sW8cmLT7L0WWo+z453rebO9qX8/qQL+eDbj/OJxGbm/e5BpKC9xt+8kue9v30vu/bMJXNoFcHmLupn/BIJiRmNM7j/PfcTlM3tk+D/gTM+RSIc5e4nv8m8lrCl/AXPndvPIdt3PuFJTxLpeMxSnqBx3fBnH+a6Mz5OuJDj12v/kdDMmbbLWvDf/vZF5GNLiEx5iHD7c5bxd0LGUOK593CA5O7rkULHaJz/TVvkvONdq/nPSe9g7dzz+fO3H+PjiS22yllw39MzhVTPNQSi3URn/9hSGW9/12pWn30DeTnIj9bfwYxJjbZx1teuXaeQOXIFodYXqJv2oG2ytntsg1HGk0n1/DmB6A6is39oOeeLv/okB2Jp7r/hAk6f2WL679uJWCxG+6Q2BgYGRtVDXOWKdTsCQZmAC67QMmIgk0eRoLUxbH3fgmGmrrmB+nufQpEgVfx3sM7+IsVrtz/CvuReCuopKBKogRSKrFl19ib38OjeR8zPMivyjT7WTywSZdAG/oJnXl2u8QzawBMgGGbOJz6C8jKkgyFUVXFE1iU5h1EkUKzmX5Rp0/o+YpEo8VAdU9dcbznvEs8FKBLIgYxtcp665gbq73tGm9MB++e0PsaVTo17MGm5jKetuYGGJ5P01TXbMo+NKM3p07UxHUjbKuu6x+PEpChpOWgb75KMZ9oj4yIa6oMocRjMFVy3d1eLavrvbaY+bCl3YkTzqlU0NGiZZJmWdpqvvtqW5xqRV/Lc1XUXEhKqUgeAFMjof5eQLMsya161ima0303NmGMpfyNPCsXsPbmUOWglT4Bpq0u3wOTmzLNd1uX8i3KWrZdz86pVtKDNq0GLZQzDjGcb5dy8ahWNDVqWZKbV3jldxr04xqVASv+7lTJuUjUZJ2fNtY1z2ZjWZV26us4OWUclTaHKzui0hXe5jLVMcykwqP/d0vV6gpY88RU7j8OOcidGSMEgUy5aDoByyqm2u2ABNh3axP7EflRU1OKGb1R4VFT2Jfax6dAm058tBYNMmjFF+8dV77KUfxlPXYG1hydAOBImLGmRGvWf/LTtsi7nrykekg1yloJBOjq1ckjKO6+2nLeRJ0WeGBRYq+UsBYN0XKjN6cIpi22Vc/lcFopdUv+7lTKeNKVd+8e73msb56HHtL2ybu6YBEBo9Xts4V3OWSh21ssYSiVPxFV1EwW+K9bjiNms2AFMOvds2PUamUnOJKAs6VjCNy75BtlClnvWS7w6AO85+Z38yeJ36m3CgTBLOpZY8vxJc2bCa71kF51mye8LGHl+9ZDEviR84oxrObXzWr2NlTwBGurDZJM5pIsvtewZw8HI//a9Escy8Fdnf5yTDMPOKv4d8zph437SC041/bePh5HnU2/Ar3thydRT+PhFX9HbWC3nSUvPgl2vk7V5Thu5//QpiRf7YOX8S7hiySV6G6u4T+6cBpsPkll8pum/PRyMfP/rEYk3YvBnp1zNBYtKljOrZd08rQO6j6CcaU+9PiPnnzwp8dIx+2SsXys2wSx2vmLnYaiqWrLYWXw9ixGlu2KdOQWFA2FWzNUyn3/+5PPAUS6cdQ6r58+05fmlu0St5W/k+VXlCSDFFfMu4pzZbZY+14iGSJC+ZM6Re4GN/P9ReRTIcfWCS1kwxfqSQ+1F16S4/shKGHnu2rUNeJtTJs9m9Xz7FI7GiDamB22e00buD/zhJeAQ589awur5sy1/dpsD9z4b+f4ssAE4xoWdS3nX/Bm29UGs33bJ2sj5N8+8CBzmws6zWD3f+tucdIvdBCtS7LtiPYxUrkCuoLnK7LTYRYsLQ8LBi6QFEjZeDi/QWq8FGw/YsOkLiOrpzTbyBMMm4KCsVVU13CFqzzhvi2oyPjZo70m/dE+svXJuKN5L6+SctjusRMi4z0bFzginZN1YJ9Zv+5WdfpsNESLGLj7BLHa+YudhiIUwIEs0hO0rviguJ3fKYmeElZeGDwex8Yj3bzU0xaaYJFNnnwIPmsUOnNkEBNI5hYKiHWDsUuDbG7T3bIfFzoh48T032L3ZO2yFB/s3/VZdsbNXxgKDTil2+mHNAcWuqEQLpdpqTNQYO1+x8zCMJ1ypeOejHWhwcGE4HjHdYmefwtOiu2LtUewGswWKeo2tPAGixQODk7IWSq0slfpjNZza9BMOHFTAHXPafoud/a5YI4R11G4lXlhnnbDC9xfnU5tdFrs632Lnw2MYSNqfOAHQEHbePScgJqy9rlh7NwTBMShL1IXsnbJusOQYrVh2HWDaG4qK3aC9ip1QrOwcz1CSs1OWWVVV9fWs1SZrjtMWu0RG4+uUEm+3rBXF/phw4Yq16xDuFviKnYdhdw07AbEwpHIF3UXmBLJ5Rb8qxk4XpVCkYzYtFnp8nc2WWTBuAs4p8U5kfpdi7JxxxdoVSygg5JzOKeQL9l+/lM4pZIvPnQgWu3xBIZ3T+Nqt2DWJOW1zQkEsndM9DyJO2Wq02rxWuwW+Yudh2O26EDC6w+zOojPCeOIU7gU7IE76dp0CxaJktxUHnI3HEYjpiSP2jXNhsYul8+RsVHTEZmvneD7+eYMOZED3pzQFOmhjvHBbg3MWO6O3w/Z4yjp7s2IFhALdGAkStukWiFaH3e1OwVfsPAynFLtIUCYoa5ajpIOWHOGijIYDBAP2DeXSYpFFscFiGXcg81eglC3pfOxVc729CTLCOGrnppBwyBUbCQYIBTTCTgbV2xkvLObxQCpnyzw2IlFUqsJB2TYlR0CE0sRtttgJBdrO/UqvYOBb7Hx4BSUXlb2bgCRJrsiWdErhEQuTopYWaCsRcygjFiAadoHFzoEDTECW9Of122jRGXTIFQvOJlA4UY9TbPqqan8BW6cyYsG5cifCw9HWYH+iWypXIJ1zPibcLviKnYfhlMUO0N0lTgbVx/TECXv514UCRIqn7AEbrDkxBy12peQJB2PsHFJs2x2Is9Nj7JywzoYdrG8mEidsXMvCQVkf33bXsnOiTJNAU/HQYHeMnTgg2RVfB1o8oTAAT6Q4O1+x8zAcVewmsMUOyt04ViPukAIL7pCzU0lCdsdgZfIFssVkoMawc253J7LdnbDKGp9nd5zdoEP1CsEQY2fznO4bFFnP9slYNlrefcXOhxfgpGInbp9wNsbOuVOvOHXaEX8VdyB5QKAx4nwdO1Fc1G7+dt8+UR5Qb2/yhPZMJ28kKFpzbCp1IiDcgna628EQS+nA2qXHzWbztsYW6q5Ym2XcanNBeTfAV+w8DCcVO33DdzIr1sHYMztvn3AyKzbqoHtOQLhi7Y4lFeUw7LLmCNdYfcjeZCABJ2sWOrWW6deKOXR1nBMKvHDFqiokbYw7EzUh7bTYAbRE7TuEuwW+YudhOOWiAmfjcQScdMWWbp+wftN3NivWBTF2Do1zu4sUJxyMrwNj4XFns2LthNM3jDjhiq0LyQSKVQ3sjLM7VnzHYl7ZhVYHkqCchq/YeRgDRReVkzF2jrpiHSoNAfbePqEnDzhimXVPVqztrtjiBnTMLoudg+45cLYYtXMWO2fqnDl1wwhoVQ1KN43Yx/tYwhnFzu67vd0AX7HzKFRVdSzgGNxR38zJpAI7b58oxdhNzDp2McPNG3aiPWq3xU4bS05YccDZeEqx6drtpnPMYld0dzc4kCQDxivkbHTFOmWxm4BFin3FzqNw4goeI8SC5Gy5EweTJ2yMv3JSgRXvNpN35qopcM6aU5KxvVfHOTGewdnkiYlmsRMuUKfc7o0OXCt2dNBZV6xvsfPheohBGpAlRzYCN9whmnC03Ik46duRPOEcz6jBouBEGQyjZdrOmyfAEGNnkzVHvF/HYuwcdLs7FWPX5pDFzskCxWAsUmyPsqOqqm75tt0Va/MVkG6Ar9h5FHriRF3Q9ovhoXRfrJOxV05astr0TCv7LHZOZP+GgzLhYoamExnQqVyBfLEkg2Mxdja7Yh2LsQs7l+kuNv02h9x0dhcoTjit2EXsvVYsls7r89ipcid+8oQP18PJUifgbGkEASdjz9ps2hDyBUW/lN0Jix0YC9c656ILyJJ+mLALIsYuns6Ts8EN7WSmpPG5dlvhcwVFT4Rqt7uOnY0HNCMSDhYoBvuLFAvFvSEcoC5k7zy2s5i8W+Ardh6F04qdG24kiDsYp9Jq04ZgfL9OWCbBWVnHDJnfdlumm+tDFKtC2FOI2uFyJ05lQAs3qCQ5cLuIY67YotvdKcXO5nJVenxdo72KO2C489lX7Hy4HE7WsIOSFcfJ+maOumIbSouFqlpXvV0or3UhmXDQmelaqm/mwFVT6VLIgd0IGK4jsmPjdzruyqkYO+M9saK+ml1oLc7jdE6x9ZJ4p2sWiufGbZK1CGew2yILvsXOh4fguMXO4QLFBUV11EUpTvp5RbV0cYw5qLwKNDh4y8hA0tkDjJ1xdgkHa5uBQbGzWc7HHIqvAy2eMVhUJu202umuWKfLndgUY+dU4gRAS/H6x1g6R8HGK9SchDOjyse44YRip2SzJJ54AjWbRU0ABEgMJBh48EG9jRQO03j55chhayewUaFstOlaHiN/gDpZJq1I7H1wHbPqtDZm8xeuyEiogKqqtrgjj+cZicmAxOENLzGwXVsY7ZLzgAPFiY38m9Ma9/1P/5GBN0ptrOAvrLN2xhKWzelBgACJWNLWOX1sMAPYG1Rv5N0akDmiSOx+aD3RxlIbK3nr5U5svFLMyDnYIwEyfdt3MfDgTr2NVZyPOiBjAbFHqqrm5bH7PmIn4Ct2HoUTxYlTm7rYf/NnAUg0TIYr/57EYJqeW/+xrN3s++6j4bxllvZFuGGRcqzfs47V81db+jwo5w/Q+M4vko62su1bdyL379U/N5O/4NmT3MHvd/zeEZ7yOz4KM8+k99cP0LPzOf1zO+S8Yd8mQGawcNjS5xhh5F9/3sdg+uns+vlv6Nn9Qlk7s/nvHTgMSGzt7wI6TfvdkVA2p+vbYMUXSGTy9Nx6W1k7K2X9zO6NgEyWY5b8/lAw8m687BaOtMyg+3s/pOXw22XtrOBdUFRSRbfvHw88wexJ1s9pKOecm3MenH0NR1/fQs89Py5rZwXnl3u2AhL9+X3AWab+9mgIB2UawgEGswX6kxNDsfNdsR6FExa76NJzCM2aBZJEfV47gaWDEXTjtiQR6uwkuvQcy/vSn9SeL8kZ7u66m7xivUvByB+gOTcIQDwc1RpYwH8gVeQZSDvGM1qUdTIY0RrYJOe8kuepPS8CsDOx2RbuUM6/KavJOBZpKDWwgH9eydMT0xSbR/f81hGu0XwagFwgRF4qbg0Wyzqv5Hlsp6Yw7xnc4gjvlqKMByyWsUAsndb//72bv++orJOhulIDizjnlTwv7d8KwOt9G2zja8REu1bMt9hVgUJeoZB3pvr+8YgNZpFVaA4HbeyTTPuNN9H7D18gUsgjq9pnqWAddQVtwrTfeBMKMljcp/XdzyKrMpKUpifWy9rudayat8rSZxr5I0FzNoWsQizciCJpLhWz+T+/9zVkVSYgZRzjWVfQxloqWGcZz6Gwdsc64kltnKXyR23iDkb+zZkTZQzm81+7Yx2FXABZhWOpHke4luY0DIaiNOVSgLWy1mRcQFYhXTjiCO/WzCCyCgORZktlLPDg1seQVRmkPAcS+x3hXJ/LFed0xHLOa3esI5WWkFVI5A/YyLeE1voQB/rTHEtkXLOHV4tq+u0rdlVg0/rdNEabnO4GAG27UyxPB1E2D7DxiH3ZXKp8Gn1nXEM+Fuf8dAAViV1zrqKukCPQ3ExCWoy0bpelfVBUhbe6drE8fTJSPkp4/zt5/IEupiw6FVmy1ggt+BdicU5V24img2Q63sGu4DTT+SuqwsArh1ienkWAKQQd4jk9PJvl6SDRpkXsmiPbImdFVXhsaxfLjp1MIR0kODDbNu5Q4j8t2M7ydJCGpkXsmpMHJEvk/NjWLs4bPAfUIOFDyxzhWojFuTAlU5Bk9sxeQUM+bamsSzI+xVEZzwtMIZcOQttZ7JrTgBUyFlBUhRdf38ry9JlIsmrr2gUlzmouwPJ0kCZpCrvmrMAqzrqM+xeh5oOEjp5iK1+BM/qhNR1k77MH2Ng9aNtzzUQiGa+4re+K9SjSOU17r7O5BIYky0SXLUNCJahoCmVODgKq9rlsfX+29XeTzOaK/ckBKrFsjG393ZY/W/AHlXBBSy7IBEJYwX9bfzcZUYJByuMUz2DRdWKnnLf1dxPPxlDV4tlTytvGHUr8I0VLdCYg4nKskXMsEwO1aDlxiCtlczqA1bLWZawUw0nkrCO86/LaPE4HRViLdby39XeTyGaKHbB3TkOJc0jRxrU2p8EqzkLGqM7IWEAURc7knSvPZSd8i10VOPvKOTQ3NzvdDQDWvLqDw4U8f3/ZTE6b0WLrs9UrZ7Hj4W+zWVrK0boWrj3yAgsbZebddAdS0NohlVfy3P7bm9jVPpdM7hSCTXuon7keCYmD9Zu5f8X9BGVr+yD4/yGm8vy06UzK7uf9hTdN5S947mg+j5w6k/DkzUQmPeUIzzf64zzfeRLBYwf5iMk8h4Lg3juzl8HCbApSO3VTNhJuft027qDx3/UXv+X5ulM4ORXjY3seJTRzpiVy7plxlHjiUgAaZz2CLOdt57rj4W+zlbM4WNfO+4++zMJowTJZG2WcyM1DkVupm/Ii4aattvPe+PHHeL5uLvQf5c8tkLGA4Lx3cpRk+mzkyBEabF67QOP83BM/4vm6ZYQLBf7WIs5GGccGl4OSp2H6kwQix2zlC3B/Js7zsX6WL2hk6WVzbXmm2YjFYhW39RW7KhAIygQcKhJ7PPrSORQJ2hoj9vcpGGbqmhuoe+QoitRCKhBm6prPEKyzPtto7fZH2JfcS0E5GUUCNZhEkbVT2N7kHh7d+4j1maNF/s0/eAhFgli4nqlrbjCVv85TvVjjGXCOZ/1dv0KRIFn8t9VyFtyRoaDUF+WcoCDn7eMOEAwz530rUd6A/kgDspK3TM6K2oQiASgogTSqZKOcQZd15OFDKBKk5CBT1/w/y2RdLuMoqgRqKO6IjGdfeQnK29AfjloiYwHBOc/pKBJIgYz9cxogGGbuJ/4S5WXNSllQVWZZwFnwVQmgqHUggRp2QMZAa2MERdL2Tbfs4dWimn57k+EERzpXIFsMpGyJOlO4tXnVKpqKi1J62iyar77a8mfmlTx3dd2FhISq1AMgBVL63yUk2zJHm1etorVRyyhLNLebyr+cp/YMKVDKpLObZ2OzVtwrHW2yXM5G7gBqQcs4lgJJ7X9t5A7QecWlAAyEGwh1dlomZ5RixrGcEcnItnNtXrWKhqI3ODttpmWyPlHGWjaqUzKeefFyAPojjabLWGBoWTszpwGmrV6p///cnHmmcy5bwwoi27igc7abr7jxwo5C426Ar9h5ECJlW5ZKd/7ZDSkYpG3WNK0fV62y3AULsOnQJvYn9qOiohaKafpySbFTUdmX2MemQ5ss74sUDNK58goAktNnm8q/nGdRgTVsAnbznF7cBHJTZ1guZyN3OFGxs5M7wKQW7fmpUB3NN95knZyFAi9n9L/bzVUKBmmZqc3p0IqVlsm6jLcqg35I04La7eY9uUV7/kCkkY415spYoFzWmmLnpKzDkTB1xRTo+k98ynTO5WtYSXGXpOK8tpmvnTfIuAG+K9aDMN4TK9t8t6IRbbNnQn8vuUWn2fK8JR1L+MYl3yBbyPKDRyVeH4D3nbyCixav0NuEA2GWdCyxpT8zL7sItm4gFoqa+rtGnv/SI3EoDZ856yMsmF5qYyfPKZdcBFs2kKprGL3xOGHkns3D327Rzp63X/Q5ijcD2cq9uS5IKCCRK6jkLrnC1N82ct26D+7aBdOaWviHi76it7GTK0BL5wwYOEDh1NMte4aRdywJX9gKEipf+ZMvImL37eQ9qUFTtAZD9dStvMqSZxg5P7IJfn8Q3jHjTD580Rl6G7tl3RCNkE5k4aJLTP/tsrG9H+7aCdOaGx0b25OKip2d18Y5CV+x8yCEYtfq0P2ZAuL+znjankyjcCDMirmaEvczeQNwjItmL2X1/Bm2PP94tBU3hH6TFwsjz38uPAZkWDHvEhbPcCZxp7F4nZcdl8MbufcOpIAnCMoS1yx6ly3XqR0PSZJobwhzMJahL5ljZpt5v23kGkj2Aq8ws7md1fMvMO8hVaJRvy/Wujlt5L3tYBx4hpZomPcsfKdlzxwJLfUhArJEQVHpT+WYGjL/mi8j5zff3gpsZ3HHPFbPX2z6sypFUyTI0UTWElkb+Srx/UAXc9omsXr++aY/qxIIi13f4MQoUOy7Yj0IcTG6nbdODAVxWbm4qN5OGK2WTqGtGN84mC3FPJoN8W6duhgeSneXJmxQ7IwQi3BrNOSIUicgLDpHEplRWo4d4u5QJ+UM0CAUO5tkLVxjTtwhKiDLkj6XrZSxQCKjjWuhRDuFxuJYE2PPKvQVZdze4JyMRYyduLO21uErdh6EG5QaKF3MHndAsRMXpjup3DbXhRCecLOtdqDVXBIKo5OyFhtQJq+QL9hXtb0/pb1Tp+92nNRofXxOSYF3dk432qzYCddYm0NJYALtNsZgDWY0C5njil3x+VYf2I65QbErzuF0TiFloTXaLfAVOw/CiXtih0Jz8cQXt/jENxR05dZBC4csS7oM+pL/f3tnHiZFde7/b1VXL9Oz7ysMMCAgsolsRsUoijpBNIkxZNGYXGOMmHhJ4nI1ot579SbxGnMTook3xu0Xo964K8hiMBpBlEVFFgcYZph9YWa6e3qvOr8/qk91N7N2d3X3qeZ8nmeeB7pPVdd73lN13nrf97xHf+M2sl/TOQlkR/x2MkN0J9PvZiPlgE5Iva7kTfpOxjx2Ll9q9Ezvm3R67IDUGnbUkMo+VQy7kPFelEYdZ1tMsJjEqOvJZLhhZ0BYMeyodyHVodigrGgPo3T3AZ2QkpGU6/CEQzamNC6SsUii9lBMlScHCPdp2j12oVBsbxInfWrY5aTdsFPD7ikPxabRmwMAxTkhHSfReKe4GNG1Ztgl+cWcBY+dIAgozA69hJ8CK2O5YWdAWDHs8rLS47GL/L10h6MLQiGkZIRiqZzp9EpS7Cme8IGwxy7dYbpwKDZ5+Tk0nSEvzaHYbAtdPJEaPdP7Jp2TPhBeNZmSUGyob3Os+i/SiAVqWDpTFIpNt/FelIIXNFbghp0BcTBi2GkeO09qPXbUsLVbTDCb0juEwx47/fuAlbwrIHLCT2Uolo0JofiUDMWmymMXXiCTTrRwewqS6zWPnTXd+ZTq758KHjv197nHjsMwrHjsctOUY+dgxLsBhMOEyQjFsjLZA6lPqgfCxnK6x3l40k/ehEANqXTrOtV6poZUScibki5SYbxTnFqOXZo9dinywtM+LclJr44LT6HdJ7hhZ0D6aR27NOcehVfFBkEISdnvsmLYAuEwYX8yPHae9Jc6odBJKJUlT/oZSazX8q9SEIrNTbMXJ5xjlxrPLJ30abg7XVAdp2LSZyXsnorFE0FZ0RYrpFvHqVwgk264YWdA+rWkcjY8dn5ZgS9JddyGw+EJ5Z5lpd/gCRe+TMLiCS87Bmyq65sBEaHYdOfY0QnhFAjFhgsUp8hjF6obV5xmb06qJv2ArMAbUJ+Vadc1fTFP4j3d5w6AEEAQ0rsqFojQMV8Vy2ERrQxEmie8bIuk1XFL5cpYljx22uKJJOQZsiSnlmN3Cq6KpTWwBv0yvIHkeLIcmmGXbo9d6vRMCEFPyJAqZiSPMtkFil2MlDCK/H1XEp/dtD+L7BZIac6HLkriSzhrcMPOYBBCwqHYrPQ+DEVR0B4O1IuWCljKsaNhwmSsimXKsEvBVlMno22dl27PtFXSyr0kK8/OycAOI0BYzwGZwBdMrq5dvqBWgDvd+Vd00nd4gwgksQg39czaLaa0Gzp0rCUz7M5KqB3gOXYchnH5gpAVNZ8t3RMeEPYwpHL3CVZ23gDCxXOTsipWCzmnX85UJVpTCCHM5NjR/WKBcOhQT/zBcCpD2g07SzihP9l5dj2hST/bYkKWJb0LCQrsFtBd65Lp0aEvpen21gGpWQFNPXbpNtyB1Ja0STfcsDMYdLKzSiJsSdisOlao0ZHKlbEOlgy7FHjsWJCTTgKp0rPTF0SQoRcY6nFIhscu8qUo3RO+ZBJhM6emGDUr+XUAYBIFLQes5xTIpQTCYy2ZL+U9DOlYy4fmOXYc1mAlPEWhD6hTNceOVjPvdwd0XxnMkpypNuD7Q/XNsswmJl5gkrmtGPWYsBCeA8L1zZKt6x6GwnRA2KuUktXPDKSR0Ge3y5e8qgY9WqmT9OtYy7FzB6AoqavikA7S/xThxAQr4SlKZMmTVOFgaEcGqoegQnRfXcZKIWogrOdUGfD9HjZWflNKtHIY+k/6LHlxgPB9lWxdUwOqOM017Cglueq93O1MpmHHjq6px04h0Fbq6g1LoVj6rJYVkpb9zVMJN+wMBp3wWJjsgYhJIIW7T7DkybKZTVroinqZ9IKlcifhYtSp0bO2DREjLzDJLFLM0g4jQOoKj1PvZ2kuGzouDRkfyVwZy0oNO0D1ENO8QqcvOfd1r2bYpV/HFklEbsiYTcUOI+mEG3YGo4+RUieUdOw+4WQo9wyI3FZMv0mfEMJUjh29hlStfmZpNR2Q3FAsS14cIDLsnmSPnYsxj13IsEumx46VHUYAdVFQjoWWPEnOfd3DyK4TlFMlz44bdgZjgNb2SnOpE0qqJoFIWPLYAcnZVswTkBGQ1TwQFuRMVXiOcoKR+mYU6nFIxoo6JyM17Ci5KfLCs5ZjV5qbfMOONSM+x5bclbEsLZABwi9oyVwgwwLcsDMYrBQnpoQXT6SuDAZrhl0ythWjnjGTKESVoEgX1OhIVci9Z5C1CSGUWJ+EMB0rNewouSlbPMGWjku0UGwyy52ofZqT5q3jKOEixfrrmhDC1OIJIHwdqdgTOJ1ww85g0OLE+YwYdnkprmPniiiDwUr+VTJCsVoY1iZBoIkwaYRu3+byBVOyooxu31XEiMcuueVOQl4cBmqbAWFdJ3OrKSDclyWM6Dg1Hju2jHitjFESdO3wBuGX2ShATSlJQR4lC3DDzmBoHjtGQrFhT06KymBE1PFLd1FTCvWe6lmkmDWvJDXgFZKafUS1SZ+RN/3iFJQ7YWWyT5V3Vkusz2Vj0qeGXXIXT7Cm6+R57Kh+c6wSEyWLAG7YcRhlgLEyEKmuY9fnZmu1JJCcbcVYM+xsZhMskvq4SEXYnRp2RYwk1tNwoScgw62zYctSbTMgnE+ZzFBsUFa0FyF28ihDJW3cfgSTtK0Yc7qmi6KS8PxmLQwLhK+FG3YcpmAtxy4/K7W5V6ytCgbC16JnYj1Lu2tQUlnaJpx0zcakkG0JG7Z6e+0czHlxkl+zkN4rohBefJRuirItEAWAkORtO+VkqAYnkFwjnrWFE0DYO5zMcDsLsDG6OOOmj4FQrOL3w/X22yB+P0xeADCh3+nBwKuvam0EiwU5F1wA0aLvdfYPsuGxjOwDW5cAQER3UxsGXm3R2iTSB9Qzm856V5EyAkB2UEQPBHRs3YaqPLVNsvRMJ9aiNOr5ZPmLRBEdENC8YQvyctU2eshPy/ekM8cu6p4+AQAm9LV3J+2ept6cvCwRYhpTSE/WcaEkojcg4Ojrm2DNUdvoKTcNu+ek0bCLlNnaEnp27TuIgcEDWhs9ZKbGE1seu+QvkGEBbtgZCHVFaPoNG8+evWi95V8BAG5zFlD/73ArAppu+zeYSXjj8IlPPonsxYt0/e13j+8GIMJLenU9b6xE9gEpmw6cfT26mtvR9uRDUe3i7YMP2/YDENAfaANwpg5XHDuRMgKA7bwfAUUTcex/n0RFx37tc7317PHLcPvVcfRh998xqWSlbueO6TpOkj/n/FuAghoc/uOfUdR5UPs8UfmbB7oBCDg4sBfAhLjPkwiRsvqKpwDn/hD97d1oe+aXUe300jUtEOuQ2/D60dexso4NHed/8V/Rm1+NhkcfR37XIe1zveTuc3sACPio613MqUm/zMppFwKnX4rOHR+i7ZEXotolKvP2ln0ABLjkjkQuV1c0wy7DPXZMhmLXr1+PSZMmwWazYfHixdi5c+eIbQOBAO677z7U1dXBZrNh7ty52LhxY1Sbe+65B4IgRP3NmDEj2WLojtsfrm2WTsPOvuBMmGtqAEFAdsALgaj5KC5LltpAEGCeMAH2BfoaJEEliG3HPgQAHHN9hqCSvm1hIvsg3+cCADgs2eEGCfRBUAliR+vHAICD/bvTJmekjACQHfAAAAbNNrVBkvTc5XSHzh/Anz77PTPyUz0PaK6cxOUPKkG0OfoAAJuaX2FC1uygF0CEngHddd3lVMeSYHLi93vZ0XGBV9Vxn426ZPWT2xcMwBtQf+fZzx9nQuYcek9LWeEGOo3r7cf3AQAOOT5M67M6Erq7iNMXhDcgj9HauDDnsXvuueewdu1aPProo1i8eDEefvhhrFixAocOHUJZWdmQ9nfddReeeeYZPPbYY5gxYwbeeustXHnllXj//fcxf/58rd2sWbOwZcsW7f+SFLvoclCBHExOUu14OOH0QSSAxSTCIghpvBYRRTetQfu/3QkIQK7fC5fFDoclB/l+9UFRdNMaKBABHa/xzaMb4HTLEAnglXvw5uENqJ9Sr9v5YyPcB7kBL0QCOC3ZkAUTaGQp3j548+gGDHoUiAQYlLvSKGe0nnOC6vhzmbOhCOoqt2To+bWD2yASEYJpEO3OdmbkL/QNQiTAgCVXN/nfPLoBcsAEkQAnPK1MyGoPBiASwCNlaXIC+ur6vcaPIRIRJpMbbQ52dFzkc0EkQJ81T/cx/tKBjRCJ6kvpHGxmQubsgHpPu8366vrNoxvg9ojqMyzYMayssiwjEAwAya+epGEiBJPzzQjICtq6+1GelzX2QalAAMySGSbTyKuHY5nvmTPsHnroIVx//fW47rrrAACPPvoo3njjDTz++OO4/fbbh7R/+umnceedd+Kyyy4DANx4443YsmUL/vu//xvPPPOM1k6SJFRUVCR0bXs2NyHHnpvQORKhy+nDEq+EbKuE3Rub0nYdAEDEWeibfRVkhxNLvRKcioSOmgsgewZgysuDSzgdwoZjuv2eQhRsObgXi06cBtknQeqvxdaX96JsxkyIQnocz7QP/M5BLPFKACQcnlwPsyLH3QeanH2TofglSCemplXOSD1PMpUh6JUgFM7FMSUvaXret7cRS7zTIUgWWFovZkb+WqkCS6j8tfaE5ae6Xjy4ACAmWLoXMSGrZ9CjjeejtZdCBNFV1wpR4NjdiyXeSpiEUkgM6XiSqTxCx1m6ya0QBe/t248l3nmAoMDafiETMpsVK5Z4JRSbq3GsdgUAQbdxvaj/NCgBCea+aSfJSiDkeCHlyBDSkGD578tKQQhBX1srHO3prxFKIQpB0GUCcdkADL0ul9s57nMxZdj5/X7s2rULd9xxh/aZKIpYvnw5tm/fPuwxPp8PNpst6rOsrCy89957UZ81NDSgqqoKNpsNS5cuxQMPPICJEyeOeE6fLxyDdzgc8YqkK76Q69gmpT+CLogi7IsWwbllCyyKmvztM5kBENgXLYIg6nuNDf2H4fQ7QEgoBC0G4PA70NB/GNMLT9P1t8YL7QN5yxZIioygaILXZIFZccfdB1ROaHIG0ypnlJ5lNZziFyUkU880v04QAwAIM/LbguozwStZoIf8Df2H4fA5ARJ6SxeCcPjdaZc1uGWr9pnfJMEm+3XVdUP/YfhCIUlB9IElHWdRHZv00TFFva/VELcgBMGKzOZ/fgSA3tOAXuPa6XeAKKFFE6IvSlYhxwtLgYLSkjJYLVkpL8A+4AkgKCvIzZJgGcVDlkoIIfD5Peju6YYfXhBXYp5Epgy7np4eyLKM8vLyqM/Ly8tx8ODBYY9ZsWIFHnroIZx33nmoq6vD1q1b8eKLL0KWw/HzxYsX44knnsD06dPR3t6Oe++9F+eeey727duH3NyhHrgHHngA995775DP519Ui7y8vASljJ/ufR3Ysb8JZ9XkYMGlk9J2HRRyUQ2ObnwYf/bXYHdBNpY4DmAa6cSUNQ9AiCPUPRJBJYh1r6xBe3U7XIE6KGI+sso+gDn3EDqz9uOlFS9BEtMzlGkfNJB56LQV4SsndmOaXY6rD6Lk9M+A4stBVvl2mLOPplVOKuPOAT92VNUgL9iGq+XPkqbnY4VT4AucBin/KLIqN0OAwIT8R3p6sGPCFPic/bgmQfmprG2VfXC6lgEAcmo2QhQUJmT9WFoKj2TDdV07UFtg1U3XVO7D2ZdCFkpgK/8Q5ryPmdHxsZ4u7JhYB7fLge/oNMapzMdLLXB7zoJg6UVONRvj2rvtaeywnYl8wY8fNW+Cubpal3HdXt0Ox+ASQAkiu/JtmKwn0Jm1H/+3/P9wrLERZWWVKC4u1lmi8eHoGYTXF0RRbhYKGamhqJIHS5aELmsXpp49YUhYNhYHE1OGXTz85je/wfXXX48ZM2ZAEATU1dXhuuuuw+OPP661ufTSS7V/z5kzB4sXL0ZtbS2ef/55fO973xtyzjvuuANr167V/u9wODBhwgSYJBGmNHrLBnxBKAKQn2NN63VoSBaU3/xD5Dz/CRQBcJmtKL/hh5Bs+t4sbx55Cy3u44AIyEoWiAAoZhdkMYjj7mZsOv5W2lbV0T7IfbMN7UIRHGYbym++Nq4+GE5OIg2mX86QjNmPvgpFAJySDeU3J0/PQfkMKAJAJBcUUX1BY0H+ov9+HIoA9FmzE5afyqqQQigCACEAYvJDBhuyZm11YdBsg9sk6aprKrcs56g6Ng8wpePCX/0vFAE4oYOOKZrMZAYUARBNXmZkrr3maii7AafFBkEJ6jauCSQoxAYIALE4tGfYtuN/x2RhMrKzs9O2VaLJJIIAkBXCxHaNkdB+UYgMixS9QDKWOZ8B6yBMSUkJTCYTOjs7oz7v7OwcMT+utLQUL7/8MgYHB9HU1ISDBw8iJycHU6ZMGfF3CgoKcNppp+Hw4cPDfm+1WpGXlxf1xwJ014UClorW1tcj36oOI3dxBfJCuY56EVSCWL93PYRQzgGR1ZWngkldOSlASOuqOkDtgwJBfVC7KibG1QdD5VRd8YIptHowzXLm1dcjP1e9Jk9uQVL1TGR11algcmnfsyB/Sb469vrsickfJauippEIolf7ngVZcwT1t71V8Y3n4YiUWwmqkRJBCnshWJC7rMAOAOiz5+sid7Su1RWZLOm6qn6Fep2iBGXiZP3GtUxXjgeBkLwCBDx78FkQkl6DSjKpvx1MwZ7XsaJXvzBl2FksFixYsABbt4ZzPBRFwdatW7F06dJRj7XZbKiurkYwGMTf/vY3rFq1asS2LpcLR44cQWVlpW7XngroNlPpLs4biSBJKJ8/BwAQOHOhrqE5ANjTtQetrlYQEBAiAgo1eFTDjoCgxdWCPV17dP3dWBAkCRXTagEAgfMuiKsPouU0AUR9a6aGXbrlFCQJVZddDADwVU5Irp6DqgElSoPa9yzIP+2aqwEAA2Y7FDH+3JwoWU8y4AE2ZC0oU8Nk0spVuumayq0oJu0+FqVwQjgLck/9zjcAAE4pCwEdpscoXVMj3hTO3063zDl2K8TQslTb93+QkK6j7+GQ4W5y0koyICDoHOyEX0lvcWAplD8YSNK2cSzAXCh27dq1uPbaa3HWWWdh0aJFePjhhzE4OKitkr3mmmtQXV2NBx54AADwwQcfoLW1FfPmzUNrayvuueceKIqCW2+9VTvnT3/6U6xcuRK1tbVoa2vDunXrYDKZsHr16rTIGC90L1JWtuChlM+bBbQegKe8Wvdzzy2diweXPQi/7IfLC9wRSrX8z/PuhCn03LWYLJhbOlf3346Fshl1QHcj3LV1cR0fKafTA/wblfPcn0NkRM7yZV8ADu7AoC177MYxEin/L14U0DIIfGfOlzFr4pe1NumWf+KVX4KwayMUCDgx6Nc2jY+VSFk/Pgb8bzNQW1CKtefcr7VJt6yFVWXAoW4Ez5in2zmp3G19ftx7CDCbCO4/725EOinSLfeEK1dC2rUBQaIWUa7MTyyJPVLXm/YCr3UACypn4VuM6FoQBORmWTDgCYCc+8WEzjVkXB8DaosK8JMIWbOQBYsvvfOXmWGPnV4wZ9hdffXV6O7uxt13342Ojg7MmzcPGzdu1BZUNDc3Q4xYseP1enHXXXfh6NGjyMnJwWWXXYann34aBQUFWpuWlhasXr0avb29KC0txTnnnIMdO3agtLQ01eIlBN0nlpWN4SnU0Oz36B9OsJgsWDFJDRcc6XYBeAe5VglXTFuh+28lQnFos/p495gcSc5VDMmZH9rGzpGEfSUj5b/PvwWAD1867TycUZ2v+2/Fi1kyoTjHgh6XHz0uX9yGXaSsnr7jAD5BbWEZVtbpu0tLItD9YvXcQ5TK/RFOANiOinw7Lp96gW7n1wOTSURxrhWdDh+6nYkbdpG63t9wEMARnF46GSvrZulwtfqQlyVhwBOA05eYriNl7e9uArAPp5VUYGXdWVobr9eLxsbGhH4nUaRQiZWgzA27lLJmzRqsWbNm2O+2bdsW9f9ly5Zh//79w7al/PWvf9Xr0tJKP4OhWCBsaA64k+ti1zyW2WzJDwDFodVVemwe7gjpOY8xAz4vi24YHkhanoysEG3z8LI4DadkUpJjRY/Lj26nDzN1yOSgumbtZS03tJdpMoz4LifVr22MlumhNGTY9bj03XbK6Q3tCZzG/Z+HI9dqBuDRxqIedDvUvLqyPPbuYSkU6gkqsYVit23bhu985zs4duxYSo5LBKZy7DijMxDy2BVksRWKpYZmv44PhuHoG1TPX8hYKBoAinQ07AYYnezzQhNSQCbwBpKTn9I76INCAFEAinPYmxTCm4jrM+lrRjxjkz19qaDGiJ50hib9cgYnfSCs426d9xMdCEU0mLuvs/Q34lk23qnHTlYIFJKY127ZsmVRW5UWFRXhiiuuQHd3tx6XGjfcsDMQ/R6aY8fWg0Ez7NzJNezCHksGDbsc9Zp6XZlr2NktJphCD0VHEiZ8AOhyqBNCcY5V+y2WoOFXvSZ9VnWteeySkF7B8qQPhPcT1d+wY1XX+hvxVMfxpiskE5MoaNGGRMKxhBDs2bMHDz74INrb29Ha2opnn30WW7du1dYApAsmQ7GcoRBC0OdmNRRLc68CkBWStAm5b5C9ci+U5IRi2bo9BUFArk1CvzsAhyeA8jz9J2Y6mZYy6K0DgJKQAa+Xx+5Umuwp1HhncdIHoI3rrlPEsKPeYj2N+C5nKBQ7ho4JIfAE5FHbJANZViAIQFBWYImzJmxDQwOcTifOP/98rRxbVVUVpk6dCrfbreflxgxbMwdnRLwBBf7QJsCseazog4oQdSJI1vX1hoymEgYnfRqK9QRkePwysizxl8NgdQIA1Emg3x1ImseOGnYs5uYAYWOkRwfPLBAOf7FmxOfZaD5lMjx245v00wUNEdOQsV6wmk8ZmTurF9R4H8sr6wnIOP3ut3T73Vh4/oYlCCSwMnbXrl2wWCyYPXs2AHUr0qeeegqHDx+O2iAhHbD1NOGMCA3DSqKA7ASMhmRgkURkW0wY9MvodyfRsHPRMB1bhi0A5FglWEwi/LKC3kEfaiz2uM9FPbMs5hJqC2WSlE/J+qSvd/4Vq0a85sVJggEfNt7ZDMXS6+p0nBoeu1yddS0rRPNos/qCRkmklt3u3bsRCARQVFQEAHC73SgrK8OmTZswf/58vS4xLrhhZxDowoECu5m5bVAA1Ys46PckdQEF9dgVM7W/n4ogCCjKtqDD4UXfYAA1hfGfq9/Nbi4hTQOg41FvWM7NASI9dvoaduytgE6eAR/OsWNTx1ooVkePHSGEWcMuT+d8SroAShDGflZnmU3Yf1/qSzq19Xsx6AsgmKBht3r1am1f+e7ubtx+++34wQ9+gD179kSVZUs13LAzCHQ7sSIGjRpAfVi19nu0kiTJQDPsGAzFAkBhyLDrHUxs0qd9WMhYLiUQWbMwuYsnWE2s19tjx+qqWGrA623Y+YOKlofKrmGnXleX0wdFIRB1yBke9MuQQ2E/5gw7nVdA03ujONuqlRYZCUEQYLek3gzJy5Lg9gcRSGDxxO7du3H//fdj6tSpAICpU6di7dq1uOKKK9DS0oKJEyfqdbkxw1fFGgT6MGQxPAekZmUsDcWyatzqtYBC2xOYRcMui+o5OQZ8N8M17ICwx+6E25/Q2z6FVS9OgTbZB3WRk0I9nZIoMPssK8mxqon1CsEJncY51bPFJMJmZmvazdO5ZiHrHlkAMCe4rdjRo0fR398/JOR65MgRSJIUtUFCOuAeO4PAuseuUMdVoSNBS4mUMJhjB+hXy47lUGxhkg14mmPHaii20G6BKAAKUfWcSJ6YNyDDF1oQlc+YER9paDq8Qd2eO3RBQmmuVRdPWDIwm0QUZ6s7jHQ6vLos1qI1SPOy2EulydN5BXS3g/38OinBbcV27doFQRBQVlaGjo4ODA4O4h//+Afuu+8+3HjjjcjLy9PzcmOGG3YGQfPYMWrY6VnuYzjc/qC2LJ7VUCyd/HoTNew8DC+eSGIolhDCfCjWJAoozrGi2+lDt8uXkGFHk9UFAchJQzhqNCSTiFyrBKcviH63XzfDzgjeHEAdfz0uP7ocPsyqSvx8Yc8sW3oGIhZP6JRjx/oCKEA13oH4PXa7d+8GIQR1dere4IWFhZg2bRoefvhhXHPNNbpdZ7ywN8o4w0JruBUxONkDkUaNvivJKNRbR1fgsohm3CZQCkNRSHjrNMa8OECkx05/A97pC2oeLFY9doAaqut2+hLOs4vMr2PRe5VvN6uGnY5GfMeAOulX5LNpuFPK86zY365fyRNWQ+5A5M4T+uiZ9QLUQNhjJyskrjzKBx54IO1FiEeDrWA/Z0RO0BIYjHvs9Nh5YTi0GnbZFuZCGRRt94kEPHZObxA0OsCiYZfMXErqrcu1SgnVAUw2etWyY3myByIWUOio6/aQYVeZn6XbOZNBuc4lT1itYQeEQ7Fuv6xLPiXrBagBwCQIEEPzSCDGPWONADfsDILmsctm78EAAEXZoaTyJIViTwyGt5pilXA4Ov7JgNYrtFtMsErsGTc0768vCR47Lb+O4dwcIJzjmbjHjs3ixBS6JzUdk3rQMeABAFQy7rHTatk5M99jl2MLjz89ClIbIRQrCALMpsS3FWMVbtgZBNZXxeq1cGAkqHeE1cUjQNi47UvAw6FtG8fgBACEr0tPLw6l2yD5V3rVsmN5sgfCCzr09M62GygUC+hXy45lXZtNIuwhD7ke5W26GN89hiLFmGc3adIk3HLLLTH/TrzHJQI37AwC66tii3UIQ44GDfGyuOsEheomkQk/XOqETTnpi4XTF0yoavtwGCVMR/exzXTDLlzaRsccO4cxdFyeq28olnVd0/s6UcOOEBLxgsa28R4ueTI+jx037Di6QggxjMduwBPQfcIHwuFNFveJpdAQndMbhC8Y38bWA1ouJZsTQOQOCXoXr+3QDDu2JwTqsdNz8QSL6F2kmBASYbyzreNwjp2+HjvWdhihUIMz0RQLh9cYC6AARIRieY4dJw14IupdseqxK7RbQNc0JCP/SvPYMSo/oD4c6cMi3kUkrHvsTKKgFTTVe2VsW78x8q9KThmPXSjHTic9nxj0wx96jpUzuk8shYZie1y+jC5ETdHLiO8O5dfl2STYzOzlCEcSDsXyHDtOGqDeOosUzoVgDZMoaKGbZOTZ9QyyHYoG1ITcRLecYj3HDgivzNZ7ZSwN01UwHqbTa1sx5r04NMdOJ48d9daV5FhhkdieeopzrFohaj3SS4xi2CV6T3cMqPcE64Y7EPbY8VWxnLRAN1wvsrNb6gOIWECRhJIndDsxlnPsgMTDdOF9YtmVs0AL2+hr2BklTEd13OdOLO2A1g1j1bDTO8fOKKF2QH1RpXrWIxzLcrkTQL/V7uGXM/Z1TD12PBTLSQt0v0JWa9hRikOrQpOxgMIIRS+BxMN04e3E2JwAgPAkoGco1h9UtD5jfVIoiAi5JxKOZd+Lo09CPaXdQJM+oG8tO03XjN7XehnxtJxNhQE8dpbQPeyXCQjJrHAsN+wMAOs17CjJKnkSlBXNY8f6EvrShEOxbOfYAckpUtzl9IIQdZN0VndXoYiioL1gJDLp9zMedi/QeZeRdoPkUFLCOk7MY0cIMYARr0+OXXjVM/s6ph47Qkjce8ayCpuVMTlR9DEcnlP8frjefhvE70dOjwBARNvuTzHQ84nWRrBYkHPBBRAt8V1/76AfCgFEgc0t1SL7ILdd7YPWTw9iYPCA1ma8faBtJ8ZY0dpIGe0dqoydH3+Ggf59WptE9Ewn/fI8djeHj+yD4qCIVgg4uuUfmFwcbhNLH4Tva3Ym+0gZRT8AmDDg9qPvlVdB1RKvno0Qao+Uv/CEOs6Pf/QJBro+1trEKr/TF9QMB5aM+EhZrZ2qrN2NLRh4tVlrE6usVMdGyLETBQFmk4iArCAgK9r+sZkAW7MHZ1j6GF444NmzF623/CsAwDxzBTD9IrT8YwfaPnkxqt3EJ59E9uJFcf0G3aKGmAaw4dgbWFm3MrGL1pnIPpCmfAGYcyVadn2Ktkefjmo3nj5ocwwAELC//0MsBztyRsoozrgYmHEx2t7bgbb1+uj5jYb3AYiwWN16XG5SiOyD3EXXAFVzcPj5VzCz8f2oduPpA0IIege9AATs7nkXs2vY0HWkjH5RAi7/LygQcPiudcgJhD1X8eh5X0cLAAHtvgMApup41foRKb9t+nJg5iU49t6HaNv7QlS7WOSnz28IPmw5voGZ51ekrHLFLGDJdeg+2oy2J34b1S4WWT/v7gQgoNnzCYBana9YfyINu0wic0zUDOYEwx47+4IzYa6pAQQB+b5BAMCANTvcQBBgnjAB9gVnxv0bbQPqeQXJid/v/T2CSuLb3uhJZB8Uel0AgH5rbrjBOPsgqAQ1L87LR//ClJyRMub6VePLadFHz0ElGDLsgG5/A1NyRxLZB8WeAQBAry0v3CCGPnB4fQjKqgvsL58/xozMkTJalCCsQXU8Os12tUGceg4qQRw70Q8A2Nb2MjPynkyUjr0OAEBPVn64QRzyd7tUb7QguZl6fkXd0wH1nnZZ7OEGMcoaVIJayaJNLc8zI+do0FxZfzCzQrHcsIsBOaik5a/P6YdIgEKbOW3XMNKfAhFFN62BAhF5PjdEAgxYc6EIJvUv4vt4f+PvR3ZBJIDJ5ESbox1vHt6QdrlH6oMC/2DcffDa5xuAoBUiAbo9TUzJGSlDrt8DkQBOS44uen7z8AY4XAJEAvhIB1Nyj9QHxV4nRAKcyCqIqw9e2r8ZIgFEBNHuamZG5kgZFMGE/JPv6Tj1/EbDBsi+bIgE6PMfZUbe0eQv8QxAJECvLT4d07/NDdvV55c4yNTzK1KWnIAXIgFcZnvcsr5yaANIwA6RAD3eIyPKSQhh5s9iEiFA3VYsWb9x2223wWq14hvf+Ma4jxmpj8cLD8XGwJ7NTcix547dUGdyjgxiiVeC6ZADu/qPpfz3x4KIs9A3+yrYghKWeCXkmWtwrHYFAAGmvDy4hNMhbDgW17kVoqBnZzeWeKthQhGk1oux9eW9KJsxE6LAznsJ7QPFK2OJV4JZLI2pDxSiYOtn+7DEq74dWzvOYU5OKqNVNmOJV0KBuTphPStEwZaDe7GwdyYUnwTJUcOc3JHQPigWctSxnj0t5j5QiIKdn3yOJd4zIIgyLG1sjWkqo+xwYmHAij6vhJ6qZbDk98alZ4Uo2LJ/H5Z4QmO7azFT8p4Mld9E72WpIu5xrhAFx3a3YIl3CkQlF2bGnl9U1kG3D0u8EgTkobH2EghATLIqRMHb+/ZjiXceICgjP78kGZYyGR5nAIov/fJLfgXZigDikeHG6IuE3vvnu/jNb3+NPR/vQUdHO5595nmsrL98SLsf3HQ9KiursO6uewEAP/7hT1BWXImf3vavuP2nd6FuSt2Iv+HzB+D3yPjs3VYgGF2z1uV2jluu9PcsZ0w8AXV7qixGK3kLogj7okXICuXgeCQaMiawL1oEQYx/mDX0H4aPLtQSfQAIHH4HGvoPJ3TNeqP1QVDNBwyIEmRBxHj7oKH/MJy+0ApLIQgI7MlJZbSFwnNeU+J6bug/DKffAaKEVjuLXubkjiQ81lVdeUx0lfb4+6Ch/zAG/aFJRAyAtTFNZQQIbLJ6nT6TBfHquaH/sFazTxD9gCAzJe/JUPntoedZQJQQECXEI39D/2F4/KGQpMCuri2yqh8CIS5ZG/oPw+ULhs7pY/L5NRx0oZYyjlWxbrcbZ5wxGw/96uER28iyjA1vbUD9pV/SPsvPz8e13/4ORFHEZ/v3jXisnnCPXQzMv6gWeXl5YzfUmR99fBRdwSDuuKAap1fmj31AGiAX1WDfpvW407YEAHBz6zbkVZRiypoHIEjxDbOgEsS6V9bgSM6FCKIc1rLdsBR8CAECOrP246UVL0ES2RnC5KIaHNn4MHaZlyJgMuNfuj5ATZF9zD6gch4vscLtWQjB0o2c6s1MykkuqoF56x+xw7YQIgFuad4MW3VVXHqmcrdXt8PpmQ9iCsJe+Q6krFbm5I6EXFQD/7ansMM2FzmigpuaN8FcXT2uPqAyNxeXwuObA5O9DXYGdU0uqsHRjQ/jb+5C7CjKx0z3EVwsH41Zz5q8RXnweBZAtHYgm0F5T4bKv09cCJfFjm/27sK0PCkm+ansjQWz4JenwFz4OWzl7MlOZd0rLYVXsuK7XTswsdA2blnDOi6GxzsPJnvLiGPa6/WiqfkYsnLNsNksIIRASdOWXqJJgBAwoc3rhyQQ1OSPnsN+xVdX4oqvqgtfvvHtq2G1S7CfdMy7774Li8WMc794dtRmArLog91uR8PRg7DnXzXyNXkVWLJMmHZuNWy26JXFDodj3LKlf1QZCJMkwpTirXAUhaDb7YciAKV5WSn//XEjWTD5puthedcHr2RFv8WOaTf/EJIt/gUfbx55Cy3u4wjKOVAEAOZ+KKLqvTzubsam428xs8IMACBZUHHzD5G/1YEuexH6LVlYMI4+0OQks6EIgElysSunZMG0738HygeAIogYlCyojVPPVG4imCDLuYAAEGsvZDHIntyRSBbMuO7rUD4EHFY7AgBqxtkHmq6VGigCILKqa8mC8pt/iLyn34ciAAMWO8q/H7uew/fwElVeSx+b8p5MSP6SjZ1wWO3oseXinJuvi0l+KrusnAVFAAjjus7Z6oTbbIUr9P/xyhrW8SRVx+aBEeU0SSIEQdD+FJlg98ampIk2GgsunQSLJIJA3VaMEMRUaonKEMlrr72GlStXQjzJ0/nzn/8cLpcLn3322ai7R9FzDmdrxDL3M2olcCgDngDkkJuYxXInkeTV16M4qK6uckysQ95ll8V9rqASxPq96yFAAAmqXlJBCucYCBCYWmFGyauvR5ESWklYPXnMPoiWU11lKkiD2vcsylm8sh55AXX122Dt1Lj0HCV3IB+ACAgBCCZ1VTGLckdSdfllsIXCV47JM8bVB1Eyy+rqQ8EULu/Cmsx59fUosqnpH86i8pj1HCmvEigEAAjmPu171uQ9mbz6epQRNeTeVzX2vRxJtK5D9zXjus6FOp7d1bXjljVKx0E1miRIA9r3rMl5MiZRgBgytPQoefLKK6/g8suj8+527dqFRx99FPX19di3j4diOQhvWZSfZWZ+42xBklBeWoBWJxBY+ZW4Q7AAsKdrD1pdrSBEAAnmhM4fdkUTELS4WrCnaw8WVixM+Nr1QpAkVEwow8E+IHBx/Zh9QOUEACKH5DSFDTsW5RQkCSV5Njg8gPK1b8Sl50i56aQvmvtAX2ZZlDsS0WxGWbaEZi8gr/72uPogWtdDDTvWZBYkCRPOWwIcBdzTZsas5yh5qY4tYcOONXlPRpAkTJw+CTs6AdfZX4xJ/ijZh3lhY012QZJQXFGCIw5AuOzyccsarWP1BVw0j/85LZoELLh0UuICxIFoUr1jZpMIX1BGQFZgTSCP/cCBA2hra8OFF16ofaYoCm644QasWbMGixcvxre+9S0EAgGYzcktVM0NO8bpDhl2JTlse+solZOqgE/b4Zo2K6HzzC2diweXPYhupx93HRQhCAT3L7sDkR5ui8mCuaVzE7xi/amYWgt8eByDU6aP2ZbK6Zf9eP6fAt7tAS6YvAhfOiv8EGRRztKKYhxtPAHv7AVxHR8p9/ZDwF+agellpfjhOfdrbViUO5KKymI0N56Aa5x9ECnzE28L2NUH1E89HxfMOV9rw5rMVV9YBBzdBUd2QczHRsr74MsCmpzAt2fXY+7keq0Na/KezKR5M4G3DqG3bEJMx0XK/p/tAjo8wL/MXY3p1au1NqzJXjyxCtjXAe+MM8Z9TKScD70ioNEJfGt2PeaNU8dq2DG9O82YTQJ8QXXP2ER49dVXcdFFF0Xlxv32t79FT08P7rvvPjQ3NyMQCODgwYOYPXt2opc9KtywY5welxrWo5vLsw7dy7Urgc3RAfVhsGLSCuw93g/gn6jIy8KqaReOdRgTlOWG9osdRx9QOQFgw45dADqwpGYWVtZNTuYlJgwdj71x7gscKXfDkUMADuPM6lqsrEvuA09PKmLcJD5S5ue3fQCgB+dMnI+VdTXJusSESUTPkfLe69kMwI8rZp6HM6rZXAA2HFUFWQCA9tDm9uMlSvagKnv9tGWYWZn6xXfjpTCU6hPLHtCRcv6X/20AHtSfdg7OnFiYjEtMChZJBHyJh2JfeeUVfP/739f+39raip///Od49tlnkZ2djWnTpsFqtWLfvn3csDvV6QltJl+SaxDDLrRxdncCm6NHQiuZ0wesEaC66nbG1ge9ISO+2ABGfHHIg0yvORFa+lQd1xTax2jJFuWhl5h4Nomnk2dhNjt7hw5HcWiyPxGnAQ8A3oCsvaDWFBrnPgbC+9rSPVBjRVEI+kK6Zj1Hmuqa7n4TC4pCtPuA5b2Ah4PuEesfowCwy+XC4cPh8i2NjY3Yu3cvioqKYLPZ8NFHH+HVV1/Vvv/Rj36ESy+9FPX1qvdSkiTMnDkzJXl23LBjnN7BkGHH+EOBEou3ajxQw67aQIZdacgw64nR6KFekWID6DrsyUlcz2HDzjg6BsIbnY/XYxcJnTwLGNwmMBJqwLv9Mjx+GVmW2HOQqH5zrBLys9g2ZE9G89j1e6EoJKZVkwDg9Aa1xW8FdrZlp8+deF7WegZ9CCoEohB+/hkFayh33T+Gx+6jjz7CF7/4Re3/a9euBQBce+21OPfcc7Fo0SKUlJQAAF5//XW8/fbbOHDgQNQ5Zs+ezQ07DtDjNGgoViePXasBPXalIeO2yxnbWz71ihQbIJ+SXmOsxutwtPSpCwiMZtiVhQy7jjg8dnRj+CLGDbscqwSLSYRfVtA76EONJXavamvEy9lopR5YpDzPBkFASH6/dm+PF7rPt91iglVis8A8pVh7IY392d3er94DpblWSCa2F/mdzHg9dueffz4IGT4P7/LLL49aDfulL30JfX19Q9o99dRTCVzp+DGWBk5B6E1mtFBsrEbNSLT20UnBOO79SE/OSA+Ck5EVonlxWA/ZAEBxdvyTQCT+oKIZRkYLxdIcu64YDTt/UMGgX63zVci4YScIgmbExxuONarhDqj5V9QDFWueHRDx/DbAi3n4ZS32e7rVgJEVCvXYBWRlXDtQDMc555yD1atXj90wRXDDjnGM9GAAwqHYPndgzDeg8dA2YDyPHfVa+oOKll8zFn1uP6gNyPpkD4RXaSeaY9cx4IVC1IerUVZ+U8I5duM34IFw+FoSBeTa2A+aFCUQogMiXs4MaNgBQGXo2dPWH/vLKs2RjtXTlw4SWSgT1rGxXs6A6Fp2Y4VjR+LWW2/FhAmxrZxOJtywY5zwqlhjTHoFdjMsIde2Hl47+jA1kmFnlUxavkrHOJOuqTekwG7WQgMsQ8M2vQl67CK9OUYM0wHqXs4Oz/gLsNL0iuIcS8w5W+lAM+zi9tgZM4eSQqMF1CsVC0YqV1UcsSo21hWiRvbYCYKg1YiN17BjDfZnkFMYQkjEg4H9Nz5AvUkqElxJRvH4Zc3gMZJhB0SGY8fXB9Qza4QwLBCeqAb9Mtz++KvKtxj4Td9mNmn6imXS7xk01j1dkqARH570jadjIJwiQF9CYkGramAAXRfYLaDvGX0xGvEtBvfKWsaZZ2cUuGHHMC5fUBtoRngwUKpCb7htcbzhRkLDsDlWCXkGCFlFQo3b8SbWUwO2JNsYes6xSrCHVkjGsyqUcqxXrcZfW2TMSb9aC9PFYNiFJnsjlLUBwp6cePMpjZxjBwATQmPz+InYDTv6Ym6EUKxJFLQXlVgXRVHjvcZgL+AUbWUsN+w4yYbeXNkWU1xlBtIF9a7FE7qIJFzDzma4MJ1m2I3Ta0nzl4zisRMEQVs8MF4Zh4MadpNKsnW5rlRTFUeYzmjpFdT73BVjXUZArWFHjzOqN2eiZtjFEYo1WFUDuigq1jJGrSHj3ag6tnDDjpMqjLYilhKPF2M4aEJuZb7xHhaxGj00f6nIIJM9EHu4eTgae9QJYXKJUT126nXH5LGjXhyDTPZlCRRibulzgxDVw2uE+ozDQQ275hPumBbJABG6NsgzPJ7C405vAA6vmo5hxBw7ADzHjpM6jJSfEUlVAqvIImkKhT5qi4036VfEWOOM7lJhlMkeiD3cfDKEEDTRUGyxsT12LXEYdka5rzWPXRwh92M94XvYaF53ilp/T10kE2uIsttgz/CSOGrZUW91gd2MbKuxUmYokTl2sRrvLMINO4ahEyYtq2AUqnTy2DX3qpPCRAPmX5Xnx+bNorXQygyk61jDzSfT7fTB7ZchCsAEAy6eAMJ5Y/F47IxQiBpIzDOrhdoNargDqjenKhQ1aI4hz44Qoum6zGgeuxgWT4RrjRrTWwcA5pDHTiEEwThr2bEEN+wYhial06K/RiGR8gCRGHlSiNVjR/OQjKTrRHPsjvWG83JoKMRoaPmkfbEsnjBW3hU1Sgb9Mly+2FZAN/Ua1+seCTXgY1kZ6/QF4TPY4rd4VkAbudQJRRSEjFoZa8yn6SkCfUOuMNimyjQnzukNwuEdX4Hek1HDdMadFKjO+t0BeAPymO1pzT8jeWfLE9hSCwCO9RjXcKfQyazL6YMvOLaegYj9nw0y2WdbJeSGQmyxeu2M/HIWiZZn1zt+w46m0hhp8RvNg+yOYaGM0QtQU+jLpS8DDDtjBsRPEagnhHpGjEK2VUKB3Yx+dwDt/V7kVcS++fWJQT9cviAEIVxuwEjk2SRkmU3wBGR0Oryj5pDJCtFydwzlsYsx3HwyjRkw6RdlW2Azi/AGFHQMjK5nQNW1Vtom1xihWEBNEXB2B9Hp8KKuNGfcxxn55SySyAUU40XLrzNIGBaI3g5xvLSkyGOn+P1wvf02iH/kMLFgsSDnggsgWmK/t6xmE1y+4IgvaPfffz/uvPPOIZ//+te/xo9//GOmcki5YccwnVqOnXEme0pVfhb63QG09XswvSI35uNpmK4izwab2Rhvu5HQQs2NPYNoH2PC7x30QVYIBME4JTCAiL1Sner1m2LcRaHJ4KVOAFXPVQVZONo9iNZ+z5iG3YlBPxQCCAJQZICt4yjleTYc6R6MaQGFP6hooUujLo6hTAwZpsdjCMVST7aRXszjWRCVqp1FPHv2ovWWfx2z3cQnn0T24kUxn5/WsvMFhvfY3Xzzzfjud7+r/f/uu+/Gpk2b8NWvfhWHu10IBAkmFtuRw8ACEh6KZZhOgy6eAMK5R/FUaweA5hN0taRx3/TpA32szcPpZFmcbYFkgO3EKCU5aqV6WSFx7UpwtFvVsVFLnVCqY8izoyH3IruxdB3PAorWfg8UAtjMomEWD4zEhDhq2dGIS6WBUmnoM+vEoH9cKSQA0Jyile32BWfCXFOjvhUNhyDAPGEC7AvOjOv8tjFCsbm5uaioqEBFRQXWr1+PTZs2Ydu2baipqcGN134DS06fiG+vvjqu39Yb4zxZTjGc3gAG/eqNZbQcOyBskDXFkJMSiVYmoci4b/r0DXasCb/bgAsnAEAyiVp9rli3jwvKimbYTSuL3aPLEtUxlPfRJvsCY+k6XMtu/Aa8VsqmKNsQe+KOBg3Ftg14xp1LSe+JCgPV4SywmzXP1Xi8swOeAPrcah51sl/CBUlC6c1rgJHKkRCC0pvXQJDi85hZJTUy5A8qUEYpeXL33Xfj6aefxrZt2zBp0iQohGD1d2/Af/z6EbAyzLlhxyj0zTjXJsFuSb9rN1YmhW5ymjwdK409xg/T0T0mx3rLp14cI5U6oYT30YxtBXTTCTf8soIss8nQq+mA2LzT2mSfZyyZ6UtHLB67TMmvA1Rveq5NAiHjf1k1oscucq/v8YRj6WKS0lxrSuapvPr64b12IW9d3mWXxX1uySRAFAQQkBFXxq5btw5PPfWUZtQBQEBWsHDpOcjJyWUmz44bdozSMaC+LRkxvw4IG2TH4vTYfd7pBABMKxt/ojZrTChSJ++x8nLCZW2MZ9hNKByfjCfT0OkCAEwtyzG8N0fzTo8jsZ4aRkaa7AGgKn98aQWRHOlWdTzZwC9nFEEQMCW0aORIl2tcx7QbVNfl40whASJXPafGeB/Ra5egtw5QdWwdJRy7bt06PPnkk1FGHQAEQm1ZSq1g50o4UXQaMPE2ErrSsbnXDTnGgo9BWcHRkMfutHLjhuloXs5Y3izNY2ewUCwQ/wbpDRlguFNoblHTOLzT4fCcsXQdj2eWGu/TDHwPR1JXquqZGqxj0TFgzC0RK2NY7Z6OnWOGeO108NZRrKGFeieH2//jP/4DjzzyCP7617/CZrOho6MDHR0d8Pl88Mvq/CYx9ILKDTtG6TDwilhADU9ZTCL8shLzDhTH+zzwBxXYzKKhayNF7kowmnHbYdDJHggbdrGUgQCAhq7MmfQnhya1TocPbv/oBXyNWsKIjuUup2/cSfWHu8Ne2UyAlnk50j22AR+QFa3ouNHu6/Cir7ENOxqRSZXHDhjGa6eDt44y3MpYQgh+9atfobu7G0uXLkVlZaX298knn2hhW7OJHcPOeMlbpwi0mneVwZKsI2sNVVtENHoE7H99C/IKwm3GqjVEw7B1pTkxl9BgAdoHNp8fkiAiqACf/99rqIpQZWQftGhb8hhD15E6LhoAABOajndj4NVXtTaj6ZgQgk/bugEY22NH+wF+P/IlEQNBAZ/97U2cFuG8OLkfaHirIt8YYXcqo+Dzwy6KcCsCDr34BiZFvG8Np+t+t19bFGR0w472QWW7H4AJn3/egoFXm6PanNwHXQ4vCFEne1r0l2Ui7+n8dgGAiJaDjRggR7Q2w+n5WG96qhfk1dej+7e/Q6ClRRdvHVEUKE4nLAHVWPR6/Qj2h+vl9TY1QRAEiLm5EMRofxh9qZVEdvxk3LBjFDrZG20PzchaQ6VLvovGitPxyV9exsRj26PajVZr6PWDHwIQYbcPJPtyk0JkH5Qtvw1tOaX45Dd/AHqPRrWjfdB0wgFAQINzJ76IlWm44tiIlE/KKgRW3Ik2t4zjt94BE8KeyZF0/Orh19HYIwMwGzrUHtkPFefdjIGiWux97BnktH0a1S6yH1r7XQAEHBzYgS8YTNdlX/wJjuVX4tPf/QmW7s+j2p2s6yf3vgVARGE2YaKuVyLQPsjOKQOW34qj/T603noXTn7ljOyD/zuwFYCI3CzFEDmkkXo2V80GFl2L4w1NaPvT76LanaznzztPABDQ7NkNoDpl10u9dm233a6Lt05xe+A/fhwmUQLyKuCVCQItrUPaWSZNhiknOuzsCfjx/dVXoOHAPnjcbtTU1OCFF17A0qVLE7qmRGDHxOREQVfYJbvoo95E1hqqdqlembacknCDMWoNBZUg3jmiThrHPDsQVGLbm5IFIvug3H0CANCZXRRuENEHfW4PPH71wf+3xscMIW+kfCWefpgUGUFRwomsPLXBKDoOKkE8/MFfAGKGIPpRkR/7riSsENkPVYM9AIC27JHHep/bC29A1fXzR/5oOF2XefoAAJ32wnCDYXQdVIJ49pO/AwD8puOGkHM0aB9Uuk9AVGR4zDb02vLCDU7qg6ASxF/3bQYAeIVWQ8gf9cwaDD2z7MM/sygDHi8cHnU8v9L0p5TLmXf55Zj0wvPIW5n4C5KYbYdgtsCsBCESAiII8IvRzybBYoGYHe1oIURdQfvHZ1/G+wc/xODgIFpaWtJq1AHcsIsJOaik5C/gl9F2wgORANV5tpT9rh5/CkQU3bQGCkTUuHohEuB4bgUUwaT+RXw/3PFvHt4AtysPIgHc5DDePLwh7TIl0geVg30QCdBhLx62D577ZAtEAojiIDoGmw0hb+T1C4KIipCMbdmlY+r4zcMb0NlrgUgAk6UNG49uTLs8evRDdWist9M+GKYfnvtks6prwY2OweOG03W5W9Vz1whjOVLHfQNWiAQImowh53j6wESIpufmUZ5pqvwmiASQhQ5DyB+lZ08/RAIMWPMwKGWNqOend6vj2SQ60ek+Nm45CSG6/AGA7YwzAECXc0llZQAEWOUABAA+kxmAoP1JpWVDfqvfOwAQEQKAIPFhwDegi2wj9d14MbaPPMXs2dyEHHvyQ0eDviDOdKmTZtuOTnQyUhtnvBBxFvpmX4XigIglXgl2ex2O1a4AIMCUlweXcDqEDceGHKcQBZsPfIxFA2cBEGDpm4atL+9F2YyZEAVjvYPQPpgkFWOJV4JQOA/Hak2I7APy5lHs3XsMS7ynQZBEWFovNoy8VD7Z4cRSn4Q2SUJn9QXIzWkdUccKUbDl4F4sOPEFyF4JJsFqGHlHgvZDJbKxxCshK2/msGNdIQr27mnCEu80CBIMqetaqQhLvBJMBbNxrBYY7n6mOl7YMxuKX4LkKDOMnKNB+2Cpz4wWs4TOmgtwLHsqhtPzloN7sbB3LmSvBMlUahj5I+/pZYMEPpMZh+ouR4HPNayeP93dgiXeKRDNgHm841mSYSmT4XEGoPjY6g8i2CBnFcJOBJgUAbI5Bz5B9doJJhNkwQZhIJx3R0Dg8HiRrahRNSGQA0e/G5LNBmFIoH58+PwB+D0yPnu3FQhGb6XpcjvHfR62epYDABjwqpW8c61mmAxm1AGAIIqwL1qEAp+6Ks4t2UJubQL7okVDkk8pDf2H4XATAAIE0Q+IXjj8DjT0H07dxesE7YM8n5pc7LDQvIxwHzT0H4bbp4TaewEQw8hL5QMI8v0hGa3ZGE3HDf2H4fQ7QIJqGEuQnIaRdyRoP+T61dQJh5mGaqL7QdV16BiTB0bUdXZAzft1WYaXEYjUsbpgQpBchpFzNGgfFPrUybXPSl/wh+rZ6XeAyKEUGpPbMPJH3tM5IV07zVkYSc/ukGEmSC4YaTyPhAABYnY2JEV9JgfFsGElZmcPMdZ8QR8UWu1AkAEQyIoMXzD27RX1hnvsYmD+RbXIy8sbu2GCtH3chh2fHsOiSblYcOmkpP9eMiAX1eDoxodxVDkDXfYirHJ+hlm2AKaseWDYRNegEsS6V9agqWACvN4zYco+DHvNZggQ0Jm1Hy+teAmSaKzhSi6qgX/bk/il7QxkmUTc0LwJlupqTFnzAGQRWPfKGjTmz4Y/OBXmwgOwlRtLXqrjQ1192FFZDb9pEFfLnw2rY6rftqp2OAcXA6Yg7NVvQbJ1GkbekSAX1SB30+9xj20BABOub38XRWVFWj9Q2Y/mnoWAPBmW4k9gLd1iOF173nkGv7LNQo4o4PsRY5nqmsrZWu6Ey3k+AD9yJr4CUQwaRs7RIBfV4PC3bsFjtono8gXw9eZNMEf0AZW/vbodTs98EFMQ9sq/Q8pqM4z89J5+frAYOwrm4nRvEy6Qjw6r5yP25QgqQVjLd8JSsHNc49nr9aKp+Riycs2w2RhcLZxnhnz0BLpEK0wASvwOCBYzrGXVUbtdEELQ2t8Mv8mqhnJNPohmdRFcUPSiLq8url0oRK8CS5YJ086ths0WXSXB4XCM+zxsjzLGMEkiTFLynZwtAx4oAlBdnJ2S30sKkgXlN/8QE1/6HB3ZRWjKKcMlN66CNMLN/OaRt9DiPo6AbyEUAZCyWqCIar2s4+5mbDr+FlbWsb+KMArJgnnfWw1hu4xBiw0nrNmYe/MPIdks2HDkNbS4jyMYOBeKAMBywnjyUh3/4lEoAtCcW4rykHwnQ/WryIVQSBYgBIGsDsiCbBx5R0KyYMpN/4KSrX3osheiOacUM2++QesHKnsweJGqa2uvIXU9/7tfA3YocFjtGDBn4YyTdK3J6T8NigCIlh4QyQsZBpJzNCQLFl+1Asoe4FheBWRCUBPRB1R+AgmynK+mZll7IItB48gfuqcrntgGRQDa7YUo//7weg74S0AEALaOcY9nkyRCEATtjzkEAfbiQpBB1WMnCwJsZWVDIhADvgEEFD8IyQYBIAh04QiBX/HD4XegwFYQx8+r/TKcrRGLLWBQqyGzoZujTyk19lY8efX1qCNqOLa5atqItYaCShDr966HAAGyR10yL9rCS80FCPj93t8bYnXZyRSvrEe1Ty3b0jb5DORddlmUvIq/FAAgWrq1Y4wkb159PabkqiGLLnshTBdePKRNlH69EwAAoq0DgqBOBkaSdyTy6usx2a+uGj1eO1Mb69G6VlcZCuZe7TgjyV66sh4VPtVr0D7ljKj7OVrHVQAA0damfW8kOUdj5pcvQ3bQh6AooW3anBH0XKw2Fj2ASQ3RG0n+vPp61FjUcGRHcfWweoZiAQmocoqWTu17I8k5EuaCfFhC1++1ZcOUnx/1PSEEXZ6u0H9U35ggBKLadHm6tEUZ6YBJw279+vWYNGkSbDYbFi9ejJ07d47YNhAI4L777kNdXR1sNhvmzp2LjRs3JnTOdEMrttcZ3LATJAnzzlsAAGicfMaItYb2dO1Bq6sVimyG4qsEAJiyjmvfExC0uFqwp2tP8i9aZwRJwtTqAgDAiYtXQZCksLwE2iQgWnu0Y4wkryBJqPvh9Sj0qhP+kRNDq9VTeQkIZHctAMCU1aR9byR5R0KQJMw6fRIAoGPhMm2sh3UtgATUMiGiJWzYGUl2QZIwtVJNRem95Mqo+zlSx0rIsDNFGHZGknM0RLMZM4tCRYgvXz1EzwQEiq9cbWvt0qJ3RpJfkCSc8aULAACtpROH1bMcklEwOSFK4V1njCTnSAiCgGyLKrM/J3+IZ9EddCMgq4YcCRl2EKMN2YAcgDsY3z7pesBcKPa5557D2rVr8eijj2Lx4sV4+OGHsWLFChw6dAhlZWVD2t9111145pln8Nhjj2HGjBl46623cOWVV+L999/H/Pnz4zpnOiGEaJtM0y1sjMzZV14I/HIbDrlFeAMybGbTkDZzS+fiwWUP4uMmP37/uYjiXIJ7vnh7VBuLyYK5pXNTddm6MmPONLy97QhaylSjhsrb0e/HuoMiTCLBf57/E0TuIW0kefMuvxzTG7diR4cPB9odmDuhIOp7Kq9f9uMXLwpoAfDN+UuxoC5c68lI8o7EnHPnA899jEZbsfYZlb2p24/7D4qwmgnuP/92RNasNZLsM2ZPxT/+cRQt5ZOjPo/U8T1/FdAL4F/OugQzqi/R2hhJztGYM3syPvrnMRwpDfdBpPyvfyTgrTZg8cSJ+MY592ttjCT/mV+5FPhsMzr8AgY8AeRnqatDqZxbPvXjhWPAzKoc3BghI2AsOUciOzcLfX0eeIbJFcySslCTW4OgTNAaeo+tzi2LWlohCAKypPTVoGXOsHvooYdw/fXX47rrrgMAPProo3jjjTfw+OOP4/bbbx/S/umnn8add96Jy0Lu4htvvBFbtmzBf//3f+OZZ56J65zppMPhxaBfhkkUUrqxcrKoKbSjJMeKHpcP+1oHcNakoiFtLCYLVkxagU8PHQJwGMum1WBl3byUX2uyoLsrHAptik7l/cfn3QB2YlJxDq6Ydn76LjBBBEHA/Bk12NFxBB+39OPriyZGfU/ldfmC+PGJtwAANyxebrjN0cdiRsibdajDCUIIBEHQZH91oA3AHpxeWYhVU7+Q3gtNALo92OHQyyeFytnl8KLXuRWCANyw6BLk2YxbgHok6IvLruY+7TMqPwC8/v5HADqxfNosrKybPMwZ2CffbkFVvg1tA1583unEwtBzm8q55cOPAbTgwmnTsLJuenovNgnYQx47j1+GQgjECK+dKIjIt+bD4QkAGIRVMqHQxtYOOkyFYv1+P3bt2oXly5drn4miiOXLl2P79u3DHuPz+YasHsnKysJ7772X0DkdDkfUX6qgD8zaIjssRl04EYEgCDhzYgEAYE9z/6htdx5TK54vGsb4MzJnVKs5Gp+1DSAoh4tMUl1PyQDP7NwaVcaPj4+8Ddye5j4oBKguyMo4ow5QPexWSYTTF8TRnuiN4g91qM+QGRVsTQCxcnrIeP2sbWDYHKKPmlRjZ0ZFXkYadQCwaLL6fNrf5oDTGxjyfUPoBe60cmPf19NDY/Vgx9D6aZ+2qvf57Or8Id9lAlZJhEkUoBACb0Aeto0n9HmWZWgUKt0wZTn09PRAlmWUl5dHfV5eXo6Ojo5hj1mxYgUeeughNDQ0QFEUbN68GS+++CLa29vjPucDDzyA/Px87W/ChAk6SDc+9rWqE8DMyuSXVUkV8yequUUfNZ0YsY3TG8Du0KSwZErxiO2MyJSSbORaJXgDCj7vDHs69rWpD8fTM0DXc2oKAACHOp3w+Id/EL7XoOYRLp6cWYY7xWwSMSdk4NKxTDnUoep9uoH3xgXUyd4iiXB4gzjWOzSH6KNjqtxn1RYO+S5TqMzPwoSiLCgE2H3Sy6rTG0Bjr2rUz6gw9n09vYJ6oKMdG25/EA2hl9LZNZlp2AmCoHntBn3DLwShz7msYdKL0g1Thl08/OY3v8G0adMwY8YMWCwWrFmzBtdddx3EEYrgjoc77rgDAwMD2t/x48fHPkgnPm3tB5BZN8ySKepE/v6R3iiPVSTvNvQgqBBMKc3GpBLjh6AjEUUBcyaEPFot/drn+zLorbcy34aSHCtkheCztuG9dtsOqSt/l00vTeWlpZQzQy8xuyPCdIQQTdczDG7Em00izqhSZfj4eP+Q7+nL21mTMtewA4BFk9SXz52NvVGff9oyABLySpfmWtNxaboxS9Nz9P380bE+yApBdUEWKvJswx2aEggh2NezL2mrT3OtqmHn9KqG3f333x9VqmVyaQ7mTijE43/4XVJ+PxGYMuxKSkpgMpnQ2dkZ9XlnZycqKiqGPaa0tBQvv/wyBgcH0dTUhIMHDyInJwdTpkyJ+5xWqxV5eXlRf6nikxb1JpqTAZM9ZU5NAQrsZji9QewdZjIAgK0H1OXjF85gazGLXswNebR2hTw5bn9QC8VmghEvCAIWhibzfx7uHfJ9W78HhzqdEAXgvGmZa9hR7/SuCI9da78HHQ4vJFHQxoGRoTlmJ9/LvS6fFqLLNK/7ySwOvaxSLzRlT6hP5oXST4wMNc4/axuAK8Jrtf2oen8vmVKc1lp0rx99HavfWI3Xj76elPPn2EIeO78MWSG4+eab0d7ejvb2djQdb8FXvnEtqmom4Otf+1pSfj8RmDLsLBYLFixYgK1bt2qfKYqCrVu3YunSpaMcCdhsNlRXVyMYDOJvf/sbVq1alfA5U01rvwctfR6IAnBGBkz2FJMo4NzQZE69NpH4gjK2HFAN7wtmlA/5PhNYWqdOdO983g1CCHY2noBCgKp8G8rT+NarJ1TH7zYM1THV79wJBSjMZrDivE4snFQIQQA+73ShrV/dlomGJ2dV5TGZjxMr1Cu542i0Ab/tUDcIUeXMlDE9EudPL4UgAB+3DKBjIFzih/YJ7SMjU5mfhZrCUMg54kXl/SOqjPSZlg60enpA0urmWSURFpMIQggGfUHk5uaioqICFRUV+J/frsf2f7yN//fSBogCcP755+P000/HnDlz8MILL+h+LbHClGEHAGvXrsVjjz2GJ598EgcOHMCNN96IwcFBbUXrNddcgzvuuENr/8EHH+DFF1/E0aNH8e677+KSSy6Boii49dZbx31OVlBXSapv/ZmWePzFUPjtzU/bh7jOtx7owoAngMp8m5aYnGksmlyELLMJ3U4f9rU68I/P1Tf9807LHO/VudNKAKheiwFPdFL5y3vUgtP1sytTfl2ppDjHivkhj9bbB1Uv9Lshr87CDFkUdM7UEoiCmlRPjVcA2HqQvpxlptc9krJcm2a8bdqv5mq7/UF8cFQNRS/LkPuaPo/py1pbvwcfH++HIITv93SwoXEDWl3qM6XF1YINjRt0/w1BEJAbmocjn2d33303nnv2/+F/n38dM6bVQZIkPPzww9i/fz82bdqEW265BYODgyOdNiUwZ9hdffXVePDBB3H33Xdj3rx52Lt3LzZu3KgtfmhubtYWRgDq3nN33XUXTj/9dFx55ZWorq7Ge++9h4KCgnGfkwUIIXh1r1rQ8/wMeShEcvGsCmSZTTjaMzgk4fjZnc0AgC+fWQ2TmD7XfjKxSiZ8cYaq1//3QRNe+ySk6+mZMwlOKLJjWlkOZIVg477wPXq024Xdzf0QBeDyeVVpvMLUcOFM9bny2sdt8AcVzVt50ensPG8SoTDbgnknGa8D7gC2hNIpLj59+BSXTOPSM1Q5/7rzOAgh2HaoG35ZQU1hluGLy1MuDo3ZNz/tACEEb36q3tdn1RamzSsbucsHkNzdLgrsYcNOVgjWrVuHp556Cn96/jVUT5iIXJuEyspKzJs3DwBQUVGBkpISnDgx8kLBVMCcYQcAa9asQVNTE3w+Hz744AMsXrxY+27btm144okntP8vW7YM+/fvh9frRU9PD5566ilUVQ2dPEY7Z7qRFYLZ92zC9qO9EAXgKwtq0n1JupNjlXDpbPVB+MT7x7TP9x7vx7sNPTCJAq4+a+IIR2cG31qiFij+64fH0e30oSTHmnHejS+fqY7d5z9q0T577N2jAIAvTi9DWW5mh+gA4Mr56gvKB40n8O+v78eAJ4DSXOuwNRyNyiXUqPmwGYQQvLDrOPxBBTMqcnFGtbEXiIyXry6ogc0sYn+7A/9o6MGToefa5XOr2NwHNQ7On16GbIsJrf0ebNrfqT27V82rTts1UW8dgRr5obtdJMNrZ7eYYJFEKITg9jvvwpNPPolXN2xCRc1EmE0i7CelVuzatQuyLKe0ksZwMGnYnWo09Q5qyak3nl+HqoLMq/EFAN87Ry3W+drHbdjT3IeArGDdq58BAFbNq8LEYns6Ly/pLJ1SjPo54VDknfUzMqJWYSRfObMaZpOAXU19eOfzbhxod+D/dqlG3o3n16X56lJDVUEWLp+rvlw+vUPdOu27X5icUd7ory6YAIskYl+rA0++fwyPbDsCALj27EkZY9SMRYHdgtWhYtzXPr4THzSegNkk4JuhF7hMwGY2afLc8PQutPR5UJJjwVfT5Hw42VtHSZbXThAElORY8cffPIjHH/sj/t9f/gJXUERPVycCzhPw+/1a2xMnTuCaa67BH//4R12vIR6Y23niVGRikR2b//U8+GUlI2qajcSsqnxcMa8KL+9tw/VPfYRJxdn4+Hg/cm0SfrYi86qXn4wgCPjN1fNw+dwqlOVatRWUmURZng3fXjIJj/+zETf/ZTcskoiATHDx6eUZ5bEai59/6XTsb3PgUKcT504r0V5qMoWibAu++4XJePSdI7jntf0A1Bp96Zrw08VPLp6Ofx7u0epT/mzFdFRn2Iv5TedPxZYDnTjaPQiTKOCBL88ZdmvIVBCZWxdJpNduZd1KXX+zMMuMJ//wW7icDpzzhehdY3bu3ImFCxfC5/PhiiuuwO23346zzz5b19+PB4EkqwhMBuFwOJCfn4+BgYGUlj7JRBzeAK56ZDsOdarVzC0mEX/49gJ8McNCkqcyLl8QX//jdq3Ydl1pNp67YSlKcoxd1ytWFIWg2+VDWa41I71Y3oCMn77wMV7/pB0zKnLx6LcWZFwNyvHg8gXx1r4OVBVkpXWlaDJxeAN451A3plfkalskxoPX60VjYyMmT548ZMeosQgqQXzppS+hzdWmhWEjESCgOqcar135GqRh9nhNhEFfEI09g1AIgQA1n7jArq7uJ4TgG9/4BqZPn4577rknod8ZrX9isUO4YTcOuGGnL25/EM99eBx97gAun1ul7T/JyRw8fhmvfdwGmRCsnFuFHCsPDmQq3oAMqyRmpPHK0ZdEDLsPOz7Ed9/67pjtHl/xOBZWLIz3EkfEH1Tg8gWRZTFF7Tbx3nvv4bzzzsOcOXO0z55++mnMnj075t/Qy7DjT1tOyrFbJFz3hcwKTXGiybKY8LWF6U0g5qSGdIXlOKcWc0vn4sFlD8Iv+0dsYzFZMLd0blJ+3yKJKJKG1uA855xzoCjD76iULrhhx+FwOBwOh2ksJgtWTFqR7sswBJm1JI/D4XA4HA7nFIYbdhwOh8PhcDgZAjfsOBwOh8PhcDIEbthxOBwOh8PhZAjcsONwOBwOh5MyeJW14dGrX7hhx+FwOBwOJ+mYzWYAgNvtTvOVsAntF9pP8cLLnXA4HA6Hw0k6JpMJBQUF6OrqAgDY7XZe2Bqqp87tdqOrqwsFBQUwmRKrDckNOw6Hw+FwOCmhoqICADTjjhOmoKBA659E4IYdh8PhcDiclCAIAiorK1FWVoZAIJDuy2EGs9mcsKeOwg07DofD4XA4KcVkMulmyHCi4YsnOBwOh8PhcDIEbthxOBwOh8PhZAjcsONwOBwOh8PJEHiO3TigRQMdDkear4TD4XA4HM6pBrU/xlPEmBt248DpdAIAJkyYkOYr4XA4HA6Hc6ridDqRn58/ahuB8L09xkRRFLS1tSE3NzdpxRQdDgcmTJiA48ePIy8vLym/YQR4P4ThfaHC+yEM7wsV3g9heF+EyeS+IITA6XSiqqoKojh6Fh332I0DURRRU1OTkt/Ky8vLuAEZD7wfwvC+UOH9EIb3hQrvhzC8L8Jkal+M5amj8MUTHA6Hw+FwOBkCN+w4HA6Hw+FwMgRu2DGC1WrFunXrYLVa030paYX3QxjeFyq8H8LwvlDh/RCG90UY3hcqfPEEh8PhcDgcTobAPXYcDofD4XA4GQI37DgcDofD4XAyBG7YcTgcDofD4WQI3LBLIevXr8ekSZNgs9mwePFi7Ny5c9T2L7zwAmbMmAGbzYbZs2fjzTffTNGVJo8HHngACxcuRG5uLsrKynDFFVfg0KFDox7zxBNPQBCEqD+bzZaiK04O99xzzxCZZsyYMeoxmTgeAGDSpElD+kIQBNx0003Dts+U8fCPf/wDK1euRFVVFQRBwMsvvxz1PSEEd999NyorK5GVlYXly5ejoaFhzPPG+pxhgdH6IhAI4LbbbsPs2bORnZ2NqqoqXHPNNWhraxv1nPHcY+lmrDHxne98Z4hMl1xyyZjnzbQxAWDYZ4YgCPjVr3414jmNOCbigRt2KeK5557D2rVrsW7dOuzevRtz587FihUr0NXVNWz7999/H6tXr8b3vvc97NmzB1dccQWuuOIK7Nu3L8VXri/vvPMObrrpJuzYsQObN29GIBDAxRdfjMHBwVGPy8vLQ3t7u/bX1NSUoitOHrNmzYqS6b333huxbaaOBwD48MMPo/ph8+bNAICrrrpqxGMyYTwMDg5i7ty5WL9+/bDf//KXv8T//M//4NFHH8UHH3yA7OxsrFixAl6vd8RzxvqcYYXR+sLtdmP37t34+c9/jt27d+PFF1/EoUOHcPnll4953ljuMRYYa0wAwCWXXBIl07PPPjvqOTNxTACI6oP29nY8/vjjEAQBX/nKV0Y9r9HGRFwQTkpYtGgRuemmm7T/y7JMqqqqyAMPPDBs+6997Wukvr4+6rPFixeTG264IanXmWq6uroIAPLOO++M2ObPf/4zyc/PT91FpYB169aRuXPnjrv9qTIeCCHkxz/+MamrqyOKogz7fSaOBwDkpZde0v6vKAqpqKggv/rVr7TP+vv7idVqJc8+++yI54n1OcMiJ/fFcOzcuZMAIE1NTSO2ifUeY43h+uHaa68lq1atiuk8p8qYWLVqFbngggtGbWP0MTFeuMcuBfj9fuzatQvLly/XPhNFEcuXL8f27duHPWb79u1R7QFgxYoVI7Y3KgMDAwCAoqKiUdu5XC7U1tZiwoQJWLVqFT777LNUXF5SaWhoQFVVFaZMmYJvfvObaG5uHrHtqTIe/H4/nnnmGXz3u98ddV/mTBwPkTQ2NqKjoyNK5/n5+Vi8ePGIOo/nOWNUBgYGIAgCCgoKRm0Xyz1mFLZt24aysjJMnz4dN954I3p7e0dse6qMic7OTrzxxhv43ve+N2bbTBwTJ8MNuxTQ09MDWZZRXl4e9Xl5eTk6OjqGPaajoyOm9kZEURTccsst+MIXvoAzzjhjxHbTp0/H448/jldeeQXPPPMMFEXB2WefjZaWlhRerb4sXrwYTzzxBDZu3IhHHnkEjY2NOPfcc+F0OodtfyqMBwB4+eWX0d/fj+985zsjtsnE8XAyVK+x6Dye54wR8Xq9uO2227B69epR9wON9R4zApdccgmeeuopbN26Fb/4xS/wzjvv4NJLL4Usy8O2P1XGxJNPPonc3Fx8+ctfHrVdJo6J4ZDSfQGcU5ebbroJ+/btGzPHYenSpVi6uAQD1wAACR9JREFUdKn2/7PPPhszZ87EH/7wB/z7v/97si8zKVx66aXav+fMmYPFixejtrYWzz///LjeOjOVP/3pT7j00ktRVVU1YptMHA+c8REIBPC1r30NhBA88sgjo7bNxHvs61//uvbv2bNnY86cOairq8O2bdtw4YUXpvHK0svjjz+Ob37zm2MuosrEMTEc3GOXAkpKSmAymdDZ2Rn1eWdnJyoqKoY9pqKiIqb2RmPNmjV4/fXX8fe//x01NTUxHWs2mzF//nwcPnw4SVeXegoKCnDaaaeNKFOmjwcAaGpqwpYtW/Av//IvMR2XieOB6jUWncfznDES1KhramrC5s2bR/XWDcdY95gRmTJlCkpKSkaUKdPHBAC8++67OHToUMzPDSAzxwTADbuUYLFYsGDBAmzdulX7TFEUbN26NcrzEMnSpUuj2gPA5s2bR2xvFAghWLNmDV566SW8/fbbmDx5csznkGUZn376KSorK5NwhenB5XLhyJEjI8qUqeMhkj//+c8oKytDfX19TMdl4niYPHkyKioqonTucDjwwQcfjKjzeJ4zRoEadQ0NDdiyZQuKi4tjPsdY95gRaWlpQW9v74gyZfKYoPzpT3/CggULMHfu3JiPzcQxAYCvik0Vf/3rX4nVaiVPPPEE2b9/P/n+979PCgoKSEdHByGEkG9/+9vk9ttv19r/85//JJIkkQcffJAcOHCArFu3jpjNZvLpp5+mSwRduPHGG0l+fj7Ztm0baW9v1/7cbrfW5uS+uPfee8lbb71Fjhw5Qnbt2kW+/vWvE5vNRj777LN0iKALP/nJT8i2bdtIY2Mj+ec//0mWL19OSkpKSFdXFyHk1BkPFFmWycSJE8ltt9025LtMHQ9Op5Ps2bOH7NmzhwAgDz30ENmzZ4+20vO//uu/SEFBAXnllVfIJ598QlatWkUmT55MPB6Pdo4LLriA/Pa3v9X+P9ZzhlVG6wu/308uv/xyUlNTQ/bu3Rv13PD5fNo5Tu6Lse4xFhmtH5xOJ/npT39Ktm/fThobG8mWLVvImWeeSaZNm0a8Xq92jlNhTFAGBgaI3W4njzzyyLDnyIQxEQ/csEshv/3tb8nEiROJxWIhixYtIjt27NC+W7ZsGbn22muj2j///PPktNNOIxaLhcyaNYu88cYbKb5i/QEw7N+f//xnrc3JfXHLLbdo/VZeXk4uu+wysnv37tRfvI5cffXVpLKyklgsFlJdXU2uvvpqcvjwYe37U2U8UN566y0CgBw6dGjId5k6Hv7+978Pey9QWRVFIT//+c9JeXk5sVqt5MILLxzSP7W1tWTdunVRn432nGGV0fqisbFxxOfG3//+d+0cJ/fFWPcYi4zWD263m1x88cWktLSUmM1mUltbS66//vohBtqpMCYof/jDH0hWVhbp7+8f9hyZMCbiQSCEkKS6BDkcDofD4XA4KYHn2HE4HA6Hw+FkCNyw43A4HA6Hw8kQuGHH4XA4HA6HkyFww47D4XA4HA4nQ+CGHYfD4XA4HE6GwA07DofD4XA4nAyBG3YcDofD4XA4GQI37DgcDofD4XAyBG7YcTgcDofD4WQI3LDjcDgcDofDyRC4YcfhcDgZxNy5cyEIwpC/jo6OdF8ah8NJAdyw43A4HJ1Zv349Jk2aBJvNhsWLF2Pnzp1JOWY4Nm/ejPb2dmzduhVTp05Fbm4u7r77blRUVMR1Pg6HYyy4YcfhcDg68txzz2Ht2rVYt24ddu/ejblz52LFihXo6urS9ZiRKCsrw6uvvorLLrsMixYtQkNDA+69995EROJwOAZCIISQdF8Eh8PhpIKdO3fi1ltvxQcffIDa2lo888wz2L17N15//XW8+uqruvzG4sWLsXDhQvzud78DACiKggkTJuDmm2/G7bffrtsxI/Hwww/j9ttvxx//+Edcc801iQnD4XAMB/fYcTicU4IdO3Zg2bJlqK+vxyeffIKZM2fivvvuwy9+8YshHq37778fOTk5o/41NzcP+Q2/349du3Zh+fLl2meiKGL58uXYvn37sNcVzzEjsX37dvzsZz/Dc889x406DucURUr3BXA4HE4qWLt2La666ir87Gc/AwCsXr0aq1evxqpVqzB//vyotj/4wQ/wta99bdTzVVVVDfmsp6cHsiyjvLw86vPy8nIcPHhw2PPEc8xI/OhHP8KNN96IVatWxXQch8PJHLhhx+FwMp6WlhZs374dDz74oPaZJEkghAybf1ZUVISioqJUXmLCNDQ04KOPPsKLL76Y7kvhcDhphIdiORxOxnPgwAEAwJlnnql9dujQISxatAizZ88e0j7eUGxJSQlMJhM6OzujPu/s7BxxVWo8xwzH9u3bUVJSggkTJoz7GA6Hk3lww47D4WQ8AwMDMJlMEAQBAHDixAk8+OCDsNvtw7b/wQ9+gL179476N1wo1mKxYMGCBdi6dav2maIo2Lp1K5YuXTrsb8VzzHAEAgH4fD54vd5xH8PhcDIPHorlcDgZz7x58yDLMn75y1/iqquuwo9//GNMmjQJ+/fvR1NTE2pra6PaJxKKXbt2La699lqcddZZWLRoER5++GEMDg7iuuuu09r87ne/w0svvaQZc+M5ZizOP/98eL1eXHfddfjJT36C6dOnIzc3Ny4ZOByOceEeOw6Hk/FMnToV9913H37zm99g/vz5qKqqwqZNm1BdXY1LLrlE19+6+uqr8eCDD+Luu+/GvHnzsHfvXmzcuDFqcURPTw+OHDkS0zFPPPGE5nEcjrq6Orzyyis4evQozj33XOTn5+Pf/u3fdJWNw+GwD69jx+FwOAZg3bp1eOedd7Bt27ZxtV+/fj3+8z//E21tbcm9MA6HwxQ8FMvhcDgGYMOGDVoB47Ho7+/HRx99hEWLFiX5qjgcDmtww47D4XAMQCx7x/76179Ga2srnnjiieRdEIfDYRIeiuVwOBwOh8PJEPjiCQ6Hw+FwOJwMgRt2HA6Hw+FwOBkCN+w4HA6Hw+FwMgRu2HE4HA6Hw+FkCNyw43A4HA6Hw8kQuGHH4XA4HA6HkyFww47D4XA4HA4nQ+CGHYfD4XA4HE6GwA07DofD4XA4nAyBG3YcDofD4XA4GQI37DgcDofD4XAyhP8PCJo0CT9mg/IAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnYAAAHWCAYAAAD6oMSKAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOy9eZgc1Xnv/6nq6mV6dkmjdbQjFrEIJBDCQEAYEEKRYyfBxo4Nduz4YhAJxjEONr8LcW7g2sYLCRDbsbEwvk7iJQgcJEBgFgOSDZIGDJJAg3bNjEYjzUxv02vV74/qU10jzdI901Vd1arv8+iB6T7dfb71nuU973YkTdM0PHjw4MGDBw8ePLgecqU74MGDBw8ePHjw4KE88BQ7Dx48ePDgwYOHKoGn2Hnw4MGDBw8ePFQJPMXOgwcPHjx48OChSuApdh48ePDgwYMHD1UCT7Hz4MGDBw8ePHioEniKnQcPHjx48ODBQ5XAU+w8ePDgwYMHDx6qBJ5i58GDBw8ePHjwUCXwFDsPHjx48ODBg4cqgafYefDgwYMHDx48VAk8xc6Dh5McP/vZz5Akach/11xzzZCfWbt2LZIksXfvXns7WyLc0s977rkHSZLo6ekp+jPf/OY3Of3001FV1Xhtzpw53HPPPePqy1Df8f3vf59Zs2aRSqXG9d12warnAEM/dxh9HrntGSaTSfx+P01NTeN+lh7shafYeXA8xOb8xhtvlPzZ1157jXvuuYe+vr7yd6wCsILPOeecw2OPPcZjjz3G2rVrWbJkCcCIip2HyiISifCNb3yDr3zlK8jy6Mv4M888c4Ky0dDQwNKlS1m3bt2on//0pz9NOp3mBz/4QRl6PzysnK/jfQYw8nMfbR7Z9QwBYrEYd999N9dccw0TJkxAkiTWrl07bHtVVWlpaeGb3/ym8Vo2m+VHP/oRs2fP5utf/zrd3d2W99tDeeApdh6qGq+99hr/+I//WFWKXbn5nHPOOXzyk5/k8ssv5wc/+AFbtmzhkksuYcuWLdx2221DfuZTn/oUAwMDzJ49u2z9sAJu6WepeOSRR8hms3z84x8vqv2bb74JwL/8y7/w2GOP8eijj/KVr3yFffv2cd1117Fz584RPx8Khbjxxhv5zne+g6Zp4+7/cLByvo73GcDIz320eWTXMwTo6enh61//Ojt27GDRokWjtv/DH/5AT08Pq1atMl6rq6vjxhtv5I477kDTNN566y0ru+yhjFAq3QEPHtyIeDxObW1tpbtRNrz99ttcffXVHD16lAceeIBbb70VSZKGbe/z+fD5fDb2cGwodz+dIvef/OQnfOhDHyIUChXV/q233qKpqYlbb7110OuTJk3ipptuoq2tjdNPP33E7/joRz/KN7/5TV544QWuuOKKMfe9UijHMxjtuY82j+x6htOmTaOzs5OpU6fyxhtvcMEFF4zYfv369cyePZszzzzzhPfEazt27ODKK6+0pL8eygvPYufBdRDxSO3t7Xz605+mqamJxsZGPvOZz5BIJAa1+/KXvwzA3LlzDfeLiLc6dOgQf/3Xf82UKVMIBoOceeaZPPLII8P+3vbt2/nEJz5Bc3Mzl1xyCQDRaJTbbruNOXPmEAwGmTx5MldddRVbt241Pl/s7xw6dIjPfvazTJ8+nWAwyNy5c/nCF75AOp0elU8x/RgOe/fu5corrySVSvHSSy/xt3/7tyMqdTB07FqxchkJxTwr8Ts7d+7kox/9KA0NDUycOJG/+7u/I5lMjtrPF198kfPPP59QKMT8+fP5wQ9+YHznUL8zlNz37dvHzTffzGmnnUZNTQ0TJ07kuuuuOyGWr5S+AvT19Y367Pbs2cNbb71V0ib75ptvsnjx4hNe7+rqAuCMM84Y9TuWLFnChAkTeOKJJ0ZtO5bxONp8HS/G+wxGe+7FzKNSnuF4EAwGmTp1atHtn3rqqUHWOjPEON2+fXtZ+ubBengWOw+uxUc/+lHmzp3Lfffdx9atW/nRj37E5MmT+cY3vgHAn//5n/Pee+/xH//xH3z3u99l0qRJALS0tHD48GGWLVuGJEmsWbOGlpYWNmzYwGc/+1kikciQLsjrrruOBQsWcO+99xqulJtuuolf/epXrFmzhoULF3L06FFeeeUVduzYweLFi4v+nY6ODpYuXUpfXx+f//znOf300zl06BC/+tWvSCQSBAKBEfl8/vOfH7Efw0FVVT7xiU8Qj8d5+eWXOe+88yyXy3AoVSYf/ehHmTNnDvfddx+bN2/mX/7lX+jt7eWnP/3psL+xbds2rrnmGqZNm8Y//uM/ksvl+PrXv05LS8uwnxlK7q+//jqvvfYa119/Pa2trezdu5d/+7d/4/LLL2f79u2Ew+Ex9bWYZ/faa68BjChXM9LpNO+++y6XXXaZkZzR29vLM888wze+8Q3WrFlTlLtO/Oarr746arvR5sVQGGl8jxfleAYjPfdS5tFozzCTydDf318MLSZMmFBUjOVI6OrqYtu2bXz9618f8v0vfelLgG6x8+ASaB48OBw/+clPNEB7/fXXNU3TtLvvvlsDtL/+678e1O4jH/mINnHixEGvfetb39IAbc+ePYNe/+xnP6tNmzZN6+npGfT69ddfrzU2NmqJRMJ4Tfzexz/+8RP61tjYqN1yyy3D9r3Y37nhhhs0WZYNjmaoqjoqn9H6MRweffRRDdAeeeSRkj4nZGLuRylyGQrFPivxOx/60IcGtbv55ps1QHvzzTeH7efq1au1cDisHTp0yGiza9cuTVEU7fjlcCS5m8eHwKZNmzRA++lPf3rCd4zW11Ke3V133aUBWjQaPaEPs2fP1u6+++5Br23btk0DTvjn9/u1733ve0V9h8DnP/95raamZsj3zBjreBxufJeK4zmU+gyG+o6Rnnsp82i0Z/jCCy8M2deh/hXznF5//XUN0H7yk58M+f6Pf/xjraamZsgx/dhjj2mANnnyZG3y5Mmj/pYHZ8BzxXpwLW666aZBf1966aUcPXqUSCQy4uc0TePXv/41q1evRtM0enp6jH8rVqygv79/SJfR8b8H0NTUxO9//3s6OjrG/DuqqrJu3TpWr17N+eeff8L3jOYWHa0fI+HBBx/k7LPP5jOf+UxJnxsJY5HLWGRyyy23DPpbxE6tX79+yN/I5XI899xzfPjDH2b69OnG66eccgorV64smg9ATU2N8f+ZTIajR49yyimn0NTUNOTYKbavxTy7o0ePoigKdXV1w/bZDBH0/uijj7Jx40Y2btzIz372M84991y+8pWvsGnTpqK+B6C5uZmBgYFRXetjHY9WoRzPYKTnXso8Gu0ZLlq0yOjjaP9KcbcOh/Xr17N8+fJBYxr0zNqvfOUrrFy5khtuuIHu7m6OHTs27t/zYD08V6wH12LWrFmD/m5ubgZ0F0tDQ8Ownzty5Ah9fX388Ic/5Ic//OGQbYZK7Z87d+4Jr33zm9/kxhtvZObMmSxZsoRrr72WG264gXnz5hX9O0eOHCESiXDWWWcN2+fRMFI/hkNPTw9vvPEG991335h/dyiMRS5jkcmCBQsG/T1//nxkWR42Jqu7u5uBgQFOOeWUE94b6jWBoeQ+MDDAfffdx09+8hMOHTo0KMtxKDdasX0d65geCW+++SaKovDxj38cv99vvH755ZfT2trKgw8+yEUXXVTUdwmeox02xjIerUQ5n8HxKHUejfYMm5ubbUtSyGQybNy4cci+33vvvfT09PDAAw/wyiuvAHqcnYgz9eBceIqdB9diuGxHbZRSAqKw6Cc/+UluvPHGIducc845J7x2/IkW9JioSy+9lMcff5xnn32Wb33rW3zjG9/gv//7v404m9F+Z7T+FoOR+jGcNWrHjh1omlaWuDozxiKXscrEjGIsm2PBUHK/9dZb+clPfsJtt93GRRddRGNjI5Ikcf31159QuHYoDNfXYp7dxIkTyWazRKNR6uvrR/2tt956i/nz5w9SaABmzJhBOBzm4MGDo36HQG9vL+FweMhnYsZYxqOVKMczGO65lzqPRnuG6XS6aMtYS0vLuLK+X3nlFSKRCNdee+2g199//32+853v8KUvfYkFCxbQ29sL6Fw9xc758BQ7D1WNoTbQlpYW6uvryeVyZTkZT5s2jZtvvpmbb76Z7u5uFi9ezD//8z/z0ksvFfU7qqrS0NDA22+/PepvjaS8DNeP4TbSeDw+6nfahbHIZNeuXYOsae3t7aiqypw5c4ZsP3nyZEKhEO3t7Se8N9RrI+FXv/oVN954I9/+9reN15LJ5LD110rt60gQJTn27NkzqrILulLzgQ984ITXjxw5QiKRKMmdt2fPnqIyaKH08QjWjcVyPIPhnnup82i0Z/jaa6+xfPnyor9rLGNI4KmnnmLhwoUnfMftt99OS0sLX/va14BCxrCXGesOeDF2HqoaouaYecP1+Xz8xV/8Bb/+9a+HVKaOHDlS1HfncrkT3G6TJ09m+vTppFKpon9HlmU+/OEP85vf/GbI2zXM1pqh+IzWj+EgFvP//u//HpmoDRiLTB566KFBf//rv/4rwLCKg8/n48orr2TdunWDYr/a29vZsGFDyf093gL5r//6r+RyuSHbl9rXkSBchsXcxNLV1UV3d/eQioTItP2Lv/iLon9769atQypIZhQzHhOJBDt37jzhCrWhxvdI7YtBuZ7BcM+91Hk02jO0M8Zu/fr1J5Q5eeaZZ3jyySe5//77DXnU19czc+ZMLzPWJfAsdh6qGuJan6997Wtcf/31+P1+Vq9ezf/9v/+XF154gQsvvJC/+Zu/YeHChRw7doytW7fy3HPPFeUKiUajtLa28pd/+ZcsWrSIuro6nnvuOV5//XXDklPs79x77708++yzXHbZZXz+85/njDPOoLOzk1/+8pe88sorNDU1Dcvn0ksv5bTTThuxH0Ph9NNPZ8WKFXz/+9/n8OHDXH311cyZM4crrriCQCAwnsc+JpQqkz179vChD32Ia665hk2bNvGzn/2MT3ziEyOWrbjnnnt49tlnufjii/nCF75ALpfjwQcf5KyzzqKtra3ovv7pn/4pjz32GI2NjSxcuJBNmzbx3HPPMXHixCHbj6Wvw2HevHmcddZZPPfcc/z1X//1iG3FbQvd3d387Gc/A/SYsGeffZYNGzZw/fXXc9111xX1u1u2bOHYsWP82Z/92YjtipkXf/jDH1i+fDl33333oHtIh5uvr7/++pDti0G5nsFwz72UeVTMMyxXjN2DDz5IX1+fcYj5zW9+Y7icb731Vo4dO8aOHTv4t3/7N+MzmUyG2267jeXLl/Oxj31s0PctXLjQU+zcAtvzcD14KBHDlTs5cuTIkO2OLwHwT//0T9qMGTM0WZYHvX/48GHtlltu0WbOnKn5/X5t6tSp2gc/+EHthz/84aDPD/d7qVRK+/KXv6wtWrRIq6+v12pra7VFixZpDz/88KB2xf7Ovn37tBtuuEFraWnRgsGgNm/ePO2WW27RUqnUiHzefffdovoxFKLRqPb3f//32vz587VAIKAB2sqVK0f93EjlToqVy1Ao5lmJ39m+fbv2l3/5l1p9fb3W3NysrVmzRhsYGBj1t59//nntvPPO0wKBgDZ//nztRz/6kfalL31JC4VCgz47HB9N07Te3l7tM5/5jDZp0iStrq5OW7FihbZz505t9uzZ2o033lhyX0t9dt/5zne0urq6E0pUHF+i45vf/OYJJTLq6+u1iy++WPvxj388qJTOcN8h8JWvfEWbNWvWkJ8xo5h5IUp6DPU7Q83XkdoPBTOHsTyD4Z7DcM+92HlU7DMsB2bPnj1imZQHH3xQa2xs1DKZzCB+iqJob7/99gnfd/vtt2uSJA1Z7sWDs+Apdh48eDDwD//wDxqgHTt2rNJdGRYjKVxjxZ/92Z9pp5xyStm+T8CKvmqapvX19WkTJkzQfvSjHw16faQadMViqO9IJpPa1KlTh6355jRY9RyGe+7HY6h55LRnuHLlSu26666rdDc8WAAvxs6DBw8GWlpaqKmpOeHmhGrCwMDAoL937drF+vXrufzyyyvToTGgsbGRO+64g29961tFZeGOFz/5yU/w+/1D1vQ7mVDscx9qHjntGV5++eV88YtfrHQ3PFgAT7Hz4MEDoAf033PPPdxwww0Eg8FKd8cyzJs3jzvvvJN///d/56677mLZsmUEAgHuuOOOSnetJHzlK19h586d475SqhjcdNNN7N+/v6rHRbEY7bkPN4+c9gzvuOOOMdfu8+BseMkTHjx4AOCnP/0pn/jEJ/jOd75T6a5YimuuuYb/+I//oKuri2AwyEUXXcS99957QhFhDx7GgpNlHnlwLiRNK0N1VA8ePHjw4MGDBw8Vh+eK9eDBgwcPHjx4qBJ4ip0HDx48ePDgwUOVwIuxKwKqqtLR0UF9fb0jrl/y4MGDBw8ePJw80DSNaDTK9OnTR02Y8hS7ItDR0cHMmTMr3Q0PHjx48ODBw0mMAwcO0NraOmIbT7ErAvX19YD+QBsaGircGw8ePHjw4MHDyYRIJMLMmTMNfWQkeIpdERDu14aGBk+x8+DBgwcPHjxUBMWEg3nJEx48ePDgwYMHD1UCT7Hz4MGDBw8ePHioEniKnQcPHjx48ODBQ5XAU+w8ePDgwYMHDx6qBJ5i58GDBw8ePHjwUCXwFDsPHjx48ODBg4cqgafYefDgwYMHDx48VAk8xc6DBw8ePHjw4KFK4Cl2Hjx48ODBgwcPVQJPsfPgwYMHDx48eKgSeIqdBw8ePHjw4MFDlcBT7Dx48ODBgwcPHqoEnmLnwYMHDx48ePBQJfAUOw8ePFQlNE3jaCyFpmmV7ooHizCQzvHIK3vY3hGpdFc8eHAMPMXOgwcPVYmvrXubJf/nOf7v0zsr3RUPFuG+DTv4+v9s5/ofbqI/kal0dzx4cAQ8xc7DSYd0VuWhF9r52eZ9qKpnzalG7OmJ8/Pf7wfghy/vpi+RrnCPPJQb2ZzKr7ccBCCSzPLcjsMV7pEHK6CqGt96Ziefe/R1OvsHKt0dV8BT7E5yxFPZk065efCFdr71zLvcte5tfpXfGDxUF36364jx/5oGr7T3VLA3HqzAe4djxNM54+9X3/dkXI146o+dPPTC+zy3o5t/fmpHpbvjCniK3UmMp97qZMn/2cjl979IdyRZ6e7YAlXV+Pnv9xl//z/T/3uoHvx+z7FBf//xYH+FeuLBKrx1sG/Q3zs6o5XpiAdL8eSbHcb/P/NOF4l0toK9cQc8xe4kRTqrcveT75DMqOw/luDBF9or3SVbsKMrQk+s4JZ761B/1cfmJDM5/uetDt4/Eqt0V2zDjk49mH7lWVMB2NnlbfrVht09cQCuPGMKAO3dUTI5tZJd8lBmaJrGln29xt+ZnEbbgb7Kdcgl8BS7kxQvvXeEnljK+PuptzrJnQQu2c27dUvO8tNamDMxjKbB1v29o3zKvdA0jRsf+QNrfr6NP/2XV3jvcPUrOJmcyv6jCQBWnTMN4KTgDRBJZsieJMrNgWO6jD8wfyLhgI9MTmNfXu4eqgMHewc4Fk/j90lcvVBX4Lfuq971ulzwFLuTFK/mY44+vnQm9SGFo/H0SVEyYGfeknNOaxPnzWoGYHtn9fJ+4d1uwy05kMnx4G+r3zJ74FiCrKpR4/exbN5EADr7k6SyuVE+6W7c/8y7nHPPs1zzwO84Fq/+ZJH9ecVu1oQwM5vDABzs9RS7aoI4kJ0yud5Yr987fPJ4HsYKT7E7SbHp/aMA/MmCFs6d2QTAW4f6Ktchm/Bet74onDqlnlMm1wHQ3l29C8W6bXp8yoVzJwDw9NvVH6Oy+4juops7qZaJtQHCAR8AHX3VG0f61sE+I5yivTvG9557r8I9sh7CYjdrYpiZE2r013qrP2vyoRfaufDe57jjV29WvXVWKO9zJoaZ31ILcFKFlIwVnmJ3EiKZybGrWz8JnTermUWtTUD1B5irqkZ7/gR42tQ65rfoil21LhTZnMqL73YD8OUVpzGjqYZ0Tj0hsaDasCcfezW3pRZJkmht1jf9arbmiNIuk+qCAPzyjYMkM9VroexPZIgk9QPKzOYwrcJid6x6ZQzw8ntH+NYz73I4kuIXbxzkkVf3VLpLlsJslZ2fP4jvPhI/6So5lApPsTsJ0d4dQ9WgKexnSkOQs2Y0APBOlbtiOyNJ4ukcfp/E7Im1nDI5fwLsjlXl7QQ7u6JEklnqQwrnzWrmklMmAQVrbbWis1+3zLU26QqdselXqTVHVTU2btdruP3L9ecytSHEQCbHpt3VK+eOfD2zCbUBagI+Zk7QZXygipV3gB+9oityQUXfun/48p6qttqJWNmZE8LMmhBGkSUGMjm6TpIqDmOFp9idhBAZgqdPrUeSJMNytbcnXpUKjoBw3cxoqsHvk43NIJ7O0VuFmbF/PKRbYM9pbcQnSyyZrceovH2oui2zh/OL/tTGEKDLG+BQlSp273VHORpPU+P3cf6cCSw/fTKgW3eqFSLxqyVvoZyel3VXf/Vu+JFkhtfysdFP/e0lTKgN0BNLGQlh1QhhsZs9MYzfJzOlQZezV6h4ZHiK3UmId7t0y9zpU3VL3cwJYSQJoqksR6s46LqjT18MZuRdc0HFZ7iuxHvVBFHn65y8q33hdF3e2zsjVa3Ai0V/an4TmNKgy/hINDXsZ9wMYYG9YO4EAorM0rm6Av9mFZeFELKcVB8AYHJext1VKmOAV3b1kFU15rfUcsrkelacqZfyeXZ7V4V7Zg00TTOs7MLqLg5p1RwvWw54it1JCJEssGCKbqkL+X1Mb9QnzN58fFI1QlhsBFeA6U365l+dip1umVvU2gjAKZPrUGSJvkTGcFdWI4TVRljsWurzil2sOjd9YZldPKsJKCjy73REqtZNd7zFbnK9Lusj0VTVHlpEmY8PzNdDKi47Vf/vH6o0ZjaezjGQjxOdnJ/D05o8i10xUCrdAQ/2Q5i3ZzYEiDz9NFo6zUxN5hAS72x8lQVTCgujFAhQd8UVyIFApbpbNhzKK2/T6wu8WxIyILH7ldfpf796eOdyKu8d1i2zp02qMfjODsq8PyCx9YmN1DYX2rudr0BO1QyrTe3WTfS3ZQkfA/DReeAw/U8+abStFs6iGLOQ84RUmjqfTCyrsvUX/8NptYW21cJZWOzqezrof/IAgRyAj1RW5eDjv6Ehv7NVC1+AN/MW+LOn1RJ5+mlOjaUBHzu7ouz/9ZM0+gttq4H3kXxIRTjgozaoC3Rao2exKwaeYneSwWzebunYy6HbvgjAhEV/AXMvYudTz9Ox85lBn5n16KPUXrjU9r6WG20d+wGJzq5NHPq/3wKg7uwPwfw/of3Zl+h456lB7d3M+7E/PkUmJ6PIGhP3vmvIecrSG3l/+tm8/V9PMn/3q4M+42a+AkdjKbKqBqg8/9idXP5ODq1xBiz/It09ETru+KdB7d3OOZ0VCrzE/n1PMucrDwIw55KbeXvSPN748X9Sf3DboM+4nTNAW+duQOJg21N0PPgCALWr/om4v4bt936bWbFuo2018M2pGm8ePAZIdHds4NCd/wpA6wfv4GD9ZF74l5+w9PDOQZ9xO+8n3nsBkAmHCuWZpnsWu6LguWJPMhyJpkhlVWQJ5l+yBH9rK0gSkwb6AOipaSw0liT8M2cSXrK4Mp0tI7Jqlt1HdVfGZu015JkzQJJoGdDdWN01TYXGLuedVbP8eKtumZIDx6hZvMiQ8/S4HnzdWTup8AGX8zXjUJ8eSiApUX69XCEnSzSn9GSh3mAdKpLesEo4v3e4n5wqgZzk8cxvjHHdmldsDta1FBpXCeesmuWd7gMAvLNggJysy7Q5mZdzqF5vWCV8AXb3REhnJZDS/E+uIOdT+g4CsLdhWqFxFfDOqll+sf1pAOJqJ1lVV+6Exa6aQ0nKAc9iVwJyWZVc1t0xK/t6YsgazGiswedTmHDLGjq/+jUmDUSRNTha04Qq+Yz2E25Zg4oMLue9fvcGsslaZA16U3to+9xlnHXPL5iQ590baqwa3ut3b6Cnz4esAb7DbNi7kUvycp4WO4asQWdtS9XwNePp915D1mRkX5QjtfDKGT4u2jGgPwvJR1+wnqa0rvxVA+df/fEVnW/gMJ3RLto+9+ecdc8vaI0dRdbgUN2UqpPz+t0bSCf9yBrEw1FeOcPHpds1JiajdNRN5miosIZVA1+AX775cl7OPXRGOw05z4108bIGexpnVJWc1+/eQG80i6xBjl7Wt29g1bxVTArrcj8WSbl+Ly4VpfD1FLsSsG3jPurC9ZXuxriwsyvKsqRCa0phy4a9aPKZ9J59HbVZhWVJhcbgbPbOXgFI+BoaiEkLkTbsrXS3xwVVU9m4/S2WDZwPQLB7Ka9FJOrPvo6Q4O2fURW8VU3luZ1tnH/sfHJJBZ/cyPPr2mg59WP0n30dTVk/y5IKDTVzq4KvGaqmsmfrQZYl5yGr9fgPXc3bCyVaEzkui6ukfAH2zrmGplS8KjirmsrB17tZlmxFJoz/0NW8FtDH9WQ1yLKkQl3dqVUlZzG+L4yei6YqBI6ew9sL59OayHGm2kBtUmFg8oXsVaZWBV/Ij+vXu1iWnIWsBQfJeXouwLKkQk3d6VUjZ2MN6z1PX8OkiTy/ro3Jp59BLJVjWVLBl87xxoa9wv5+UiCWKP6+a88Ve5IhMqDXa2uo0SNtJVkmvHQp4Yxu2o4roXxLjfDSpUiy+4fIrr52oql8RqSkoklZIukIh5fMIpTVy7sM+ESQsbt57+prJ5qOoOX08gCSL04kHaE9spvw0qXUp/XEmZi/Bg0Jt/M1Y1dfOwPp/G0LUhrQiAdV9k+CGkPOQaqF866+dlJpnYMkDwCaMa4bUrpVMuoPV5Wcd/W1E0lF0dR8poCUNmQcyukyTvoCVAtf0Dkn07o1TvIlMMu5KR9mEAnUkpNkqoG3WMNQ82uylCKSjrCrr51wQLdF5VSN9ElmsSsFnsWuBJx31WwaGhoq3Y1x4fF1UTYfynLBuRNY8sE5AGhXtbL92Qf5WmgZAGs6XqZpykTmrbkPSXH3EMmqWe5+Yg0HWnwkEhci+Xupa92IhMThune4+wWFzaGlgMRtB54nPH2qa3kLrp0zOommzkSTs9RMfRl/7V4O12znv2/+JXuefoCvBpaiyj4+172Z6RPrXMvXDMF9T+M5pHNz8U94l9BkXc4HG2TCb87ij43zuTiynQVSj+s5C77t4WvJkSU0dTP+hjeNcf3N53LcFbggL+dNTJ1YXzWcD03tJxa7DIC6meuRJY2DDTLLnk+xedoMGrIdfDT3juv5gknONULOmwbJ+f7nstzjW8KAP8Snjm5hXmPA1bzNa1j84FRyTCE4eRvBpjc4XLOdx1c+zttb2omlsnx92WTm5ovrnwyIRIq/Gcqd0q8QfIqMT3HvSQigO5ZGlWBqc02BixJg9i2fp/alONFALUeDdZx2680oIfemygusf/8ZDiYOkFPPQJVAVmKosm7VOZA4wJ6//kukN3LkZB8Rf4i5LuYtuGoS5LJNIAHBY+TkLAcS+9nY+Tx/cusXaH4+wpFwM73BWs5zMV8zBPesugxVAk2JGnLuaoQZoRiqBNFADVNucj9ng29mApoEBI8MGtfbP/+XTPhdhO5wMz3BOhZVgZwFZ5WJqBIgJ9F8GXLoMu6eGEeVoD8QZkoV8AWTnLMT83LuHiTntz//l0x9vof3m1rpDDdz0a03upq34IsMuVytLmd/v7GGPXvgGSbU1xFJZ+lNZTnF5ftxKShF93DUU3n55ZdZvXo106dPR5Ik1q1bN2L7zs5OPvGJT3DqqaciyzK33XbbCW3Wrl2LJEmD/oVCoRO/7CTB4ajuchUFHwUaVq1iUlZ30/XNmk/Dtdfa3rdyI6tmeajtISQk1Kx+spOUmPG+hMSjvk00ZvXU+biLeZu5arkwaH5ARVL0rF8JiYfbHia8cgWTVH0M9La6l68Zg7hn9aJtklIotC0h0TE1H2owaZrrOQu+qH60rJ7FLvkLRWolJH4ib2JyTn8GR2eeUjWcjfENSL5CyQsJiTdP18MtIvUTXM8XzHJW0LK6p0jy9xrvCzlP1/R1u3uGu+ezWcYAWi4/l335TPf8GjahVldce6r4lpHxwlGKXTweZ9GiRTz00ENFtU+lUrS0tHDXXXexaNGiYds1NDTQ2dlp/Nu3b1+5uuw6dEf0ySDu3BOQFIUp0yYCkFv5Z6415ZuxrXsbh2KH0NDQcrpiJ/sKip2GxsHYIeoada7qX3zMtbwHcc00AboSK+VP9zrXg7Qd+yOts6YAkLxypWv5mjFYzvpmIPsKip2GRjKk/51efIHrOQu+uUy+wrScNDY/MI3r2boykFh+TdVw1mWsl7yQ5ITxvoZGf50+txMt01zPFwqc1bxSh5QZUs71Z+ili45dcKmreZtlDJgUeF3OYg1T/LpC31PF11+OF44aBStXrmTlypVFt58zZw4PPPAAAI888siw7SRJYurUqePun9uRUzXjKp7jLXYAU+a2QlsH8QUL7e6aJVjUsoj7L7ufdC7Nr16TeOkIXD73fD50wRKjTcAX4LFsI/t3HSVx5nkV7O34YOb65l740V6Y1VzP319yr9Em4AuwqGURM88Iw6t76Zt5SsX6W06Yud99QOIY8IXFn2LulEKbl99W+OUmlfjkGRXrZ7kg+G7dk+YHu6G1OchXLr13UJuAL8DW7a1sfnkvPdPmVqin5YNZxm+0w6MH4JSJ07nVNL6P9Pr5+v4c/fKJa5sbITi/czDNv7wPLfUK/3sIOR/pWsD6dTvorJ9coZ6WB2YZ51S4bYdud7rr4tupy9shAr4AL2yZxB/eP+RZ7EaAoxQ7qxCLxZg9ezaqqrJ48WLuvfdezjzzzGHbp1IpUqnCoCklaNHJOBpLoWogSzCx7sTFb1L+taNVchIK+AKsmLMCgKd/vxXo5KLWM1k9f/BG90x9GwA9MffyNnPt6doDbOfMqdNYPX/JCW3FHaqHI9VR5NPM/Svpp4EcHzr1CuZMKtyllek/yC83vUlfIlOhXpYPgm/P4X3A25w+eQqr519wQjv9/eqo0m+W8bHDe4F3OGXi4PF9OJLk6zxPXyKNqmrIsruLYQjO8WMHgTc5dfIkVs9fdkK7zepRoHBVpFsxaA2LpYDnALju9FUovoJz8Z1d7wFwNO4pdsPBUa5YK3DaaafxyCOP8MQTT/Czn/0MVVX5wAc+wMGDB4f9zH333UdjY6Pxb+bMmTb22DqIOzQn1QXxDbHoCcWupwovSz+a5zRpCEtlS5XxFlXZp+ertB+PqVVavT2ZyZHIlzuZUDc4gLw5rP/dm3Cv8n48uvLyOz6sQmB6ky7nQ1V2r6ZQzhtrBsu4KayXQFE1iCTdr8ALiHk6bZj5PGuC7rI82DuAqmpDtnEbhIzrQ8ogpQ6gOS/najikWYWqV+wuuugibrjhBs4991wuu+wy/vu//5uWlhZ+8IMfDPuZO++8k/7+fuPfgQMHbOyxdRAWmskNQ7sqJuU3QzdbroaD4DSp9sSMMRGM21sllspDfbqFZlrTMIpdQ3VZ7ASEpdnvk6gPDnZGNOdlXE2bQZex4Q+t2LUKxa7X3Zac49E3oMtZKHICQcVHXV7uvVUkZzGfpw8znyfXB5ElyJpCbdyO/ryMxYHMDCH3/oHqkXG5UfWK3fHw+/2cd955tLe3D9smGAzS0NAw6F81QFjsptQPvREIa9bRKlkczBCchnJBi8Wjr0oWik6xEQyz4QvFrqs/iaZVxwkf4FheeZ9QG0CSBlukxSn/WJUo7wBdkZEtdpPzr0eSWZKZnG39shpiQ2+s8Z/wXlMVynm0+az4ZCbn1/RqscKLA9jxyjtAU031HdLKjZNOscvlcvzxj39k2rRpozeuMoxqsautLpekgKpqxmbQXHviQtGYXzyqxU13RCTIDLPhT6rXF8ZUVjVcl9WAvhFP+fprA5lc1Sg5XaO46BpCCoF87asjVRRo3i82/SEUuwmGZbY65jJAV76SwdRhFDuAaU1CsXN/PCWY3e3Dr9divns4EY5S7GKxGG1tbbS1tQGwZ88e2tra2L9/P6C7SG+44YZBnxHtY7EYR44coa2tje3btxvvf/3rX+fZZ59l9+7dbN26lU9+8pPs27ePz33uc7bxcgqExW7ysBY7fVE8GktXTawGQDSVRdAZaqEwLHZVcALUNM3YxFuGsE4ChAMKIb8+9Y9Wkdu9/7jr8sxoCClGXGk1yBkKFrupjUPLWZIkI/u9u4oUO2FZH9Kak5/L1WSxEwftScPMZyi44zuqJJ6yIOMhDmk1XozdaHBUVuwbb7zB8uXLjb9vv/12AG688UbWrl1LZ2enoeQJnHdeoUTFli1b+PnPf87s2bPZu3cvAL29vfzN3/wNXV1dNDc3s2TJEl577TUWLqyOkh6lwNjwh0ggAJiYt9hlVY1IMjPkpHIjxAm/xu8jqPhOeL/JCMZ1/2YQS2VJZvQ7FIWiPhQm1gY51DdATzzFrIlhu7pnKUZy0UmSRHPYT08szbF4ekTrhxsQT2WJJrPA8K5Y0Of6wd6B6rLYDQydPAEwocoC61VVM5TUoUpUCUwzEqKqxWKXj6Mc0t2uyz2azJLNqSckV3hwmGJ3+eWXjxjzs3bt2hNeGy1G6Lvf/S7f/e53x9u1qoBIDpg4RAIBQECRaQgpRJJZemLp6lHsRjjhm1/vH8i4vkyCSBKpCyrGhdlDYVJdgEN9A9VpsQsNJ+cAPbF0VSjwwlpXF1SoH4YvFKy2R6LVYcmBkd10TVWW/dybSJNTNSSp4GYeCsJidzLE2DWECutaJJkd8bmcrPBU3ZMI4uQ30kRorsIYFRGLMdRGAIVgXFXDsIK4FaNZZQVEEkk1JcpEBnTZDSfn5irKpiuUOhlZziKetlosdpqmGRmTQ276edlXS7kTES/bHA6MaJmaVmUljPpGsL4rPpn6vHJXTftUOeEpdicRjhah2BVOvNWxMMLIJ3zQLZW1Ad1F6/aT/hGjVuHIp1hhta2WYtQwsisWCpa8alDsDhvxdSO7lFvyJfurJcYukc6RyelempGsOULJdzt6ovkyTaPMZzEOuqpFsUsMnwgFhTleLZUMyg1PsTtJkM2pxoY2omJXUz3xZgIjBVsLVIsLR7jcirfYuZuvGRFDsRvaBV1N1hwRUD9cgoxAtVnsxBoW8MnU+E+MlxUbfjUo71Bc4gQMLrJeDSWMig6fqSIDRDnhKXYnCYQFTpKGzjQSqMaq3mLDbxoi2FrASKBw+YZwpMgNX1gAqulanpGyYqG6Nn2hkBe74VeLxU6sSw01/hNqFYrXoTqUdyhesTOXMIql3G+tHCnGDky17LySJ0PCU+xOEvSasoyGuk5MoFosV2YI62PjCBa7QskTd/MuNsZOWG2rymKXHM0VWz1uuiMjFNw2o8Uod1IdLrqCjIexyubd7ZEqUN6hIOfRFLtwQDHCSarh5iBjzR7ukFaFBohywlPsThKIDbx5lAyiarFcmTFajB1Uz0LRU6QlZ2KV3Y8LRcTYVZE1R8zniaPEXonbZI7F01XhohPJTcNlAhessu5X3qEQYzfaQQ0Ksna7211VNaJ5q+OwGe5eLbsR4Sl2JwmEBW64UicC1WK5MqOYGLtm4/YJdy8URWfF1lbfvcDFKnZV4YqNF+dyn5Cfz5lcYbN0M2KpwuXwQ6Ehb8mrBuUdzBa70Ut6tFTJYS2RySHOIMMp8NVUe9QKeIrdSQKR/ThclpFAU5VYrswYbcOH6lFoS3XF9g9UhyVHVTVT8sTIWbHV4KYTlpzRLHY1AZ+RZNBbBRnQsbzFri44tGInZJ/OqlVxdVyPyHIvxmJXJYpdNK+U+2TJuCHneBhz2eXlqayCp9idJDhWpOumGsudFO6WHJ57YxWY9jVNMyw5o8VeCQU+k9Oq4r7YeLpwbdxoyRNu3wzMch7N5Q4FJb4artmKjKLY1QYURAhxNSjwQmbiHu+R0FIlrtiCu10ZMkFGf8+fb+t+GVsBT7E7SSBcsaNV6W6uQhN33wgFTQWaqyBpJJrKGjW+Joxima3x+wjkC55WQzylUQZDkQkNUQYDCm46t7tiI0mTnIuoui/auHlsC4iMz+FcdLIsGe+5Xc5gSnobYe0SqDaL3XDudvN7bj+kWQVPsTtJULQrVqSRu9hydTyKSZ5oqoJbCfriet9DfpmawNDKjYAkSaaEEfdv+MW42w2LnYtlDIWNuz6oDKvEmtFcRRnQhit2hE2/sUqSZAbSOVJZ/d7n0ZLewGyxc7echbJWHxx+LgvFLuYpdkPCU+xOEhj3xI7miq3VJ9NAJlcVMSrJTGFxHKncSTVs+seEVbbIO35FZlk1FPksRrETLtqUy+OvjBp2RcRdAUwwEoPcveGDyZozjCsWTAkULs+MFfLy+ySjlMlIEAkWR1xvsSu4YoeD4YpNuX/tsgKeYneSoFiLXX1QMercVYPVTmz4sgR1gZE2A/fHX4mNoJjTPVRXaRuxiTeMsBnUBRREyI6brTnift/RMtwFJtSKkifu5SxQcMWObrFzs/UdCvO5sSYwbKyZGSKu9pjLi44XXLEjHNLy8nf73d5WwVPsThIYFrtRgnAlSSrUCKqCqt7mRUIeoTCzOWPSrVmivUUq7wKNNSIz1t0bIDBqRizo8VcFObt3Q+gxihMXq9jlLXZVkDwRLcIVW8iYdPe4Fpb05iLi68zt+lyuwAsZj3RIKyRPZF27XlsJT7E7CaBpmpFd1Vw7+iIhLDm9Ll8gAGIp3eU2XBadgHDfZFX3ZokWZFyixa6KLLMjKXZQHQkUxRahFjBi7KpAsRMWu5Hms1Ds3B5i0GsodsXNZ9FOT6JSLeuX1YgV5YrV38upGgMuDquwCiPvdh6qAvF0jnR+og+XRaem08R++1u0dJraARmQOPy7V+l/p9BGCgSou+IK5EBxC40TICx2tcETY1TMnDUNFEkmq0kcenI9U/J7pps4G67YEU74Zs6hDgmQOfzWdvojBUG7ibOAUNSGct+YOdel9LHd9eLv6G8utHETZ1HqZKSM2EFyPgrgo+dgF/1PPmm0cRNngegw5U6GGtdH3tlJf3yH0cZtfHsTupxHyog9fg2TkVGR2P/4/zApT9NtvIWldSSrbDjgwydL5FSNaDJLeIQwm5MR3tM4CWCUgvDJRrHS4zGwrY1Dt30RAP9Fn4Mpp7P///2SjgNvDGo369FHqb1wqbUdLiNe2rcZkElr0RPeM3MGqF15D/3BOt7/5nfJRbuM193Cua2zHZA4ktoLnDVkGzNn+dQPwsKVdL32Bzoe/tWgdm7hLPDH7l2AxOHkXo7nbuYcuPh/QcsC9j32n8w7uG1QO7dw3t69D5DoGHgPOG3INmbOuYnz4NKbOdJxhI7HvjmonVs4CxxLxAGJrUde5fw5q43XzXw1Ma43vU7Hw78c9Hk38d188I+ATDTXNWyb49ewupX/SCRYy65vfId09LDxupt47ziyF5A4GN8FnD5kG0mSqAsq9A9kiCYzTGkI2dlFx8NzxZ4EEPFHDTX+YYNww0sW429tBUmiNjMAQMJvmiyShH/mTMJLFlve33Ihq2Z56v3nATiSPEBWHRxXZeYMUJfnHRO8XcQ5q2Z563A7AFt7Xj6Bq4CZc32ebzQQLjRwEWeBrJql7bBumdnWs2lEOQsZx/01hQYu4pxVs+zsOQDApq7nipJzQzoOQCRYW2jgIs4CWTVLPKV7Hn6x66eDuA81rt0qY9C5vnrgTQDe699alJwB6vOy7g/kZe1C3jt69gDw+8MvDcsbvFp2I8Gz2JWAXFYll3Vf7EJvLIWsQWPIN0L/ZSbcsobOr36NuozePuYPo0oFC9+EW9agIoNLnsH63Rvoiw8ga5BRI6xv38CqeatMLQqckXTFTudda/B2C+f1uzeQTPqQNYhmuobgKlDgXJtOnsAX3MNZYP3uDQwkVZ1LumdEOdcbnGtcyXn97g2kUzKyBv3pzqLkLDjH/bVkZD8+LR+W4RLOAk+8twFJ9SEB3Yn9x3Ev8A3n16+4i9ev9bs3EB/QdB7ZI0XJGQma0nE6NYgE6ly3hoHOO5WSkDWIpA+PwBsagoo+D+JpV+7LpaIUjp5iVwK2bdxHXbi+0t0oGfuOxFiWVJgakdmyYe+w7TT5THrPvo7pgaksSyoEG89k72wFkPA1NBCTFiKN8HknQdVUntvZxgV955BNKviYzPPr2ph8+hnIUsFQLTjnIlHOUhuZmFSIT1nG3po5ruEsuC6NLETLKviPLhySq4DgHMgFWJZUaPZPZ+/sFbhZzkv756OmFZRjp40o5xmBaSxLKvgbz2bv7CBu4iy4Xhg9By2n4O85pyg5Z6L6/Adon3stwVzWNZwFVE3lhXfeZllStzwFOy87gbvg688FWZZUmODScW2M6d55+pjunV+UnHORKGeqTTQmFRKTl7E3ONOdvCNn5Nexs0bkfWYfNCUVDr3axZb2uP0dthmxxInhRMPBc8WeBBAFeoPKyOKWZJnw0qUEcrrrNi0LvV8jvHQpkuye4bKrr51oOoKm5TlIOSLpCLv62ge1E5xBI5DTTfppnx83cRZcUfNB1nJ6SK4CBTnryRZpWQRnu4ezwIlyzo4oZ2Ns+9w3tg2uqt53Sc4UJWdZU/HnXVq6rN3DWWBXXzuxdFL/Q8qCpJ3A3ZCxqss4I7lPxmAe02I+Fydn0Ajmx3fKZWsYmNYxYy6PzFvsZ6mTwFpXKjyLXQk476rZNDQ0VLobJeOPr+5l8/uHmDi/liUr54zYVruqldc/8zybQ3ORe7u5fv+z+GfMYN6a+5AUdwyXrJrl7ifW0Dmjk4HDQTJqK4EJOwm1PM/hmu08vuJxFLnARbuqld1Pf4+nErVsbpnI/MRuFuTedQVnwbVjeifR6CVAltrpz+PzR4bkKqBd1Yr620fYHDqfkJLjNpfLOZY+HTVVS82Uzfhr9wwrZ31sz0E+doSPuYhzQc7dRKOXA1nqZjyL7EuOKufdT3+PdzmP7lAz1x19gwW1mis4CwjuB1sgnliKpPRTN2MjEtIJ3LWrWhl46TE2hxbTKKX5WxfJGAaP6WjqTDRfLTVTX8Uf3leUnH8b9bF5ymSmpg/w4dw7ruQdSVwAOT/haS+hBHuG5f0fsX42R/u57LR6llw6pzIdtxGRSKTots6XuIPgU2R8o1i9nIhIOosqQUPYP3r/lQDTP/gnqO0Q9YeQ1SxTbr0ZJeSOVHmA9e8/w8HEAZAhpwVQJVB9SXJylgOJ/Tx74BlWzy9k1KEEmHLrzYQf/R2qBHF/0DWcBVeNAGreQqH5o8NzFVACzP/sJ1Ffh4Q/SBaNVpdwFhgkZzWIJoGmDIwo52n5sR33B101tgVXVatDlQBUVCWOJmmjynnKrTcTfvowqtRMXAkw5dbPuoKzgOCeZR6qBLIviSrrtctO4K4EmP2pj6Fudef6ZR7TqhrWx3SR83nKrTfT8KNnUCWI+mtcyVuTQFVDIIGmJEbkXR/2o0oQy+RcuS+XilI4Vv/T8GDUBWoYpXirwJSLLgAgoYTwz5xJw7XXWta3ciOrZnmo7SEk8tm/ql6QTpL1mlASEg+3PXxCtlXDqlU05At8JpomuYKzmauWE1lwaSRZl/dwXAWmrS5wTM+e7wrOAsfLWVPzmcyjyFmM7Zi/xjVje7Cc8xnMvgEkSa+4P5qcG1atol7S3VWJqe7gLDCIu5CxL2m8PxT3aSuv1j/rU9BmzXEN30FcNQktp2f1SrKe5VuMnJvyNwtFGye6kjeaH9CTPiRZl/NwvOu9a8WGhafYnQQQ1yeNVpVfoCG/OMT8NbTcusYVpnyBbd3bOBQ7hIa+6WlCsfPpG76GxsHYQbZ1D65hJikK0y5dBkD61IWu4GzmKhQ7yZcw3h+Oq4AS8FPr059T8NOfdQVngUHcNUDVlXKxGQzHXYztuD/kmrE9WM66YleKnCVFYdKcGfofH1zhCs4Cg+bzcYc0GJp7XW2hTFPo819wDd/BXEOI7VlSdFkXI+eZVy8HYGDmXFfy1nJCdirIegzwcLzrq+TqOCvgDsl7GBdEgeKGES5VNkNY9gYmTqZh9TWW9csKLGpZxP2X3U86nxjw7Sck9sbhU2dexzlzrgMg4AuwqGXRCZ+dvHQJ7GljoGmSrX0eK8xctx+Af9sLMxob+col9xpthuMq0FBXQ7w/ifaBS23ocflg5p7Owpd26pvgPRffifA+DcVdzIHkxCmuGdtmrm/thX/fB7ObJvGlEuQ8cd4sOHaQ1IKhC746FWbuL70Dv+qAsycv4LMjcPfJErUBH/F0DumyKyrR7THBzPVIP3z9PQj6Ne679J+MNqPJefrlF8N7m4kE6+zocllg5t3VB//cDjUBifsuHXl8C4tdzLPYnQBPsTsJUHDFFidusfnFMu67XDngC7Bizgrj73/hJSDG8tkX8YH5IytsjWF3nQDNXHORQ0Abs5snsXr+sqK/oyHkp7M/adyp6xaYuR+JpoDnAPiL0/4UWR66CDcU5kA0656xbeY6cOwA8BZzmyezen7xNwk05cMMIi67I9fMff/+duBdTp04k9Xzh1duQLfmxNM5V41rM9c3D/QBrzIxXMPq+R8s+jvENXPiekE3wMx72/5e4DUmhMOsnj+yUi4sdp4r9kR4rtiTAJESLXbiJJStgguWxaXhtSNcGi4gLJVuUezMEFbZYt3tAkb1dpdt+GbETRfDj6TUQWEOZHIayYz7yiQU7gMuLShejIt+F8s5alwOP/oYF/eMRlPu5Cu4FhsXLSDkHE1m0TT3HF4ECjIefb2ud7mMrYSn2J0EEJOl2E1fXLAMhfg8t6IkxU7EbLiQ83gVOzefegsyHvoeZDMGjW0XKvB9Qs4jXAw/FISC0JdwH2eBWH4DrytiLrt9XBteliIP4wKifU7ViKfddyg3FNoieDe4XMZWwlPsTgL0D5SWFStJkmlhdO9GoGmaYc0p5gQo3HSRZAZVdddpt1QZC1RDAHIpyrvbx3bfGC12TVVlsRtdzkL5c2v8VeF+79KipUJ+mYBP39bdKGsxJ+uKknE+ZMilMrYSnmJX5cjmVGPjayhisgg0VMGGn8yoCP2sFIudpkEs7a7FotQEGQEj5szFi6OhvBchYyg8o34XWmZ747qcm0q02FWDK1Zs4MVY7BqM+Ct38hXrbjFuZzMkSSocUF0o61gJB3FhoRef8VCAp9hVOcyDvhRrTmFxcO+kMcdehP2ju+lCfp9xTY3bFsXImF2x7g9ALsViB4Mts25D34BusWsaY4yd28a1GdFUCTF2wmLn0k1frLulHMYFGlws68gYrLKprEom5754WSvhKXZVDnFCDwd8+H3Fi7s+6H6LXTyfEVcb8I0aVC9QWBTdtSGMO3nCxXIuVbEzxrYLNz4RI9d8ElrsxOGjGDed22PsoiUWlTejYJF2n6yjJVgqzfM97lIF3ip4il2Vo3DyG5uLLuLShRFM2ZIluaDdqeiMXbFzt8sKxuCKdbH7WSh2TTVjs9jF0znXWjdKSZ4oZMW6T8ZQWHdLXbfBnN3vPu6lxFH6fbLhYXGrZdYqeIpdlUMoKKVu+IUMUfdu+KVacqCwKLrttDvW8gjVkFkmapUV7Yp1cfxowRU7tqxYcN/YFogli3dPuj3EQKy7xSg4x8PNbvdSLHZQUPLjLqpXaAc8xa7KMdbsqqrIliwh2FrArQrtWC12DS7fAKEg56JdsS4ta5PK5ozae6Uq8D65kA3sRsVO0zTjoFaUKzbo3sxnKP1+bzMaXCznaAnKOxTmvGexGwxPsatyjDVbUiyebo5diOczW2sDxSt2jS50Y5gzn8dex859m4BAKSVtwL3JE2blu5TDioCb4+z0AHk9xb2UOnZuLYUx1hAaMK9h7pNzKa5YKCh2bt6nrICn2FU5xnryq3d5HSigpBO+gBtLBZiV0FKz6AqWWRfL2VDgR898BvdaKQ33XFAxiiyXAjcrdkJWklTcQa3O5SEGpV4DaYZbw0lgLK5Yr+TJUPAUuyqHOPmVaskpmLjdG7tgvmqqWLgx/kps+LUBH0oJmc8w2GLnxiuIoHRXrFvLQUTGGEcp4ObYK+OQFhj92jgoKAZu3fBLuYHheLj5Bp1S6tiB+8vaWAVPsatyFFyxpZ38xIk35uJ7+AobfnGWHHDnaXes8XVQWEAzOY1U1p3ZkqW6Yt1a4qVgzSjdigOFTdCNVqxSbiSAAle3yRgGh1aMK3nChdwLdeyKW8s8V+zQ8BS7KsdYXbHCxO3mbKNSsyXBnckTY71ODHS3ljCAuHEjgDEUKHatK3Z8Fjs3Z4qWmgjVECpYctxmiTZbn0q9eQLcGU4CenJQOn+4LFbOdZ5iNyQ8xa7KERnjpm/cw+fiCVNqfTNwZ/LEeCx2siy52pID47h5wmUb31gvhheod7EVPlpivKxop2l67T43QSjwNX4fAaX0LdqtLvexJAdVQ8iQFfAUuyrHWLNiq+EePiOovqQ6du7b9MdTGgHM5T/cw9mMUmMp3RhHCaZD2hhdsW6+jSFWoouuxu8zEkzclgA2nsQJMI9vd/GOmqyyxSYHFRQ7d81lq+EpdlWOQsB1idmSwmLnssXBjFKD6sHdrtixWOzA3Rs+FMIFSlXskhnVcP24AeNX4N0rZyO+sEgZS5LZEu2euQzjt8yK8RFLZcm66JaRscSQVkPIkBVwlGL38ssvs3r1aqZPn44kSaxbt27E9p2dnXziE5/g1FNPRZZlbrvttiHb/fKXv+T0008nFApx9tlns379+vJ33qGIjNNiN5DJkVPdFaMiMJas2JPNFQvujTmDfFxOfvMqVoE3u/PctOmP52J4cHmM3RjmsqHIuszrIOQ81iSZhkHj2z3cS61hB9URMmQFHKXYxeNxFi1axEMPPVRU+1QqRUtLC3fddReLFi0ass1rr73Gxz/+cT772c+ybds2PvzhD/PhD3+Yt99+u5xddyzGeqWYefNz66QZy2bgxtNuZLyKXY07LRsw+KRebB07nywZlh83KfDjtdi51YIFBeWstE3fnRbK8cpZ8cnGXHBTdn+pNeygYIDwkicGY2xHAouwcuVKVq5cWXT7OXPm8MADDwDwyCOPDNnmgQce4JprruHLX/4yAP/0T//Exo0befDBB/n+978//k47GOO5giio+PD7JDI5jXgqO2aloZKIjyHGrv64025zbWmXrVcC47XkuHUDhMKCXuMvrYZfQ42faCrrKpf7eGqbgdtdsWMoNh5yZzjJWL0sZjTU+Imnc66KIx2bxc7Lih0KjrLYWYFNmzZx5ZVXDnptxYoVbNq0adjPpFIpIpHIoH9uhNjwJam0zFABtxd/HMtdsX7Tadcti6Lhii3xYngBN9+3GB1DHCW4s5bdeC6G1z/nXrfVWOZy4fYJ98gYxh4XbUYhM9Y9so6OQcZuXrusRNUrdl1dXUyZMmXQa1OmTKGrq2vYz9x33300NjYa/2bOnGl1Ny1BxBRwXEy19uPh9kkTN+rYFV+gGNxXpHi8MXZuvhdYWGXrSpWxC+PNxuuia3CpogOl30hgbuu29WssLsnjIca3W9YwMFvsiuftduODVXCUK9YpuPPOO7n99tuNvyORiCuVu7EUrlXTaWK//S1aOk04JQMSh1/8Hf1NhTZSIEDdFVcgB5zrpkxnVSOovpgToJl3bUbn3fnbl5ndVGjjVN5jcd2Y+SoHJECmd9f79D/ZbrRxKl8zYuJGghJlXNOfH9ub36B/TyE5yMmcxxJUb+aspQB8RAfS9D3xJFL+rOdkzgLRIuVs5hvo1Mf1kTffob+3EFPtdL5jLWtj5h7Mj+8jv3+D/r0uGd9jyooVh1IvK9aMqlfspk6dyuHDhwe9dvjwYaZOnTrsZ4LBIMFg0OquWY6xbPgD29o4dNsXAfBfcjNMmsfBtT+jo+OPg9rNevRRai9cWr7Olhlm69OLh57hwwtWj9jezDuU571v7f9jVsdbg9o5kfeReByQ2NrzKufPGZmngJlvdt4lcM6HObLlTTp+8P8GtXMiXzNe2v8HQCap9Y/a1szZt+TjMHMJB594io72lwa1cyrnY4kBQOKNI7/jnNbS5ZxQgvCn/0xWk9h759cIqoU54lTOAocixwCJd3q3sIrpw7Yz82XhtXDqFRx+8RU63n5yUDsn833v6EFAYm9sB3BK0Z8bPL4/ATMX07HuN3S8/7tB7ZzKffuR3YBER6IdOKOozxhXiqX1G0YkqXTPVDWi6l2xF110Ec8///yg1zZu3MhFF11UoR7ZBxGrUYqLLrxkMf7WVpAkarIpABJKqNBAkvDPnEl4yeKy9rXc6BtI6v8jZfjBWw+TVUc21Zt512YGAIj5awoNHMo7nc2QSOkn8l/sWjsqTwEz33BezgMuk3NWzfL07hcA6ErsHZOM4y6QMcBAJk06q29a//HeI2OSc002haTpVmyDt4M5C2TVLEdiepzz+r2/HpH74HGtrwFxv3vGdVbN0n7sEAC/69hYtJxhaO5uWbuzapa3u3Vvwevdvyuat7DYaRokXHbDiJVwlMUuFovR3l5wBe3Zs4e2tjYmTJjArFmzuPPOOzl06BA//elPjTZtbW3GZ48cOUJbWxuBQICFCxcC8Hd/93dcdtllfPvb32bVqlX853/+J2+88QY//OEPS+5fLquSc1FB0/5YGlmDxqCvhH7LTLhlDZ1f/Rq12RSyBgNKDapUiGGacMsaVGRw8LN4etdLyJqMJKfoiHSyvn0Dq+atGuETBd71mSSyBnF/2PG8H9/5NLKmn8+6E/uK4ClQ4BvKZpA1SCohx/M1Y/3uDfTHdVml1f6SZFxnyNgdY3vdjmcMOR+Oj03OSFCXSRH31xAP1NKUTgDO5SywfvcGclkFWYOegYOjcDetX5m069av9bs3kEmDrEF/qqsEOYOZezjPPeGS8b1+9waSKZ13NH2kaN5+SVdiVA2i8TShEjLj3YZSdA9HKXZvvPEGy5cvN/4WcW433ngja9eupbOzk/379w/6zHnnnWf8/5YtW/j5z3/O7Nmz2bt3LwAf+MAH+PnPf85dd93FV7/6VRYsWMC6des466yzSu7fto37qAvXj4FZZRDZe4xlSYWZXVm2bNhb9Oc0+Ux6z76O2co0MkkFqfkc9qp1gISvoYGYtBCphO+zG6qm8tab7SxLLkTyBQgcuprn17Ux+fQzkKXhJ77gPUuZxrKkgq/pbPbOrsGpvFVN5Xdvb2dZ8lyQVIKdVxTFU0Dw9eUCLEsqNCtT2Tt7BU7la4aqqTy3s40Les8mm1TwMa0kGU9UJrAsqdBQe6rjOauayitv72BZchFIOYIdV45JzrlIlGVJP/GcQteM5WSSEcdyFlA1led2tLEsfgEgETh80ajcBd8wdSxLKkwJzXK8jKEwpi+MnoWWU/D3nFuSnKHAvcU/iWVJhbq609g7O4uTuRu8+09DzSr4j55REu9LMwFSWZW2jfuZEHZe7GC5EEtEi27rKPX28ssvR9O0E/6tXbsWgLVr1/Liiy8O+sxQ7YVSJ3Ddddfx7rvvkkqlePvtt7n22mvtIVRhpPIafrDEi6QlWSa8dCn+vDk8Iwv9XyO8dCmS7KhhcwJ29bWTyOjuRaQcoBFJR9jV1z7i5wq89djEtE+4sJ3Je1dfO9G0zlOSshTLU8DgmxNyFid7Z/I1Q+ceQdPyfZayJck4kBMydv7Y3tXXTiw1fjmDZoxtfU47l7PArr52Imk9hhQAKTMq9xPmsUvWLzGmKXFMm1EY3+5ZuwtzOd/XEnkH8vtbxmFWyErCURY7p+O8q2bT0NBQ6W4UjcfXxdjclWXZOc0sWT6npM9qV7Wy8fP/h82hGTSnDvCR/c/inzGDeWvuQ1KcO2yyapa7n1jD/okTGUidja+mi/CMjUhIHK7ZzuMrHkeRh++/dlUrr332/2NzaDbBbBfXOZS34HmgJUBiYAlS4Ch1JfAU0K5qJfniY2wOLaZRSvN3DuVrhuDeOaOTga4wGW0GgYnbCU16qWgZ7/rUb9gcOo0z43182sGcC3KuIZFcjBw8Qu0Y5bz76e+xPzeX7aEaLu/7Iwt8vY7kLCC4H5oaJRa7FFCpa30GWWJU7tpVrRx+9VdsDp3NzEyMmxwsYxg8piOxi0DzUTvtBXyBvpLkDDr3P974NJtDp5CO9PBJB3M3844OLEbLBglP+x1KqKto3ne9t5/27iQ3XzCJJfMm2dRz+1FKPV1nSdnh8CkyvhKtX5VEJJVFlaAh7C+930qAyRedj7oPEv4Aspplyq03o4Scbepe//4zHEwcIMsUVAkkXwpV1oNqDyT28+yBZ1g9f4SMQiXA9MsvRn0fov6QY3kLnjntdFQJZF+yNJ4CSoCZN3wMdSvE/EHH8jVDcEeGnBZAlUBTkuTkbNEybv3Ta1B3QNThnI3xrJ2VH89jl/OUW2+m5vFdqBIkFD9T1jiTs4DgrmqTUCVATqH5suQogrsSYOZ1H0J9y9nzWEBw1SQJlSBIoCoDUOyYNkMJMP2aD6K+6/w5PWguqyGQQFMSxc9lIBzyo0owkNVctT+XilK4Ve9T8DDugqYTzz0bgAEliH/mTBoc7sLOqlkeansICQlUvVyN5Esa70tIPNw2eobslAuXABAL1DiSt5mnpupZb5JcOk+BaSuvBiDj8yPNnO04vmYMkjGg5eWMnHdVFsl96uUXA3ryhBNlDEPLGd+A8X6pcm5YtYo6v/7cUi1THclZYOgxnjLeL4b71A/q8doJf8ixMobj162C8iWVOKbNmHLxhYCeFetU7oNkrMmg6dzFWlYsb+9asRPhKXZVjPFeDl8f1jfNhBKi5dY1jjPjH49t3ds4FDuEhoaWyyt2ps1AQ+Ng7CDbureN+D0NtfpGEvfXOJL3YJ75Tc9XOk+BunChZmP4ppsdx9cMM3egoMDn5VyqjGMOlTEcxzWnlycxK/ClyllSFCYtPFX/4wOXOpKzwKAxPsQhrRju9bX655JKkAlrnCljGJor5EDSFZVS5QxQH9bHt5PX7kHjWzXVjc3LuVje4mahqKfYGXCetD2UDWO5ecIMcRLKnbaQhtVXjtK68ljUsoj7L7ufdC7Nut9LPN8Dl8xcyp8vu8BoE/AFWNSyaMTvEYrwQMs0GlZfY2mfxwIzz2fb4DeH4fxpZ/JXl9xrtCmGp4DikwkqMqmsirT8gxb1ujwwcwf4RrfEwQR85uyPs3Dmx4HiuIuq/gP+ELWrVlrb6THCzPWpNySe7oaLWs/loxcXuJUiZ4AJp50Ch3eTnjXPii6XDWbub+6BH+2H2Y1TuL2EMV5nusFAvsp581jAzLWrD/65HWoCMvddOrb5DAXuAw3NNKx2/vjuicA/vgd+n8Z9l/4fo00xvOuC+nrtWewK8BS7KoZxmfQY7xwUi0NC9ruionfAF2DFnBUAbHrrj8B+zpl8Kqvnn1rS94jLtyNZHMnbzHP7rp3A+5zRMpfV888c83fWBRVS2TRxhxf5NHMHuJ8XgAQfnHMx58+ZUPT3mO+jjKdyNIad57wwc93yzjvAXs6Zcgqr558+5u8Uh7yYw69gMnNP9h4A3mJW02RWzy/+xoSg4iOgyKSzKrFUliaHlsIwc2070Ae8SnNNDavnj/2QJa7limc1NA0cuIwN4v1ORz/wCk3hEKvnl2ZEEPdEe4pdAc5bzTyUBZqmjdsVWxtw7wXL8TFcGi4gNr90ViWZcfYGWI4Lw6GgxLttcRT9rStRzgFFJuTXlz8Ri+pkjOV6wKEg5kM05XzOArExyhgKllm3rGFiPNcWcffxSDDfqRtPO597NDn29Vo8K7fI2A54il2VYiCTI6vqcUjCAlUqxCSLJd03YcazQNYFFOT8Cdfpm37UsMqObyMQSnzUZbIW/RX9LwVCSRIhC07GeBOhBMSG7yY5i/Wnfixz2WV8Y2VS7IKKjN+nL2Ju4F5Q7Eof37Ve8sQJ8BS7KoXYrBRZosbvG6X10BCL4kAmRy6vJLoF41kgZVkyFpiIwzf92DhOumYUMsucbaE0I5tTjSLcdWOQs1CS3LDxibCKsfA0wxjXLuAsEBuH9b3OZYdTwwI9TjlLUmENc4Mly/A8jEN5d9PaZTU8xa5KERnIW3Jqxh4fZ1aK3LA4mGG4b4JjU2qFlbN/wNm8o8aGf/K5Ys0L+VgUeGHldLpVFqxQ4N0j58g4xnh9/jNuyZgseBrGtm6ZUbBWumB8j0N5F3PfLTK2A55iV6UQm9VY4+tAj0MK5C9VdptiJzb9sSo84rk5fdOPGDF243TFunBxFHFiAUU2rhUqBW6xysL4Nj4z3KjYjSfGTnzGDcoNFJJaxuuKBXe5occTY+fGMW01PMWuStGfEMHW493w9ZNjwmWTJjbOk2+DSzb98m347sssKyjvY+PeUOMet2TBAj0+y6yYD246qMXG4aYTnznZXLFgipF2gawj40gC8xS7E+EpdlWKcgVbh/NB6U4vg3E8xrtAukWxG0/QsRluXBxjeYvd2GXsHmuOUEzGYrUywyxnTXNH3Ox4rDlGFrBLFLtyJU+Au7iPLyvWN+g7PHiKXdUiMs7ixAJiI3CTxS6naiTS43NpNLrAmqNpWtksdm50xY7XbWVY7BweR5nK5kjnxp4kYoZ4VqqmJ0W5AeNRdupcZLWC8lrs6lxkrYyOIznIOKy4oKyLXfAUuyrFeIsTC4Rd6LoxT/Cxu+nygfUOttgl0oVs5ZMx9qqwCY7N3V7vkuQJc5LIeDf8cMBnFKt1y5weX/yVezKfobB21QbGnzwhrPhuOKwJq/lY9is3Jn5ZDU+xq1IUrhMrT32zhItcsWKCK7JEcAxB9eCOGmdiY/aNo6SNgBtrQcXGWQJEyNjprljBMxzw4ZPHd4WAJEnGnHZLeYjxWKXrXeRuhzInT7iI+3iyvsWzyuQ0Ull3jGmr4Sl2VYpyVaoX8QtuMnObixOPtdRLY9j5WbFRU0bseK8+c1MGncB445Hc4ooV2b/l2Oz173FPoszgcIMxlDvxXLGucsWOqUCxqTi5G7jaAU+xq1KUo9wJmCx2Ljndw/jiNQQKyRPOXSjKVbTW/B1uVODHmzzhZOUdxnfzwlBw0xVM5uLo44m/cgNXKN+VYuCu69Si4yjb5JMlwgFxWHHPPmUlPMWuStFfpuQJV8bYjbMMBpgLFDt30y9XRiyYXbHuWRhj41TsCrcwOFfGML46bkPBTfGUQqmVJIzNuxQYcWYuseSUU9Z1LsyKHStvNx1W7ICn2FUpjJsnynSHaMJFlpzx1rADdxQoLtdtBHByumIba9zBebwK7PEQc9oNm2DUxH0s4QZuG9fldcW6I3lCVTVi6fGtZfWeYjcInmJXpSibK9Zw0bnHklMOd4Yb6tgVMsnK6Ip10cJYzlqFTq7pVo7QAjPcZJ0drxu6EGPn3HlsRtyCmydiDj6cAsTSWcT0G2tMuBuTv6yEp9hVKcrmig24J9BaoBwWDvOtBE7d9Mu54QvrpjmmyekYr9tKuOlUzdkHl3jZXbHumdPjSZzQP6c/s2RGJZOvBehUpLNqoV5hYPyydkuBYqG8+31jr2LgxhtVrISn2FUhVLWQSTb+rFj3nO4FyqHYCUtnTtUcu+lHx3ENz/EwKw1uWRzH64oN+WX8Pt2952TLrKHcnITJE2KMjzf2CpyfMWlWtMcTRiLgloxgc6zwWLP7hdvZ6VztgqfYVSGiKZNpe5x17ITFzk0xduVwxQYVmYBPnx5O3fSjqfHFpZgRVHyGkuMGSw6Yk2TGtglKkmSqZedczuMNLD8ebnK7j9cq7ffJRo1Hp2/6on9BRUbxjX9rNm4NSjvbCj+ejFgBN1mh7YCn2FUhhCIS8ssElfGd/OpcHGM3HoudJEmOz4wtZ1YsuC9OpWCZHTv/BjckyZSBpxmFuFnny7kcWaJ1LilrI+RRrljKQVZ4NxxcxsHbTVZoO+ApdlWI/jIVJwYIB9y12UPBkjXeAORCAVtnbgjjdVMdD5Et6fQsOoFyZD8b14o5VMZgvmFj/O45MG+Czj+sCe7jSRAyMiYdrNxAeWvYgW6FF16HqIOTRyLlsNiF3CFju+ApdlUIMVHGmzgBhU0z4ZLNHsoXbG5kTTp0sYiWYdMzQ5yYB1xinS2HZbbBBbXsyl/Hzj1uq3LEy7ol1qyc14kJFO5Rde6cLofnQSSbuMEKbQc8xa4KIWrYjbfUCZgsdi7Z7GH8sVcCQjF2qit2PHdoDgU3FaPOqZpxf3E5ClE7OsbOIlesG+RcuF1lHJu+S7JDCweV8lhmwR3ZouVYx9xkhbYDnmJXhSjcE1ve+mZOLftxPAwX3ThLBjQ43E1X7hi7QrC1czcBAfPJvNrrFYo6ZOWvY+d8OZclxk4UKXY43/FmeQ+FWheE0pTjXvOCK9a589hOlG8EeXAMxuuKVdNpYr/9LVo6TTYL4COravQ88RsC+aOAFAhQd8UVyIFAeTpdRown9srMveawBMgcefNt+o/90WjjFO5CzrVjuGpJwMzXf1QGJHpe30b/ga1GG6fwNUNsVD4ZAr7SSiSYOQcO5WX89k76YzuMNk7iXA4LtJkzEQAf0WP99D/5pNHGSZwFCkptadzNfIPduox7tr5Ff/ebRhun8RXxYeM9kJq5h+L6nO5+ZRP9OwttnMS9HIaIggHCs9iBp9hVJcREGasrdmBbG4du+yIAOUmGP/smALv/v3+kIZMw2s169FFqL1w6zt6WHz3xKCDR1rOZi09ZXdJnzdylhSvh1A/S8eIrdPzxyUHtnMC9fyAFSLze/TILp5fGU2AQ38XXw6zz6XryKTraXxrUzgl8zRCbYE6K89Sep1g9v3j+Zs6c+kFYuJLDr/2Bjod/NaidUzj3DQygy/l3nN06fjknGqbBFV8i2hel446vD2rnFM4C+/q6AYn3+t8EZhX9uUHj+uw/g/mX0rXxBTp2bBjUzkl8t3a9DcgcS3cAi8f8PWbuyrLPwtQzOPSfv6Jj/+uD2jmF+46efYDEgcR7wGlj+g43hRfYAc8VW4WIGEH1Y1PswksW429tBUnCp6kEs2kABpSg3kCS8M+cSXjJ2Bcfq5BVs0SSen9/3f5zsmppE93MvTaTBCDuryk0cAj3eDpNNqdbqv7fuz8qmaeAmW/oeDmDY/gej/5kCgBJTvNw28Ml8XeLjAHS2QzJjC7n/3jvJ2WRc01Wf3YJJVRo4CDOAlk1y6HIUQCe3f+bMcs4nJdxwu9cvlk1y2sHtwHwbt+bY5YzHMc9L2unzumsmmVnzz4ANne9MGbedZ5iNwiexa4E5LIquayzr6UB6I+nkTWoD/jG2F+ZCbesofOrXwMJwtk0GV+AhL8GNRkBYMIta1CRwWHP46n3N0DWjwwcSRxkffsGVs1bVcI3FLjXpZPIGiT8YVSp4ApyAvd1O55B1vRzWVd8/xh4ChT41mT1cZNUQo7jezxe2L0JWZORpRQdkc4S+ZtknEkha7pi50TOj+982pDz4TLJOZjLImuQ8QXISAo+9NhZp3AWWL97A9mMD1mD3mTHmGUczo/rAQeP6/W7NxAfyOjrTfbYOOQMQ3FPOJT7+t0bSKUkZA3606XO4wLCPlmXcTLrij16LCiFl6fYlYBtG/dRF66vdDdGRW17nGVJBf+7UbbE9o7pOzT5THrPvo5cJMoF6SAxTeHI9MvQkhF8DQ3EpIVIG8b23VZB1VSe2/4Wy5LnAxDsuoTn17Ux+fQzkKXijdOCe40WZllSYXJwFntnrwAkR3BXNZXX3t7BsuQikHIEO64aE08BwbfF38KypEJ97ansnZ3FKXyPh6qpvL9tH8uSC5BydQQOXV0yf8FZUYMsSypM9M9wlIxB5/m7d95hWfI8QCXYcUVZ5JyO6usDwO651+JXc47hLKBqKs/tbOPC2HmgKQS6zx+zjBvkBpYlFSbUzHWcjKHAdWnvKeRSCkrv3HHJGQrcpwemsSypEGw8k72zAziJuyHjyJloOQV/z9lj5h1JZliWVFDSGlscIFMrEEtEi27ruWKrEKmsHkAa9I892FqSZcJLlwIaSt48npUVQCO8dCmS7Lyhs6uvnWhaxABqaFKOSDrCrr72kr5HcA/m9FjFtCzOP87gvquvnVgq74qUsoA2Jp4Cgq+Qc0YW48YZfI/Hrr52EhndbSxJOcbCX3AO5ARnZ8kY8uM5pbsRkXMglUfOPi2HnM9wzzh0Tu/qayeSioCWl4uUHbOM/Q6WMYh1K4Km5efdGNctMwzuqr4XOJG74G3IWC5dxgIBn/7ssqpGziXVG6yEZ7ErAeddNZuGhoZKd2NU/H+79rMrmeULl0xlyfxJY/4e7apWdj/9Pfbl5rEjVMPyvrdY4Otj3pr7kBRnDZ2smuXuJ9ZwcEqKePwDICepb30WCYnDNdt5fMXjKHLxfdauaiX68s/ZHFrERC3FLfufxT9jRsW5C54HWkIkkouRAz3Uztg4Zp4C2lWtbPv0RjaH5qP2HeGvHML3eAj++ybMJpk5DaV+PzVj5K9d1crAS4+xOXQeTaS51UGcDTlP9pEYuADJ30tdmeS8++nv8ZZvGbFAmBu6NzGvMeAIzgKCe8f0HqKxywGoa30WWc6MScYHXlvH5tBC5qcifM5BMoYC184ZncRzM8klmglN3kqg4a1xyRl07q989n+zOTSLmmwn1zmIu5l3JHYxaFlqp72AL9A3Jt7ZnMqnf/8uAP96+QyawpXP9i03IpFI0W0rP7JdBJ8i41Mqf9IZDf3JHKoETbXB8fVXCTDl1psJrnsfVYKUz8eUW29GCTlv0qx//xkOJg6Q06ajSiD5Uqiyflo9kNjPsweeKSlzEiXAnL/6S9RtEAmEkdWsI7gLnlkWokqAkhwfTwElwJSrLkfdBQNKwDF8j4fBX5uPKoHmGwd/JcDsT30MdStEAjVIDuJcGM8LUCWQxzueBfJzOvR8lIgUJikrjuEsILir1OljHBXVN4AmjU3GMz5yLeo7EFNCjhvXgisy5LRAfkwPkJOz45MzgBJg8mUfQN0NCYfNacFbQ0HFDxJo/uiYefsUGb9fJpVVSWRVJrpgny4Vpezl1cfeg1HfrBw3TzSsWkU4X7wuPWkqDddeO+7vLDeyapaH2h5CQkJT9cw3SU4Z70tIJWdOArReezUAKSWANmtOxbmbeZITPJPG+2PlKTDpQj02cUAJ4J85s+J8j8cg/mo+y2+ccp5+7Qr9u32KI2QMx49nnWc55dywahVhSVcS09OdJeehxjhyCilfqnAs3Kde8SeAnhXrpHE9iCucMKbHK2eASUvOBSChBB3Dfaj1GlSQ8+EVY+Qtbq7wrhXzFLuqQyanGlctieuSxgNJUWg+dT4Avj+5vOIm/KGwrXsbh2KH0NCG3PA1NA7GDrKte1tJ31tfG0LOZwwGPv+FinM38ywosIUNf6w8BWpr9Gc34AvScuuaivM9HoP5C4VnfHKuCwcNGYccIGOwbjwLSIpCQ8tEAPyr/8wRnAWGHuPj415fq39PXAk5alwPkjOcMKbHK2eAOjGnFefM6UEyzuXLDMkpJCn/HMbI2003qliNykvZQ1lhvhqpXFdNNc2fC0f2kZ1/alm+r9xY1LKI+y+7n3QuzRvt8OhBOGVCK7decq/RJuALsKhlUUnfK8sSDTUB+gYyqJdcXuZelw4zz6e3wlOHYemMc/j4JWcbbcbCU0Dc1JGZOp2G1SvK0udywsz/py9IvN4LK+cv58pFy402pfKXZYn6mgD9Axm0S5eP/gEbYOb54tvw605YNPU0PjPO8WxGw9QWaO9BPafytczMMHN/9xA8uBem1jfy1XFwFzXOsj6F4ErnjGszV4Avt0skgdsvuIUpTXqb8cpZXLWVmT2PhtVXj7PH5YGZ957D8J3dMLE2xD3jHN/ixg6n3wlsBzzFrsogihPXBxV8cmlXLQ2HWuMOUWde1xLwBVgxR1+wIz37gLeZ3TSV1fPPH/d3N4X99A1k6HfAYmHm+cd3dwC7ObNlHqvnLyzL9xtyViUkqTxjp5ww8//Nq28Ah7lg+jmsnj97XN9bH1LoH8gQcchJ38xzz95dwHucNnE2q+efPfIHS4BT7wU2c/cPdAFbmN4wgdXzPzDm7zTfsRtP5Qj5nbHtmblqmsbfZdcDsHrBVUxpCI300aJhyBmfY+a0mfcL2W7gdabWN7J6/qXj+l6hxHrXinmu2KqDce9eGeLrBMRdpE7bBIaCuGqqXBemN+azq/oTzrpcOpqPoyyXVRYKJ95EOofm8JIBIo6mHHIWN7SYrd1OgaikXz+OezSHQuEKJudugoL7eGXskyVjDXOqNWcgk0PNT7naMq1d5u9yqrJTuCd2/OtYneeKNeApdlWG/gGx4ZdvcQi7YBMQiJdpMxAQCSh9Dtv0DctsWeVcqAWVzjm7ens5FXgRi+rETT9a5oOKQF1e1k7eBMXhpa4MY1x8h1OvnDL3KzyO+qPHQ4RXxNNZRx7WxnuvuRlCiY06VMZ2wlPsqgwiI7acFjuxCSRcMGGE8lmuU2+TUOwS6bJ8X7kQMxS78snZvKE49YQvIDbCcsjZsNglnaW8Q/msVsfDDZemx0xhJeOFmCdOVN6hMN9qAz7kMoXQQGHcaJozQ2mMe83LkOjnWewKcJRi9/LLL7N69WqmT5+OJEmsW7du1M+8+OKLLF68mGAwyCmnnMLatWsHvX/PPfcgSdKgf6effro1BByAyIA+qMtxAhIIB9yTRl6w2JXn1Cueo9PcdIY1o4wbvuKTCfn1JcHpi6PYCMvBv95wxTqPc8wCOYM7MgjL6YYWzy/qQOUdTOtWmV3uNX4fQk90ohJfXles863QdsFRil08HmfRokU89NBDRbXfs2cPq1atYvny5bS1tXHbbbfxuc99jmeeeWZQuzPPPJPOzk7j3yuvvGJF9x2B/jJOFAFhznfiie94lNOSA3ryBDjPFSssDw3ljr0yxdk5GbEyboQFV6yzZAwmBbbMcjasGw4+rEWNQ9r417J6l7hiyxlfByBJkqOts/1ldMWKceK5Yh2WFbty5UpWrlxZdPvvf//7zJ07l29/+9sAnHHGGbzyyit897vfZcWKQlq7oihMnTq17P11Igqu2DIG4AacuzAcj3K7rsSC0+9Qxa6crljQ4+yOxp0ta1XVDIWktgyWWSe7YqOWu2Kdq8AbcZRlUGqdrtiVOzbYjLqgQjSZdaQlq5yhQ7Wexc6Aoyx2pWLTpk1ceeWVg15bsWIFmzZtGvTarl27mD59OvPmzeOv/uqv2L9//4jfm0qliEQig/65BeUMRhUwymA4eBMQsCx5wmFZsZZlSxoWO+cujolMDhEHXl9Ga44jXbGp8iUQmCHcVjEHKrMCRuZ3GeZywRXrPBmDyWIXKL9i52SLnZhzXoxdeeFqxa6rq4spU6YMem3KlClEIhEGBgYAuPDCC1m7di1PP/00//Zv/8aePXu49NJLiUajw37vfffdR2Njo/Fv5syZlvIoJ4xg1HIG1QcKmVVOR/ldsflyJw6y2OVUrayuSDOcXh4BCgu3LGHEBI4HwlrgRItdORMIzHB6bUoo7+HFNckTFljsnDyny3n9pVgLnSpjO+Fqxa4YrFy5kuuuu45zzjmHFStWsH79evr6+vjFL34x7GfuvPNO+vv7jX8HDhywscfjQ78VdexMm4ATU+bNKLdi50RXrPnkXW6LXdgFNQvNJUDKUXS1waGbvqZZr8A70YojEC2jK7bO4OuceWxGuZO+zKh3MPdyxoTXuiBu1C44KsauVEydOpXDhw8Peu3w4cM0NDRQU1Mz5Geampo49dRTaW9vH/Z7g8EgwWCwrH21C4Uso/IXucypGqmsSqiMdZbKjXiZXZRG8oSDyp2IzTigyASV8spCuIKc7M4oWHLKc3gRbiCnZT6nsiqZnH6QKn8dO/fIuTyZz8625liVPKF/Z97t7kSLXRkNEXUOtkzaDVdb7C666CKef/75Qa9t3LiRiy66aNjPxGIx3n//faZNm2Z19yqCcpq2BWoG1Tdz5sIoUG6Xhtlip6rOsFaK2KNyZ8SC+dTr3MWx3HGUTk2eMFvTyh175WT3nEB5XbF5q5VDFTsrkyecWtpG0zQjdKg8WbHOVt7thKMUu1gsRltbG21tbYBezqStrc1Idrjzzju54YYbjPY33XQTu3fv5o477mDnzp08/PDD/OIXv+CLX/yi0ebv//7veemll9i7dy+vvfYaH/nIR/D5fHz84x+3lZtdsOJKMZ8sGcqdk2NyUtmccWNCXZk2QrHgqBrEHGLit+o2AjCVtnHYJmCG4F+OjFgwXynmLM7m2zXKWbQWCtcEpnMq6azzbhnRNM00zqu/FEYhy9uarFhwnmIXT+fI5Q/L3pVi5YWjXLFvvPEGy5cvN/6+/fbbAbjxxhtZu3YtnZ2dgzJa586dy1NPPcUXv/hFHnjgAVpbW/nRj340qNTJwYMH+fjHP87Ro0dpaWnhkksuYfPmzbS0tNhHzCZommbKMipvGYzaoI+BTM7RMTlm60O5Nv2Q30dQkUllVfoTmbImpYwVVtwTK1AoRu1cBb4Qd1ZeV+xAJkcmp+L3OeO8W3DPlT/0waxAJNJZAkqg7L8xHiQzqrHpl6VAseNdsdYlT9Q5NJ5SGCH8PqksSVDi2Q1kdIXRV+bDkJvgKMXu8ssvHzE4//hbJcRntm3bNuxn/vM//7McXXMFUlnVsFiV0xUL+qTpiaUdHVQvTmohv4xSxs25KezncCRF/0AGJ+RHRy24J1ZAWHKcfOo14ijLtAmaLZ/RZJYJtc5Qcqy6TgzA75MJKDLprEoslTWyv52CaD7QX5IKCT3jQaGOnbPc7QJWJk8YiTIOU2qNGnYhf1mSoMwHoFgqW/Y90E1wxtHUQ1kgTkCyVNigywXDkuOCmJxyb4RNNc4qeWKpYueCGLtyy1nxycZ8cVICRaFArzUblJODzWNlznyud6hyI2Bl8oRTbxnpT5Q3Hjyo+Aj43HElotXwFLsqgrnUSTkWQzNqXVAGI27R4ui0IsXljD06Hu6KsSufnJ1Yyy5WZsvk8RCWMKe56KD83M2uWCeWbLJq7TJ/p9OyYkXiRH1ZS3M53+NgBzzFropgRUasQNihi4MZIjC63BmEjcZ9sc4oeVKIsSv/JlCIsXPuwmjFbQxOrGVn1XViAuJ7nXhYK+d1YlCIR83mSzY5DdZeKeZMZceK0lyGAu8wrnbDU+yqCEbihAWuG7E4OHETEDAWxzIrPE4rUiysGdaUOxGbgHMVeNG3clqynFjLrtzKzfFwahkMMFlzyrSWhf0+hBPDScq7gJE8YcGVYsKy7zQ5W2GIcEMdTjvgKXZVhIIr1kJLjqM3fKti7PKKncNcsVZkxda6wGJXzhsJBOodWMvOsExaZLFzqosOyh9zJsuSqc6Zc2QsYG0dO/2w5jSF1opbkrySJzo8xa6KYM4yKjfckC1pVckAp1nsxMZkhSXHuD7OgZu9gFB4yhpj58ByGIZl0iKLnVNddGBNEe7C1VrO4pvNqQxkxNpV/qxYpyZPWOFhcnpZG7vgKXZVBOFGsjLGzmmLgxmFTLryLo6Fa8WcodhFLMyKFQH1TpazNa5YUaTYGTIGawtRg7PjKa2ox1nn0NsnzBnoViZPOE2Bt8QV61CudsNT7KoIVpi2BepcYMkRG1S5N8IGh1nsYha6Ys2uDCdmD4K5QHE5XbH5GDsHbfpWWCbNcLLbKmJBglDB3e4svuL5K7JEUCn/lizmSSankco6Z/22InRI3DjkNKus3XBUgWIP40PBtF0esarpNLHf/hYtnUbqlACZvj376H9yr9FGCgSou+IK5EDlC5zG8ptBOQKQzdz9vQA+jnX10P/kk0abSnE3smLLZJk0c9XXfR+qBt3rfkMo/xNOkrPgP97CtWbegUP6+O7ZtZv+J9832lSStxUWaDNnZZ/O+diOXfSn3jPaOEHW5XLFmvmG+mVA4sjm1+nfXTi0VJqvUVg9UL4SVWbeOQ1AH0OdTzxFc/48WGneVmbFOjFu1E54il0Vodym7YFtbRy6Tb93Nz3rAlj8MY698y4dP/7xoHazHn2U2guXluU3x4P3ju4HJPbF3gVOHdd3DeLeNBMu/zuO9fTRccc/D2pXCe5HEwlA4o0jr7J49upxf5+Zaw4JPvwtAHbf/XWa0nGjnVPkHEmmAIk/HH6ZM6ePnf8g3rMvhPOuo+et7XT8+9pB7SrF+0CkB5DY0buND9Nalu8cxHnBcjhzFT2/30LH9/9rULtKy/rdngPoc3knsGDM32Pm6zv/k9B6Lof++0k6dr8yqF0l+QrrUjx7lP/Z/T+snl/eOQ0Q/NN7SSkBdv/zN5iWOGa8XkneB/qPAhI7+raymhll+U7PFavDc8VWEYzkiTIpduEli/G3toIkEc6mABgw3ykpSfhnziS8ZHFZfm88yKpZdvTsBWDT4RfJquOb2Gbu9ZkEADF/TaFBhbhnchkSKd3a8Itdj46bJwzm6kMjmNXr9SWVoN7AQXJOZtKks7pl4+fvPTIu/mbedZkBwBkyBn08d0X7AHh6/7qyyBkGcw7l5ZwQcgZHyDqrZtl19CAAr3Q+VzYZh7NJwHl8I0ldDpIvxcNtD5d9TgMG9wGHzOmsmqU7GgNg/b5flW18C+u254r1UDRyWZWcA4tbCkTiaWQN6v2+MvVTZsIta+j86tcIZrPIGqSUIKpUcA1NuGUNKjJU+Lms372BdBpkDSKpbta3b2DVvFXj+MYC99pMKs89RFr2o2g610pwf+K9p5E1/TzWndhfBp5g5ooEdZkkGV+AhL/GkLVT5Lxu5zMG/8Px8fIv8K7J6nMnodQ4Ynyv372BXMaHrMHRgUNlkjMM5pxx5JzW57KErEF/qrNsMg7n53HcH3YU39/t/QOyJiNLKToi4+UrMHhO12ZS9Ach7pA5vX73BtRMMD++y7WOQa2i6DIeyDh6rx4LSuHjKXYlYNvGfdSF6yvdjWHR2pmlPqkQ2XaMLbsTZflOTT6T3rOvQ834WJZUaJAms3f2CkDC19BATFqItGFvWX5rrFA1led2trE0cgZaVsF/9CyeX9fG5NPPQJbGbpQW3LORKMuS+lRpn7uKUC5TEe6qpvLiO++wLHkeoBHsuLwsPKHANReJcn46RBSFI9Mvg+Z+R8n5lbe3syx5LkgqwY4Pjpu/4K2lJZYlFWrlyo9vMZ4vjC8BzUege2nZ5AwFzgGthmVJhRb/jIpzFjC4R89Gyyn4exaVTcZT/JN0Gdefxt7ZOZzC98DWgyxLzkNWm/AfutqSOX1urpZZSYX+qZewt/6MivJWNZWNO95k2cAFAAQPX1Q2zrkufa1u3jvAlgqvV+VGLBEtuq3niq0iiKtyQmXMrJJkmfDSpSh5U3lGFiddjfDSpUhy5YfQrr52oukIaCLSP0skHWFXX/u4vldwl9AI5HQ3d9rnp1Lcd/W1E00l853LgaSVhScUuIKGoumBx1nJh/PkrPOXpCwwfv6Ctz8v34xPnHUrx3tXXzuRVNQ0nnNlkzOY5nTOeXO6MJfzcpAyZZOxMYdlEariDL4DmfxVhVKOcoxpAfOc9qv6nM7ICpXmra9jA/m/NLQyrdeAkVWczlWXta5UeBa7EnDeVbNpaGiodDeGhKpqvPzqDlQffOfqWbQ0hMr23dpVreRe+AmbQxdQk8lw+/5n8c+Ywbw19yEplR1CWTXL3U+soXNGJ9HEErRcgPDU36GEDnO4ZjuPr3gcRR57H7WrWtn99Pd4j0V0hSbyF0e3sCCcs5274Hlgso/EwAVI/l7qZmxEQioLTyhw3Zuby45QDcv73mKBr89Rcj7QopAYOB/Jf6xs/LWrWtny3A/YHFqGpKl8af9GgjOmV4S34Nkx7RjR2GUA1M14GllWyyZn0Dn3/u6/2BxaxJTcALc4YE4b3Kd3Eo1eCmSpnf5bfP5oWWS8/Yb1bA4tYCB6jE85iO/e5lNIZU9BadxLzTRr5vRP09N4vbmeCyI7WKB2VIy34HxwcpZ4/ANIvjh1rc+Wj/O+Y2zeuZ/Z9X7uXzmnbP12AiKRSNFtPcWuBPgUGZ8FdYbKgUQyQxZAgqb6YHn7qQSY9em/Qt0CCX8A1BxTbr0ZJVT50hfr33+Gg4kDIENOC4IEmjJATs5yILGfZw88M74sMyXAlFtvpnZ9J6o0kZgSZMqtn7adu+CZ005BlUD2JVFl/RReFp5gcK1Z144qwYDP7zg55zg1zz9VPv5KgHn/6zOovwckmaTPx6wK8RY8VRpRJUDKoilpcpRRzgBKgBnXfwT1TYj7A8hqtuKyFtw1yW/EgWn+WHnmshKg9dqrUHdCNFDjKL457QxUCTTfgHVz+hdv6XNaUZjyvyrHW3DOarNRJZDKzLmxNogqQSSVc+xePVaUwqe6mJ/EEEU3A4pMyF/+a2mmrloBgCbJqLPn0nDttWX/jVKRVbM81PYQEhKaJoGWX6xkPYNXQipLllnDqlU0yLppPzG11Xbug3iquiVWkpPG++XiCTrXsF9fFjItU5wnZ1XP6pN8KeP9cvCftHoVgfznU7PmVYT3kDwtkjPAlCuvAPRMSf/MmRWV9SDuOZGZnANJd5+Wg/u0P/kAADF/yFl8DVmXd0wLNKxaRW2+OHNq4uSK8TZzJhcGQPIVYsHLwbneu1IM8BS7qkGh2GP5byMACNcEkdHLbNT8zf+quGsOYFv3Ng7FDqGhgVo4gYoFUkPjYOwg27q3jet3JEVh4ryZ+ndecZXt3M08hWKHr7Dhl4sn6FybTjsFAPmSyxwnZ7EJYtoEy8FfUhQa8qUSAp+8sSK8B49na3iaUV+r/0bG56fpljUVlfVQY1zyJUW1jrJwb6zT+cb8YVpudRJfa2UtKQqTzjlT/+P8CyvGexBnQ7EbMN4vB2eh2KVzKsnMyVukuPKrtoeywIrrWcyQJInaoJ9oKov0J8st+Y1SsahlEfdfdj/pXJreGPzv90CWNO699OvGhhDwBVjUsmjcv9Vyyhw4up/UvPEVPh4LzDx/+0d4vBPOm3I6N15yr9GmXDwBmk6ZC0f2kZtvP9ehYBf/xqY6eo7EyS39wHi7PCaYee44CA/vhen1E/gHi+QcNt3Q4rtqRVm+c6wwc999GL67GybWhrm7jNxFfc9EMEzdqpXj7vN4YOb74+ck2vrhzxas4E/OLMihnLKecOZp0LmLTOvssnzfWDBoHr+Vn8dTTy3rPK4NKEgSaJputbPCe+UGeIpdlcBqix1AOOgjmsoykHFGxlHAF2DFHH0h3HU4CrxMQ02AD51yddl/q9G4L9Z+E7+ZZ/vu94BdnN4ym9Xzz7bk94w7RB1yObyZ//t7dP6nTio/f3GXaKXcOGaeSqIT2Mr0hgmsnm+NohlQZAI+mXROJZFRabbkV4rsi4n7C5lu4HWm1Texev4lZfsNsTaqGsQzORp8lXNYmfn+4sXfAz0sm3Eeq+eX54aR4yFuZKjkVVtmzu+9/y7QzpmT57B6/lll+w1ZlqgLKkSTWaLJDC31wdE/VIXwXLFVAmGxK9d1YkOhsDg4Y8M3Q/SpHPfEDoWmsFDsMpZ8f7GIGveHWi/nhAPvWxRXBdUHyy9nYdFxQnxONCXkbO3ZuzbvfnbSFUziBp36Mt4hChDy+4xyGP2Jys5jM8Szr7VQ1nUOu2qrL2HdftVQ4QOaE+ApdlUCkTxhpWLntMXBjHheCbFqIyxY7Cq7IcRS1mx6ZoQD+c3eIRY7M2IWKjziMnKhWFQSMaHAW2iBB2ce1sRaZoX3QSjvTpCxgNVrF0BdyFly7hOGiHD5s3O9BApPsasaWB1jBwVrWDztPEuOUHiEBaLcaKzRF6C+RNqS7y8WUWPTs1DOwmLnQDkbFksL+AtXbKQC7vbjETcUWGtjhJx4WItYuJY55YBmhuFtsFDWtQ4LrxDraJMFhoiCYuccGduNkmbO3LlzkURUegm47bbb+Nu//duSP+eheERsccU6z20jIGJHrLJwCFdsn1NcsVYqdgFnne7NsNJt5aRN30rLpBmGddZBsi64Yss/l4WMnaC8Cwhly1KLnaHAO+OwJuaYWFfLiUrHyjoBJY2ktWvXjulH5syZM6bPeSgediRP1DrwdC9gtYWjsCFUWLEzYsysTZIBSDjkdG9GzMIYu4LyXlmrLJhj7OxxxTplwwezVdqK+Ku8u90ByruAHTF24rDmFGVHxNhZo9g5J6SiUihpJF122WVW9cPDOCEGsZc8YW3yRF8ig6ZpY7JclwNRiwLLzRDP0InJE1ZaLJtNMq404ja458B5GdBwcrliU9kcmZxeH/RkSp4oJPtZF2MXcYgSWwl4MXZVgkKMnYWKXUBYcpy34ccsPvWKDSGrahXlb4srNujc5Akr3VZOiaOEQvKElQo8OPOwFjG4V3/yhNlSKtZXKyDWi4FMjpyqWfY7xSCnapYaIgquWGfIuBIoWbE7evQof//3f8/NN9/MW2+9Zbx+8OBBYrFYWTvnoXic7OVO4hbHJNX4fQTyda96K7jxxyx0UwkYSTIOtNgZ2aKWumIrvyFEbXDPgfMsOVDYkK1IEHKaxU4895BfRrGwrp7Z8lvpA1s0mUHL65bWKHbOcjtXAiWPpM997nP88Ic/ZPPmzVx66aX8/ve/59xzz2X27NlMnDiRL37xi1b008MoEMHAVm74TtwEBIxgc4ssHJIk0VjhWnaZnMpA/pocS8udmCx2mlbZ070ZmqZZapltDguLXeU3fasPKgKF5AnnKPERC70PTomVFbArSSao+PD79PCRSq/fYn7VBnwESrjYvlh4FrsxKHYvv/wyv/71r9m6dSv3338/H/nIR2hqauLxxx/nvvvuY+3atTz22GNW9NXDCLDTYuekTUDASkuOQKVjsGKmE6gdgdaaBkmH3DICkMqqRjySFZt+IY4yjVphd5WRJGKTK7bSm70ZEQvd0OLg6zSLndWWWfNvxCpsyeozMmLLH18HBUvvyWyxK3k09fb2cvbZ+lU+N954IzfddBOPP/44F154IQDNzc08/PDDfOpTnypvTz0Mi3S2YMmxso6dE0sjCAj3gpUbYVM+BqtSrlixUNX4ffgtdNvU+H3GfYvxdJYaC2N/SoGwssiSNfFI4lCkaror1MpD0mgQm69trlgHxVMWXLHWxdg5RbGzOunLjLqgQl8iU/FQGhHDatX88lyxY0yekGX9Y4FAgHA4TEtLi/HeZZddxq5du8rTOw9FwRwIbEXAsYATNwEBYyO0cIFsqrDFLmrDrROg37cY9jtPiY+YrLJWZCWH/D5q8rwrfeWUXS46J9whakYqmzOsxFZYZcXB1ykZk3bcOiHglFp2VtawA88VC2NU7H7+85/T1tZGNnvi5KitraW3t3fcHfNQPIQloz6o4JOtK8PhRLeNQNTiGDswx2BV1mJnJUeBsEM2ATMMS46FljQn1LLL5FRSWV25sbJeIRQsn06Z02YrizWZz06z2Fl7Y44ZTkl+szpsyLPYjcEVe+mll3L33XcTi8UIBAKk02nuvvtuLrnkEhYvXsykSZOs6KeHEWBHqRNwzolvKNgRbF5xi52FZSCOR23AxxGcVaTYDv5N4QCd/Ul6K2ixMytZVm/4TjusGTK26JDaEHJa8oS+ltoZY1dpWVtZnBi8mydgDIrdSy+9BMCuXbvYsmULW7duZevWrdx555309fUZbloP9kG4FayOCXJyjJ0dyRMi2LdSm7443Vt5T6xA4W5J5yjxERuKM4u7KytZy05sSFaXwADn3SFqZUYsYGS2p7IqyUyOkL+y8aN2ZT/rv6FzrbTFTih2VhQnhsL6kM45Q8aVwJhH04IFC1iwYAHXX3+98dru3bvZsmUL27ZtK0vnPBSHfgsrtZthjrGr5O0Lx0NVNUMBsdJNac6arASiNhWtBXMtO2ds+GC+aspCd3tt5W+fsCu+zvwbTrHCW6281wUUZElPkIkMZCq+6duZFVvnEFesCHOwymJXF1CM5K9oMltxGVcCZR1N8+bNY968eVx33XXl/FoPoyBiQ6kTKCw+ar4MhlOyJc3WBlvKnVTIjRO1wSopYNSyc5RiZ/19yIXbJyrvirVDzrUOseIIFKw51shYliXqQ376BzJEkhkmN4Qs+Z1iYfWNOWY4xRUrEpOaLJRxXUAhmsoSTWZoqQ9a8jtORkmjae7cuWOy0tx222387d/+bcmf81AcDIudxbFXNaaTTyzlnDIYYnFUZImgBQUvBRodUu7Elhi7/CbgpOvjRBFuS12xeeW9kreL2JEIJCAss+msSianWlpGpxjYUY+zsUZX7JyQQFFQ4q1fS51isbM6Kxb0NUJX7JxxYLEbJa0ca9euHdOPzJkzZ0yf81AcrLx3zwxZlqgN+Iinc8RTWcechOKmjdBK97Bw01WqFEbUhhgzASNb0iGxV2Dmb904b67w7SJgT+keAbOlKJHK0Rh2hmJn5aZvlDwZqPzYtjN5wimKXZ8NyX71IT/0Jz3FrhhcdtllVvXDwzhgdcCxGbVBRVfsHLXh27MRGuVOBjIViTG01RXr4Bg7O4pQVzJ5QjxzOxT4gCIT8MmkcyqxdNZILqgU+i2+lQCcVfLE1uSJkDPmtJEVa1HyBJhLnlRexpWAl8JaBbDDfSHgtGBrsO/6JfF8c6pWkQKngqfVLncoxF45Sc7imdtRx66S5U7sTJ4As6wrr8RbfSsBOOtaMXFAtuvmCaisxU7TNPotTp4Ar5adp9hVAYRLweqsWHBmUL1dp95K30xgqyvWiLFzjpxtKXeStxRVctOP2nSdmICwzlbaRQfWJ09A5etRmmFn8oSh2FVQ2Umkc8Z9z9Yqdvl6hZ7FzoNbYafFrtZBm4CAnRthJYPr7bx5olDuxDkWO3sKFFc+eSJuY/IEFDb8hANkbUeMXZMRUlE5GQvY6XYXco5WcO0W8XUBnzwoGa/cONktdvasHB4sRcTiMhBqOk3st79FS6cJ9smARM8fttC/7w2jjRQIUHfFFcgB6+ImhoPVrisz/4aMTCcSh377MnOaC23s4G91jJ2Zp9QtATL9Bzrof/Kg0aaScjYslmXmb+btSwP46E+k6X3iScTlB3byFhuvVe45M1+AUEKf092vvEb/Dr1NpeRsBNaXWdExc645pI/t7vd20//k+0abSnAWB6ewRRUGzLy1GICPaH+M/iefNNrYyVt4OmpD1sYnn+y3TzhKsXv55Zf51re+xZYtW+js7OTxxx/nwx/+8IifefHFF7n99tt55513mDlzJnfddRef/vSnB7V56KGH+Na3vkVXVxeLFi3iX//1X1m6dKl1RGyG1Ra7gW1tHLrtiwBI5/8VtJ5H57rf0PH+7wa1m/Xoo9ReaP9z3dL5NiBzLN0BLC7795v5hy7+X9CygL2P/SdzDw4uxG01/2OJBCCx5cgrnDdrddm/38wzNf1sWHojve176Fj78KB2lZKzwb/nFRbPLh9/M++M5IM/+wYaErvuuof6zIDRzi7e7x3dD0jsi+0EFpT9+818AXwX/Q1MOY1DP/8FHQe2GK9XQs6HoxFA4o/Hfs+fYI2M1VkXwOKPcfiP79Lx7z8e1M5OzpqmEU9lAIlNXS8wr8XaOR0PT4Sr7yQWT9Fxx12D2tnFW8RQ9mc6+J/d/8Pq+eXnDF7yhKNcsfF4nEWLFvHQQw8V1X7Pnj2sWrWK5cuX09bWxm233cbnPvc5nnnmGaPNf/3Xf3H77bdz9913s3XrVhYtWsSKFSvo7u62ioat0DTN8qzY8JLF+FtbQZKoyaYAGFBMpU4kCf/MmYSXlF+pGg1ZNctreQXr3b43yarlP6GZ+denEwBEAuFCAxv4Z3IZBtJ6bMp/vrfWcp41mbyc/c6QcyaXIZHS+f9Xmfmbefu1HDWZJABRIWMbeWfVLO8d3QfAa12/tVzOADW54+Z0heScVbP05+OF/3v3Y5bJuCE/h6M2z+HjEUmm0NBl8NMdP7Rc1uGsPq4H/CFUhCnaXt49cb0Pki/Bw20PW8IZChZfz2LnAKxcuZKVK1cW3f773/8+c+fO5dvf/jYAZ5xxBq+88grf/e53WbFiBQDf+c53+Ju/+Rs+85nPGJ956qmneOSRR/iHf/iHkvqXy6rksmpJn7Ea0WQGVF1Dr/P7LOqfzIRb1tD51a8RzqaRNRjwhVClgvtgwi1rUJHB5uezfvcG4gMZZA0S2aOsb9/AqnmryvwrBf6N6QFkDWL+Wlv5P77zaWRNP4d1J/ZbzrMmpz/TpC/oCDlby7/AGwka0wOklBCRQB1TE32AfbzX795AOgWyBv3JbsvljERhTiuFOV0JOT+xawNSzo8EHLFQxnUZfQ7H/eGKju0n392YH9MqnbEDlss6lJ/TAHF/DbX5Q7qdvF/duw1Zk/HJA3REOi3iDHV+RV+nB9KO27PHilJ4OEqxKxWbNm3iyiuvHPTaihUruO222wBIp9Ns2bKFO++803hflmWuvPJKNm3aNOz3plIpUqmU8XckEgFg28Z91IXry8hg/IgksyxLKvhkiXeeO2DZ72jymfSefR2TAy0sSyrU1Z/G3tkqIOFraCAmLUTasNey3x8Kqqby3M42lvaeQi6loPTO4/l1bUw+/QxkqbzGaMF/RmAKy5IK/saz2DtbwQ7+qqby8jvvsCx5HqAR7FhuOc9kSmVZUiHEBPbOXkGl5Vzgr1rCX/DORaIsyYToTSr0TL+MQONR23gb4zm6EC2r4D96tuVyzkWitPqnm8Z0TUXkrGoqL5jHeOefWCbjbH5sB6RJFRvbqqay+e2dLEueA1KWYMfVtsj6AwMyqiSzb/Y1hLMpW3mrmsrRN7pZlmzFx0SUQ9ZxTvXEWZZUaDmQYovN65VViCWiRbd1lCu2VHR1dTFlypRBr02ZMoVIJMLAwAA9PT3kcrkh23R1dQ37vffddx+NjY3Gv5kzZ1rS/3IgldGDb4OKtVfSSLJMeOlSFFX/vYwszgQa4aVLkWT7h9Kuvnai6QialucuZYmkI+zqay/7bwn+gZzu9k77hNvbev67+tqJpnQXBnIWJM1ynv6cw+ScP2hJFvEXvEEjmNPjgHQZ28dbjGdsHM+gGbLOygqVkrMdY1xwDmZ1+WZ8St4Vaj/nXX3txPJ8JSkHWD+nQcM/aP22l/euvnZSmbzVSc5gJWdxtWSqSqx1pcLVFjurcOedd3L77bcbf0ciEWbOnMl5V82moaGhgj07Eb/fc5TNb+5mXkuAJSvnWPpb2lWtbP30c2wOzYPew3xi/7P4Z8xg3pr7kBR7h1JWzXL3E2vonNFJPDeLXKKZ0OQtBBre5nDNdh5f8TiKXN4+aVe18scbn2FzaB6ZyDFb+AueB1oUEgMXIPmPUTdjIxKSpTzbNv4bm0MXAfDlA88Rmj6tonI+0OInMXC+pfy1q1rZ/fT3+K/kJDZPaOSc2C4W5PbZwts8niOJCyDnJzztJZRgj6Vy3v3093g9kmLzjJnUZQ5xfe4d2+U8WMYXIPmPWirjd5/5FzaHLgFgTefvmDi52VbOBb4hEsnFyIEeam2Y07uf/h7vsoiu0ET+4ujrLAirtvEWnHfXX0xGm05w0lsEJrxqGeeGw1E2v72X5pDEv1q8L9oF4TksBq5W7KZOncrhw4cHvXb48GEaGhqoqanB5/Ph8/mGbDN16tRhvzcYDBIMnngPqk+R8Vl4yfxYEE3nUCWoDwes75sSYMqVl6G2Q0IJIKtZptx6M0rI/tIX699/hoOJAyBDTgugSqApA+TkLAcS+3n2wDPlz7hSArRecwXqu9AfqLGFv+CZYwGqBLIvhSrrp24rec656bOov9f/TMo+ZldYzjlO0/krSev4KwGm3HozdT//A6oE0UCIKTfZw1vw1CRQ1SBIoCkJy8fzlFtvJvSD36BK+pyuxHw2ZKydkZdxwlIZt665ieDLSQb8IeJKgIU2cy6MaZ0vNs3pKbfeTPDpblQJkrLClFs/ZxtvwTmr1uTX6rilnJvrg6gS9KWyyD7J9usfrUAp+7uztJQScdFFF/H8888Pem3jxo1cdJFuaQgEAixZsmRQG1VVef755402boedxYkBJi07H9ADrf0zZ9Jw7bW2/K4ZWTXLQ20PIeUzuzQ1r4TLedcGkmUZV9P/RB83UX/Ycv5mnpoaAkDyJY33reQ5cfUq/PnvzcycW3E5a7k8f9la/g2rVtEk7tScMNkW3oPGs6YgztuSnHc/WyjnhlWrqK+vBSBV12i7nAfLuAYAyVcoMWOVjBtV/dkmbB7bg+e0vm5JvkI8t9Wyrs1nT6SmttrGe7CM9UxkyZcw3reCs/n6RycV07cLjlLsYrEYbW1ttLW1AXo5k7a2Nvbv3w/oLtIbbrjBaH/TTTexe/du7rjjDnbu3MnDDz/ML37xC774xUKNpttvv51///d/59FHH2XHjh184QtfIB6PG1mybodR6sSG+0MBavMXNyeUIC23rrHdNQewrXsbh2KH0MineBmbvr5AamgcjB1kW/e24b5izGiu138rGghbzt/MUyg2mBQbK3lKikJtvmhq6IYbKy7noRRbK/hLisLUZUsASC88xxbeg3maPAWyHgtmtZynrvggAJnW2bbLeTD3ExU7q2TcPEEPqZE+/Je2ch5K1mLdAutl3TxzGgC+q1faxnvwOiYUu7jxvhWcQ34fgbyFywl3AtsNR7li33jjDZYvX278LeLcbrzxRtauXUtnZ6eh5AHMnTuXp556ii9+8Ys88MADtLa28qMf/cgodQLwsY99jCNHjvC///f/pquri3PPPZenn376hIQKtyJis8VO3HqQnTqdhtUrRmltDRa1LOL+y+4nnQ9yv/09iQzw5aV/y6R8CGTAF2BRy6Ky/7a4jigWCFO7qvjSPGOBmefzb8G6Llg89QxuuOReo41VPAHq6sP09Q4gXXSJJd8/Gsz8n22D33TBkmln8kmL+U+74DzY9xbxCfasEWaeRyLw9V0Q9Gvcd+k/G22slPOki5fBe6+TrLU/ftjM/ak3JJ4+DBe1LuKjF59jtLGC+8RpLdDeQ/pse2v1mfk+9yY80QWLp57Jp2ya042zZkBfJ7kzzrLk+4eCmfOX2yWSwJeW3sTkpkIbKzg31vg5Ek3RP5ChtXn09tUERyl2l19+OZqmDfv+2rVrh/zMtm0ja/pr1qxhzZo14+2eIxHJF2BsqLFHlOI+1rhaubiFgC/Aijm6UpnNqdya2wDAh09dQXOttTEjTSYFOpLMMsHC3zPz3PX+u0A7Z7TMYfV8exZlocTH05W5Q9TMf/uuncD7LGyZy+r5Z1r6u8ZdojbdF2vm+fahfuAVGkMhVs+/cuQPlgniTtp42n6XlZn762+/Dezj3KkLWD3/NEt/V9xF22ezNcfM9932/JyeZN+cFjcyxG10TwrO6azKrRl9rf7z061fq82K3ckGR7liPZQOu2PsjMvh07kRlXC7YL6kvtaiO1TNUHyycVepnRfFRyy+J3YoGEq8Ay6Hj1p8H7IZzflNvzdh/4Zg3Htsw6XwAkLOiQrL2c61rNlm5X0oCFnbsW4JiPWjEnFnfQP6s5Yl625JMkOMo4in2HlwG2yPsQvqcVc5VXNEjaBY3soQUGQjpsJqNNXmT/s2bvxiIa63Sc5gVuwqH3wcGRD8rd8EhRW2N27/pi+edb2dCnygcpu9GWI+CYuplRDKu51z+HjEK6LY6bwrIeveeEFx98nWe3vEtWKexc6D61Apix04Y8OPJe3fCJtq7D/tC4uVHYqNQF1eia+Ei+542GmxE4pdNJUllbXXilVJK04qq5LNVe6wZuda1phXHu20uh+PwmHNTuusb9Bv2wnxrK12wQqIceQpdh5ch4jY8GxS7GRZIpzPlnSCiy6W0vnb6bpqqsBpX1xmbesm4BBLDhRc0XbwbwgVLAp2W3SiFXS5Q2XntNiAxfyyEsJiV8lN31DiA/bJWswfcSC2E8IC3myDRRY8xc6Di2G3xQ4g7KANP5bfiOxcHJsrcNqvzOneOa5YY5zbsOnLsmRs/MdsdsfGKxBjF1Bk/D5dkY1V0DorLOBNNsbYVdJiV0lXbLQiFjt9DnuKnfXwFDuXQ8Qe2anYCRddwgEuOnHyPHksdnbG2DnHMmv3AUZsPnYrdkbyhI2bPZgTKCozp1VVs9kVm0+QiVfeYlcJV2wlDmuGK9aGwxkUvFj9A5Xfp+yGp9i5GOmsykBG33TtSp6AwibgBItdvAIboVEOY8D+GLtKuOicIGe7FTsRZ3fSKHYVtsLH0lnUfJK9HWElQnGvpDVHHJjstNgZrtiKJE/oc8nKElFmeBY7D66EiK+TpMrEXjnBkhOthGJXY385jErE2NU5xBWbzORI5zOw7Vbs7HbVCQu0nZs9mGVdmTktNv3agI+Q32f574k5HEtljbFlNwqHNev5ChhZsRWIsTsmXO2eK9ZyeIqdiyEGbF1QQbYhfVyg1oHZkna6Ypvz5U76bVLs0lnVKC1jqyvWIbGUwuXtkyXbFHiRuXc0VhmLnZ0KPEC4gtmSULCM2rXpN9T4EfXV7bS8C2iaZhT+FsqWHahkVqyYxxNq7eHr1bHz4EpUInECnBVULyxZdrqim2wOvBbKK1SqQHFl5Wwe53bddjKxUha7Crlixe9VKm62sOnbo9j5ZKlg0alALbtUViWX9z3X2mixq88rkamsarul0m7lvdEBmc+VgqfYuRh2FycWcIqLDgrPwE4Lh3Dj2JU8YS6BYUdhT4FKu+cEKnGAqXTyhN2u2EJ4RWUtdnbVOIPKhFQIRE2uUDsz+s1KpN2yFlnPlYixc8ItSXbCU+xcjEpZ7MSGX4mU+eNRsNjZX+7ErgLFRq1Cm91zlXTbmCHGuV21GgEm1lVIsatAwW0wJ8pUKMZObPo2ZUyC/XcCm2GUOgn4bA2jUXwyNf7KzGtDebdJxmJfzKlaxe67rhQ8xc7FMCx2NTa7bSpY5PJ4RFP2b/qi3Ek8nbPFnSFK2tjJEUwWuwrHUp5MFrtK1LED0y0jJ5PFroLXilXKMmv+TTsVu2xONYqM21XHrsbvM+oznmzuWE+xczHEYLVrogiIAP6oAxQ7O+8QFWgI+ZFtDLyO2HidlhlOibGzs3CtQKWyYqMV2vDDFS5tU6hxZt9aNkEo7xWw2MUqpMBDZUqe9JkUK7sOaJJU2TjKSsJT7FwMcdK0oxq/GfUOqm9m5x2iArIp8NqO036lLLNCucjktIqVhIACfzstduY6dnbF52iaZijRdrtiK508IQoF22mxq1StQqhM/U0B8Zt2elxEOZvGGj+Kzz61o+EkLXniKXYuRl+FYuzEic+crVkpVOJGBjBlxtqwKVTMYheoXKC1GZV0xWZymm0HmIFMzijSa3/yRGVvGTlmxNjZqNjVVaakDVTmnliBSsTOFq4Ts3cNO1lr2XmKnYshrEVNNfa6YusMxa6yFjtN0wylx+66X0Z8jg0LRqVi7BSfTFDRl4hKWmcrodjVBHxGkLldFh1hQZEkCAfsK4EBlb9lxLgg3qYaZ2ByxcZTtv2mQCVdsUaRYhtlXYkYSjh5a9l5ip2L0T8g6gJVJqi+0q7YVFYlk9NNHHYrPYWSJ3Za7CrntqlkAkWlLNN2u+rMt6jYVa9PoNLxlBWJsTtJXbH1FUh+66uAfMGz2HlwIQoWO7tdsc5InhCnMFka7Da0A4WSJ3bG2NkrZ6j8hg8mi53NBxi7Eyhiycpt9oacK1AWQtM0w1VnV40zKJS0OVoBxS5m3BNr77pl/k1bLXaeYmcrPMXOxeir0IZnzqqqZOHHSLJyFg7xzO0obhqpwO0aApWubwaVq9do97VilbpODCpb7iSSzBq3MNjpfZhQGwTsiZM9HgUl3v45XQlXbJ8XY2crPMXOpdA0zRisdl3RIiAsCjlVI5mpXLakkRFbAUuWnUWKK5UVC5WvbwaVyYoF+68VixrxoieXZVYoVnVBhaBinwVLWAfj6RzJjL0Hl4Ir1n6LXSVcsT0xPY5RJKzYBaN6gafYeXADkpnCXX92b3jhgM+o41bJzNhIhTJioXDytMUVW6GsWKh8UL35AGO7xc4IrrdnjBfGcwVcsYHKydlw09mYOAF6zKooYHuyXB0HphhpG+NmxfOdlLeS2gWhvFfidpFKwv5R5aEsEIVxFVmyJb5MTaeJ/fa3aGn9d2tlmWhOonPDswRr9DZSIEDdFVcgB+w5lRXuyrVnGJufgb9HAmR6DnTS/+STRhsrnoHdRZjNPAOC55Y2+ju2GW3sknUinSskyNjA38y99qDOvWvHLvoz7xltrOIezY9nu2LszFxzGQAfqazK0SeeRMkf3OyQ87G8NafZhuz+49exJlnmSE5i//qN1NbpbezgHLM5ecLMW+7Wx3Xf/g76nzxotLGS97FYZZT3St0gU2l4ip1LYSROhP22xJcNbGvj0G1fNP6uufqrRMMT2PPdBwn0HTBen/Xoo9ReuNTy/gC8emALIJNQj9rye+ZnkGtZABf/L3oOdNLx0+8MalfuZ3AsMQBIvHHkd5zdurps3zsczDylc6+DORfS9dQzdLz3/KB2dsi6EBuT5bcHn+ZDp1jLf9A4n30hnHcdXW9up+OHawe1s4L7G53vADK96Q5gcVm/eyiYuaZlH3zoGwDsvutu6jJJo53Vcn5h3+uATEbqs+w3BI5fx+qW386Rxum0f//HNHYXlHerOR/o7wYkdva1ATMt+x0BM+/UtLPgwk/T+/5eOtY+NKidVbwP9PcBEjv7X+cqrF/DBJpr7UtycxI8V6xLYdw6YZN7KrxkMf7WVr3IFhDOL/wJf0hvIEn4Z84kvMT6DQkgq2Z5fu9rAOyPvUtWtd6tYH4G9ekEANFAbaGBBc9gIJMmndWf+X+892PbedZkdWvKgGJyodgo62NxfZxJvgH+7c2HLedv5t6YjgMQsVjGoI/nzYfeBGBH3zbb5RxQcyj53zRkbYOcs2qWZ3fr8/jQgPXz+Ph1rCEv4/6AMNfZw/lQRD+MPrv/N7bL2li7lVChgYW8M7kMfQmd47rdP7OFr4AImfEsdh6GRS6rkqvg1Upm9MVSyBo0h/w29Ulmwi1r6Pzq10CC2qz++3GlBlXSXcETblmDigw29Gf97g1EExlkDZK5Y6xv38Cqeass/tXCM6jL84/5w+QkH8JmWu5n8PiOZ5A1/fzVFd9vO8+aXBpZgwElZMgZ7JP1s+2vIGsysjxAR6TTBv4F7g2ZAWQNooE6y7mv372BxEAOWYNEtsd2OSNBbSZFNKAQ94eZmIwB1st5/e4NRONZZA1S6lFb5YsETak4sgb9wXrb1rH1uzeQzcjIGvQmOyowp/PrphK0ZU6ve/dppJwfCTiS3GMTXx0NQUUfW+kc8YEMIb/9ySrlQin7vKfYlYBtG/dRF66vdDcA6OzoZ1lSYd4xjS0b9trym5p8Jr1nX0cuEmWh1kxjUiE5+UL2Bmfia2ggJi1EsqEvqqby3M42Ljh2Brmkgq9/Js+va2Py6WcgS9YaocUzSMYSLEsqgML7c65F0dSyPwNVU3n17R0sSy4CKUuw40rbeU5QJrIsqdBUewp7Z68AJNtkrWoq723bx7LkAqRcLYFDV9vCX3DPJlWWJRUC0iRLuRvjuW8eakpB6Z1vu5xzkShLU0HiqkL39MtRkxHL5WzwPqrPY6W/1Vb55iJR5vkmk0kq0Hwue2fX2cZ5Wfw8NFUh0H2B/WtXMqePa63Z8jmtaiovGmuYSrDjctv4AmjAB1J+VE1j81N7bL+DuZyIJaJFt/VcsS6FKDMS9NsnQkmWCS9dCmj48+b0jOwDNMJLlyLJ9vRlV1870XQETdVPX5KUJZKOsKuv3fLfFs/Ar2aRNV0GKV8AK57Brr52YindFSpJWUCrCE+AjCwWRPtkvauvnURGDzmQpAx28RfcgzndfZP2+dGQsIq7GM9oeWtCBcazeU5nbZrThXmcD9aXMrbKFzSCWX18JRU/9nKunKztnNOD17A0SPatYQASGFa6ZAWKb1cK7lVfK4DzrppNQ0NDpbsBwAvPpth8IMtpZzSwZOUc235Xu6qV3U9/j6cStWxumcS8xG4W5N5l3pr7kBTrh1NWzXL3E2vonNFJXJtCTmoh2NJGsGkLh2u28/iKx1Fka/shnsG7LOFoqJHrj77OgjqprM9A8DzQUkMiuRg5eITaGRuRkGzl+c4NG9gcWkAyepQb9j+Lf8YMW2Qt+O9tnksqcypKw15qptvHX7uqlV1PP8AdwQ+gSTI3H36VyZMay87dPJ5jmXmociOhya8TqN9p+3jeo87n3VCIK3rfYoHSb6mcB83j7GxycjOhyX8g0LDdNvnufvp7bD8WYXPrbOg7yidz79jCuWNaN9Ho5YBK3YyNyL6UrbJ++9mH2By6GIAvHfwtddOmWMJb8N0/sYGB5GLkUJftaxjA/vf2096d5AtLJrJk/iTLf88qRCKRott6il0J8CkyPsUZRs6+ZBZVgqbaoL19UgJMufVmwj/9HaoEifzfSsieEifr33+Gg4kDIIOqhlAl0JQEOTnLgcR+nj3wDKvnW5x1ledc93Q3R8KNRJQQU279bFmfgeCZ1c5ClUDyJVFl/cRpJ89pK69EfRfiSgBZzdoma8E/py7MyzhuL38lwPRbv0Ddiwn6g3VE/CHOtoD7oPGsVXY8h554H1WCpKJYLmcz75xaq/P2x+zjnefc+MDPUSXoC4Rt46wSRs0H5arKAJqk2irr2Tf/DdomFU2SSfoU5lvE25jD2hJ9DbN7DufRVBdEPRKnP5V1zP49FpTSd/eyPMnRn69jZ+cVPAINq1ZRF9Yz55JNE2m49lpbfjerZnmo7SGkfKqCpupZXZI8oP8XiYfbrM+cBP0ZNEn678SnzSrrMzDz1HL5IoG+AeN9O3m2fOBCQM+U9M+caYusB/MPAyD54sb7dvFvWLWKZlXPIIy1zis79+HHcz4T2ObxXJt3WaVaplkq5xN4HydjO+U7sUGfX5HaJvs4q6KSQBpJ0sM57JR105+uokYvXEh65lxLeJv5qlk941hSYsb7dvIVmbGVuDquUvAUO5fCXMfObkiKwpSL9Q0/e/qZtrhgAbZ1b+NQ7BAaesFaLZffCH36RqihcTB2kG3d24b9jnJBUhRa5rYCkPvg1WV9BoN4qoM5gr08hQI/oARpuXWNLbI289dyeqkRyZcw3reLv6QotEyZAEBu1YfLzt1p43nCqfMAkC+5zFI5D5KvZlLeFV2xs1O+cz/2EQAidU32cVb1OSXJKeN9u2Vdly/cG/rEJy3hPfQcLhzO7OQrihTbca+3U+C5Yl2KSl2zJNBy/nmw9y1SE6fY9puLWhZx/2X3k84Htd/xvsQAcPsFNzOlSW8T8P3/7Z15nBTVtfi/Vb3O1jMMs8GwDJugiIAoiKK4YFAQNS8xBvOiMdvTiFl4eYkmCmpe5L0XY/QlRrM84/aL0SRuUUARxWhEUZYosjjDzuzDbD3T02vV74/qqu6GGZiZXqp6uN/Ppz8f6LldVeeeqrrnnnvOuU6ml07PyPWUTaqCIwfpGXdKSo8bL+fLH0i82gTnjZrJ58+dYbTJlJz6lkeBomI8Sy5P+/kgUf4H/yZR44Xrpl7JmROuNNpkSv6Kqkr4qB7fKVNTfux4OSMKfHenNs++49zvkx916mTyfh42cRw0HyA0flJazxMvt7cHfrRLRkLlpxf8CFvU1ZApuUdfsRD+uZ7OsEQoouCwpcfXES9zTT08uA9K8vJZMe9eo00mde0pKqCpqQt1zrlpOX68vE+8KfFBKyyaOI8F0+cZbTIl77AM7/lsBYRhl6VkukDx0eRH9y3N5N6STpuThVULAVAUlW+HVgNw1SmfobQgs3sQAhRH9z1M9QsjXs4Ptm8HDjC9fBJLJkxO6Xn6g7GvZEjN2Dnj5f9f5S2gi0vHz+VcEwKfh+drOm5JwzJOvJzaXpbrAPjc5MU4TYgF8uRk5pmOl3t3gxf4O8PyXFw96dK0nrc3ivNcSBKoqvYclxW4T/yjQRAv8+uBRuBDRniKWDJh3vF/mCaM5zqQnkzReHn/8tYmoJnzxsxgyYT077JxNGIpVpA16B67otzMJC0cjb5vp9dvjnu7KxhGjdoaZmyaDvEvjPT1gbEfrkkGvN63iqrt25ppdKPZrPtcnzAc6QqcoGVyeP2aMeWyy6YYdRDTtX4tmUDv1+F55ujXJksU5WR2dwLdcDbrvRV/7q5A+t/fer+W5Juj45NxKVYYdllIKKIYL4ci0zx20RdDBgeBeDqiD6nbIZtWTbw4L/0bTHdG+9fjNkfPuU4bNlkLcs+kdxZAVVXjZVxs0sCvGxxHutI76HdGJ0gFJukZIN+lnTuTk7XmqGFXkp95j7uO8RynWcc6ev8WuMzTdZ4zvR67eHTjXV/hyDQxw0547AQWJrYxunmeHN2Vn8nZfTxmxxhCZl4YMY+dObN7SZLidJ3ZGW+nP0xE0dyyZiQJQdxSbJo9dl2GAW++F6czox477dkZbpI3B2B41OA4kiGPnd6/Znrs8jO04qKqqtGvZnllT8YYO2HYZSF6fJ3HbTe8KZlG9yx0BcMoSubir3SMrOAc8waE4gy8MHRPjlkeOzBnwIdYTEyu02aaV1ZfPmpJszfHa4HBvsAEL/yRbut47DI18Ou6zjdR1/r7JN0T8+5ghEB0j1OzjPdMhMxYDWHYZSFmx9dBbBBQVfCFMh97ZQmPnT4gdIdQ1fQYt509UU+OiXKa5Z3VB9phJt7nJXEeu3TpGMAbjXUyc7DXJ2veDMRd6RgeO5O8OQDFGTLedbwWWHY3Jms96dW1vrztdsjkOs25t3XDvSsQJhg1Moc6wrDLQvTixGYaNS67jMOmeQvNSKBo1/vApCU6gOKowRGMKHSnKbHACh672Ow+s3o2DLs882TXvQyBcPp0DHEeOxPjrsxInmgxlmLN89iVZGi5XUePVbXCsnu6da17ZIebFF8H2vtLX9hqP0mWY4Vhl4WYWZxYJz72yowECit47HKcNtwO7RFKRyp9KKIYmahmxdiBOQM+QGt06cRMj12u006uU1sGbvGmb+C30lKs1x9Oq3cyHt2YMjPGrlT32KVRv/FYQdf6CkC6J2tWiKGUZckYJ06WzFhh2GUhZtew08k3KfYKYlmxZmUF6+heu3RkxsYbUroRbQZmxF5BbHZtVkasju7R0b0P6SA22JvpsdPOHVFUejIUXmGFGDu9pE2mPHZWWIr1ZOjd3Wpy4oTOsAxUMLASwrDLQtp7zPfYQWzZKNNlMMAaHjuIe2GkwcWvx7/ku+zY01QRvz8UmLQUq7+EzfTYQczbkM4YLL1vzYyxy3PajCWrTBnxukfHrBpn2rk1w645Y4adBTx2GXqmW7rNLXWik84JuBURhl0W0qEXbTUxIxTMrWVnheVoiCt5koYXhm68mhmLAyZmxVogeQJi8UHp9Oh4LVDuJD68IhO69gXDRqiBJWLsvBnOijXVC6+9N/XkrHTRagHDHWKTs9Y0et2thCUNu4ceeoiqqircbjdz5sxh06ZNfbYNhULcc889TJgwAbfbzfTp01m7dm1Cm7vuugtJkhI+U6ZMSbcYaaPDIh67mDs/83ELHSbvyKCTThe/7pktNNmwyTcpxk4vT1BsYvIEQGlB+osUx5bnzDbiM+ed1fvTZZfJc5pTzgZiS7E9oQjdGVh9sMJSbEGG6tjp70Wzwyli9SiFx84UnnnmGZYvX87KlSvZsmUL06dPZ+HChTQ1NfXa/o477uA3v/kNv/zlL9mxYwc33XQTn/3sZ9m6dWtCu6lTp1JfX2983nnnnUyIkxbaLWLU6OdPd8p8b7RboOQLQLFeIykNS7GGAW+ynk1bijV5OzGdTHjsYttMma3rzBnxLXG7TkiSOfU4AfJcdnKidRKb05xAoaqqJbJi9Xd3dzBCOJK+EiAtFjHsMhEnayUsZ9jdf//9fOMb3+DGG2/ktNNO45FHHiE3N5dHH3201/ZPPvkkP/rRj1i0aBHjx4/n5ptvZtGiRfz85z9PaGe326moqDA+JSWZ31A8VbRbJHFAj9PoMMGw67RYjF06sq30JXezZfSY5rGzyqCQCY+d+ctzkFnDzgrxdTolBXocZXoH/u5gBMXY49p8jx2kN0ZazzTWvaJmYRQaz9Byu9lYyrALBoNs3ryZBQsWGN/JssyCBQvYuHFjr78JBAK43e6E73Jyco7xyFVXVzNy5EjGjx/Pl770JQ4ePJh6ATKEFQoUQ8zgMMOwazfiDE3Ois1LX4ydVeIIjcE+g4VrIWYsmx5jl4HgeisE1Gvn1xOiMrAUq9c4MzG+Tqc0Q7XsdK+3XZaMUklm4LDJhpcynXF2+jNjtmEX2zZOeOwyTktLC5FIhPLy8oTvy8vLaWho6PU3Cxcu5P7776e6uhpFUVi3bh3PPfcc9fX1Rps5c+bw2GOPsXbtWh5++GH27dvH+eefj9fr7fWYgUCAzs7OhI+VMIwakwd83bDLdFB9KK4gsNl9MCyN2VZG5q/phl10sM+gnlVVtUSBYogFXh9J46DfaYG4K+38mVyKtUYpDIjLjE3zUmz8dmJmLj9DfFJUeoz4iKIaz0ypycb78Ax43a2EpQy7wfDggw8yadIkpkyZgtPpZNmyZdx4443Icky0yy+/nGuuuYYzzjiDhQsXsnr1atrb23n22Wd7PeaqVasoLCw0PqNHj86UOCdEUVTLxF55TPLYxZ/P7IEwnftMtltkudmMAsWd/jCR6JqV2R670vz0bhJvlbgrIKNZsbHixOZ77EoKdK/s0N8TWCfdz3VrdxBFBUmyQjhFZmsVmo2lDLuSkhJsNhuNjY0J3zc2NlJRUdHrb0pLS3nhhRfo7u7mwIED7Nq1i/z8fMaPH9/neYqKijjllFOoqanp9e+33347HR0dxufQoUODFyrFdPpDRozGyboUqy9Retx2bLK5s96Yxy71fRCLpTQ5K9aEvWL1F3CBy47bYV7GJMQMj3ZfiFAaAs27gxFUC8RdxZ8/k1mxVoixy/RSrJlbx+kYyW9p0rVhuOc5Ta3DCbF7rNMfJhDO/N7mmcZShp3T6WTWrFmsX7/e+E5RFNavX8/cuXOP+1u3201lZSXhcJi//vWvXHXVVX227erqYs+ePYwYMaLXv7tcLjweT8LHKuhxR/kuO067ueozgupN8tiZvUQJsWXCNl8w5dswdVqkrI0+2AcjCv5M7Uhgga2IdIpyHMYEIj07jGh6tpkcdwUZTp6wwK4TOobHLkNLsdbw2OlGfHp0rfelFfTrcTuwp/EZthqWMuwAli9fzu9+9zsef/xxdu7cyc0330x3dzc33ngjANdffz2333670f7999/nueeeY+/evbz99ttcdtllKIrCD37wA6PN97//fd566y3279/Pu+++y2c/+1lsNhtLly7NuHzJot+UZg/2EDOsMr8Ua40CzRDz2EUUNeXLV+091siKjc/UzJTXzkrLdLIsGUtJ6Rj44wd7s+OuPBksOq5nKJq9TAeZ9NhZo6wNxNUhTdP7u9kiGbGQ+AyfDHF25k8bjuLaa6+lubmZFStW0NDQwIwZM1i7dq2RUHHw4MGE+Dm/388dd9zB3r17yc/PZ9GiRTz55JMUFRUZbQ4fPszSpUs5cuQIpaWlzJs3j/fee4/S0tJMi5c0Vtk/ExKXYlVVzdigZJXtxADcDhu5Thu+YIS27mBKr8kqewLbZG1Hgq5AGK8/lJEX9RGjxpn59zloy0nN3kBa4uw6jR1GzL+fDS9OBrJi9YzJMo/5A39phsqd6N5Zs2MpIQMeO4skTuiU5Lto8gZOijg78++uXli2bBnLli3r9W8bNmxI+P/8+fPZsWPHcY/3pz/9KVWXZjoxj535A54+EIWjm4bnOjNzOxkGjwW8lqB57XzBHlp9QarIS9lxrbLDCGjeJM2wy5THTl+KtcagUFrgYleD16jLlUr0GCezDXjIXDxlMKwY7zIrDPzxWbHpnKTqSTJm7gms48lJb1aslTx2kJk9n62C5ZZiBcen3ajtZf4gkOu0GXELmVyOtZLHDmLe0/YUZsb6QxECYS1Q3wpy6jFB6SxmGk/8rgRWQC/JkY7Zfmx7PPMH+0zF2On9aJcl07OeIXaf+UOxUkrpwEoxdp40J8q0WKSGnY6x+8RJ4LEThl2WYZWN0UHbNNyMzFir7LyhE9svNnV9oMuoL4OaTcyTkxk9WyljEmKDUzoMO71ArDUM+MxkxTbFeXNkkzPbQdtWLDe6X206vLI6VqlXqF2DHmM39JMnIDY5S1fZIith/oghGBBmG3ZKMEjXG2+gBrXryIvIHEGi/vUNjIgmD0tOJ/kXX4zsTM81tkaz6cyMM4zvh/xWCZCp27SVjtotRptk+kE3lPNd5g168TLmdMqAROPGD+nYG8v+TZeu40slmEW8/AW1mo5rd+6hIxIrk5QK+XVPr1mDfcIz7Qew0dkdoOOll4w2qdZzU6cfMN+bEy97sSTjQ2Lf2vUMiyuEkErZDY+dSZO1eHntzdo93Xa4Pi26jhl21piclaRxcmY1hGGXZbRFvULFJlXj79m6jdrvfs/4f84F34biMez//eNUNMRiHcc8/jh5c2an5Ro+bakDJA50fwL0Xa8wncT3g2PalTDhAg6ve5O6HWsS2g22H/TB3htp4OW9L7NkwpLkL3qAxMtoO+tLMGomtS/8jbo9bye0S4euD7S1AhKfdm5mMSNTeuz+kiD/qJlw1peo3bmHut//JqFdsvJva/wUkGgJHATOSOKKB0e8nF2OHFj8E4KqxP7bfoRTiS1LplLP6/d9AMiotvaUHG+wxMvuOf8WGD6OmkefoqLu44R2qZJ9f1sDIFHd+REwNunjDZR4eYPlp8Lcr9G6/zB1jz+Y0C4V8tZ2eAGJHe3vMY/Mv7+OZvhJlBUrlmKzjFafuckTubPOxDFqlFZOHMgP+YDogAAgSThGjyZ31plpOX9YCbOvrRmADbUvE1Yyu52ZTnw/FAa6Aeh0xiVOJNkPrT7No4Gth19v+7UpcsbLmBfSrsdnj9uXOU26DithY7nkb/v/aAkdD/Nr2w+2uuJdOcnLH1bCbKnfCcBHR94zXc+54Zg3w9B1ivUcVsK8vvcDAA75PjFNv5Aoe1GgC4B2V0GsQQplDythDnZo7671h8x5dyU+0z0AdDtS/0z7gkF8AW2M+PPeR03Vsc7JtPuE8NgNgEhYIRJOfeX5gdDRHUBWodBlN+laZIpvWUb9j34MEuSH/MgqdDnyUCQtRqX4lmUoyJCG61u9dw3hgBNZhbbAYVbXrGHx+MUpP8+JifVDQVDrg05nvtEHkFw/vLN/C7IqY5P81HXWmyRnTMa8sHbfdTtyUiZjX7z46RoIu5CBFv9+S+h4WLAbWYUOV0FK5V+9dw09PWjPULjJdD1LQG4ogN/uotuZhydq0KdSz6v3rqGrW0JWwa80mKhfSNBxoAtZ1Yz3dNzjq/euIRyUtXP4zX+mcyNBZBV67Kl/pv+8/VVkVQYiNHb3/gxHIhFC4RCktq57nxQ5FEbl23AqYbq7fJk5aX+RwGF3YLP1vcvOQMZ7YdgNgK3rDpCfW3DihmlkdH2E4UE7nVuOsLm6y5RrUOWptE27hkinlypbOSG/Hal4OvuVAmweD13SaUhr9qf8vIqq8PrObczpPgtUGWfzLNa/sI2yKaciS5l3Puv9kK/mco7fTpl7LPvHLgSkpPpBURWaPmzgHP8YZLUYR+1nTJNTl7HUUcI5fjsF+ZPZPzZMsjL2haIqvLl9B+f4ZwAKrvrzLaFjf3cP5/jtgIc9VZdjU9Wk5VdUhdd3bWN2xySUkB3Hkcmm6znS6eVcvx2f3U595cUEAt6U6lmX+ezWSShBO/b2KlP1CzHZRztKOcdvx1F0OvvHajGlqZJdl/uc7pmoit3Ud5cub3dPiHP8dmTVk5L3lo6iKrz/UTXn+KciyRGcdZceJauKlO/Hnh9BymTijKqy6qIyAKp378ncefuJqqiEu2yoXW7g2H7p8nn7fSxh2GURKhhbOuWYuH+mJMvkzp6N9/XXcUZd7EHZDqjkzp6NJKfnRVXdXkNnsBvU6PHlIJ3BHqrba5g87JS0nPN46P3geldLmAjY9OXx5Pqhur3G0LMkhwGVzmCnKXLqMjo//BTQ9Qzp0nV1ew3eQDB67hBI5smuXYMmf+T117GpChFJxm9zkRfuSVr+6vYavMFOVDXap3LIdD17X38dRyQMdhdBW+qfaUNmxRU9b8BU/WrXoMme88EuAHrsekJH6mSvbq+hM9CJqkR1LYXoDAZM1bX/jQ0AKJJMRJKxqUpK5K1ur6FbL3AtBzj6/SXl+3EWKZSWlOFy5mSssL2KSmtXrMC/2bu8xKOqKoFgD80tzQTxo3blJHU8YdgNgJmXjjV131ivP8S772jxOL9dPI4cp3nGnXrpKPaufYDN7X7eGzma3HADX4x8wvhlq5Dsqb+twkqYlS8uo7a8h66u80EKkV+5FlmSaMzZwfMLn8cuZ/52Vi8dRc9bT/KeewYeKcSyg6/hqKwcdD/ocu71nEVIGY1z+A5cJW8gYZ6c6qWj2HH9at5zT8TX1caXk5SxL3TZD5YU0OM/E9nVQF7lOlNlh9i9Xq3OoCmnmM+1bWFSrpKU/Lqs9ZX1eP3TUUM55Fa8gz2n1lQ97137APuVCex2j+Xito+YZO9ImZ4TZO6ZgRoOkzviLew5dabqFzTZD3zpBd5zn8L4QDdfSeE9rstdN6IVb9eFAOSPWossR0zVdc3aB3jfNQ9Vkrm54R+Ul3iSlleX9UDxSPzB07HlHyQ37hn+y4K/sH/fPsrKRjB8+PAUStQ/GsOdRBSV3GF5uE10jvSOB2eOnSZXExPPHX3MsmxnZ2e/jyQMuwFgs8vY7Oblm3QGIigSuB0y+WYXKLY7Kb/1W+T/+nkUCbwON+W3fgu7Oz1JHav3vMph3yEiSiWKBJLdh2qLEAEO+Q7y2qFXTckcxe5kwvXXomyGTlcuKJGk+sGQU52HIoFq70aRNe+daXLanYxedCnKLk3PshJOi65jOp6l6djRZb7sYNzrha/U0pBXTLszl/Jbr09Kfl1WZIgoORDVdUQOm6rn8lu/Re4LNSgS+BxOypelTs+6zKokEYkUaDI7282VWcfuZNLnFqF8BEfcnpTe47rcCkUoEiCFUO0Bc99ddicjbv0WOW/56XLm0mOzp0ReXdawMhFFApvdm/AMbzj0JuOkceTl5ZniMbPbZMJKhLCSuS0wB4LeL4oawWlPHOMHYnuIrNgsQq9hV2yB4sQAnsWLKfTkAuDLL8KzaFFazhNWwjy07SEkJNSIdj7J1m38XUIyLXMUYPSSywFtSSNQNWHQ/ZAop+aKl2w9xt/NlHPE/HMB8DpzcYwenXJdx8uuhPMBkOyxGFKzdexZvJgSSVte6qgYm5T8CXpWJVCiWYlRXZspq2fxYjx2bcDzlY5MmZ6PfYZtgGLo2Gz9AkxYtACAdlc+0ujkdKzT6zMtW+OZ9ixeTJ6qndc/qippeRNkDWux6JI9FhcmIfH0rqczuq/40eg7JYUiGcrYGCCp6hdh2GURZpc6ORrJbmfUFZcB0FM+Mi1LsABbm7ZS21WLiooayYueO2bYqagc7jrM1qataTn/iXC5neTbtBeF7cZvDLofEuXUB4FY9paZchbma8ZHlyOH0luXpVzXibJHDTtbzLAzW8eS3c7IKVrNxMB5FyYlf7yshlEHSDYtA9VMWSW7ndLTJgGgzJ2XMj0n6Fcf9G0+JEnL9DNbvwDDPbnYJRVVkpG/+a2UyN7rMx3VM5iv68Jhmi7sn/180vIm6vjYyZmKSmN3I0HFvDpyDptm8oQj5la3SDdiKTaL0IvWDjOpOHFvjLjkAtj5D7rsyQV7Ho/ppdO5b/59BCNB3vwYnquD6RUTuXHevUYbp83J9NLpabuGEzG8MI+uVh+B2ecN+hjxct59WKLFDzefeQPjymNtzJJT377N58ghd9FlKT9+vOyPvynxYSssnnQ+l5xxvtHGbB2PmjYZGqvpGJFcYdl4WVs64e5PwWlXWXX+T4w2ZspaetokaNxDz6hxKTtmvMw7D8Gv98GIwjxut9AzLMsSZZ4c6jr8dM85/8Q/6Afxcv9zH/z+IIwtKmW5ReQuKh8O+1qJzJiV9LHiZf3FSxJ7vfCl069g5vgrjDY55OAMmOeYsNs0j1hYsabHLlUIwy6L0HedsMI+sTqZ2CvWaXOysGohALtrdgM1TCurYsmE09N2zoEyPN/JgVYfrUnsQxgv549DrwJhFk28iIll+Sm6ysHjidvH1BuIUGxPbeBxvOx/XP8ecISLxp3JkgmVKT1PMpQWaN61ZAucxsv68eEO4B2G5bpZMmFBspeYEopytPdLZwr3i42XOdB+GPgnE4aXsmTCnJSdIxWUedzUdfiNvWyTJV7untZDwEdUDStjyYT07MozUIqM93fyS8Hxsv48/CbgY+GEc5kzPpYk4ff72bdvX9LnGiy6xy40xD12Yik2izB7n9je0JeFe0IRo0RHOmk1vJbW6QOA4UZV8+SXGSKKijegvWiLzE6SieKwyeRFs7DTacQDNHqtsY/o0ZRFrydVgz7EjKfCHGvoGdI/WWuK6reswH2Clpmn3BPVcaf/BC0Hjt6fJ4Ou9X1irfYMO5KIsduwYQNVVVUZ+10yCMMui2izoFHjcduxRR+Wdl96B3yAtqhHzMzN4XtD3+g6FfsQdvaEUKPvHSsNAroRn27DrrlTGxTKPdYa+Muig35zCg07Kw72nnQbdlH96v1pJfR7rrEz9dtOWVHX+sRRD/NJBV5/iO6gNsmvKLTWM2zXY+yU1Hjs5s+fjyRJxqe4uJirr76a5ubmlBx/sAjDLouILcVa58UgSZLhQUxmGbK/6HuIWsm4hdg+hEe6kx8QdAO+wG03lg6sgD7gp3IQOBpfMGx4K8ssNtvXvQ/N3gBKimJ0OqODvcdtnWc63R473TC2mn4hZtg1nCQeu3RM1nSjuMBtJ9dprWgvhy3msVPV5J5hVVXZunUr9913H/X19dTW1vL000+zfv16Vq1alYrLHTTW6nXBcbHiUixAcZ6Dlq6AcX3pRPfYWaXki47uQUzFBtNGWRuLGa+FOdrrIp0eO92bk+u0ke+y1utJN97DikqbL2gsvyeDFQd7/Vo606Tnxk4rL8XqHrvUG3b6srvHgrpO5WqL3nf98birqkpPBkJ4dBRFNUKGwhEFRxKxwtXV1Xi9Xi688EIqKioAGDlyJBMnTsTnM3cvWmu9OQXHpdWi3ip91pcRw85iJV90Uhlj12rBJBmIC6pPo2EXPyhYrYCowyZTnOektTtIc1cgJYadFQd7fXmuoyeUlppj9R2ajkcUWdGw02Ps0rcUa0Vdt6fUY6c/wyd+PnpCEU5b8WrKzj0Qtty5IKkksM2bN+N0Opk2bRoAgUCAJ554gpqaGh599NFUXeagEIZdFqHPqqy0FAsx71lbmpdiI4pqGLclBdYyeoYbMXYp8Nh1W9Vjl/rZ/dE0WjToWqeswEVrd5CmzgBTKpI/nhUHe13PoYiKLxghL4WeU0VRjYF/hMXiryDOY+c9OZZijWX3lHrsrBkjezTJZsZu2bKFUChEcXExAD6fj7KyMl577TVmzpyZikscNMKwyxJUVbXsUqzuQdQ9TemitTuIooIswfA8aw38sRi7FHjsDK+kdQYAgMLc9MZeQSwb0aqDQmmBi10N3pQlUHRGy0x43NZ5Fec6bdhlibCi0tETSqlh19IdIKyoyBKUpsDjmWrKo8vD7b4Q/lAkpfuJWtGw073wqY2x6/8znOOwseOehSk7d3/Y19JNdyCMQ04ufnnLli0sXbqUu+++G4Dm5mZuu+02brrpJrZu3Yqc5PGTwTpvE8Fx6QlFCIS1GYbVlmJ1D2K6l2L1wbQ4z2lk4loFPcau3RciFFGSSnqwahxhJmoW6qVEyi3qsStNcckTKw72kiRRmOPgSHeQjp4QI4tSV3y8sSPmkbVbKDFIx5Njx2WXCYQVmr0BRhfnpuzYnRbUdWwpNnXvbsOw68czLElSxhMsPG4HEUUlnGTyxJYtW7j33nuZOHEiABMnTmT58uVcffXVHD58mDFjxqTicgeF9Z4sQa/oZTSc9lg9MaugLxmm27DTExNKLDjTH5brRLc1k12StmJZG4hbis2Ax86KpTAgMTM2FVjRsIP0GfH1Hdo+qRWF6dupJhkkSUpLAoWqqtZcdo8adv6QkrI6pHq/Wa3UiY6x+0QS+8Xu3buX9vb2Y5Zc9+zZg91up6ioKJlLTBrhscsS9CW+kjyn5YLKM1XuxKpFL0Hbjqg4z0VLV4DmrgBlSSwl6kvaVo2xS6fHzurxOXomZ1OKYrDaLWrEp6uWnV5GZIRF9Qta0P/BVl9Ka9n5Q4pRFNdKRny+044sgaJquk7F0nOjUafQmjq2y8nvPrF582YkSaKsrIyGhga6u7v5+9//zj333MPNN9+Mx+NJ1eUOCmHYZQmt0fpoxfnWGgAgtndtugsU6x47K8bmgFakuKUrkHSRYqvGUurLNmnNirXorhM6ZSn22LVFn5kiCw32kJgZm0r0jFirenMgPbXs9H60yZKlVlxkWVt2b/OF6OgJJT2hUhTVmPRYdXLmSIHHbsuWLaiqyoQJEwAYNmwYkyZN4oEHHuD6669PyXUmgzDssgS9jIbVkgYg8x67EosO+kZmbJJFik/mrFir7jqhk8ql2IiiGuVOrFa+J1217Bo6rJsRq6Pfe6ncVix+yd1qKy5FuU7afKGUPNdtvqDhmbRiAWpIzX6xq1atMr0I8fEQMXZZgm40Dbegx67YSBzIVIyd9foAYkZ3sh67VqNAscW8OGnIoIsnftcJqxp2qfTYdcRtHWe5DOg0GfGxGDtr6hdi9dfS4bGz0jKsTkzXyb+/9T4ryXdaateceGKGXfK7T1gVa/a84Bj0+mhW2yMVYt6G7mAkZQG4vaF7La26TFeSgiLF4YhiDAJWW4rVBwAtQzv1erbyrhM6+r3nDYTxBcNJHcvYOs5lra3jIH3xlLrHrsKihjvEEjv0ZeNUYMXECZ1UJkUZ+wBbcFcRHYdNQgJUVMIp2hrQaljrbSLoE90LlIpq96nG47Yb5UfSukzntW5WLKSmSHG8F8dqs/sCtx19FSkdXjt9ILWqtw4g32UnNxojlWxwve4hKbKYZxbSY9ipqhrbdcKiWbEAI6PeRN27mAoMw85C9Qp1Uhk7a/WMWNAyn/VSO6Fw/5djq6qq+O53vzvg8w32d8kgDLss4YhF465Ae1CGZWBbMSN5wrIeu+T3i9X7rzDHYbk6X7IsGZvVp7JSvY4+kFo5/kqSJMPb1JCkR6fNolvHQXqyYjt6QkYtTquWswEYEa3b19DhR0mRR6fdovs/QyxxJxWT8oYBbCdmJoOJsxOGnSDl6AH5Vo0vM4oUpymBIhxRjNgzy3rs9Bi7JPrAqqVOdIrz0pcoo3tzUlkQNx0YwfVJljyx6r7HEBvsU2nY6fodnudM6Y4Oqaa8wIUsaTFYyUzS4jH2+bagrguj15SKIsVWL1eko2fGBpPIjLUywrDLElq79BmfNY0avQ5XKrbU6o3W7iCqqpULsOLLEeKXYgffB7FSJ9ZbnoP0GnZ17ZrHbqSFPXYQW2ZK1mMXi6W0nq7TkRXbkAWlTgDsNtkwTOpSFGfX5rOudzaVHjurbwmo40xBZqyVEYZdFqCqKi16VqxFPTklKYgvOx5NFt5OTCeWPBEYdLaVVUud6BilbdKw5G7EX2WJxy7ZrEmr1iuE2I4EqdxlpD4LEid09HCA+vbUxNnpz/WwIR5POZSXYrMJYdhlAd3BCMFobIoVy51AajJCj0es6KV1Xxi6bgJhhe7g4LJGWy082ENsYtGaBj3rHjsrx9hB7B5Mdssp3YtjtSQZiN1/HT2hlMWZNWRBqRMdPRygNlWGnYWf61QWo86apVi75hwIiaVYgVnoXrAchy3jGyb3F303iFRV5D+ahujm4Vae7ec6YxmTg/VcWt1jp+98kg6PnW7YVVrcY5eq5Il2Cy+76wZIfBHlZKnLguLEOrphl6qSJ21WTp7ITc1SbCiiGLHgljfshMdOYDbGrhMW9dZBbDeIVAUbH40+27f6C2N4kpmxevKEFQPqAYrTtMtIdyBMp1+rC2f5pdhCfZP4ZHcYicZdWXCwd9plCqK1BFOl69q2qOE+zNr6hbil2BSVPIk919Yz4gtzUlPRoNkbQFW1xIRii76/dOINO2UIFim2pvtHkECrRePrlGCQrjfeQA0GyW0FsNFwuJGOl14y2khOJ/kXX4zsTO7aGyxcHym+H4pDMoeQ2P/GO0wcHmvT335oi854reTFiZcvp0kCZJr219Lx0iGjTbJ61r11BW67JYsTx/dBXgDARmOHj7YXX0IP+RxoH8SXtrEK8XIWIuNF4uCrbzA8bk/zweq61kiOsaZhFy970REAGwf31Sf9PlNV1XLe2XhZ7SEAG15/mJYXXsIRdfcMVFb9GS73uJEtGgetY5clJElCVVXCEQWn3bpZ2oPBem9QwTEYu05YrMxHz9Zt1H73ewCoRaPhwu/Q1NRO3Q9+mtBuzOOPkzdndlLn+qj+ECDRENgFTErqWKkmvh/yZ18PI8+g5tmXOG3fPxLa9acf9rQ2ARJ7u/4JjEnTFQ+MePki5VNg7tdp2l9L3WMPJLRLRs/P79oAyOTnpK/AdTLE90FYkpGu/C/CyOxc8ROGBbqMdgPpgwZvJyDxSdv7XMiSdFz2gImXM++CW6F4LHt//wTlDZ8ktBuoriOKyuG2bkBil/dd5lhE3njiZbcVVsJF36OuuZO6H/wkod1AZfcGwsYOBxsb1/O5IvNlj5dVQUK+6r9RJJldd/2U4f5Oo91AZH35038AMi6XLx2XnFIkScJhkwiGVUIRFYtGOA0asRSbBRyxqMcud9aZOEaNAkmiKDq4tbkKMBzbkoRj9GhyZ52Z1HnCSpi9ra0AvF3/EmElua2cUk18PxRHX4qt7oJYg372Q1gJU9vhBeC1Q3+1jJzx8hUGugHodObFGiSp57AS5rmdb2rHVQ5YRu544vvArirG/X7EXag1GGAfhJUwHT4twea5vU9aRuYEXQejunYlr+u6jm4UVQIiPF39sGXkjSde9tKeDgDa3AWEpKg3Z5Cyt3RFl3OlIL/f/mtLyB4vq4xKQVAzxjr053oQ9/Mrn74LQHPwU0vIeCKGcpydMOwGQCSsmPI50hlAVqE412HaNfT2UZApvmUZCjKFQR+yCopsx+vMQ5FsCX9P5jyra9YQ9uciq9Aa3MfqmjWmy95XPxT7vcgqtLmLtD4YQD+8Ur0GJZiDrMIR/wHLyBl//Z6QH1kFrzOfyADlO55+270gqxCm0TJy99UHimSjtKcDWYXmnGGD6oMXdq1BUuzaMXzW1LX+THc48wd8Lx/9ee7jN5FVsNk7qPfWWUbevmQvCPXgCoeQkGnJLU5K9ld2vaXJLvuo66y3hOxH38/D/F3IKrS7PYOSdXXNGjq7ZGQVgjQcV0ZVVS3xccjanrHBNF/TD3/4Q1wuF9ddd12/f9NX3/WXIeaATC9b1x0gP7fgxA1TzY4OzvHbKdrXw+Y1+zN//uOgylNpm3YNkU4vF/ggKNvZW7UIT9CHzeOhSzoNKYlrVlSFdTs+4hzfWQC4ms5m/QvbKJtyKrJknXmJ3g8lUgHn+O148iayf+xCQOpXPyiqwus7PuKcHl3OOZaSU5cv0OXjHL8dsLOnahF2VUlKz4qq8PqubZx9ZBoRvx27t8JScscTf6/PCOdR4rfTWXEe+91jB9QHiqqwYfsOzvHPAFRc9fMtJbMu51hbBef47chFZ7B/rJv+3stHo6gKO7Yc4hz/BOSIA0ftZywlbzzxOr6wW8XrtHNgzGfo6WkftOyfbNvHOf7JSHYXTgvJHi/rzEgeI/122svPY3/uxAHfz6/v2sbZrVNQAnbsHaP6ltEewVkWoccbQgmYK78rDHmKRMQXxqecOCbwnX+8zYO//AVb/7mVhoZ6nn7qWZYsvvKYdjfd8g1GjBjJyjvuBuA73/p3yoaP4Ps//B63ff8OJoyf0Oc5AsEQwZ4In7xdC+HEuL8un7ffslnrqRL0Sk9IW7LJcVovwFOSZXJnzwZU3GEtFrDH5gRUcmfPRpKTu8Wq22vw+qPZWlIY5DCdwU6q22uSu/AUo/dDTkhL8vDZ9XjI/vVDdXsN3oAuZwSkiKXk1OWzK2FsqjZzDNiT13N1ew3eYCeqEk2Kkf2Wkjue+Hs9R7/X7S4G2geazIHoMUMgqZaSWZfTFdHiHTU9w2B1Xd1egy8YDdCw+QFryRtPvI7zwtFn2eEmOdnD0WMHsZLs8bK6wtq7ZzDPtPEMR9zR41r3GY5HljRjrr91Gn0+H6efPo37f/ZAn20ikQhrXl3D4suvML4rLCzkhi9/BVmW+WTH9qSuub8Ij90AmHnpWDwez4kbppgV1Yf4tDvMN88fwaxJpRk//4lQLx3F3rUPUBsaxyeecZzfuZNJ8hHGL1uFZB/8LRZWwqx8cRmHStz4emYjO5vIq1yHhERjzg6eX/g8dtk6t7B66Sh63nqS99zT8UgRbjn4Go7KyhP2Q0xOBz7fbCTHEfItKKeu592cSYu7iC8c+ZBJeQxaz7rc9ZX1eANTUeUwORVv48jbbym549H74P32EO9VjKAg0sjnIp/0uw8MXQ/Pw9czC9nVaMl7Wr10FP/8ymu85x5HuKOVpf28l49Gl3dvwdmEIlU4Sz7GVbLecvLGo+v4he5C3iuexSn+/VwaqRm07PuHVREITcbu2U/OSGvpWpd1dXcO75UOZ6x/P1dEdg74fq6vrMfrm4VqD5M78k3s7oZeZfT7/Rw4uJ+cAgdutxNVVVFMKhIccUo0BIOEZJWRhSeOX7/680u4+vNa4st1X74WV66d3KN+9/bbb+N0Ojj/onORpJgXMCIHyM3NpXrvLnILr+nzHLJfwZljY9L5lbjdiRUgOjs7+/jVsVjribI4NruMzZ55J2dTdxBFgophOaac/4TYnZTf+i2K/vIJigQdrlzKb7oWuzu5ZI/Ve17lsO8Q4ciZKBJIjg4UWfNeHvId5LVDr7JkgvkZZgZ2J1NuuBblQ2h35xNRVUbd+q0T9oMhpzIVRQLZ0WVNOaN6zl/TSFNuEZ32HMpvvXHQetblViWJSGgYSIC7mYgctpbc8UT7YPhDf0WRoMVdQHk/dKxj6FqdEb2nravrMQsvQtkNHc5cZCU8IDl1DHnDC1AkwNlqTXnjieq45LE3USRodhdS/vXByx5RTkWRQLV3W0/2qKyFf3hDe3c7cwd1P6vYiCgFIIHqbO3zGbbZZSRJMj5KRGXL2gPpku64nH7paFRiu0/EG2L9QZchnr/97W8sWbIE+Shv55133klXVxeffPLJcc+jH7M3W2MgY78FrQR46KGHqKqqwu12M2fOHDZt2tRn21AoxD333MOECRNwu91Mnz6dtWvXJnVMKxEMK0Ydu7IC69Vw0/EsXkyxXXtAOktH4lm0KKnjhZUwD217CAkJJax5SSVHbMYiIfHrbdbIMItn9FWLcESvyTtu8gn7IV5ONZIPgGyLlc+wmpyexYsZJmnX0j1i9KD1nCB32IM2xwwj2TUdW03ueDyLF1Oer9UjO+Ip6XcfJMqs6VqysK4r588FtImaY/TAdZ0gb2gYAJKjzfi71eSNx7N4MRUubQBuHj7w91nic50LgGSLlQGxkuyexYspjtZS9BaVDvJ+1rPDQ4acVpKxNxw2GQlQVNUoR5MsL774IldemRh3t3nzZh555BEWL17M9u0n6VLsM888w/Lly3nkkUeYM2cODzzwAAsXLmT37t2UlZUd0/6OO+7gqaee4ne/+x1Tpkzh1Vdf5bOf/SzvvvsuM2fOHNQxrYS+g4FdliiyUCHTo5HsdkadNQ0OgW/6WUktwQJsbdpKbVctAGqoCADZ3m78XUXlcNdhtjZt5eyKs5M6VyqRHQ5Kc2zUBUD50g0n7IcEOfXB3h4b7K0mp2S3UzZ+NByB8EWXDlrP8XIrwWLt2I52JEl7wVpN7ngku51J11wJ/4TWguH97oMEXUd0XXcbf7eazMM9mkHS4cyn9NZlA9a1Lq+qgqI/w4524+9WkzceyW7n1EUXwQ5orhg7aNkB1IhWQiTesLOS7JLdzugFF0A1+MZOHNT9rIQ0w057hrW/90dG2SYx6/KqpGUYDLJNwmGTCUYUgmHFKH8yWHbu3EldXR2XXHKJ8Z2iKPzbv/0by5YtY86cOfzrv/4roVAIhyO9Y7nlDLv777+fb3zjG9x4440APPLII7zyyis8+uij3Hbbbce0f/LJJ/nxj3/Mougs4+abb+b111/n5z//OU899dSgjmklmqJ7r5YWuCxfzXvs7Blw6GPaisqTPtb00uncN/8+gpEgv14jsbMdPj/1IuZOvsho47Q5mV46PelzpZrysmHUHWqne/qJX9jxcj77D4m3W+CScbNZfFbst1aTs3zyeHh3P76xEwd9jHi53/sU/t9BmFw2nFvm3Wu0sZrc8Uy86nL45zo6wxL+UAS348SJTfEy/7+3JN47ApdNOJfPzDjXaGMlmfVtoXocblyXLxzw73V5j3QF+dEubdD8yfx/J76rrCTv0UxefAns2EBdyIaqqgNaqovX9S9ektjrheumXsGZE2JB9VaSfdT8uVC9iQ53/6s+xMv4QTU8cRAmlZRw6wCeYW3Z0bxxzWGPGnYRhbwTNz8uL730EpdeemlCbNwvf/lLWlpauOeeezh48CChUIhdu3Yxbdq0JM92fCxl2AWDQTZv3sztt99ufCfLMgsWLGDjxo29/iYQCBwTZJiTk8M777wz6GNaiaboVlplBdbadaI3KqJbBSW7OTpoL4SFVdpg8ovABqCbK06Zy7kTSpI+drrR97PVjfLjES/n6o2bgQbmjj6dJROq0niFyVEavRebuwa/t2S83NV7dgM1nDlqLEsmpPeFlyo8OQ5yHDZ6QhEaOvxUlZx4WIiX+fm3PwCamDdmOksmWGOHkaMpcNuxyRIRRaWjJ4zbMbDhQpf3n4fagX9QVuDiX05ZkJZrTQcji3KQJQiEFZq9AcoGsE91vK7vj2wAulk48VzOGT/8uL8zC31Xo4HsCxwv48GDNcBuplWMZskEaxir/cFlk+lGC3lKlhdffJFvfvObxv9ra2u58847efrpp8nLy2PSpEm4XC62b9+edsPOUjF2LS0tRCIRyssTPT7l5eU0NDT0+puFCxdy//33U11djaIorFu3jueee476+vpBHzMQCNDZ2ZnwMYvmLt1jZ934Op1Ub5wNWir64ejm4aOLc1N23HRS5tFeko2dAzNw9WX3EottHXc0hmHXD8O1PxzS9TssO/QLmqdB37e4YYB6htg2gcV51tW1LEsMi3rtjiRhxOt7xI4aZs09YvvCYZMZEZ2sHmwd/DZZLXGrLlalOLqrUZsvSGQQ8Wb6O39kkfXHqXgc0YSE/hh2XV1dbNu2jW3btgGwb98+tm3bxsGDB2lqauLDDz/kiitiHtlvf/vbXH755SxevBgAu93OqaeempE4O0sZdoPhwQcfZNKkSUyZMgWn08myZcu48cYbj8lKGQirVq2isLDQ+IwePTqFVzwwmjqt/1LQ0Qe6Tn+Y7kBqAmZbugIEwwqyFDu+1TE8dp0DM3z0wXN4vrW2jjsa3XvcH49kf9AHzdHF2TXwl0cN+MF4qFuyRNfFeVosUJtv8Ibdoah+R2WR4a4zJjqZPNQ2OMPOH4rgjb4LrTxh0w14VYX2Qei6vl17BnRDOFtw6YZdP7YV+/DDD5k5c6YRu798+XJmzpzJihUr+Nvf/sbs2bMpKdFWlF5++WXeeOMNHnzwwYRjTJs27eQz7EpKSrDZbDQ2NiZ839jYSEVFRa+/KS0t5YUXXqC7u5sDBw6wa9cu8vPzGT9+/KCPefvtt9PR0WF8Dh06lALpBoc+eGbDUmyB20G+S1uuGYwXozd0b86Iwpykg1szhW6ENw7Q8GnOOo9dinQcHfjHZIlHVmdkkTaI6R6p/qKqKke6o7q2sMcOYp4c3Zs8GPYf0fQ7dnh26Rdik41DrYNbhdD7zWmT8bgtFfmUgCPu+gayHKtTF53cjMg2j52t/x67Cy+8sNftvx577LFjsmGvuOIK2trajrExnnjiCV588cXUCtELlhopnU4ns2bNYv369cZ3iqKwfv165s6de9zfut1uKisrCYfD/PWvf+Wqq64a9DFdLhcejyfhYxb64Kkv71kdY3kqBXF2AIejM+XKLFrGiXns+t8H/lAEr1+b2Zda3LDTy+4c6Q4STnIDbX8oYkxesmkpFmDUIA07XzCCP6T1m9U9dnoISDLL7gdbtczfscOTDU/PPPo9eWiQS7F6v5XkOwdcJy3T6HF2RwZh2BlLsVnmsXNGPXahiIKiDr7kybx581i6dGmqLitpLDeFWL58OTfccANnnXUWs2fP5oEHHqC7u9vIaL3++uuprKxk1apVALz//vvU1tYyY8YMamtrueuuu1AUhR/84Af9PqaV0V8MVh/sdUYUuqlp6qI+ZYZd9sVflQ8ixk5/mTpsEp4cyz2WCRTnOY2g+iPdQcOQHQy64V7gslOUa91yPr2hTzZq2wZm2OlL7m6HTK4FtwmMpywF8ZQHstpjp13zYGPs9CX3kixYcRme52RfS/eA4ym7A2Hafdr2c9kWY2eXJWRJQlFVQmEFVz+y23sj3t6wApYbQa699lqam5tZsWIFDQ0NzJgxg7Vr1xrJDwcPHkyIn/P7/dxxxx3s3buX/Px8Fi1axJNPPklRUVG/j2lljKXYJAbPTFLh0T12qUmg0Af+bAq8HuHRrrXNF+p3KQzdu1ea77L8zN4mSwzPc9LkDdDUGUjKsNMHzFHFuZaX+2gqi7RBf6Aeu5boMuzwPOvrOtl4ymBYoS7aP2OzbKkdYobd4QEa7zrZkhAFsVWhpgGGWOh9U5TroMCdXZMzSZJw2mX8oQjByOANO6thOcMOYNmyZSxbtqzXv23YsCHh//Pnz2fHjh1JHdOqKIpqzJSzIcYO4jNjU+uxyybDzpNjJ89pozsYoa69h/Gl+Sf8TWM00aI8SxJEyjwumrwBmrv8QOGgj6N7c8ZkWeIExLwTtW09A6pzpntESiy+DAvJZ0AfbvOhqJDjsGVFAtjR6DF29R09BMOKsXTXX1rilmKtjh5i0TjApK9Yckz2PcOgxT/6QxECYYX+V/GzNpaKsRMk0uYLGludZMOMD1Jbyw5iA3+2lDoBbRaoB9bXtfevH/Rl2/IsKGsDsUFgoJm/R7OvRYu/GldyYuPXaug67glFaIsuRfWHWNyV9Z9pQ8+DTJQ50BpbhrW6d7I3SvNduB0yiorheRwIJ4PHTs8YzqZwmXhcDs0MCqSglp1VEIadhdEzS4fnOQc8UzSLVHrsAuGIsRQ7vjS7Aq9jhl3/BgPDsMuSJJlUlTzZ26wZdtmmXwC3w2YM2AOJszN0nQXe2dIk9XwgarhnW8azjiRJsQSKQZQ8MWLsssGwG2SiTDauqsTjsmvLr4FQxOQrSR3ZYS2cpBi1gbIoILUihUWKD7Vqyzh5TlvWJI/oDLQURrYtxaaqSPHeZm1f3AlZaNhBXALFALw5ukckG7yzugHf7gsRCA984Iv32GUrySRQGCWMsmAZejBJXxBbis2mVZV4XAMoUpwtCMPOwujGUTYVfdQHujZfCK+//8tTvaF7c8aV5mXdMk5l1BgfsMcuCwZ7iPfYDd4z2xOMGPWvsnEpFgZX8kQPU8gG72xRrgOHTXv2Wgax+8RBIyM2Ow13iBmleljIQIgtxWZPjN1AvbPZWLkgnvgixcogdt2wIsKwszD6oDcyS7w4AB63g2HRshWDLeqps/9I9sdf1fXTc6kbdtm2u0YysZR6fF1RrsMohJttDKbkieGdzYJMd0mSDG/5YLyzQ8FjNz66D7A+0RwIjdHnoyILdD1Y7+yhLKxcEI9NlrDJ2uQlkGRdTqsgDDsLUx/1Aowoyq4HZkyStZ90YoH12Tfbrywa2IDfkGUxdoPddSGevS3aMuz4LNSvjqHn9v7f68ZSbBYM9gClgyi4DRBRVOMdMLY4e3WsTyz3Re/X/uL1h+gOagZSNkzYinIdOKM7MfQ3KarDFzIKq2fjlnGgTV70OLvgEImzE4adhTG2acmCl0I8sdpPyRl2RmB9Fg78MY+d/4TufV8wbLwcs6VeoT47b+kK4h/ky3Bfc/Z6ZHUqB2jghiKKsaSZLUb8YBNlattiJUKyaeeYoxkXjf882Oob0E4rujfb47aT67RkZbEEJEkacLKM7q0ryXeSY/Fi28dDX44dKpmx1r/bTmKMbVqExy7pa8o0FYVuJEkLyD3SHTxuDS99dpzrtFHgyo5HsjDHQa7Thm8AtfqOZm9L9mbE6gx0KVZfznTYJGPjdasz2ESZmmYvoE3M9KWubGSEx43bIeMPKRxu66Gqn++jemNinj3v73KPi9r2nn7vAx0rIJ9+b50SDNL1xhuowb5jPSWnk/yLL0Z2DuzZ6o9hd++99/LjH//4mO9/8Ytf8K1l305Y0jWb7BhFTkIURTVmfNnmsUuFYdcVCBuzxv6+SK2EwyZTXuCmodNPXXvPcQ272DKsO2uSRCRJorIoh+qmLura/YMz7JqHwFJsXLJQVyBM/gkMcz2WsqzAjWyRQeBEDDZRZk+TZrhPGMS9YSVkWaJqeB67Grzsa+nu9/tIf39nwzKszkCLFOtx1JmIr+vZuo3a737vhO3GPP44eXNmD+jYzn4Ydrfeeitf/epXjf+vWLGC1157jc9//vMcONJNTyjCuJI8S+y+IZZiLUpLd4BQREWSsicWRycVhl1Nkzbolxa4KMwx/0EZDMbOBCdYpsumLMl4BlqrLx5VVdkTXYqdUJa9A7/HHUv8OHDkxMH1hmGXRboebG1K/RnOZv3q6F7lPc39j7PTJ2zZNDHX30EN/Yyn1BPcqjKQ9Zw760wco0ZBX5NfScIxejS5s84c8LGNWnbhCKrae+hMQUEBFRUVVFRU8NBDD/Haa6+xYcMGRo0axU1fWcq806u4/rovDvjc6UAYdhZFr2FXVuDCYcsuNRkxdq09g04f393QCcCUiuzd5EU3cPefYMDXDb9sCz7WDbvDgzDsDrf10BUI47BJWbnUHo+e8bm/5cQTGcOIz5KyNhC3J+4A90vVjaCJQ8GwMxIo+p8ZW9+RXUkyMPDQgkyGy0h2O6W3LoM+DC9UldJblyHZB74Q6bLLSEhEFNXY7akvVqxYwZNPPsmGDRuoqqoirChc99Wb+M9fPIxskRWX7LIYTiJ0L0i2xdeBNkO1yxLBiELjIOuc7W7QBoVTyrPXsNOXbA6cYMDX41Qqs0zX+vLLYDx2nzZq8VcTSvOzbuJyNOOi3ooTGfAQM+KzKZlgZFxNxr68GUejqio1WV58Oh7dcBmIYddg1CHNIsNON+L7+Uwbhl2GdOxZvLh3r13UW+dZtGhQx5VlyViOPV4y2MqVK3niiScMow4gFFY4e+48PAWePp2JmSa736hDGH0ZMxu34rHbZGPQH8iLMB594J+czYZddMDfd4IBP1u35DGWmgfoyQHY1RDVbxZ7ZHX04rv7+3GvZ6Ou9clldzBCZ0+4X79p7Q7S7gshSTFvVzajGy4DMuyicWrZFGOn35f9qWjQE4wYXslxGSpA3afXLglvnY7boRt2vcfZrVy5kscffzzBqIPYjhVWmqBa50oECRzIYsMOYgHTe5oGVvtJZ3fUsDsliwd+w2PXb8Muu3Q90Nl9PLujhl02e2R1qkr6vzNBNura7bAxPBpHeLif9fr0+LrKopysLoOhoyf41Hf48QX7Z9zqHrtsMux0T3KTN3DCIsW6h7oo18GwDBYYP8Zrl6S3Tsft0O7T3jx2//mf/8nDDz/Mn/70J9xuNw0NDTQ0NBAIBAhGS+DYbRZx1yEMO8uib8WTrYbdxHLNsKsZhGHX2h00SiucUp69s/2qaOxVY2egz8FAUVTD45VNXhyA0cWxpdjQACu26x7ZbI6h1DGW6fqxFHs4S6v0xxJl+hdaoSfGDIX4OoCiXKdh3OrZvsfD6w/R5tO2VMymEIvheU7cDhlVjcV594VZ5aiO8dqlwFsH8R67RMNOVVV+9rOf0dzczNy5cxkxYoTx+eijj2IeO9k65pQod2JRDrRqD0027bEYX2eoskkCZHbu2E+HtNdo0586Q3rixJji3Kwo7Hk0ej9IwSCFdpmOsMQnf13NKXGq1PuhqSdCMKIgS9kzs9flcweCuGUZvwI7//IyY+PGr+PpORiOUNOU/Uuxej8M8wUBG83eAHXPv0RenIMqvh8SBvssMOzin+eyHhmQ2PP2JmbXxJbB+tLzrugznO2GXXwfjLfJHEFi69q/M6bs+H2gh9IU5zktUf7iRMTLOcIusy8k8enq9QwrirU5Wk59J45MLcPG41m8mOZf/orQ4cNJe+tURUHxenFENJ0GQhHC7e0JbVoPHkQuKEDqxXjTyzZZyWOXfaPmSUAoohgz42zaYzG+zpCnaDRc+B1qGjqpe/wnCe1OVGfor9s3AjKFBYOLzzOb+H6ouODbdBSPYdvvniK/7uOEdmMef5xnI42ATGGeaqkYjeMRL9/Ii77H3sJKtv76MRyNOxPa9aXnP2xdTViRcTvUrPJmHE3C/X75XXS68tnyXw8yoaMuoZ3eD3/8eC0gk+tS8WTBYB8vX8HpV8LEC6h57S3qPnkloV1ven5n735AImDbA5yWmQtOAwn3+rQrYcIFbF37Nmdv/1tCu6P74PmdfwdkCnIHvr+uGcTLWTz36+wrn8KO//dXRh/YlNAuXs6/79sNSATkQ8CMjF6v7rWr++FtSXvrFF8PwUOHkAC5sBJFkvDVNeBQEldZnFXjsOUfa8T6w2G+ufRqqndup8fnY9SoUfz5z39m7ty5g76mZMmOkeQko7ath4ii4nbIRnHQbCC+ztCoriYAWnMK8Tqig3c/6gyFlTDrqncBUBf8kLDSv3gWKxHfDyO7mwGoyyuJNYj2g3PmGTz98esABKS6rJE1Xr7KrhYAavOPla83PYeVMI9t0WSWXA1E1Ozdm7G3fjicXxprENcPYSXMEx9pBpFia84KXcfLV9bTBkBTzrBYgz70HIqE2N+i7Q7wTvMzWSFrX8T3wbjOBgD2e0bEGvTSB2ElzEu7/gFAW6Q6K+SPl7Pcp+m68Ti6DithPqrV+mNb+2umyOi58kqq/vwsniVLkjqOnJeL5NC8kE5F86gHbIkTL8npRM471smiKArhCPz26Rd4d/f7dHd3c/jwYVONOhCG3YCIhJWMfPY1dyGrMHZYDkpEzdh5k/0oyBTfsgwFmZxImLLudmQVDnoqUCRbwt/7OsbqmjV0dw5DVqFH2s3qmjWmy5VMP4zqakFW4VBBtA/i+mHN/nW0ddiRVYjItVkja7x8lVH5avPLjpGvNz2vrllDa1sesgqKfV/WyHyifqjyNiKrcMAzotd+WF2zhtYOWZNbbs4KueOvv8ynPcsNecNPqOcnt66FsAuZMEdCO7JC1v70wdhOTccHe3mW4/tgdc0aOrzacx2kLivkj5ej3NcW1XVJn3K+XL2GgE97T3dEdg1IRlVVU/IBcJ9+OkDSx7GXlQESzkgYCQjYnIBkfOylZb2e50hPZ7SFSlgN0BHoSIlsffVdfxFLsQNg67oD5OemPyZo98E2zvHbmdTjYPOa/Wk/XypR5am0TbuGSKeX8/0S9bKd2lGXklNQi83joUs6DakPmRRVYd2Oj5jdMQuQcLZNZP0L2yibciqylF1zEL0fRiluzvHbcXlOY//YhYCEzeOhkym8/sIznNUyHSVgx+4tzSpZDfmk/Kh8U9k/tgddvt70rKgKr+/axtkt01FCduxdw7NK5t7Q+2GSNIwOvx2l+Ez2j9Xi0fR+UFfv5fVd2zjryCwifjs2uTBr5Nblyw0onOO343COTriPj9azoips2nqAc/yTkOw9OOsWZI2sfaH3gdzVzVy/DZVido1fgjsSOqYPjHv8yGkoQTv2jsqskV+Xszz6zsrPn9yrrhVVYd32nZzjmw6Sgqv5zP7LaI/gLIvQ4w2hBKzTH6rkJpIzjBzVhqJIqPZcAtGQSclmIyK5kToS96hVUfH5AuQpbpAUpKCHznYfdrcbicHF2wWCIYI9ET55uxbCidnkXT5vv49jnZ4VGBzp0m6g4vzs2CQ8HkmWyZ09G1AZ5tduxDZ3AaCSO3t2r8GnOtXtNXT2qICEJAdA9tMZ7KS6vSYj155K9H4oCmh90OHMQ0FC74eazr14g52oES1mQ7J1Z5WsunwFAS0OstOhL1P0refq9ho6A16UsDY5kuydWSVzb+j9UBjVc7tTTxaI9UN1e03W6lqXLz/oQ0IlJNvpsbnoS8/V7TV0+7UBSbJ3AWrWyNoXeh/YlQj5QS2Dvd2VT299ENO1lggl2XqyRn7jXg5qz3SHU48nS5Szur2GrmiFI8nWDZKSNTL2hYSEnJeHLRoaEpZjRpWcl9eroRYIB4goeskVBVCJKBECYfPjKoXHbgDMvHQsHo8n7edZtb+Of7rDXHdBJbOmVaT9fKlGvXQUe9c+wMG6Bt4bOYpWd4jrIp8wftmqPoNcw0qYlS8u40DhWPz+mdjyq8kdtQ4JicacHTy/8Hnscnbdruqlo6hZ+wD32GfSY3fzpbYtTPA4GfOtn7Dqlc9TN7IBb9d5YA+TN+pVbM62rJJVvXQUuese5m73LHDb+WbdWxSVl/SqZ12/h0sidHfNB7mb/DEvIktklcy9oV46Cvfrv+Gn7hlILjvfrH2Tgooyxi9bRUSGlS8uo76yHq/vTFRbmNyR67Hn1GWN3PrzvC8yjYa84VzV+TGT3KFj9KzreE/uRYSVMK7yTTiHvZvVz7CO3gdeXznveaYyLXCI8yP7E/pAl79uZCPernmgRp9rR0fWyK9eOopPX/1fVjjPIiLb+GrT+4wcnm/Iqcu4v3ASgeBU7J5d5Izs/3va7/dz4OB+cgocuN0Wc1x4HNg7m6iXckGC4eFunHYZV1nlMTtdqKpKbftBgrY8VJxIdh+S3QtIhGU/EzwTkAaxDYXsV3Dm2Jh0fiVud2KVhM7Ozn4fx9p3mcWw2WVs9vQ6OVVV5dPmLhQJJo8sSPv50oLdSfmt3+KUe36GIsEezwiKb/kW9uM8yKv3vMph3yGCgXNQJLDnHEaRtdnTId9BXjv0KksmJBckm3HsTkbc+i1Gv3KYXcVV7M8v59xbl7Kufj2HfYdQIsNQcIAcRnUdISIp2SWr3cmkb32N4vXttOQWcTC/lMm33tyrnnX9hoKzUCSw5dSi2sJEyGL96tidTL75Rgrf7KTN7eFQXgkX3ard72v2/I3DvkOoqpuI4tFCdtyNRORw9sgdfZ5HvFBDXf5w6nKLueyWzx2jZ0PHgUpUCXAPgWdYJ9oH4x9dz7sjplJTOILyLy5K6ANdfiVcgoId5ACqs5WIpGaP/HYnlctuovy1IxwuKKMur5iZt37dkDP2HM9DkYCc+gHp2GaXkSTJ+FgKScJRVoqrI4jf5iRgc5BbNrzX1YeOQAchJYiqFqECkhSK/kUlqATpDHZS5C4axCVo/dKbrTEQWyALrYahTW17D93BCA6bZOxckI14Fi9mzLAc8kI9hGwOGmfN67NtWAnz0LaHkJBQekYDYHMfNv4uIfHrbb/Oiuyyo/EsXsyEiLZMt3/0FHIv+0xM1oDmjZWdLUiSFhibbbJ6Fi9mQrAVgANVU3utJxWv30hUv/IQ0a+OZ/FixgW1bMKD0X5IuK+DWrasZO9AsmlLNdkkt2fxYkajrb/Vjxh/jJ51WdVQIWq4EIhgyxl6Oj7NpvXB7rIJCX2QcI8HygGQXU1Ikhacn03yexYvZkxYe2fVjT7FkDPhfvZr7y6bq8H4XTbJ2Be2wkLc0eVYvzMHW2HhMW1UVaWpR6v6oCpR35icKHNTT1O/91VOB8KwsxgfH+4AYGJZQdbUNesNyW6n7NZlTGzXXu7bG/regWJr01Zqu2qJhHNRglr2kS33gPF3FZXDXYfZ2rQ1vRedBiS7nbPP0ep4VZ8yi22tH1PbVYuKSsRfCYDsrjXaZ5uskt3OGVOrAKg9a36vS+26flVUIr5xANhy9xt/zzaZe0Oy25k+RTNa98++GMluT5Q7OhDKribjN9kkt2S3M2XOGQA0njrrGD3rsoZ1w93VgCSHjL9nk6x9IdntnHfdFQAcdg+jMxgbuON1rb/DslnXk6dqz2nj2bFnWpdRiTiNiUo2v7t6Q5IkcvO08lwBd26vXkVf2EcoEkJV7RCNm5akRMMuFAnhC/dv+710IJZiLcbWQ+0AzBxTZOp1pALPlVcyu+Md/rmjk80H2rj27DG9tpteOp375t/Hppog/1cNI4ap/Gj+nQltnDYn00unZ+KyU868qy6C+//Odp+NU4dN47759xGMBHlkrcQnwNWnzWT+6TON9tkm64z5s+CPW6lxDOv177p+j3QF+dFObbKy8qJ/JT8uhCTbZO6Ncy45mz88uZntkhaHq8sdjAT509sS/2iAiyZO5KrZ9xq/ySa5p196LvzufarVY4tK67I+848Qb9TCueNHcu28exPaZJOsfTHmc1cyZtdrHOwKs+1wO/NP0QyceF0/9obE5mZYdMpMLp2Rnc/1zAvO5A9/2sancc+0LuNHB4M89KnM8AKVuy78ccLvsknGvsgvKoBGLz2KhKKoyHKicZdjz2FUwSi6/CpHAuCyS5TnVya0kSSJHLt5xdeFYWcxth7UlnPOHNP7IJlNSJLEeXMm87sdH7Bx75E+2zltThZWLeT9j3cA+7hk8liWTJiWuQtNMxNK8ynOc9LaHWR3Qw8Lqxaiqip3t60HAiydcR6zxhabfZmDZupIbbliV6OXYFjBeVQsiK7ftdsbgM2cUp7P0qnzTbjS9KI/s9VNXXT6Q3jcmtwAv139DtDBv5w+i0UTRhznKNZlaqWm57p2P23dwYSN33Ud/27Nu0Abnz19BksmjDLpStOHJEnMnFjGwW11bDsYM+x0+QEe+tvfAS9XnjqbBRPKTbzawTN9dBEAO+tjz7Qu46d7qoFPOW98JUsmzDzucbIRl13GbpMJRxR8wQj57kQzSZZkCl2FdPf0AAHy3S6K3NbaQSd71/qGIN2BMP88pC3Fzhqb/YYdwFlVxdhkiUOtPcYG6H2xab9m/J1dlb1GTm9IkmTo890abYeC6qYuWroCuOyyYRhlK2OH51Kc5yQYVvi4tqPPdu/v0/Q7e9zQ0q9OaYGL0cU5qCpsO9hufB8IR4y9U6dVZq+uPW4HY4q1sjY76o/N0OsOhPnn4XYAzqoaGu+v3pgRNXq2RCfh8fiCYaqbtLCT07NY12OKcynMcRCMKHzamFg/TZdb74ehhiRJ5Ef3KO8K9h0v2BPUYvFyHLY+25iFMOwsxDs1LQQjCmOH51KVRXvEHo98l90YzN7f29pnu2ZvgO212mAxd/zwjFxbJllwqhZ3s/YTLdj47WrNwDu7qhi3BV8MA0GSJM6ODuSb9vWt47c+1bZXO2cI6lfn7Kjn9d09MQ/1toPthCIqJflORg2z1sx+oEwdqS0zf1J3rAG/aX8roYjKqGE5hgE4FNHv3037WgmEE7fE+6Suk4iiUu5xUVHo7u3nWYEkSZwxSntvb4uGBwEEwwrvR5/xoTpBA8hza+/kbn/vhp2iqvSENN3nOq33/haGnYV4YasWiHrxlDLrpYInwdwJ2ovw79XNfbb5e3TQP73SQ5kne1+IfXHpaRXIkvbi39PcxUv/1DaKv2hKmclXlhp0L+sH+3s37A4c6WZvczd2WeL8SaW9thkKzJ+syfbGrkbjO92IP3dCSdY/17oXamucR1Lnnaic50/KfjmPx5SKAkryXfSEImw50J7wN91TO31UUcavK9UYqwx7WozvNh9owxeMUJLv5LQR6a/pejxUVWV7y/a0ZJ/qHjtfKEJE0SoW3HvvvbFyJLLMtFFFTB89jId/9b8pP3+yCMPOArT7gtz69FbWbNe8OdeePdrkK0otl0SNlzd2Nh0zw9V5c7eWQXbR5KFh6BxNcZ7TkO3Lv3+ffx5qxy5LXDVjpMlXlhrmjNOM9w/2tRKKHLun4Ru7NP2eVTWMwhzHMX8fKsw/pRSbLPFpYxcHjmgV/Dd8qsk+b1KJmZeWEs4Zrxnw7+09gqIkDqj65Oy8idkv5/GQJIl5E7X7/Z2axMmqPrGZMQSS3/T4wberWwhHn2l9wnL+pNJjkgoyzct7X2bpK0t5ee/LKT+20y7jsttQVRVv1Gt36623Ul9fT319PR9/uo/PXXcDlaPHcM0116T8/MkiDDsLoKjwt6gH5/OzRjGlwtyZUKo5c8wwygpceANh3q05NomiJxhhw27tBXnhEDXsAL59ySRkCeo6/IBmwJfku0y+qtRw2kgPw/OceAPhXpfc9UnLJVOyM5i8vxTlOjk36qF+etMhPm30sr22E7ssGROcbOaMUUXkOm20+ULsaojFXn3a6KW6qQunTR7SHlmdC6JGz9rtDYbHKBhWjCX48ydmfx+cMaqIYbkOvP4w7+9rJRxReHGbNk4tnGrujkh6TT0gLbXzJEnCk6N57Tp6tLI9BQUFVFRUUFFRwSOPPMzGv7/BS2teQ1VVLrzwQk477TTOOOMM/vznP6f0WgaDMOwsQL7Lzn8snMyDX5zBf/3L0MkG1ZFlyXgRvLCt9pi/r9vZSFcgzKhhOcwcogG5oGWa3f+FGUwuL+CzMyv50aJTzb6klGGTJT4zVTPa1n5Sn/C3Q60+Nu1rRZLgiunZmRE6EL58zlgAnnrvAP/xl48ALbxi+BAw4h022Yit0r3sAC9HJ6YXnFIypD2yOpeeVo7LLrOnuduIDf5wfytdgTAl+U4jFjGbsckSi6Zpz+sTG/ez9pMGmrwBinIdXGzyJGXNvjXUdmljyeGuw6zZtybl59DvY68/bCzHAvz4jjt5/tmn+f2zL3P65InY7XYeeOABduzYwWuvvcZ3v/tduru7U349A0EYdhbAaZe55aKJXDWjEnsWFyU+HtecpZU+WP1xPc3exE2S//zhIQA+O7PSdPd+url6ZiWvfu8CfnHtDPJcQ6vakG68r/64AX8otuT+zAeafudNLGFEYXYnD/SHS04tZ+aYIroCYf55qB1Z0ry1Q4XLT49O0rbWoqoqwbDC01EdL5k+NEILTkSB28Glp2kTmac/OAjAX7ZoxdgXnFo+ZN5jN5xbBcCrnzTynT9tA+Ar51YdU9Iok8TvgAHp2/Eix2HDZbehqCptPs1rt3LlSp588gl+/+zLTJowHqfdxogRI5gxYwYAFRUVlJSU0NradxJZJhiaVoTAcpwxqoiZY4oIRVR+/85e4/vttR28Xd2CLMEXzhpasYUnG/MmllBZlENrd5AXo57ZTn+IxzfuB+C62b0XqB5q2GSJX113JudNHM6Y4lzu/8KMrC59cTSXnT4Cl12muqmLt6tbeHrTQZq9Aco9Li4/feh7ZHX+NeqZ/fOHh3h9RyMv/1PzVF8zhN5jp5QX8JWocRdRVCaV5fON88ebek26t05FWwLXd7xItddOkiSG52u1Go90BVixYgWPP/44f/jLK1SOHkNR7rGe6c2bNxOJRBg92tx7QBh2goyx7KKJAPzhnf182ugloqjc87cdgDbTHz2ESyScDNhtsjEI3L/uU9p9QX768k68/jCTyvJNj8vJJJVFOfy/r5/D339wEVfPrDzxD7KIwhwHX5qjGTW3/HELP129E9CebzM9OZnmnPHDmX9KKaGIytef+JBgRGHexBLOHAKJE/GsuOI0HvziDH686FT+fNNcU1cajvbW6aTLazcs14ldlvnlz/+HXz/8CI88+gSSzUFbSxOBzlYCgdjqU2trK9dffz2//e1vU3oNg2ForQUJLM3FU8q4cHIpG3Y386+/f59xJXls2t9KrtPG9z8z2ezLE6SAL88dyx83HWRfSzfnrFqPP6TFptx91dQhszwlgO9cMom3Pm1iT7MWS3TR5FKuixp7JxM//8J0bnh0E5/UdTKhNI/7rpk+5Eq9yLLEVTOsMTmJj62LJ95rt2TCkpSdzyZLVBS6ePw3/0uX18vllyTumLNp0ybOPvtsAoEAV199Nbfddhvnnntuys4/WCQ1HUVghhidnZ0UFhbS0dGBx5P9QbFm0tod5Au/2UhNtDq7XZb45dKZXD7t5FnCGersbvByw6ObaOj0Y5MlVi45jevnVpl9WYIU0+EL8dzWw3jcDq6cMRLHEI0PPhGKolLX0cOIwhxsYvJyXPx+P/v27WPcuHG43QOrVxpWwlzx/BXUddUZy7DxSEhU5lfyt8/+DbucWp9Vk9dPY2cAVJXh+S5GFLoNA15VVa677jomT57MXXfdldR5jtc/A7FDhGHXD4Rhl1q6A2H+uuUwzd4AV5wxkskVBWZfkiDF9AQjbDvUTlVJ7kmRMCEQCE5MMobdBw0f8NVXv3rCdo8ufJSzK84e7CX2SURRUVGxy4kTmHfeeYcLLriAM844w/juySefZNq0gVe4SJVhJ5ZiBRknz2UXHpwhTo7TZuw4IhAIBMkyvXQ6982/j2Ak2Gcbp83J9NLpaTm/5o091iM7b948FOXYouxmIgw7gUAgEAgElsZpc7KwaqHZl5EVnJxBEQKBQCAQCARDEGHYCQQCgUAgEAwRhGEnEAgEAoFAMESwpGH30EMPUVVVhdvtZs6cOWzatOm47R944AEmT55MTk4Oo0eP5nvf+x5+v9/4+1133YUkSQmfKVOmpFsMgUAgEAgEgoxiueSJZ555huXLl/PII48wZ84cHnjgARYuXMju3bspKzt24+E//vGP3HbbbTz66KOce+65fPrpp3zlK19BkiTuv/9+o93UqVN5/fXXjf/b7ZYTXSAQCASCIY+ostY7qeoXy3ns7r//fr7xjW9w4403ctppp/HII4+Qm5vLo48+2mv7d999l/POO4/rrruOqqoqPvOZz7B06dJjvHx2u52KigrjU1JSkglxBAKBQCAQAA6Htr+qz+cz+Uqsid4vej8NFku5rYLBIJs3b+b22283vpNlmQULFrBx48Zef3Puuefy1FNPsWnTJmbPns3evXtZvXo1X/7ylxPaVVdXM3LkSNxuN3PnzmXVqlWMGXNybEouEAgEAoHZ2Gw2ioqKaGpqAiA3N3fIbcE2GFRVxefz0dTURFFRETabLanjWcqwa2lpIRKJUF5envB9eXk5u3bt6vU31113HS0tLcybNw9VVQmHw9x000386Ec/MtrMmTOHxx57jMmTJ1NfX8/dd9/N+eefz/bt2ykoOHbXg0AgkLC5b2dnZ4okFAgEAoHg5KWiogLAMO4EMYqKioz+SQZLGXaDYcOGDdx77738+te/Zs6cOdTU1PCd73yHn/zkJ9x5550AXH755Ub7M844gzlz5jB27FieffZZvva1rx1zzFWrVnH33XdnTAaBQCAQCE4GJElixIgRlJWVEQqFzL4cy+BwOJL21OlYyrArKSnBZrPR2NiY8H1jY2OfVuydd97Jl7/8Zb7+9a8DMG3aNLq7u/nmN7/Jj3/8Y2T52DDCoqIiTjnlFGpqano95u23387y5cuNyHv1UwAAD+NJREFU/3d2djJ69OjBiiUQCAQCgSAOm82WMkNGkIilkiecTiezZs1i/fr1xneKorB+/Xrmzp3b6298Pt8xxpt+s/SVYdLV1cWePXsYMWJEr393uVx4PJ6Ej0AgEAgEAoHVsZTHDmD58uXccMMNnHXWWcyePZsHHniA7u5ubrzxRgCuv/56KisrWbVqFQBLlizh/vvvZ+bMmcZS7J133smSJUsMA+/73/8+S5YsYezYsdTV1bFy5UpsNhtLly41TU6BQCAQCASCVGM5w+7aa6+lubmZFStW0NDQwIwZM1i7dq2RUHHw4MEED90dd9yBJEnccccd1NbWUlpaypIlS/jpT39qtDl8+DBLly7lyJEjlJaWMm/ePN577z1KS0szLp9AIBAIBAJBupBUUSnwhHR0dFBUVMShQ4fEsqxAIBAIBIKMosf6t7e3U1hYeNy2lvPYWRGv1wsgEigEAoFAIBCYhtfrPaFhJzx2/UBRFOrq6igoKEhbMUXdGj/ZvYKiH2KIvtAQ/RBD9IWG6IcYoi9iDOW+UFUVr9fLyJEje632EY/w2PUDWZYZNWpURs4lsnA1RD/EEH2hIfohhugLDdEPMURfxBiqfXEiT52OpcqdCAQCgUAgEAgGjzDsBAKBQCAQCIYIwrCzCC6Xi5UrV+Jyucy+FFMR/RBD9IWG6IcYoi80RD/EEH0RQ/SFhkieEAgEAoFAIBgiCI+dQCAQCAQCwRBBGHYCgUAgEAgEQwRh2AkEAoFAIBAMEYRhl0EeeughqqqqcLvdzJkzh02bNh23/Z///GemTJmC2+1m2rRprF69OkNXmj5WrVrF2WefTUFBAWVlZVx99dXs3r37uL957LHHkCQp4eN2uzN0xenhrrvuOkamKVOmHPc3Q/F+AKiqqjqmLyRJ4pZbbum1/VC5H/7+97+zZMkSRo4ciSRJvPDCCwl/V1WVFStWMGLECHJycliwYAHV1dUnPO5A3zNW4Hh9EQqF+OEPf8i0adPIy8tj5MiRXH/99dTV1R33mIN5xszmRPfEV77ylWNkuuyyy0543KF2TwC9vjMkSeJnP/tZn8fMxntiMAjDLkM888wzLF++nJUrV7JlyxamT5/OwoULaWpq6rX9u+++y9KlS/na177G1q1bufrqq7n66qvZvn17hq88tbz11lvccsstvPfee6xbt45QKMRnPvMZuru7j/s7j8dDfX298Tlw4ECGrjh9TJ06NUGmd955p8+2Q/V+APjggw8S+mHdunUAXHPNNX3+ZijcD93d3UyfPp2HHnqo17//z//8D//7v//LI488wvvvv09eXh4LFy7E7/f3ecyBvmeswvH6wufzsWXLFu688062bNnCc889x+7du7nyyitPeNyBPGNW4ET3BMBll12WINPTTz993GMOxXsCSOiD+vp6Hn30USRJ4nOf+9xxj5tt98SgUAUZYfbs2eott9xi/D8SiagjR45UV61a1Wv7L3zhC+rixYsTvpszZ476b//2b2m9zkzT1NSkAupbb73VZ5s//OEPamFhYeYuKgOsXLlSnT59er/bnyz3g6qq6ne+8x11woQJqqIovf59KN4PgPr8888b/1cURa2oqFB/9rOfGd+1t7erLpdLffrpp/s8zkDfM1bk6L7ojU2bNqmAeuDAgT7bDPQZsxq99cMNN9ygXnXVVQM6zslyT1x11VXqxRdffNw22X5P9BfhscsAwWCQzZs3s2DBAuM7WZZZsGABGzdu7PU3GzduTGgPsHDhwj7bZysdHR0AFBcXH7ddV1cXY8eOZfTo0Vx11VV88sknmbi8tFJdXc3IkSMZP348X/rSlzh48GCfbU+W+yEYDPLUU0/x1a9+9bj7Mg/F+yGeffv20dDQkKDzwsJC5syZ06fOB/OeyVY6OjqQJImioqLjthvIM5YtbNiwgbKyMiZPnszNN9/MkSNH+mx7stwTjY2NvPLKK3zta187YduheE8cjTDsMkBLSwuRSITy8vKE78vLy2loaOj1Nw0NDQNqn40oisJ3v/tdzjvvPE4//fQ+202ePJlHH32UF198kaeeegpFUTj33HM5fPhwBq82tcyZM4fHHnuMtWvX8vDDD7Nv3z7OP/98vF5vr+1PhvsB4IUXXqC9vZ2vfOUrfbYZivfD0eh6HYjOB/OeyUb8fj8//OEPWbp06XH3Ax3oM5YNXHbZZTzxxBOsX7+e//7v/+att97i8ssvJxKJ9Nr+ZLknHn/8cQoKCviXf/mX47YbivdEb9jNvgDBycstt9zC9u3bTxjjMHfuXObOnWv8/9xzz+XUU0/lN7/5DT/5yU/SfZlp4fLLLzf+fcYZZzBnzhzGjh3Ls88+269Z51Dl//7v/7j88ssZOXJkn22G4v0g6B+hUIgvfOELqKrKww8/fNy2Q/EZ++IXv2j8e9q0aZxxxhlMmDCBDRs2cMkll5h4Zeby6KOP8qUvfemESVRD8Z7oDeGxywAlJSXYbDYaGxsTvm9sbKSioqLX31RUVAyofbaxbNkyXn75Zd58801GjRo1oN86HA5mzpxJTU1Nmq4u8xQVFXHKKaf0KdNQvx8ADhw4wOuvv87Xv/71Af1uKN4Pul4HovPBvGeyCd2oO3DgAOvWrTuut643TvSMZSPjx4+npKSkT5mG+j0B8Pbbb7N79+4BvzdgaN4TIAy7jOB0Opk1axbr1683vlMUhfXr1yd4HuKZO3duQnuAdevW9dk+W1BVlWXLlvH888/zxhtvMG7cuAEfIxKJ8PHHHzNixIg0XKE5dHV1sWfPnj5lGqr3Qzx/+MMfKCsrY/HixQP63VC8H8aNG0dFRUWCzjs7O3n//ff71Plg3jPZgm7UVVdX8/rrrzN8+PABH+NEz1g2cvjwYY4cOdKnTEP5ntD5v//7P2bNmsX06dMH/NuheE8AIis2U/zpT39SXS6X+thjj6k7duxQv/nNb6pFRUVqQ0ODqqqq+uUvf1m97bbbjPb/+Mc/VLvdrt53333qzp071ZUrV6oOh0P9+OOPzRIhJdx8881qYWGhumHDBrW+vt74+Hw+o83RfXH33Xerr776qrpnzx518+bN6he/+EXV7Xarn3zyiRkipIR///d/Vzds2KDu27dP/cc//qEuWLBALSkpUZuamlRVPXnuB51IJKKOGTNG/eEPf3jM34bq/eD1etWtW7eqW7duVQH1/vvvV7du3Wpkev7Xf/2XWlRUpL744ovqRx99pF511VXquHHj1J6eHuMYF198sfrLX/7S+P+J3jNW5Xh9EQwG1SuvvFIdNWqUum3btoT3RiAQMI5xdF+c6BmzIsfrB6/Xq37/+99XN27cqO7bt099/fXX1TPPPFOdNGmS6vf7jWOcDPeETkdHh5qbm6s+/PDDvR5jKNwTg0EYdhnkl7/8pTpmzBjV6XSqs2fPVt977z3jb/Pnz1dvuOGGhPbPPvusesopp6hOp1OdOnWq+sorr2T4ilMP0OvnD3/4g9Hm6L747ne/a/RbeXm5umjRInXLli2Zv/gUcu2116ojRoxQnU6nWllZqV577bVqTU2N8feT5X7QefXVV1VA3b179zF/G6r3w5tvvtnrs6DLqiiKeuedd6rl5eWqy+VSL7nkkmP6Z+zYserKlSsTvjvee8aqHK8v9u3b1+d748033zSOcXRfnOgZsyLH6wefz6d+5jOfUUtLS1WHw6GOHTtW/cY3vnGMgXYy3BM6v/nNb9ScnBy1vb2912MMhXtiMEiqqqppdQkKBAKBQCAQCDKCiLETCAQCgUAgGCIIw04gEAgEAoFgiCAMO4FAIBAIBIIhgjDsBAKBQCAQCIYIwrATCAQCgUAgGCIIw04gEAgEAoFgiCAMO4FAIBAIBIIhgjDsBAKBQCAQCIYIwrATCAQCgUAgGCIIw04gEAgEAoFgiCAMO4FAIBhCTJ8+HUmSjvk0NDSYfWkCgSADCMNOIBAIUsxDDz1EVVUVbrebOXPmsGnTprT8pjfWrVtHfX0969evZ+LEiRQUFLBixQoqKioGdTyBQJBdCMNOIBAIUsgzzzzD8uXLWblyJVu2bGH69OksXLiQpqamlP6mL8rKynjppZdYtGgRs2fPprq6mrvvvjsZkQQCQRYhqaqqmn0RAoFAkAk2bdrED37wA95//33Gjh3LU089xZYtW3j55Zd56aWXUnKOOXPmcPbZZ/OrX/0KAEVRGD16NLfeeiu33XZbyn7TFw888AC33XYbv/3tb7n++uuTE0YgEGQdwmMnEAhOCt577z3mz5/P4sWL+eijjzj11FO55557+O///u9jPFr33nsv+fn5x/0cPHjwmHMEg0E2b97MggULjO9kWWbBggVs3Lix1+sazG/6YuPGjfzHf/wHzzzzjDDqBIKTFLvZFyAQCASZYPny5VxzzTX8x3/8BwBLly5l6dKlXHXVVcycOTOh7U033cQXvvCF4x5v5MiRx3zX0tJCJBKhvLw84fvy8nJ27drV63EG85u++Pa3v83NN9/MVVddNaDfCQSCoYMw7AQCwZDn8OHDbNy4kfvuu8/4zm63o6pqr/FnxcXFFBcXZ/ISk6a6upoPP/yQ5557zuxLEQgEJiKWYgUCwZBn586dAJx55pnGd7t372b27NlMmzbtmPaDXYotKSnBZrPR2NiY8H1jY2OfWamD+U1vbNy4kZKSEkaPHt3v3wgEgqGHMOwEAsGQp6OjA5vNhiRJALS2tnLfffeRm5vba/ubbrqJbdu2HffT21Ks0+lk1qxZrF+/3vhOURTWr1/P3Llzez3XYH7TG6FQiEAggN/v7/dvBALB0EMsxQoEgiHPjBkziEQi/M///A/XXHMN3/nOd6iqqmLHjh0cOHCAsWPHJrRPZil2+fLl3HDDDZx11lnMnj2bBx54gO7ubm688Uajza9+9Suef/55w5jrz29OxIUXXojf7+fGG2/k3//935k8eTIFBQWDkkEgEGQvwmMnEAiGPBMnTuSee+7hwQcfZObMmYwcOZLXXnuNyspKLrvsspSe69prr+W+++5jxYoVzJgxg23btrF27dqE5IiWlhb27NkzoN889thjhsexNyZMmMCLL77I3r17Of/88yksLORHP/pRSmUTCATWR9SxEwgEgixg5cqVvPXWW2zYsKFf7R966CF++tOfUldXl94LEwgElkIsxQoEAkEWsGbNGqOA8Ylob2/nww8/ZPbs2Wm+KoFAYDWEYScQCARZwED2jv3FL35BbW0tjz32WPouSCAQWBKxFCsQCAQCgUAwRBDJEwKBQCAQCARDBGHYCQQCgUAgEAwRhGEnEAgEAoFAMEQQhp1AIBAIBALBEEEYdgKBQCAQCARDBGHYCQQCgUAgEAwRhGEnEAgEAoFAMEQQhp1AIBAIBALBEEEYdgKBQCAQCARDBGHYCQQCgUAgEAwRhGEnEAgEAoFAMET4/5VNu7CIP2AEAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# ---------- Precise QH ----------\n", + "# Computing at higher resolution than necessary.\n", + "eq0 = get(\"precise_QH\")\n", + "rho = np.linspace(0.01, 1, 5)\n", + "grid = LinearGrid(rho=rho, M=eq0.M_grid, N=eq0.N_grid, NFP=eq0.NFP, sym=False)\n", + "\n", + "# ---------- How to pick resolution? ----------\n", + "# Plotting for 3 toroidal transits to see by eye\n", + "# Seems like these resolutions are sufficient.\n", + "X, Y = 16, 32\n", + "theta = Bounce2D.compute_theta(eq0, X, Y, rho=rho)\n", + "num_transit = 3\n", + "Y_B = 32\n", + "plot_wells(\n", + " eq0,\n", + " grid,\n", + " theta,\n", + " Y_B=Y_B,\n", + " num_transit=num_transit,\n", + " num_well=10 * num_transit,\n", + ");" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "92403ae4-d958-49ad-9e2c-911822473409", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnYAAAHWCAYAAAD6oMSKAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAADwpklEQVR4nOy9d3wc5Z34/57Zqt4ly7IsVzA2YLCJMb3EYDAhjaMkdwdH2peAyRHuQo6EC4T8Ei6EcEkIEHI5Ssz3LvnmKCGHsTEmQAg2xdg0F9wtq3dpJW2d+f0x+8yu7JW0u9qdmV3P+/XaF3j17MxTZub5zKdKqqqq2NjY2NjY2NjY5Dyy2R2wsbGxsbGxsbHJDLZgZ2NjY2NjY2OTJ9iCnY2NjY2NjY1NnmALdjY2NjY2NjY2eYIt2NnY2NjY2NjY5Am2YGdjY2NjY2NjkyfYgp2NjY2NjY2NTZ5gC3Y2NjY2NjY2NnmCLdjZ2NjY2NjY2OQJtmBnY2NjY2NjY5Mn2IKdjY2NjY2NjU2eYAt2NjY2R/Hkk08iSVLCzyWXXJLwN48//jiSJHHgwAFjO5siudLPu+66C0mS6O7uTvo39957LwsWLEBRFP27WbNmcdddd02pL4mO8atf/YqZM2cSCASmdGyjyNY8QOJ5h8nvo1ybQ7/fj8vlory8fMpzaZM9bMHOJicRm/M777yT8m/feOMN7rrrLvr7+zPfMRPIxnhOPvlk1qxZw5o1a3j88cdZunQpwISCnY25DA4O8uMf/5hvf/vbyPLkj/b169cfJWyUlpaybNkynn322Ul//w//8A8Eg0EeeeSRDPR+fLJ5v051DmDieZ/sPjJqDgF8Ph933nknl1xyCZWVlUiSxOOPPz5ue0VRqKmp4d5779W/C4fD/OY3v6GpqYm7776bzs7OrPfbJnVswc7mmOONN97g+9//fl4Jdpkez8knn8zf/d3fcf755/PII4+wZcsWzj77bLZs2cItt9yS8Dd///d/z+joKE1NTRnrRzbIlX6myqOPPko4HOYLX/hCUu3fe+89AH7xi1+wZs0annjiCb797W9z8OBBrrzySnbu3Dnh771eL9dddx33338/qqpOuf/jkc37dapzABPP+2T3kVFzCNDd3c3dd9/Njh07WLx48aTt33rrLbq7u7nsssv074qLi7nuuuu47bbbUFWV999/P5tdtkkTp9kdsLHJF4aHhykqKjK7Gxnjww8/5OKLL6anp4ef//zn3HzzzUiSNG57h8OBw+EwsIfpkel+WmXdH3vsMT796U/j9XqTav/+++9TXl7OzTffPOb76upqbrjhBrZt28aCBQsmPMZVV13Fvffey5///GcuvPDCtPtuFpmYg8nmfbL7yKg5rK+vp62tjWnTpvHOO+/wiU98YsL2a9eupampiUWLFh31N/Hdjh07WLFiRVb6a5M+tsbOJi8Q/kh79uzhH/7hHygvL6esrIzrr7+ekZGRMe2+9a1vATB79mzd/CL8rVpaWvjSl75EXV0dHo+HRYsW8eijj457vu3bt/PFL36RiooKzj77bACGhoa45ZZbmDVrFh6Ph9raWi666CLeffdd/ffJnqelpYUvf/nLTJ8+HY/Hw+zZs/n6179OMBicdDzJ9GM8Dhw4wIoVKwgEArz66qt84xvfmFCog8S+a8muy0QkM1fiPDt37uSqq66itLSUqqoq/vEf/xG/3z9pP1955RVOO+00vF4vc+fO5ZFHHtGPmeg8idb94MGD3HjjjRx//PEUFBRQVVXFlVdeeZQvXyp9Bejv75907vbv38/777+f0ib73nvvsWTJkqO+b29vB+CEE06Y9BhLly6lsrKSP/7xj5O2Ted6nOx+nSpTnYPJ5j2Z+yiVOZwKHo+HadOmJd3++eefH6Oti0dcp9u3b89I32wyi62xs8krrrrqKmbPns0999zDu+++y29+8xtqa2v58Y9/DMDnP/95Pv74Y/77v/+bf//3f6e6uhqAmpoaOjo6WL58OZIksXr1ampqanjhhRf48pe/zODgYEIT5JVXXsn8+fP50Y9+pJtSbrjhBv7nf/6H1atXs3DhQnp6enj99dfZsWMHS5YsSfo8ra2tLFu2jP7+fr72ta+xYMECWlpa+J//+R9GRkZwu90TjudrX/vahP0YD0VR+OIXv8jw8DCvvfYap556atbXZTxSXZOrrrqKWbNmcc8997B582Z+8Ytf0NfXx29/+9txz7F161YuueQS6uvr+f73v08kEuHuu++mpqZm3N8kWve3336bN954g2uuuYYZM2Zw4MABHn74Yc4//3y2b99OYWFhWn1NZu7eeOMNgAnXNZ5gMMiuXbs477zz9OCMvr4+1q9fz49//GNWr16dlLlOnPOvf/3rpO0muy8SMdH1PVUyMQcTzXsq99FkcxgKhRgYGEhmWFRWViblYzkR7e3tbN26lbvvvjvh3//pn/4J0DR2NhZEtbHJQR577DEVUN9++21VVVX1zjvvVAH1S1/60ph2n/vc59Sqqqox3/3kJz9RAXX//v1jvv/yl7+s1tfXq93d3WO+v+aaa9SysjJ1ZGRE/06c7wtf+MJRfSsrK1Nvuummcfue7HmuvfZaVZZlfYzxKIoy6Xgm68d4PPHEEyqgPvrooyn9TqxJfD9SWZdEJDtX4jyf/vSnx7S78cYbVUB97733xu3n5ZdfrhYWFqotLS16m927d6tOp1M98hE50brHXx+CTZs2qYD629/+9qhjTNbXVObujjvuUAF1aGjoqD40NTWpd95555jvtm7dqgJHfVwul/qzn/0sqWMIvva1r6kFBQUJ/xZPutfjeNd3qhw5hlTnINExJpr3VO6jyebwz3/+c8K+JvokM09vv/22CqiPPfZYwr//53/+p1pQUJDwml6zZo0KqLW1tWptbe2k57IxHtsUa5NX3HDDDWP+fc4559DT08Pg4OCEv1NVlaeeeorLL78cVVXp7u7WPytXrmRgYCChyejI8wGUl5fz5ptv0tramvZ5FEXh2Wef5fLLL+e000476jiTmUUn68dE/PKXv+Skk07i+uuvT+l3E5HOuqSzJjfddNOYfwvfqbVr1yY8RyQS4aWXXuKzn/0s06dP17+fN28el156adLjASgoKND/PxQK0dPTw7x58ygvL0947STb12TmrqenB6fTSXFx8bh9jkc4vT/xxBNs2LCBDRs28OSTT3LKKafw7W9/m02bNiV1HICKigpGR0cnNa2nez1mi0zMwUTznsp9NNkcLl68WO/jZJ9UzK3jsXbtWi644IIx1zRokbXf/va3ufTSS7n22mvp7Oykt7d3yuezySy2KdYmr5g5c+aYf1dUVACaiaW0tHTc33V1ddHf38+vf/1rfv3rXydskyi0f/bs2Ud9d++993LdddfR2NjI0qVLWbVqFddeey1z5sxJ+jxdXV0MDg5y4oknjtvnyZioH+PR3d3NO++8wz333JP2eRORzrqksybz588f8++5c+ciy/K4PlmdnZ2Mjo4yb968o/6W6DtBonUfHR3lnnvu4bHHHqOlpWVMlGMiM1qyfU33mp6I9957D6fTyRe+8AVcLpf+/fnnn8+MGTP45S9/yRlnnJHUscQ4J3vZSOd6zCaZnIMjSfU+mmwOKyoqDAtSCIVCbNiwIWHff/SjH9Hd3c3Pf/5zXn/9dUDzsxN+pjbWwBbsbPKK8aId1UlSCYjEon/3d3/Hddddl7DNySeffNR3R77RguYTdc455/DMM8/w4osv8pOf/IQf//jHPP3007qfzWTnmay/yTBRP8bTRu3YsQNVVTPiVxdPOuuS7prEk4xmMx0SrfvNN9/MY489xi233MIZZ5xBWVkZkiRxzTXXHJW4NhHj9TWZuauqqiIcDjM0NERJScmk53r//feZO3fuGIEGoKGhgcLCQg4fPjzpMQR9fX0UFhYmnJN40rkes0km5mC8eU/1PppsDoPBYNKasZqamilFfb/++usMDg6yatWqMd/v3buX+++/n3/6p39i/vz59PX1AdpYbcHOWtiCnc0xR6INtKamhpKSEiKRSEbejOvr67nxxhu58cYb6ezsZMmSJfzwhz/k1VdfTeo8iqJQWlrKhx9+OOm5JhJexuvHeBvp8PDwpMc0inTWZPfu3WO0aXv27EFRFGbNmpWwfW1tLV6vlz179hz1t0TfTcT//M//cN111/HTn/5U/87v94+bfy3Vvk6ESMmxf//+SYVd0ISaM88886jvu7q6GBkZScmct3///qQiaCH16xGydy1mYg7Gm/dU76PJ5vCNN97gggsuSPpY6VxDgueff56FCxcedYxbb72Vmpoavvvd7wKxiGE7MtZ62D52NsccIudY/IbrcDi44ooreOqppxIKU11dXUkdOxKJHGV2q62tZfr06QQCgaTPI8syn/3sZ/nTn/6UsLpGvLYm0Xgm68d4iIf5008/PfFADSCdNXnwwQfH/PuBBx4AGFdwcDgcrFixgmeffXaM79eePXt44YUXUu7vkRrIBx54gEgkkrB9qn2dCGEyTKYSS3t7O52dnQkFCRFpe8UVVyR97nfffTehgBRPMtfjyMgIO3fuPKqEWqLre6L2yZCpORhv3lO9jyabQyN97NauXXtUmpP169fz3HPPcd999+nrUVJSQmNjox0Za0FsjZ3NMYco6/Pd736Xa665BpfLxeWXX86//du/8ec//5nTTz+dr371qyxcuJDe3l7effddXnrppaRMIUNDQ8yYMYO/+Zu/YfHixRQXF/PSSy/x9ttv65qcZM/zox/9iBdffJHzzjuPr33ta5xwwgm0tbXxhz/8gddff53y8vJxx3POOedw/PHHT9iPRCxYsICVK1fyq1/9io6ODi6++GJmzZrFhRdeiNvtnsq0p0Wqa7J//34+/elPc8kll7Bp0yaefPJJvvjFL06YtuKuu+7ixRdf5KyzzuLrX/86kUiEX/7yl5x44ols27Yt6b5+6lOfYs2aNZSVlbFw4UI2bdrESy+9RFVVVcL26fR1PObMmcOJJ57ISy+9xJe+9KUJ24pqC52dnTz55JOA5hP24osv8sILL3DNNddw5ZVXJnXeLVu20Nvby2c+85kJ2yVzX7z11ltccMEF3HnnnWPqkI53v7799tsJ2ydDpuZgvHlP5T5KZg4z5WP3y1/+kv7+fv0l5k9/+pNucr755pvp7e1lx44dPPzww/pvQqEQt9xyCxdccAFXX331mOMtXLjQFuysiOFxuDY2GWC8dCddXV0J2x2ZAuAHP/iB2tDQoMqyPObvHR0d6k033aQ2NjaqLpdLnTZtmvrJT35S/fWvfz3m9+OdLxAIqN/61rfUxYsXqyUlJWpRUZG6ePFi9aGHHhrTLtnzHDx4UL322mvVmpoa1ePxqHPmzFFvuukmNRAITDieXbt2JdWPRAwNDan//M//rM6dO1d1u90qoF566aWT/m6idCfJrksikpkrcZ7t27erf/M3f6OWlJSoFRUV6urVq9XR0dFJz71x40b11FNPVd1utzp37lz1N7/5jfpP//RPqtfrHfPb8cajqqra19enXn/99Wp1dbVaXFysrly5Ut25c6fa1NSkXnfddSn3NdW5u//++9Xi4uKjUlQcmaLj3nvvPSpFRklJiXrWWWep//mf/zkmlc54xxB8+9vfVmfOnJnwN/Ekc1+IlB6JzpPofp2ofSLix5DOHIw3D+PNe7L3UbJzmAmampomTJPyy1/+Ui0rK1NDodCY8TmdTvXDDz886ni33nqrKklSwnQvNuZhC3Y2NjYT8i//8i8qoPb29prdlXGZSOBKl8985jPqvHnzMnY8QTb6qqqq2t/fr1ZWVqq/+c1vxnw/UQ66ZEl0DL/fr06bNm3cnG9WI1vzMN68H0mi+8hqc3jppZeqV155pdndsJkito+djY3NhNTU1FBQUHBU5YR8YnR0dMy/d+/ezdq1azn//PPN6VAalJWVcdttt/GTn/wkqSjcqfLYY4/hcrkS5vQ7lkh23hPdR1abw/PPP59vfvObZnfDZorYgp2Njc24PPDAA9x1111ce+21eDwes7uTNebMmcPtt9/Of/zHf3DHHXewfPly3G43t912m9ldS4lvf/vb7Ny5c8olpZLhhhtu4NChQ3l9XSTLZPM+3n1ktTm87bbb0s7dZ2Md7OAJGxubcfntb3/LF7/4Re6//36zu5JVLrnkEv77v/+b9vZ2PB4PZ5xxBj/60Y+OSiJsY5MOx8p9ZGMNJFXNQCZUGxsbGxsbGxsb07FNsTY2NjY2NjY2eYKlBLvXXnuNyy+/nOnTpyNJEs8+++ykv3nllVdYsmQJHo+HefPm8fjjjx/V5sEHH2TWrFl4vV5OP/103nrrrTF/9/v93HTTTVRVVVFcXMwVV1xBR0dHhkZlY2NjY2NjY2MMlvKxGx4eZvHixXzpS1/i85///KTt9+/fz2WXXcYNN9zA//2//5eNGzfyla98hfr6elauXAnA73//e2699VZ+9atfcfrpp/Ozn/2MlStXsmvXLmprawH45je/yfPPP88f/vAHysrKWL16NZ///Of561//mnTfFUWhtbWVkpISS5RjsrGxsbGxsckPVFVlaGiI6dOnTx4cZXK6lXEB1GeeeWbCNrfddpu6aNGiMd9dffXV6sqVK/V/L1u2TL3pppv0f0ciEXX69OnqPffco6qqloPI5XKpf/jDH/Q2O3bsUAF106ZNSfe3ubl53MSP9sf+2B/7Y3/sj/2xP1P9NDc3TyqPWEpjlyqbNm06qszKypUrueWWWwAIBoNs2bKF22+/Xf+7LMusWLGCTZs2AVo5l1AoNOY4CxYsYObMmWzatInly5cn1ZeSkhIAmpubKS0tncqwbGxsbGxsbGx0BgcHaWxs1GWNichpwa69vZ26urox39XV1TE4OMjo6Ch9fX1EIpGEbXbu3Kkfw+1263U349u0t7ePe+5AIDCmmPrQ0BAApaWltmBnY2NjY2Njk3GScfWyVPBELnHPPfdQVlamfxobG83uko2NjY2Njc0xTk4LdtOmTTsqerWjo4PS0lIKCgqorq7G4XAkbDNt2jT9GMFgkP7+/nHbJOL2229nYGBA/zQ3N2dmUDY2NjY2NjY2aZLTgt0ZZ5zBxo0bx3y3YcMGvSSK2+1m6dKlY9ooisLGjRv1NkuXLsXlco1ps2vXLg4dOjRhaRWPx6ObXW3zq42NjY2NjY0VsJSPnc/nY8+ePfq/9+/fz7Zt26isrGTmzJncfvvttLS08Nvf/hbQ6uz98pe/5LbbbuNLX/oSL7/8Mv/v//0/nn/+ef0Yt956K9dddx2nnXYay5Yt42c/+xnDw8Ncf/31gFbA+ctf/jK33norlZWVlJaWcvPNN3PGGWckHThhY2NjY2NjY2MFLCXYvfPOO1xwwQX6v2+99VYArrvuOh5//HHa2to4dOiQ/vfZs2fz/PPP881vfpOf//znzJgxg9/85jd6DjuAq6++mq6uLr73ve/R3t7OKaecwrp168YEVPz7v/87sixzxRVXEAgEWLlyJQ899JABI7axsbGxsbGxyRx2rdgMMTg4SFlZGQMDA7ZZ1sbGxsbGxiZjpCJj5LSPnY2NjY2NjY2NTQxbsLOxsbGxsbGxyRNswc7GxsbGxsbGJk+wBTsbGxsbGxsbmzzBFuxsbGxsbGxsbPIEW7CzsbGxsbGxsckTbMHOxsbGxsbGxiZPsAU7GxsbdrUP8cQbB+gbDprdFRsbGxubKWCpyhM2NjbG0zYwyucf+ivDwQjPbG3hmRvPRJIks7tlY2NjY5MGtsbOZkL+sruLP25rwS5Qkr88+vp+hoMRALY19/PuoX5zO2RjY2Njkza2xs5mXF7e2cGXHn8HgIHRENeeMcvcDtlkHFVVWfdROwAuh0QoovLax10sbaowuWc2NjY2Nulga+xsxuWxvx7Q////bj5kXkdsssbHHT6ae0fxOGW+fckCAN491Gdyr2xsbGxs0sUW7GwSMjAa4o29Pfq/d3UM0THoN7FHNtngnYO9AHxiVqWupdvZPmRml2xsbGxspoAt2Nkk5P3D/UQUlcbKAo6vKwHgo9YBk3tlk2m2Rf3pTmks57joOncNBei1o2Pzkufea2X1f73Lqx93md0VGxubLGELdjYJef+wJsSd0ljBgnptw9/RZmty8o1tzf2AJtgVeZw0lBcAsL/bZ2KvbLLBn3d18o3/3sr/vt/GV594h+beEbO7ZGNjkwVswc4mIWLDXzyjTNfk7O6wBbt8YtAfYk+XJsCdMrMcgIYKTbA73DdqVrdssoCiqPz4hZ36v4MRhf9+y/abtbHJR2zBziYhu6J+Vgunl9JUVQjYm32+saN1EFWFhvICqos9AMwotwW7fOQve7rZ2T5EscfJ3Z9ZBMCG7R0m98rGxiYb2IKdzVEEwhEO92lmmnk1xcyosAW7fERo6+bXFevfzYhq7Fr67bXOJ55+9zAAn1/SwKcXTwdgd6eP/hHbl9LGJt+wBTubozjYM4KiQrHHSU2JR9/sO4b8BMIRk3tnkyn2dGqC3byamGBnm2LzD18gzPporsLPL5lBeaGbWVEt/ActdkCUjU2+YQt2Nkexr2sYgDk1RUiSRFWRG69LRlWhrd9OeZIv7I2u89zamGA3rUwT7Drt1DZ5w0vbO/CHFOZUF7F4RhkAJzZo//2oddDMrtnY2GQBW7CzOYp90YjIOdVFAEiSxPSo71XrwLGjyRkNRnStVj6yV2js4gS7qiI3AN0+20SXL2zc2QnAJSdO02sAz41qaQ90D5vWLxsbm+xglxSzOYr9UU3O7MoCBtetQw0GqQzI7EPi0KubWPRRrG6s5HZTfOGFyG63Wd3NOEowSPv6l/j8O0HaAy5Wz1T46oyxtXJzfdw+f0j3o5td5tbX2RMEcNDr89P7x+dwaHJAzo/3WCUUjvDyTs0M+8kTavXvZ0df2vbbgp2NTd5hC3Y2RyE2/LqBTlr+9ZsAFJ72tzDjVPY99Sda9/5lTPuZTzxB0enLDO9nthjduo0fPPP/aK+9EoDH9gZY8cvv41HCY9rl8rh/+946QKbYq1Lw8XYO3aKtc1iS4TP3oiCx619/QHkwprHM5fEeq/xy81qGAzJFHpVTGmP1f2dFBbsDPbZgZ2OTb9imWJujaB/Q/KuaFi/ANWMGSBIVAS39SZ+nJNZQknA1NlK4dIkZ3cwa7lNP5rWZC/V/D7sK2F45K9Ygx8cdVsKseW8DABFnK+5TT9bX2akqlAa0zb7fEzXR5vh4j1XCSpg172wFwFG8C5VY4JMInugYDOAP2QFRNjb5hK2xyzCRsEIkrJjdjbRRVZX2/lFkVXOkL7tpNW3f+S6Vfh+yCv3eUhTJobevvGk1CjLk8JiP5IUDG/CHGpFVkFw9qKEqPqiex+Ke/XqbXB732n0v0NfvRlZBcbTwwoENnB1dZySo8PvwuYvo9ZYy06eVnsrl8R6rrN33AoM9M5BVCLu3sXbPC1w25zIAil0OCp0y/pBCW+8IM6uKTO6tjY3NRKQiV9iCXYbZuuEgxYUlkze0KP5QhFOGZECmbXMnnfIi+k66kkqphOV+J2WF8zjQtBKQcJSW4pMWIr1wwOReZw5FVdiw/QNO9y0FwCkPEvbXEao+jQN+mVwft6IqvLRzG6d1L0YJOHEOVbPx2W3UHHc1AyddSWRwiCXhAhr8Tvrrz+FA0fycHu+xiqIqrP9wO8sGTwFUPAONbHx2G7ULTkCWNEPN+REP/f4Q2148RFc0OMrG2qgqdPkCBMIKNcUevK6xRreB0RCdQwGKPE7qy7xIJvXTJvP4RpKv/GQLdjZjGApofmQFbgdOWQIkCpctw7tpGwCjTk+0pUrhsmVIcn5Z83f372FwVAuUkBx+JPcAjEBPgYgcze1x7+7fw1BwEDUcjXh2DjMYHGTP4D6ali1j6KWX8Ea0iFi/w02uj/dYZXf/HoaGvQDIrn6QQwwGQ+zu38PxFccBUORx0j8SwhcIT3AkG6swMBri+Q/a6BwMACBJMK3US1NVIYqqsr97hK6hgN6+obyATy2up8DlGO+QNnmKLdhlmFMvaqK0tNTsbqTNK7s62LxtHwunF7D00lkAqBfNwPfa/2Wz92QqCHHjoRdxNTQwZ/U9SM78uYTCSpg7/7iag+WN+P2n4CjeQ0H9n/D5TwGcfLXtNaprq3J23GJ8rdM7GBo6G1xhihrW43D301Gwnadv/AOH1v2MF4YL2FxTTZN/P/MjO3J2vMcqYp33elcQDodx1/wVT9VfkJDoKNjOMyufwSk7eXKwn83vD3H+3GKWnjPL7G7bTEAwrPD5h//KruAwBSUOakrcHOodhYAPWmMBTnIBLKgvYV/XMJv9Q/QPePnV359mYs9tMsXgYPI5J+2ndYZxOGUcztzVbrT7gigSTCsviI3D6WbO312J8i4MeAqRlDB1N9+I05tfqS/W7l3P4ZFmQqGTUSRweLpQXcOorgHUcBkvnFjNP1/99ZwdtxifEq5GkZwgBVE9PUQkleaRQ2xo28i5N99I8eOvoEjgcxXk5TrnO2v3rqfZ10ZwZDZIIJfsRJG1AInmkUO82Lyey+dezrSKAhQJOocDOf3MOhb407YWdnT4qCp289zNZ9NQXkBr/yh/3tXJ2/t7cTpkTp9dySdPqKOyyM2HLQN87qG/smFXF9taBljaVDH5SWwsTSr3qH0324xBRMROK/OO+b7xUysBCMtOwk1zKF21yvC+ZZOwEubBbQ8iIaGGtKz8sqtP+6+7B4AXF9dQeMnFpvVxKsSPLxLU8pnJ7i4kKWp2RuKhbQ9ReOlKygtdAAyXVeXdOuc7Yp2VkTmgupGcA8iedv3vYp3DSpjaEs2tot2uMmJ5/uvNQwB87dw5NET9IaeXF/C3pzfxs2tO5b4rF3PlaY1URhOMn9hQxmdPaRjzW5tjB1uwsxlDa7RkWH3ZWGfqwgIP7qgQ4Pry/8k709zWzq20+FpQUVFC5QBIrv7of3sB6HNUsK33A5N6ODXGjC9QA4Ds6dL/rqJy2HeYbb0fUH/+2QAE5h6fd+uc74h1Dvk0Pzpn0cdIcR70Yp23dm6lJirY9dhVRixNty/Ae4f7AfjsqQ1J/+6KpTMA+POuTiKKOklrm3zCfmrbjKF9UEtOXH+Exk6SJMqLvXQOBQifea4ZXcsqi2sWc9959xGMBPnuAYlB4Buf+Dsaq2Hdu/D8FvhE5UoW1yw2u6tpET++Na9IvNUFK+efzCVLTtbbuB1uFtcspvfMRti7heES23yTa4h1/tf/DtEJXPuJpZwye+mYNmKd/UMDAPSN2IKdlXnt4y5UFRZNL6Wu1Dv5D6Isbaqg1OukdzjIBy0DnNJYnr1O2lgKW7CzGUPbOKZYgIpCN51DAfpHQ0Z3K+u4HW5WzlpJIBzh5tF1AFy96GKqij1EBlt4fss2IqEK3I7c9DcT4wP4zbq/Av1ctuA0Vs2tP6ptRaE2xoE8XOd8x+1wM7/oLDoHXsUpS9xy9iWUeF0J24p17h22BTsr815zPwBnzKlK6Xcuh8ySpgpe2dXFe839tmB3DGGbYm10VFXVfeyONMUCuu9V30j+bvhi/B6nrPurNFZqc9HcO2pavzKFqqrs7dSi6EQh+CMpK9DW2RbscpM/vdcGwJnzqscV6gD9+u4bCaKqtqnOqnzYqkVDnjSjLOXfLp5RDsSEQ5tjA1uws9EZHA0zEtSi5440xUKcJiePTTfCx3B6eQFS1DmpsUIrv9Q2MEo4ktuVFzqHAvgCYWQJZlUXJmwjBPiB0ZC94ecYqqryx/daAPjM4ukTthX3cyii2rnsLEpEUdkeFewWTU89jdbJUWHwo9bkU2XY5D62YGej0xb1r6sodOFNkNTyWNDYdQ5pgp2IGASoKvbglCWUaNb3XGZPVFvXVFWEx5k4canQ2EUUe8PPNT5qHWRf1zAep8zFi+ombFvgdujJa/uG8/eezmWae0cYDUXwOGVmVyfWsE/EvFrtN/t7hu0AimMIW7Cz0Yn51yUuL1ReGDPd5CsiQrA6TrBzyFIsNcRAbqeG2NslzLDj1wb1uhx4ojmT+vNYiM9HnnuvFYBPnlA7oRlWIMyxvXl8T+cyh3pHAGiqKsQhp14gbEZFIW6HTDCs0Nqf+64kNslhC3Y2Om3CDJnADAuaJg9gII83+55hTSNXXTQ2SKIuOicdOZ7zS2js5tZO/PZv+9nlHoqi8qeoYPfpxcmlxYhp4W3BzoocjAp2MysTu01MhkOWaKrSfruvezhj/bKxNrZgZ6PTPqC90SWKiIWYT04+bwLdQ1GNXbFnzPfTomkG2nJcYycEu3njBE4I4v3sbHKDtw/00jbgp8Tj5Pzja5L6ja6xs3PZWZJDPZowNrNyfA37ZMyJauf3dfkmaWmTL9iCnY1Omx4Rm1iwOxZ87ITGruoIwU7kj8r1LP26KdbW2OUdwgx7yYnTEvrIJkKs86DfXmcrckjX2CV2j0kGoe1r6bNNsccKtmBnoyOElkSpTgDdZ2cojzeBLuFjVzzWFCuE3Y4c1tgN+kN0DGqC67xJBDux1j5//gdPqKrK+4f7aRvI3Y0vFFFY+4GW5uTTp0wcDRuPWOfB0fxf51zkYI/wsUtfYyd8pnPd2mCTPLZgZ6MjnGvH09iVeLV81kN5vNn3+BJr7IR5Opc1diJ/XW2Jh9JJHOuLPdG1PgaiYv/z9f18+pd/5eL7X+Nw34jZ3UmL13d30zcSorrYk1Ii21L9ns7fl7VcRjyTGyrS19gJn+nWHH5xsUkNW7CzATStxURVJyBmtslXwU5VVbqjgt2RGjthihUar1xkb5fmrzNeYuJ4iqMbfr5r7EIRhYdf2QtoQuyTm3OzYLoImvjUyfU4Hck/1kttU6xl8YciDEbvv7qS5EuJHUl9uSYU5npEv03y2IKdDaBtarHkxOOZYrXNfjQUIZTjiXoTMRKM4A9p4xoveCKXH4564MQkZliAkqjGzhfI7w3//cMD9MSV1Hr14y4Te5Me/lCEF7d3AJpglwrHghY+V+ka0l4i3U6Z0oL0q3/Wx0X053qCdZvksAU7GyCW6qS80EWBO7HjtTDPQX5uBEJb53XJFB4xBzXRPHajoQjDOWqe1FOdTJDDTlCsC3a5OdZk2byvB4DTmioA2Nk+mHPpfF77uAtfIEx9mZclMytS+q0wydsaO+vRGRXsaoo9ehWcdKiOS7AujmmT39iCnQ2A7jguNFOJcDpiAk8++uR0+2KpTo58kBZ5nHqW/q4cfTju6RwC4Li6kknbFh8jmpyth/oAuPSkehorC1BV2N6WW+WX/vd9LWhi1Un1yCkmsbU1dtalS1TBKfVM0nJiHLKkv5jm6rPLJjVswc4GiJkYxwucEJR689fPrj+an6/yiOTEguoS7fvuHCwr5g9F9NQJ85MR7I4Rjd3uqBbzhPoSjqvV5kUIwLlAMKywcYdmhr0sRTMsxPnY2WltLIfQrsWXN0yXqqjPsEjnZJPf2IKdDRCXw6584ugr8YafjxuBKJ8lgkSOpCbqd5eLgt3eLh+KqpnajwwMSUTJMRA8MRqME3ZrS3SB9+OO3Enk+s7BXoaDEaqL3Zwyozzl39saO+vSOSgEu/QDJwSVRdqzq8dORH1MYAt2NkDMFFs/gSkW4gS7PNwI+qPCqqiJeyQioKIrBx+Owr9ufm1xUv46xZ5oHrs81tjt7fKhqlqpvOpiN8fVaUElu3NIY/fqLi3Y49zjalI2w0JcHjt/CFW1i8RbCWE2rcmAxk6USIwPFLLJX2zBzgZg0lQngnxOUjwQNcWWjROBVp3Dfiq7O0RE7ORmWDg2fOxEFY55UWFX1NQ8nEMZ+l+JCnbnH1+b1u9FHrtQRCUQtiMmrUQs9VLmTLG9tmB3TGALdjZAvI/dxKbY0jzOZSfKZ5UXTKyxy0VTrNBCzU8i1QnEJSjOQwFeIAS4xgpNoJsR/W/bQG6khegc9LOrYwhJgnPmVad1jCK3E6HAtSNjrYWwIFQUTpxMPBmEKTYXn102qWMLdjZAvI9dsqbY/NsEYqbYcXzsohq77lzU2AlTbF1ygp3uYxcI562JTgh2M6JZ/WuKPbgdMhFFzYkKI1sOahG9x9eVUDFOwM9kyLKk5yy0y4pZCxHMNZ5rSCrowRM56EZikzq2YGfDkD+k+1JNlO4E8tvZevLgidyMig2EI3rNyfnJmmKjm72iarn78pGWI8o1ybKk/38umGPfjaZqWdKUWu66I8ln94pcZmCSF81UqLZNsccUtmBno5thS71OijwTZzgvzeNNQDxIxxPsYqbY3Ho47usaJqKolHid1CWZE6vQ7dBNdPkaGdsSrQvbUF6ofzcjpwS7foCUkxIfST4HROUqqqrqL5qZEOxiUbG59VJqkx62YGdDa1Swmz5JqhOILxqef5vAQLJRsTlmiv2oVUu4u7C+NOkM9pIkxfzs8jAyVlXVozR2EBPsmqNpUKxKOKLwYcsAAKfOLJ/SscQ6j+ThOucqvkCYsKK5QFRkwhRrR8UeU6RfgM4mb2gXVSfGiYhVgkF8L7+MGgzi6JIAmd7mNgaee05vI7ndFF94IbJ76g8hs+hPEBUbP3ZPBMDBaChC2zPPURitOmb1sQsBYNH00gnbxY8VoFiRGUKi/cWXqY5acK0+1mTp8QX0usDT4/xKp5Vqgl3nkLV97A72jhAIKxS4HMyumrxE3EQUHSPJqHMJoa3zOGW8rsQlHlNBBL0FwgqBcASPc+rHtLEutmBnEwucGEewG926jZZbvglAsO4EOOPL9B44TOsTPx/TbuYTT1B0+rLsdjZLKIpK/2gQkHi761WOn3Y5MHbsAJ5P/YiA0832H9zL9JEe/Xsrj/0v+/YDEiHXPmDRuO2OGusF/wRl9Rx8+D+o7N6jf2/lsSbL7z/aAMiUFqhjNjlRvqlj0Npa2Vj6muK08tfFU+TRxj8SzE9fylwkk/51ACUeLfpZVbUgmZoSW7DLZ2xTrM2kqU4Kly7BNWMGSBJFIU27N+KKEwIlCVdjI4VLl2S9r9liwO9HVbUNcs3ORwgrmvYifuwAFQEtbUi/NxpdavGxB8Mh9ndqm8Rfu3+njysRR461MKxdF/paW3ysyRJWwvzXR88DEJS6xsyJ8EG0usZud0c0fU2SUc4TUeS2NXZWoy9qPciEGRbGRj8P5GHVIJux2Bq7DBMJK0RyLNFnW98osgp1xZ5x+i5TedNq2r7zXQoiIWQV/A4PihR766u8aTUKMuTY2AXPbH8JWZVBCtLuO8zaPS9w2ZzLiB87kibYdRZW0esp08dv5bH/9t11EHEjSyG6gzvixpWIsWMtCgeRVRhxFubEWJNl7b4X6B0MI6sQkXrHzEl1oRtZha6BgKXv44/bh5BVmFdVPOV+Frkc2jr7Q5Ye87FE35B275V7nBlbk4oCF77RMH2+AJHKwsl/YGMpUrkObMEuw2zdcJDiwuRSSliF0v0jLPc7kXcOsqXzQMI2qryIvpOuxDcaZrnfiVMp40DTSkDCUVqKT1qI9ELi31odRVV45/2PWe4/EUmO4G65mI3PbqN2wQnIkqyPPTI4xMmRUir8TobrzuCAp9HSY1dUhbffPcRy/zwk5zDu1hVjxpWI+LHOk6px+Z2Eq5dwwFFj6bEmi6IqvLRzG5/oW0rY78RBxZg5GQ5q17cUiPD22v3ISQabGI20fYDlfieVh0bZMsX1KD+g3f/qR4NsCU/tWDaZoeOwtr7zepUpr6/g1CGZBr+Tfa+1olYNZOSYNsbhG0m+1KFtirXR01mUTJDqRJJlCpctwxU1W4VlByoSoFK4bBmSnLuX0u7+PQxHAwaQQ4DKYHCQ3f2aX5kYO6h4w1o7v9ON1ce+u38PIwFtTWXnEEeOKxHxY3VG1zoiObD6WJNld/8ehoKDqGrUxCUHx8xJgcuJLEmoqnV9zlRiyYQz4YPlcmhrGsqBahvHCoFo7shMBE4IPC45emx7nfMdW2OXYU69qInS0omjD62ELxDm1dd3gBMevnyOnvogEepFM9ix/gE2e88G4JbWVyivq2bO6nuQnLl5KYWVMHf+cTWHqqoYDZyMo7CNwoYNSEh0FGznmZXP4JSdqBfNYN+6n/HXAYXN06ZREWrj85GPLDt2Ma49BSuJKGE80zbhLn/nqHElQox13YiHzXV1zBzdx/zIdsuONVnEnLQ1tDHSUkNYnYanZiueirfGzMneD/bRMRjgtk9Uc1JDudndPoq+4SCvvb4DXPAfn5475c1/+yaJzYc7qJjuYumlszLTSZsp8eLaUTa3hDlpYRlLL5mVkWM+1tvL5pEhLjmhlKXLmzJyTBvjGBwcTLpt7j6lLYrDKeNw5o5Wo6s3gCJpSUrLJitL5HTTeNP/gTciKLKDgOyg7uYbcXpzN/XF2r3rOTzSTFidjiKB7BhBkbW35eaRQ7zYvJ7L514OTjd1N99I+a+eQ5Gg31No6bGv3bue5uFmwoF6VAmkgsOJx5WI6FgLnngVRYJRp8vSY00WsdbIEI4UoUigugaJyOExc1JT5qVtKED3cMiS93LbkHbP1pR4KBonmXYqFBe6UCQYCimWHO+xiC8U0Z7Lha6MrUlpkRtFgsFg2F7nHCSVNbNX9xintX/iVCdHUvapyyhUtKiq0IxZlK5albW+ZZuwEubBbQ8iIaFGtIhgyRFLTCsh8dC2h/SoydLLLtNL8/SXVlt27GJchMtRI0VABNnTrv/9yHElovSyyygq0q6JYGmlZceaLPFrDaCGNT9Yyan5rcTPSW2JNu4Oi0bGtvRr1+iMiskTiidDkTua7sSOirUMIin4RBaUVCmLmu3tCiP5jy3YHeO0RZMTj5fq5Egkp5PiQi0lhPeLf5vTprmtnVtp8bWgouqCHY7YZq6icth3mK2dWwFt7LM/fQkAQ9X1lh27GFfYPx0A2dOBJMf8xY4cVyIkp5Oas5Zr7U9YaNmxJsuYtVZjgp0cFezi50Tksuu0aC47Ue6sIYlKMclgJyi2HsLvudibmTx2EKsaNDBipzvJd3L7aW0zZYTGLj77/mSUlJfQ3umDZWdmq1uGsLhmMfeddx/BSJDf/UXir71w0eyzuHTJWXobt8PN4prF+r9nrrwQPnqNXjVzD9xMI8b1zFsh1h2GZU31/O3ZPxrT5shxJaJyySlw4AOC1dOy2FtjiF9rfxC+tVN7p/3+Of+MJ7qUYk7+UnwAgJ5hawt2Myoyk7LCTlBsPXzZ0NhFzfZ2Hrv8x3IauwcffJBZs2bh9Xo5/fTTeeutt8ZtGwqFuPvuu5k7dy5er5fFixezbt26MW2Ghoa45ZZbaGpqoqCggDPPPJO33357TJuOjg7+4R/+genTp1NYWMgll1zC7t27szI+qyE0dtOT1NhB7A1/OMc3ArfDzcpZK7l87uVUuDXt1mn1J3L53Mv1z8pZK3E7Yr5l1VEznS8Qxh+y5vjFuMKjdQBccvyiMWNKNK5EiHUeCea+Jid+rZdWXwBom+bfLDh6TvS6mj5r1tWMCXaZ1dgNHwMau62H+vjFxt36c8+q6JkKvJkT7ERZsUG/LdjlO5YS7H7/+99z6623cuedd/Luu++yePFiVq5cSWdnZ8L2d9xxB4888ggPPPAA27dv54YbbuBzn/scW7fGTExf+cpX2LBhA2vWrOGDDz7g4osvZsWKFbS0tABaMfDPfvaz7Nu3jz/+8Y9s3bqVpqYmVqxYwfDwsCHjNhO9nFgKZp3iPNwIxBvyZA/SUq8TdzQ9RLfPmhodwYctWhTViQ1laf2+0J2fmpyuIW3dako8Cf9eVWztgumiKsa00uS17BMhKk8M54EAPxHtA36++B9vcv+Gj/mHR99GUVSzuzQu2dDY6ets8ef2wZ5hfv7Sbj44bOfaSxdLCXb3338/X/3qV7n++utZuHAhv/rVrygsLOTRRx9N2H7NmjV85zvfYdWqVcyZM4evf/3rrFq1ip/+9KcAjI6O8tRTT3Hvvfdy7rnnMm/ePO666y7mzZvHww8/DMDu3bvZvHkzDz/8MJ/4xCc4/vjjefjhhxkdHeW///u/DRu7WbT2C41d8puEMN3kk0/OUJJvyJIk6QEU3RbV6IAmdLYP+pEkOKE+vfQ7hTmyEaRKV1QgrylOLNhV6ho7awrukwmmqSI0dv6QQjiPc9mt2XyA0aiWfVfHEG8d6DW5R+Mjnq1FGRTsir3W96UMhhWuffQt/v2lj7nqkU16uUub1LCMYBcMBtmyZQsrVqzQv5NlmRUrVrBp06aEvwkEAni9YwWSgoICXn/9dQDC4TCRSGTCNoGA9pCMbyPLMh6PR28z3rkHBwfHfHINVVXT0tjlo+kmZvqY3HeuKioQWHXjB/ioVbseZ1cXpb05CAF+NM80dsLEKjRzR1IdXd9eC2rsFEXVNcWZE+xiefBy3b1iIjbu0Cw/opjIG3u6TezN+KiqmrQFIRVilhbrrvGfd3VysEeL+h4NRXhy80GTe5SbWEaw6+7uJhKJUFdXN+b7uro62tvbE/5m5cqV3H///ezevRtFUdiwYQNPP/00bW1tAJSUlHDGGWfwgx/8gNbWViKRCE8++SSbNm3S2yxYsICZM2dy++2309fXRzAY5Mc//jGHDx/W2yTinnvuoaysTP80NjZmaCaMY3A0rJvZkk13Avlpih2K+p0kY/qIaeysK9h92KKZMRZNT88MC3Eauzzb7PUC6+PkbRQ+dn0jIctpsAZGQ4QimglxPME0VdwOGaesSTv54E+ZiM4hPzvbh5Ak+NbK4wEsq7HzhxQiUTNxRk2xORD9/OedmvAt7sEXPhx/D7YZH8sIdunw85//nPnz57NgwQLcbjerV6/m+uuvR44re7RmzRpUVaWhoQGPx8MvfvELvvCFL+htXC4XTz/9NB9//DGVlZUUFhby5z//mUsvvXTMcY7k9ttvZ2BgQP80NzdnfbyZpiVqhq0scqeUvT72gMifDX8ohTdkodGxsil2e1Rjt2h6+lVQYtGS1t0I0qEvqomrLEwsGJUXunWtTp/FUkOIl4myAhceZ2bKTUmSlJda+HiEv9b82mLOO64GgJ3tQ6iq9fzshgLaNSdJMT/XTCDu5+Fg2JLjBnj3UB8A//qphcgS7O0apnPQNsemimUEu+rqahwOBx0dHWO+7+joYNq0xOkWampqePbZZxkeHubgwYPs3LmT4uJi5syZo7eZO3cur776Kj6fj+bmZt566y1CodCYNkuXLmXbtm309/fT1tbGunXr6OnpGdPmSDweD6WlpWM+uUYsh11qTtgioWm+bAKKEjN9FCcj2JUIwc66GruPWoXGLv3rstClzUUoohIMW0tzNRWEsDZenVWHLOlCn9VSnmTav04Qu6fz52UtHj2QaHoZc2uKkSToHwlZMkBGz2HncSKJN4wMILR/Vq2D7A9F2NulBSyePqeS46dpzy4h7Nkkj2UEO7fbzdKlS9m4caP+naIobNy4kTPOOGPC33q9XhoaGgiHwzz11FN85jOfOapNUVER9fX19PX1sX79+oRtysrKqKmpYffu3bzzzjsJ2+QTrQMih11qaRN0jV2eaHK0N1jt/0uT8bErsnbwxJA/xIGon8pUTLEFcdqCfNLaCVNs5QQl9CotmvJkssCPdMl3jd2H4kWnoQyvy0FjNAfg7g6fmd1KiBCuSzJohgUocDmIWtwtuc57On1EFJXyQhfTSr0smVkOwLuH+k3tVy5iqQTFt956K9dddx2nnXYay5Yt42c/+xnDw8Ncf/31AFx77bU0NDRwzz33APDmm2/S0tLCKaecQktLC3fddReKonDbbbfpx1y/fj2qqnL88cezZ88evvWtb7FgwQL9mAB/+MMfqKmpYebMmXzwwQf84z/+I5/97Ge5+OKLjZ0Ag2lLIyIW8m8TENo6l0PCk0Q9PqEt6R6yljZHsKNNq6ZQX+adUHiZDLdTxu2QCUYURoIRyjOTD9d0dB+7cUyxoPmv7e60XsqTrGns8iQ35Xgc6Zowr7aYQ70j7O3yccbcKjO7dhTCFJvJiFiImdyH/GGGAmFqM3r0qbOjTVujE6aVIkmSnqZpZ/uQmd3KSSwl2F199dV0dXXxve99j/b2dk455RTWrVunB1QcOnRojN+b3+/njjvuYN++fRQXF7Nq1SrWrFlDeXm53mZgYIDbb7+dw4cPU1lZyRVXXMEPf/hDXK6YZqatrY1bb72Vjo4O6uvrufbaa/nXf/1Xw8ZtFulExEJMpT+SJ2aboRRNH8LHzmpmOkHMDJu+tk5Q6HEQHFHyS2M3PLEpFqwb+Sw0dtUZ19jll3tFPP5QRPcnnl9bDEBjNLmzSPdkJWLlxDK/PRdHBTsrrrOIhp1bWwTAcXXaWu3usAW7VLGUYAewevVqVq9enfBvr7zyyph/n3feeWzfvn3C41111VVcddVVE7b5xje+wTe+8Y2U+pkPiIdayj52ORBdlQpDKaQ6gVg0olVNsR9lIHBCUOR20j8Syivfq2RMscLcbrWUJ91DE6dqSZeCaPDUqEWrqUwFITCUep36mgv3kxYrCnZZSE4ssPKzu7lPWydhJp9fp9VzbhvwMzAa0kui2UyOZXzsbIwn3WLixXHRVflAKqlOIKYt6RsJWi4dBmRWsBN+dvmy1oFwRHccL5/IFFtkzcjngdHJhdJ0KHCL8nH5J9jt79b86GZXF+ka+QYra+yykMNOYOVcds29mmAnaiCXel260sHW2qWGLdgdowTDih4VO7MqNeepfPOxS7bqhKCi0I0sadFlVtPoBMIR/SG4KM1SYvGIaMl8Mbv3RyNiHbJE6QTrXVlszeoTov/lGdZeFEY1dlatfzwV9ndrAsPs6iL9O11j12ddwS4bGrtiXWNnrTQ+EFM0NFbGFA1Ca7e3y3pBLlbGFuyOUVr7R1FU8LrklCPsRM1BK6rz0yHVN2SHLOkaE6tpdPZ2DhNWVMoKXCkHxSRCJCkeyZMNXwjiFYWuCf0pqy1qiu0f1Tbksgn8A9OhwJ2fOQshprGbFSfYCStF+6Dfclr3WLqTzJseY+UgrXU/+0MROqOBQcIUC9BUqf3/oag2zyY5bMHuGEXcKDMrC1POlSTe+vKltqQwxSbrYwfxSYqtpdHZ3alp646rK85IDiw9SXGeCPHCv24iMyzEpTuxmmCna+wybYoVgp21NvxMcCCBxq6m2IPLIaGomnBnJVLJqZkqVrW2CG1dkdsxJqipKWpNEn6SNslhC3bHKPGCXarEh+HnQ3oEX4qmWLCuYLenU9NOzKstycjx8q2smIiIHa/qhKDKgqZYVVXp18uh2abYZDnYqyW9baqKCXayLFFXqmm0Owats8YQex4VZbDqhEDkxhPnsAqHReDEEYqGxuj+1Gxr7FLCFuyOUcSN0piGYCfym4H13vzSYdCfuk9Ltb7xW0ujIxKuirQOUyV/NXYTC0aV0eCJQX+YkEW00sPBCOFoDVFbY5ccoYiim/iml491TRC5ALsslo9SrEHhMRQV2xkVrqcd4T4iFA8HbcEuJWzB7hhlKho7yK+8V6mmO4FYnjOraeyEKXZ+XWYEuwJXfmns+pNIdQJacILI0t9nEXOs6LvbKeN1ZfbRna+CXcegH1UFt0OmumisL7HwLe6y2D0s/FkLU6jfnSxWNcV2Dmnm8CP9vcX+1D8SYmDUegEfVsUW7I5RpirYFeZRAIWIEEvFp6XagptCMKzopcTmZ8gUKwT40Txxqu/VkxNPLNjJsqRXpugdsYpgF4uIzWQNUYgVm883U2xrvyYwTCvzIstj58yqGjtxrxVmwRSrpzux2P0stKq1pWMFuyKPU7eO2ObY5LEFu2MQVVU51JMZjd1oHrzhC43dROkvjsSKptiDPcNEFJUSj5O60sxUJsg3HzvdRy2JqFKh1eu1yBoLjcVkZuR0EAmK801jJ1I6JUrCblXBTqxBQRYEu5gp1lrrLNagtuTodZppR8amjC3YHYMMjIYYimraZlRMTWOXDxt+OnmjrBg8IXI9zanNTEQsxLQG+ZIGo1cPPpjcR81qkbHZioiF/E1QLDR20xMkYbeqYCdelsUzNpOI+9lqGnhdY5egBrJYOysmk7YqtmB3DCLMdTUlnrTfCnWneos9INIhHR87Kwp24o22KU0tbCLyzfeqLyocVUxiioU4jZ1VBLvR5AI/0iFfTbFCY3dk4ARY2MdOF+wyr7Gz6v2s+9glEOyEtlXUNreZHFuwOwbZG02JMbemaJKW4yOc6q32gEiHWB67FDR2JTFTrKqqWelXqkzVbzIRsTf83F9niA+eSN4UazWNXTZqZsZMsbn/ohZPrB72+Bq7botp7IT/WzZMsSIgw0r3s6qqelRsIlOsWDshpNtMTuZ1vTaWR5js5qWYEkMJBvG9/DJqMIi7SwJket99j4H2bXobye2m+MILkd2ZNxdliyE93cnED9L48bsUAAdhRaX56T9RFt1rzRx/c6/24JtRkVrt3yOJH6fSC+DA19XDwHPP6W1ycZ0hpn1LRjiq0jV21tj4dV/QbAh2FtXkTJWYKXZiHztVVTMekJIuo1nU2BVa0OQ+FAgTCGsphY4MnoDY2om1tJkcW7A7BhGC3dya1AS70a3baLnlmwAop/wNzFpOx9r1tH68cUy7mU88QdHpyzLT2SwTDCv6Q+WN9pe5uvLycdvGjx+geNXd+NyF7Ljnp8z0derfmzX+HR2dgMRh/3vAzLSPEz/O4ep5cPYNDLV20PrkfWPa5dI6g5bTTAhH73S9wrza8dcaYho7kdTYbPTo7SzkN8t3U2wijZ1wpwhGFAb94axoQlMlGFb0XIXZ8LGzYuk4oa0r8TrxJkjxYmvsUsc2xR6D7O3SMrGnKtgVLl2Ca8YMkCQKwtrNOOqMe8OSJFyNjRQuXZKxvmab/tHYW+Bj2x8mrIz/wIsfP0B5QBOQ+73R1CImjj8YDtE1qAmoLxxeM+E4JiN+nN6IpuEKOOI0czm4zgA9PrExKDy+Y+K1BqiMbvw9FtHYpVMhJVmEKTYUUS2TkHmqjAYjuk9louAJr8uhz6VVAijiTaTZ0dhFTbEWEuAn8q8DqI9q7DqHAnlzbWYbW2OXYSJhhUjYuhdfKKJwqGsYWYXZlYUp9lWm8qbVtH3nu3jDIWQV/E4PihR7AFXetBoFGSw8B/H8addGZFUGKUDbUCtr97zAZXMuG6d1bPxIUBHw0VpcS5+7VJ8Ds8b/uw/WISkOJCJ0+fdMMo7JiI3TrYSRVQg63Dm9zgB/3PmyttaO0STWGiq8TmQV+nwBS9zTvhHtnit2OTLeH7csIUddRX2jIUpTCCSyKi092nOuyO2gyCknnLPqQhfDo2F6hvzMzqBvarr4RoPIKrgc2npkep09sjiuij8QxuUwX7fT2e9HVqGuyJ1wvBUeFx5ZIhRRaesdoSHNTA65TirXgi3YZZitGw5SXJiZ5LDZoHckyGkjDlwOmdY3OmhL0a1ElRfRd9KVVDqrWO53Ul44nwNNKwEJR2kpPmkh0gsHstH1jKOoClve/5jl/hOR5AjulovZ+Ow2ahecgCwlfuCJ8UcGh1iklFHidzJSdzoH3NNNG7+iKmx6bw/L/QuRHCHcrSsmHcdkiHH6RsMs9ztxKiU5u86gzdG29/ay3H8CksOV1FoP+gIs9zspbAuzxQJjrTjkZ7nfSfjDAbZ0ZVbjogJnBlwoqsrWdQezYu41mkO9Iyz3O6l0uHl33cGEbZb4HNT7nex9pRWpdtDgHh5N70iQ5X4nHqeclWsurKgs92tr+9baA3id5gt27Yf6WO53cnwf4475QsXLgD/ElnUHaU+gfT0W8I0MJd3W/FW1MRRRHqmiyEU6vsKSLFO4bBnOqBkrLAstjkrhsmVIcu5cUrv79zAcjJpgpDCgMhgcZHf/nnF/I8YPKgVRM6Xf4cbM8e/u38NwNOGoJPtJZhyTIcbpULTjRvRx5d46g1jrqK+cHCKZORLmSX9IwQqBz8HoG7s7C5uxBDgd2gMhFLHAYDPAUBKm6wKLmSbD0bnPlibNIUvIklhn87XQkFywiKgKJNbUZmJy/7XMYpx6UROlpaVmd2Nc3nl1H5t3hbn8hBqWXjorrWOoF83gg+vWs9k7n9BAF3936EVcDQ3MWX0PkjM3LqmwEubOP67mUHUZo4HFyN4Oiho2ICHRUbCdZ1Y+g1NOPBb1ohnsW/czNveH2TytnrJwG38T+ciU8YtxHKiYTSB0As7SfRRMT24ck6FeNIMPXnyIzd6zAPinwy9TXF+XU+sMsTk6WDkdf3AhjuJDFCax1sGwwlfe3g3Az86bnlRS42xy2/YDHAqF+ea59SyZWZHx4+94bx9dQ2G+c2YdJ9Rb9xmWLJte3sPmfWEaF5SO+6z7w8ggm4cGOGteMUvPT9zGSN4+0Mvm9/Yxu9qd9vN5Mj54ZzdD/jDfP2sac1L0s84GTz8zxOb2MGecXMHSC2YlbPNfQ/1sfm+Ic+cWsfTcxG3yncHB5DXKufN0zhEcThmHBdTb47G3ZxhFgrl1Jen30+mmbuWFKB/DqNOFrISpu/lGnN7cSX2xdu96Do80E6EaRQLJ6UeRtTfH5pFDvNi8nsvnjhM16XRTd/ONlD/8LIoEfZ4i08YvxhGOnIQigeoaSH4ck+F0M/PGr6Bs1v4ZkuScW2eImyNlDooEsnM4qTkqcMoUFTgZ8ofpD4SpTlCWykgGgxEUCcqK3Fl5xnjcDhQJAopi6WdYsrQN+VEkmF5ZOO54Kks82j3sD1lizP6IgiKB1+PMWn+8HgcDgTABRbXEmHtHQygSVJR4xu1PfWUhigTtvoAl+mwGqYz72JyhY5h0U50cSdXyTwBa8ISrsZHSVaum3DejCCthHtz2IBISakTbrDUTpoaExEPbHpowarL0ssv0dAn9JVWmjH/MOMKahkV2xt7qkhnHZFR+6jJc0d9HGptyap3hyLXWnK4lR6zm5GRzJHLZ9Y2Yn6TYp+dbzM77eGGe5bJrEcmJE+SwEwgtbK8F1heyW3VCYLVcdn160vDxXxinR1+qWuyyYklhC3bHEKqqpp2c+EiKCjShZtThpubm1TllmtvauZUWXwsqKqqijUOSY+kOVFQO+w6ztXPruMeQnE5mf/ZSAIaqppky/jHjiAp2Upxgl8w4JkNyOnVfs8Jr/yGn1hmOmKOIVmlFcgzrf59sjvTqEz5zN/5AOEIw6hNVnIV0JxDnb2aRDf9ItrcOcrBnePKGUUQJqukJctgJKgutVTZOCFsFWchhJ7BalREx9xOV+bNz2aVGbj2lbaZEly/AkD+MLEFT1dRCxsUbZbi2ntLLV2aie4axuGYx9513H8FIkD++KfFSF5zdeBqfP2Op3sbtcLO4ZvGEx2m6dAV8+Aq9ijm3Ufw47m6R6AL+z5JrmFd/jd4mmXFMRmFRAYODfhxnnzvFHhtP/Bw9sl7iwwH4/IKVnLUgds1ONEeVRZrgb/bG74tzGi/K0qYvNnyrBBLE88ire7nnhZ24HBJPXL+MM+dVT9heVVXaktDYxZJQW0OwG40KW4UJEvVmCquVCRS5BifS2Ik1bEuh+kT/SBAJibIs1Fa2OrZgdwyxt1N7222sLEyY4TsVdLONKlmmFE+yuB1uVs7SNvZN738AHOLkuuO4fO5xKR1HmGJHQxGGA2GKDE4RIcahqirf9q8HInxuwYXMqk6/BnAiYpGD1oiiS4X4tX5cegPo4/ym07hkbn1Svxc1Zc0uK+YLxMywDjk795tVTbGD/hA/e0kLYglFVO7+3+288I/nTPjcGfSHGY6OYyKN3bFoirVS+biIour1mysmqN8s1rBnOIg/FJl0//rf91u55XfbcDokHr9+GcvnVGWu0zmAbYo9htiTIf86QBdiRoMRVCvkgkiTqWTzL/LEzJTdPvM2fl8grD+kE9VanCpW1uSkgvDlKZ/A5HMkQmPXY7JGZyjL/nUQM/9ZRZMjeHVXF6OhCFVFbrwumZ3tQ3zQMjDhb4TJrqLQpQsyibBa2biYKTb7GrsRC9zPg6MhohXUJjTFlhe68Lo0caV9YGKt3UgwzHee/oCwouIPKdz9p+0Z62+uYAt2xxB7OzPjXwexB09YUXXfn1xEaELSLdNUXaI9jLpN9MHqiKu1mM36klbb8FOlP2rymWgDORIRPGG6KVZo7LLkXwdQEN04rSbA/3VPNwBXLJ3BJ0+oA+D5D9om/E1r//g1YuMRPna+QJhA2Pxxi7nPpva/UBfgzfexE5rSEq9zwtx9kiTpZeFaJ/Gz++O2Vr32ryzB9rZB9kT3vmMFW7A7hohFxE7dVBfvA5LLG/6QX9vsS9IsoVQV1eiYqbETtRZrx6m1OFVi9SXN3wjSRYk3+aTgc1NpFcHOAI1dLFrSWuv8UasWEHRqYzkXL9QEu9d3d0/4m9aoL9b0CfzrQBMohGnbClo7MfcFWfSxs5IpVvg2TuRfJxDm2Mn87P73/VYAvn7+XM6K+mK+sqtzKt3MOWzB7hhiX5fmY5cJU6zTIesZ8Ict8IBIl6mauISfnZmCnRA6qoqzI9gJf5bRYO5qZgf9MZNPSqbYYmsIdkMB8QKSTVOs9dY5FFHY1a6VUlo0vYwzor5S29sGdUE9EcIUO5nGTpYlXYNr9hqDQelOXNbRwCcTESuoj6Y8aZ0g5cloMMLb+/sAuGhhne5b997hiU33+YYt2B0jjATDeg6gTAh2oBXXBhgJWOsNPxWmauKqKTE/HYb+1puCwJIKVkuPkA4i8q7Y40ypJJdlTLFG+Ni5rKeZ3dvlIxhRKPE4mVFRQG2pl7k1RagqvLm/d9zfCa3ORBGxAhEgY4VchcmU15oqhR7r5LFLJoedoF43xY6vsdu8v4dgRKGhvIA51UWcPKMMgA8O90+9szmELdgdIwhtXWWRO2OlkayW6DIdhMauNF0fO0to7KK+Y1kqeSU2Gb/FfK9SIRY4kZrJXWgSeoaDpgYJDUVfQLLre2UdE51APLfm1RUjR02my2ZXArCtuX/c3wk/rIkiYgVW1NhlM4+dldZZf3Yl8VIqkhRPlMtu094eAM6ZX40kSZzUoAl2B3pGdLebYwFbsDtG0BMTZ7A2oHhADOeoJkdV1bg0Eun62IngCfMEu9hbb3byNXnzICo25l+XmvBbFTXFBsOKqS4HQpNTZEAaDCuY6ATNvVqVkJmVsbybJ88oB+CDCcxrIjlxfRJl4CotVF1EaMWzW3nCOhr4VJ5dInhiIh87IewvbdJqKZcXuqmO3sMHukfG+1neYQt2xwgiInZubeZynBV6rJkeIVn8IYVI1PEqXVNsdYnQ2Jm3KaTip5IOVnK2ThfhGJ+qxq7Q7dTTLPSauMbDgaiJzhBTrHXWublP24wbK2KCndDCvH+4P6EWVVXVWNWJ8iQ0dhapLgLGpDuJuVaYv876syuZ4ImoWX28qNiIovJhNA3O4sZy/fumKm3P259C1ZJcxxbsjhH2ZjBwQiCccHM1eEKo5iUpfU2IFUyxqfippINY53wwxaYzRyLy2cwktsLvLZsVCbwWXOfmXm0Tn1ERE9COn1aC2ykz6A9zsOdoLUzPcJBgWEGSoK40CY1d9IVoomAMo9B97LJaecI6L+Sp+AeLQJghfzihWXVPp4+RYIQit2PMPjcrKtgd6LYFO5s8Y28GkxMLijy5HTwxFJfNP93qGUKw6xo0Pyo2Wz52eaGxS9MUC/EpT8xbYz1a0gCNnd9CFUYOC41dnCnW5ZBZWK/VRn4/QaJiYaqrLvYkFSgjtLi9I+b7YMWiYg3wsbNAkEzvSPLPriKPU/eFbksQQPFeNEDixIayMdVZZldr144t2NnkFRFFZV93FjR2OR48oVedmMJmOS3qwzMUCOv+ekaT9ahYC/pepYqIik3VFAsxwc5MU51uis2iic5jsQTFqqpyuE/T2MWbYgE92vH9BAEUeuBEEmZYsFa9WD2P3TFSUiyVPHYQW9NEKU/ejwp2p8SZYSFmij3Ua/vY2eQRLX2jBMMKbqdMQ0VyD7tksJITbjoM6eXE0g86KPY49dxik5W6yRa9WTbFWtH3KlXSDZ4AayQp1k2xBvheWcUU2+ULEAgryNLRaUuEn12i0mItUWGwIYlUJxDTFlkheELcY0YET1jhRS1V/2A9gCKRxq5ZuxZEcE3sNyKa1pznsxnYgt0xwJ4uLcHnnOqijBYQz3mNXTTp61TLNE2L+vGYIdiNBiO66SxrplgLJTRNl3SDJ8Aagl1MY5c9E53VfOzE/VRT4jmq3JTYvD9qHURRxgZQHNIjaZMLFBNChdkau3BEIRTRxpLVyhMWWedQRGEw+nKd7EupiHJuO0JjFwhH2NmuVSgR2lzBtKhvXseg/6hrJV+xBbtjgL2dmTfDgrXyIaVDpgqrC3Ns+6Dxgp3Q1rkdctZSYeimWIts+OkwleAJ3RRrpsbOgMS1VvOx64z6rdaWHK15m1tThNcl4wuEj4p2PJQgRcpECBeGPpN97Pzh2Lxn0xTrtcg6i9rNkgRlBcm9cAmNXcsRKU92tQ8RiqhUFLrGBNqAVmpRlrS65t0m+skaiS3YHQPogRO1GRbsPPliip2aYCfeItsnKU6dDfr0wAlX2gEgk5EXGrspmGKtUH1COLobseFbRYDvHBKC3dGl8pwOmUXTRVWBsebYg1FBr6kqOcGuPJpDbTQUMVWLFX9uTwrVUVIlfp3NTLqtJw0vcCVtSRJBNId6xwrzwiR/YkPZUc9Bl0OmJnoNmeUuYzS2YHcMEIuIzVwOO8j9dCci2GGqgp1Q9ZvhwyHeessLsmOGhbj0CBbZ8FNFVdWMBE+YKtgFRILi7EfFRhSVUMR8rV2XEOxKE9dATuRnpygqzVEfu2Q1diUeJ86oYGGmn514cfI45ay9pMHYl4NA2Lx1Tif/5myRk+6ICFeRv05cE0dSb+Iz2gxswe4YYH804/ac6kxr7KI+djma7sQXyJAp1kQfu8FoPqfSgmwWh7dWtGSqjIYiBKMbWFoau2ILCHYGmGJFVCyY738F0DkU9bErnkSwi9PYdQz5CYYVnLKUVNUJAEmSKLdAWbFAOPvJiQG8Tmusc38KqU4Es6KpS7p9wTG57D6YVLBL7JuXr9iCXZ4zHAjryXNnJmmaSJaiHA+eEA+GqUTFQtxDwwTBToyhdIpjmAivhTLVp4PYrN1OOS3ByOxaooqi6kJ1Njd9TVOk/b8VhHhhiq0ZJ8mwcJL/sHVAryAjykY1VBTgdCS/vYmSVv0m+tkJnzevM7uCndMh43JoC23mOqdSJ1ZQ4nUdVSIsEI6wq10LEDxxHMFO+EG3meAHbQa2YJfniJI8ZQWupB1Uk8UOntAwM3hicDQz5uSJEKbYYDhWgi2XEOXeqovcaZm4ROUJXyCsa1WMJH7zzaYpVpIkXagIWCCAomsCHzuAOTXFFLodjAQj7O/W3E32dGobfKo1sa2gsRPr7HVlf1v2WsBvNt0a17OOKBH2cbtv3MAJgXj57rBNsTb5wKFoyZ1kHYlTIdfz2Omm2AwFT/QOBw03bcRMsdnT2MWnXrCCiS5VeqIa6+pxBITJKC2I+WCZsfGLFydJyv6m77VQkmIh2NWMs24OWWLR9GgFiqg5dleHJtgdN60kpXNZoayYXxfssquxiz+HmZGx6VbMmVWtCXb7or7j25r7gMSBE4JY6UfzcxUagS3Y5Tki9L8xSUfiVMj1PHZCY1c6RcGurMClR7F1GlxaLFORvRMRL0zk4loLV4SqNPP8SZJkaqF4vRqBy5FVp3pxDjBfgFdVdVKNHcBJDeVAnGAXNcktSFGwq9ADZCxgijVAsLNC0vF0K+aItd3equWte3N/LwDLZlWO+xsr1PQ2Eluwy3OaU8zplAqxdCe5t9lDrKRYsWdq2i5Jijlqtxqc8mRwNPs+dpIkWWbDTwfdFDuOE34yVJlYncCI+qECK5joAAZGQwSjkbkTrdtpsyoAeH1PN4qisjMq2B1Xl6JgF42WNjMq1m+oKVYec04zSKVObDwiQOLDlgFUVY0JdrNtwU5gC3Z5TqrJOlPBNsXG0BNn9hks2AmtYxZNsWCt+pKpomvspiDYmZnyxIiIWIFuojMxDQbEAifKClwTarDOmleNQ5bY0+njz7s6GfKHKXI7mJ9izs5KC5QVGzXQFGuFF7V0NXaLGsqQJGgd8LNpXw9dQwHcDpnFR9SIjae6JHb/5qKfcKpk/xXQxlQyLdgpwSC+l19GDQYJhwEchCIq3c8+h3jRlNxuii+8ENmdvdxqmUD4pxWnuWHGz0XdkATI7Nm8lYGWd/U22Z4LfQxTDAA5kvixAXjDMiDRtfHPCCtXrqyz7mNXnH4/rWCKNUawi/rYmSzAdye5ZmUFLk5tLOedg318748fAbCkqSKliFiwRvBEQAh2WY6KBWsko05XY1fscXJcbQm7Ooa445kPATh7fvWEAnFloRtJAkXV1ng8v818wRbs8ph0knVOxujWbbTc8k0AwpIMn7kXgH3/ehcloZi2auYTT1B0+rKMnDMbqKqKzx8CJDZ3vsK8ustTPkb8XJQc90lYeCl7Xt9C69bfj2mXzbk4PNADSOzo38LlTM/YcePHBuC48FtQWkfLw7+mqnuv/r3V1xlgZ1crIHFo5CNgTlrHMLP6hJEaO6GZNSP6Nx5R21dEJE/E55Y08M7BPlqiOco+uaA25fNZKd1JtvPYgTVM7mKN0ynz98kTatnVMcS+aKLiT51cP2F7p0OmstBNz3CQbl8g7wU72xSbx/QMBwmGFWQplpJjqhQuXYJrxgyQJJyqgjOiaRP8zujNKUm4GhspXLokI+fLFoP+ACqaI/qaHb8mrKRuTo6fi7oRzc+jvSjOzyPLcxFWwnT6NJ+itQeeSmsM4xE/NgBvRBNo/I7cWuewEuZgXw8Ar7Q8l/YcmVkvdtRIHzun+Rs+xGtzJncxuGLJDD3NRVWRm8+e2pDy+aygsTPSx67AZJN7IBzRXWFSNcUCXHVaI+6oVraxsoDLJhHsIOZnJ4Jy8hlbY5dhImGFiMn+KYLW3hFkFepKPMgqGeqXTOVNq2n7zndBgqJwgCHZyaizAEXSws8rb1qNggwWmYdE/HHnBmRVBiK0+ZpZu+cFLptzWYpHic1F3Wg/sgpdBRUoUuyNO5tzsXbfCyghF7IKPaPpjmE8xq6zNxJCVsHv8Ojjy4V1XrvvBcIBL7IKvYFDac9RpVeb574hv+H3t29Um/tCp5z1c3udMrIKo/6wqc+xvqEAsgqVBa5J++GSJP7w1eWs+7Cd846rocTtTLnv5W4nsgqDw0HTxj0aCCOr4JGzv84FYp1HzVnn3kFtfR2ylNZ13VhewGPXncamvT38zZIZOJEmPUZNkYvdKnQNGH8PZ4JU+mwLdhlm64aDFBemFpGVLfZ2+VjudzLN7WTLCwcydlxVXkTfSVcSGRxiWcDDsOKko+F8wv4hHKWl+KSFSBk8X6ZRVIU3P9jJcv/JIKl4Wi9m47PbqF1wArKU2tuymAtGAiz3O5HkGvY1XYIMWZ0LRVV4acc2lo98ApBwd56R9hjGI36dj6eSEr+TYM1pHHA35Mw6v7RjG6cPR+eo6xNpz5Hcod1LJftGM3ovJYPvUB/L/U5mtIWyfu76w0GW+52Mvt/HloHJ22cL/y5tzLXNgaTHvAjofruLbrpSP19IYbnfCX548/n9et5CI5E+HmS530nZ/pGsr3Nts5/lfifBD/rY4jN+rF0+7XlZ6Hawdf3BtI7hAs7FTedbnXQm0f64HhXF76TzzU62tJtnck8X38hQ0m1tU2wek8moz3gkWaZw2TJAxalo5oOw7ARUCpctQ5KtfVnt7t+DL6ip4yU5AqgMBgfZ3b8n5WOJufCGgzhUBRWJEZeXbM/F7v49DAZGIGpORgqlPYbxSLjOkoNcWufBgB9tjlSQgmnPkfB7Gg0ZHwEeCmtRfK4UAwLSwRktNRWOmKvRMDJZL2jl1OSo24FZkaLhaLSm04D7SgSXhExaZ3/U1F9g0PpC7ldKSgVbY5dhTr2oidLSUrO7AcArL+5i84Ew8xeWsfTSWRk9tnrRDPat+xl71fns8TZyce9W5rt8zFl9D5LTupdVWAlz5x9X01xdyIj/VGRPF0UNG5CQ6CjYzjMrn8Epp9Z/MRcHw4s4XFLLpwY+YL4nkLW5EGNomTaKb/hskEKUzFg/pTGMhxjbM4FyNtdUcYLvY+ZH9uXMOh+ulhkePhPJOUDxjBfTnqOS9iG+9dEBKjwSP8/wvTQZG9f72dzawQkLSjJ+Hx/Ji+oom7t7OGleEUtXZvdcE/HL9k4294f53LJali5J3WcuHT5+by/dvhDfXV7LgmnGP8N/5xtgc3eYc08qZ+m5s7J6rlccATZ3dnP8nMKsX1OJ6Pigjc3bD/KJxuxf04ItRQqbO7uZVu8yZcxTZXBwMOm21n0y5ygOp4zDaQ1NRvtQAEWCaRWFme+T003dzTfife4AigR+h5O6m2/E6bV26ou1e9dzeKSZMCeiSCA5/Ciy9gbXPHKIF5vXc/ncFCNko3NR++weDpXW0llQTt1NV2RtLsQYImp95sYwHtGxuf/rbRQJAjm2zqHIIhQJZNfAlOaousyLIkGvPwSyhMNAU91oWEGRoMjrzPqzpcDr1O7nsGLqc6zXH0KRoKrUbVg/SovcdA4HGQiETRm7X9HWucCAdfZ6ouscUU0Za390fcuLjVvf6lIPigRdI0HL7NGpkEqfc290NkkjitLXZygi9khKL7uMwmgEV6hmGqWrVmXlPJkirIR5cNuDSEigROdEjkVISUg8tO2htCInSy+7jGmSFlHXNa0pa3MRPwZViYbsO2KFracyhvEovewyCgs0QS5UUZVT66yGtSz1sivmMJbOHInKBKpqfBLb4UDUbGVg5Qkza4hCLBVGRRoRk+kiojP7TCorpqc7OQYSFPdOIdVJuohzmZnSxihswS6PaR/QNvy60uwIdpLTSdncWQA4LvikpU1zAFs7t9Lia0FFRY1ocyLFCUUqKod9h9nauTXlY0tOJ/NOWwRA30mfyNpcxI8BRXtQSXHC6VTGMB6S00nF0lO1/z9lSU6tsxLSBDspTrBLZ46cDpnyqHBndEoM4ddnRB47UfPYzMS1EJtjIzf+cpPLigkhy2NESTG3uWltxBwbKbhXmJiL0mis/YS2SRtVVWkbyK7GDqBs9kzoOYx63IKsnSNTLK5ZzH3n3UcwEuT5LRLrOmF5w2KuPvtkvY3b4WZxzeK0jj//7NPgv7bSVjB+zcKpEj+Gd/fCY80wp7yBfzz7R3qbqYxhPCpOPAFadhFpmJnR42aD+Dl6/GWJLb1w2fwz+eTJZ+pt0pmjyiI3/SMhrfpEXaZ7PT5mJCg2s9TUaDCiC5apViWYCnpZMZM2fiNLinmjArzfpETUQrAzVGMnNLImlo0zCluwy1MG/WH9QZGp5MSJEElTcyHSyO1ws3LWSgC2fPQRcICT6+Zx+dzMCKWzq7X6lAd6hjNyvETEj2G0txl4n8ayWi6fm93qD7GoUGut8+6OIbp8AU6fXaX7vcXP0W83vAH0sWLuUj41d2qVOaqK3OzrGjZ8YxgJmJCg2MwaotH5dcoSJRkulTcRepJi0zR2minWkFqxJmvshNbMDI3dSDCCPxQxLOLaDGzBLk8R2bVLvM6sXsBFHu3Ywg8oVxgY1fwsygomz2yfLLOqtbJtfSMh+keC+kaRLYajNUSLDNj8CixQguhI/vReK9/43VZUFS5eWMev/m4p8hFBDS3RknqZ0FqbVX1iRJhiPQaWFDPRx07f9IvcSJJxQSpmlxUTtWKN8LETArxZmtm+FCqLZIpSrxOnLBFWVPpGgtSXFRh2bqOxfezyFFH4vKY4uzXxhBbBSht+MgxmQbArdDuZFvVn3N+dPa2dYDiap7DIAE2O1TR2wbDC9//0EaqW+osXt3fwf98cm+h0NBihNeqOILSpU0EIdr0+gwU7A3N+iXJWVtDYpVNqaiqYXVbM0JJibnODZMwIjpEk6Zjxs7MFuzxFaBWqirN74wi/H6E9yhWExq40g4IdwOzqIsAgwU74XhmhyXFZS7B7aUcH3b4gtSUe7rjsBAB+8fKeMRoIsQZlBS49qnUq6ILdsLG1Jo1M5uo1OVoS4jV2xmlzICZI9ptkijXUx87k+9kMHzswP/LZKGzBLk8RGrts3zhFuaqx82deYwcwu8Y4wW5EVBYxwhRrsk/Okby6Sysb9enF07n2jFk0lBfQNRTgD+80623EGsypKcqISa+ySNN+G22KFYXaCwwIntAFO5Oc6iEWvGD0pq9rc0z2sct3zaw/FNG10EYGx2jni0a253kAhS3Y5SndPqGxy64ptiDXNXbezAp2c6Iau30GCHY+A53qCy1mit28vweAM+dV4XbKfPWc2QD85vX9RKKlmXZ1aLUV59ZM3QwLWvAEmJDuJLoJCr+obBLzpTTRx27EeDOddr6oj50J2hxVVXVh2oh0J2bmsTMrOAbMj3w2Cluwy1N6ouai6mxr7DzW0uQky+CoJohmWmM3qyqqsesyQGOnB08YaLqxwDp3Dvo52DOCLMEnZmmpZa76RCPlhS4O9oyw/qN2ALY19wOweEZZRs5baYJgF7/he90G5DdzieCJY09jJ843FAgTDBsr2AbCiu4vamRUrCmCXVRwLi80NjgGYi8Lto+dwTz44IPMmjULr9fL6aefzltvvTVu21AoxN13383cuXPxer0sXryYdevWjWkzNDTELbfcQlNTEwUFBZx55pm8/fbbY9r4fD5Wr17NjBkzKCgoYOHChfzqV7/KyviMoscojZ1Le+MatsCGnyzBsKJrnrJpilXFkzpLiDk3JHjCQoKd0MTNqi6iJKpxLXQ7uXZ5EwCPvLaPcERh26E+AE6eUZ6R81ZH76Vun3E+dsGIwRu+BXwpe01IXgua9l4EVfePGrvxx0chG6GZFecIRVTCEWOF2Jh/nbE+lNo5j41cdpYS7H7/+99z6623cuedd/Luu++yePFiVq5cSWdnZ8L2d9xxB4888ggPPPAA27dv54YbbuBzn/scW7fGMsp/5StfYcOGDaxZs4YPPviAiy++mBUrVtDS0qK3ufXWW1m3bh1PPvkkO3bs4JZbbmH16tU899xzWR9ztjAqeEJoi4S/Vy4g/OsAir2ZFYoaKwpxyBKjoQgdg9kVAPSoWAM0dnr0swVMsR93+ACYXzvWxHrtmbPwOGXea+7ngZf3MOgPU1nkZtH0zBR0rysVgl2QkEGboT/OJGqk71VYUQ0b45GYpbGTZUmPjDXauV5oZR2yhMuRfS1WvL+m32DtpBk57AS2xs4E7r//fr761a9y/fXX61qzwsJCHn300YTt16xZw3e+8x1WrVrFnDlz+PrXv86qVav46U9/CsDo6ChPPfUU9957L+eeey7z5s3jrrvuYt68eTz88MP6cd544w2uu+46zj//fGbNmsXXvvY1Fi9ePKG20OqI4ImqImPSneSSxk7415V4nRkv5u52yjRWaPmRsh1AIQQ7I3zshFBh5oYv2NOpaeyOqysZ8311sYcrls4A4OcbdwOwclEdTkdmHnMVhW590xV5IrPN2A3fOFMsmFlHNJbHzmjMKiumpzpxyoaYJz1xBeWN1sKbFREbf05bsDOIYDDIli1bWLFihf6dLMusWLGCTZs2JfxNIBDA6x2beLSgoIDXX38dgHA4TCQSmbANwJlnnslzzz1HS0sLqqry5z//mY8//piLL744U8MzHKGxqzZKY5dDwRPZCpwQzNIDKHxZOb5ARJYZkqA47g3f7Coju6Mau3m1RwdF3HTBPD3Iodjj5Ibz5mbsvLIsUVuiPUs6Bv2TtM4MscAJYx7V8Ru+aTnOTMpjF39Oo53rjUx1AlpON6GdNVqAN1Nwt/PYGUx3dzeRSIS6urFFGOvq6mhvb0/4m5UrV3L//feze/duFEVhw4YNPP3007S1tQFQUlLCGWecwQ9+8ANaW1uJRCI8+eSTbNq0SW8D8MADD7Bw4UJmzJiB2+3mkksu4cEHH+Tcc88dt7+BQIDBwcExH6sQiih69vRs+9gJbVEoohrucJwu2UhOHM+caDLcfVkOoDDSFOtySLp208wcZxCLOE4k2DWUF/Cnm8/mB59ZxB9Xn0VTNJglU9RGzbHZNrMLhMbOiFQnYO6GD1qwiJ681gQfLLPKihlZTkxgVmRsvx71bIKP3TFSL9Yygl06/PznP2f+/PksWLAAt9vN6tWruf7665Hl2LDWrFmDqqo0NDTg8Xj4xS9+wRe+8IUxbR544AE2b97Mc889x5YtW/jpT3/KTTfdxEsvvTTuue+55x7Kysr0T2NjY1bHmgribVOWoDxLwougKG7DGc4RP7tslBOLZ040gGJfV3Y1dnpJMQNMsZIk6RuBmRq7kWBYf9ueUVGYsM308gL+/oxZGUtzEk9tiSbYdQ0Zq7HzGOBQLzAzFcZIMEIwauo3x1RnTlkxI6tOCMwKlDHVxy66vn3DoawHt5mJZQS76upqHA4HHR0dY77v6Ohg2rRpCX9TU1PDs88+y/DwMAcPHmTnzp0UFxczZ84cvc3cuXN59dVX8fl8NDc389ZbbxEKhfQ2o6OjfOc73+H+++/n8ssv5+STT2b16tVcffXV3HfffeP29/bbb2dgYED/NDc3j9vWaHribpwja2dmGqdD1h9GvhwR7Ab9Wj9LC7IjEOmCXRZ97CKKqr/lG2GKBWskKRa1X0u8zqwJ5hNRVypMsQZp7ELGJScWmFmVQGz6HqdsSLDIkZhlqvMbbIqNP5fRJncr+NgFI0pO+YWnimUEO7fbzdKlS9m4caP+naIobNy4kTPOOGPC33q9XhoaGgiHwzz11FN85jOfOapNUVER9fX19PX1sX79er1NKBQiFAqN0eABOBwOFGX8C97j8VBaWjrmYxXE22a5QapuUfkgV5IUZ9sUKzRFzb0jBLKUwT9+rgsN2vStkArjcL8m2DWUm1PAOybYGaOxM1OTY4aPXfymb3SOM4hpkUwLnjBBsDNNY2eCYFfgcuh+pPmcpNjYtM+TcOutt3Lddddx2mmnsWzZMn72s58xPDzM9ddfD8C1115LQ0MD99xzDwBvvvkmLS0tnHLKKbS0tHDXXXehKAq33Xabfsz169ejqirHH388e/bs4Vvf+hYLFizQj1laWsp5553Ht771LQoKCmhqauLVV1/lt7/9Lffff7/xk5ABsm1qPJIij5NuXzBnTLGiFmS25qe2xEOxx4kvEOZQzwjzj4jezAQj0aoTTlka4/CeTayQy05o7GZUmCPYCVNsh1FRsSHj6sQKPCaaYs0004F5wRMxHzvjBHi9rJjB97NQPJgRHCNJElVFbloH/PQOB2msTOzOketYSrC7+uqr6erq4nvf+x7t7e2ccsoprFu3Tg+oOHTo0BjNmt/v54477mDfvn0UFxezatUq1qxZQ3l5ud5mYGCA22+/ncOHD1NZWckVV1zBD3/4Q1yu2Kb+u9/9jttvv52//du/pbe3l6amJn74wx9yww03GDb2TDIwml3B5Uj0lCeB3FBt90adsyuzlApGkiTm1BTx/uEB9nYNZ0WwExq7QrfDMM1GgQXKirVYRGPXaZTGLmy8JqfAxDqiZprpID7diTk+dkYK8OJ+zpZVYTzMFt4rhGCXxwEUlhLsAFavXs3q1asT/u2VV14Z8+/zzjuP7du3T3i8q666iquuumrCNtOmTeOxxx5LqZ9WxmiNXXE0KjNXNHa90XJr2cx8PqdaE+yylfIkFhFr3C1sBVOs0Ng1mKSxM9oUK2q2muN7ZYbGTkTEmqSxM6kygZhrjwlRsUZq7EaDEf35YUbUMxwb9WIt42NnkznMMMVC7gRPiCLj2dLYAcyJ+tnt7cxOAIXQjhop2BXqwRPmrXNMY2eOCUVUn+gbCRmi6TDD98rUAvGi6oQJqTCAuMoTRuexiwrwBkY/e0x4URMCs8sh6b7ZRnMsVJ+wBbs8xCzBLlc0drGSRVnU2NVkN0nxiJ7qxEBNjgWiYtsHNE3Z9HLvJC2zQ1mBC3fUp7HTgMjYUd1EZ6TvlXnBE8I8Vm6Wj11UmzPoDxtaQ1U3xbrzO0imL64OsBnBMXBs1Iu1Bbs8ZGBU2/TLDHo4FudYWbE+A3w84pMUZyNfks/AcmICPY+dSaZYVVX1Ul41JdlNvD0ekiTpWjsjzLEBEzR2HjN97AyqcT0eZQUuhLzRP2qcn53uS2lCvkJDNXa6f7M56wvxGjtj/SiNxBbs8hCjNXaFUR+7XDDFBsMKQ9F+ZvPhMru6CEnS1iIbKn8jy4kJhCnWb5IAP+gP68lrq7NcUWUippdp/n3CLJxNjC41BeaaYs12rHfIkv7cNNIcK+4pY30pja8wEtPImmNqh5ilRvha5yO2YJeHDGQ5nceRCF+JkRwQ7IT63SFLWasVC1rEmRAAspGo2MhyYgKzgye6fdqDuMTjNHQDPBIRuHG4L/uCnRmlpsxMUGx2VCzE0nAY6YNlRroTMwT4nug9nO1SlxNRoQdP5K/GznJRsTZTxwiNnRIM4nv5ZdRgEEeLBMj07dnPwHP79DaS203xhRciu817SB+JeLCUF7qyUpUjfl5mItOCxIcb/spxdTFzbCbmZTgQS3eSTeLHIx3S1rn/470MRPbobYxaZ2GGNctMJ5hRbobGzvgNP2CGj92wscnVExFLeWKgYGdCWhsz8hX2+LQ5rbaC4J7HPna2YJeHGCHYjW7dRsst3wQgNOsMOOUKet77kNb/+O2YdjOfeIKi05dlrR+psnbPa4CMy5kdNXz8vNSc9BmYew4frXuV5R89P6bdVOflg66PAYn2kUPAyVPo8cSMWed558OJn6L37XdpfeR3Y9oZsc4v7n0DkJGd2SvVlgxCY9diiMbO+PxmZiWuVVXVEho7oU3q9hmpsTOz8oRxAnzPsPkau8piO92JTY6hqqpeCzWbgl3h0iW4ZswASaIwrN2sI864m1WScDU2Urh0Sdb6kCphJcxTOzcAMBhpIaxk3nQcPy8zfF0AHC6uiTXIwLyElTBb2t4H4P2ed7IyDkH8eDwR7UEYcMRdVwatc1gJ8/zu1wDoCu7L6pgnQ6RaMUJjZ2oNUYMT1w76w0QUTbNtlo8dxPw3henfCEZNMLmbYYoVwrKZWvfKuLJxipL5wDYrYGvsMkwkrBAJG2/CEAz5Q6gRFRkodjmy2BeZyptW0/ad7+KJhJBV8Ds9KFLswVR502oUZDBxPuJZu+8F+ocUZBXCdLF2zwtcNueyDJ8lNi8Nwz3IKrQW1WZ0Xtbue4ERvzbnw6HeLI1DEL/OEWQVAg7j13ntvhcYGNbWLqhka+2So77Eg6xCW+8o4VAkq2kbAgFtzr2ybNhzxSPL2joHwoY+y3oH/ciq5l7gkiTTnqM1RW5kFboG/Ib1IRAII6vgkY0bt0eWDF/nnugaVxW4TVvfErcTWQVU6PMFTEutkyqpzJct2GWYrRsOUlyY+RJSyTLoD7Hc78QhS3y0sZlsZgpS5UX0nXQlUtjFcr+TcnkaB5pWAhKO0lJ80kKkFw5ksQfJo6gKL+3cxmm9i4n4nTjkWjY+u43aBScgS5lVXIt5cY8EWe53Ijvr2dd0CTJMeV7EOD7RPxsl4MTZNz9r4xCI8bjUQpb7ndS5GwxdZ33MPYuI+J04B6dnfcwTEVZUlvud4Ie//mlfVs2kdS0BlvudjL7Xy5Y2Y0xHkbZBlvudVBz0s8XA+7dtwM9yv5NSXIae90hKDg9rz9Cdg2xxG9OPhtYgDr+T4W29bDlsUB3iTp92Px8OGDbfdYe1Z6L//V62HMy+xns8zgu7CYQV3n7hgCk1a9PBNzKUdFvbFJtnxEfRZTv9oyTLFC5bhitqFgvJYoNTKVy2DEm2zuW1u38PQ8FBVEUzs0hygMHgILv790zyy9QR81IY9uNUIiiShM9dSCbmRYwDVRwjkrVxCMR4nIpmsgnrwpQx6xxbu+gDWA5mfcwT4ZQlPc3M4Gh2TcLhiGYqcjqMS+bqjK6nOLdRmJGkNxEiN+SIgT6G4ahJ0JmFgK7xEOcKG2iOFH6bhS5zdUq6u0GO5F5NFVtjl2FOvaiJ0tJS086/aV83m9/bx5waN0svnZX186kXzSD4yhNs9i6lRA5yy6EXcTU0MGf1PUhOa1xeYSXMnX9cTVtDG8PhJiJSFd7aN3GXfkRHwXaeWfkMTjmzfVUvmsG+dT+jNXQc+8pmsGJoJ0udg1OalzHjUGYQGa7AW7sVd+n7WRuHQL1oBh1//R82e09iZnCIGwxa5/gx+8KzUeSK6NrtyPqYJ+KeA628d9jP359YxtJF07J2nu/sOsi+UJjVZ01j6eyqrJ0nnqFdHWze3cxJVZIhzxDBwXdb2LzzEOc0lRt63iNRD/ay+eNmmooi/Nigfty2/QCHwmG+ec40lsysNOScwX3dbN55iLnlHkPmezQY4bXXd4ALHrpsFiVZTDc1GT860Mr7h0e5bnElSxfWmdaPVBgcHEy6rTV23jzC4ZRxOM174xwJKSgSFBe4jemH083Ma7+A8i4MuzzISpi6m2/E6bWOenvt3vUcHmkGGcKRUlQJcPcRkcM0jxzixeb1XD738sye1Omm7uYbafjDB+wpn0FLURV1X/u7Kc1L/DgiqhNFAkUOZHccAqebaVd8GuVDGHW6DVvnMWOOFEfXbsCYMU/A9KpCtrYM0DLoz+p9NhpWUSQo9LoMe64UeFwoEoyEFUOfZf3+EIoEFcUGPbvGoa6sAEWCDl/QsH6MhBXD17nIq63zqEHr3D/kR5HA7ZQpKzKvpBhAZYkHRYL+QMjUay0VUulnbozIJmlE9YcSr3Eye92lFwMQlp2oM2dRumqVYeeejLAS5sFtDyIhoaoSaljTpkpOzV9BQuKhbQ9lJcqy9LLLmClr/jKt06Y2L/HjACBqlpRkze8qm+MQVJ9/LgB+pxtXY2PW1/nIMathzXdVcmr1d40Y83g0VmiRsQd7RrJ6HlPSnbjNiYo1u06soDparm4kGNFrMmcbU6OfDUp3Ep/DzkyhDvK/rJgt2OUZekUCA2uIFhXG0pwU/Z+vW8YEC7C1cystvhZUVE0wUF1ABMk1AICKymHfYbZ2bs34uSWnk0XnfQKA9tmLpjQv8eMAUNWoGSMq2GVzHIKiAm2dAw4XNTevzvo6j1k7xQ1qVJiNCnZGjHk8Zldrgt2Bnuzm1DMzQfFo0NioRZFXzMwcdgBFboc+391DxgSsmFFhxOh0J1bIYScQZcWMTEJtJNbZgW0ygqiDWmygxs7pkPG6ZPwhBfmCTxp23mRYXLOY+867j2AkyO42+MUeqCmV+d45/5/exu1ws7hmcVbOv2jlubD7rxxSp/Ywix8HwL8ekugPws1L/g+N1VqbbI4DwBt1ag84PZR86tKsnUcQP+buQfj+LnA7Ve459y69TbbHPB6zqooA2J+FcnECVVVNSlBsTq1YvU6syYKdJElUF3s43DdKly/AzKrCrJ4voqh6DWSvgWZBo9dZCMlmV46B2DXWY2ASaiOxBbs8Q2jsig0sDi/O5w8FGbZYlJHb4WblrJUA/L73EPABC6fVcvlcY6phNFZqm0KPL4g/FEn7jTx+HAB3KC8CIS6efQHzaosz0dVJEcKFCgQjKt4s70HxY95ysA94g9qSQi6fe2F2T5wEs6s1wa61f5RAOILHmXnBKxhREAGLnjzW5Aj6RzSzmBXST+iC3VD2U48E4kzeBVkuERiP0EqGFZVQRMHlyO4N3R3V2FVbQWMXl6Q4H7FNsXmGz2+OYCfSPwjB0oociPpDNWX5DTyesgKXvlF2DPozdlw9bYCBG0G81sjoclOiCoAVNgWAmhIPRW4HigrNvdnxs4v3fTJSYyfOJTZ8oxA+dhVF5kVLCmpKjKs+Eb/O3iy8IIxH/EumEUJ8jwWqTgiExq43T8uK2YJdnuELaDdokcGCncj9JM5vRfZ1ab5ZTVEzmhFIkkR9mReA1v7MCHbhiKKbbozc8J0OGXf0rX7UYG2O1QQ7SZL062h/d7YEO22OZQlcBuax88T58xm5zlbxsQNjy4qJOXY7ZGQD89h5nDIihsGIAIoecQ8XmX8PVxXZGjubHMIX0MwZRvrYARR7NAFjxGSNXTiisL97OKGm4aNWLQ/Qwnpj8wzWl2uCXftgZjKt++NKyxhpuoGY+cbI5K0Q88+pKTF/0xcIc+yBLPnZxfvXGRlFOHbDN2adFUXVN1krmGJrololI0yxYo49BgbIgPZy4on69BmisRu2NXZGkdLuP3v27LQeMLfccgvf+MY3Uv6dTero6U5MMsX6TBTs+oaD/N1/vslHrYPMri7isX/4BLOim2//SJDDfZpgtXC6wYJdWQGQOY2dSMEgSegPZqModDsZ9IcN97+ymsYOYFY0MnZ/liJjzYiUBG3DL3A5GAlG8BsUGTvoD+n+hGanO4FYyhNjTLHGB8gIClwO/CHFkPtZCMlW0MiKl4chf9gQ/0KjSWn3f/zxx9M6yaxZs9L6nU3qmGWKLbaAYPfTDbt0rdz+7mG+9Pjb/HH1WZR4XWw91A9o/nVlBcb68AhTbNtAhjR2wZgZ1uh8UEJDaLjGzoKC3exqLWglWxq7URNymwm8UcHOKFOs0JwUe5y4LZAwtkY3xWZfo2OWAB87Z8iQdRaCXV2pN+vnmozSAheyBIqqKQRqLdCnTJLS7n/eeedlqx82GcLnj5piDRbsRHmYIb85gt1oMMJTW1oA+Pk1p/DjF3ayr3uYf3nqA375xVN59eMuAM6cW21434TGri1DGrtRk9/w4/tgFNYU7DSN3b6u7JpijcxhJzA6MrbPQoETENPYGWmKNXeds6uZDYYV3RRrBcHOIUuUF7rpHQ7SO5J/gp35r0Y2GWU4qrEzWrArLRBF0c3J5P3Krk5GQxEaKwv49OLpPPi3S3A5JJ7/oI1fv7aPP73XCsCFC2oN75vwsWsbyKxgZ8YbvtDYGR8VG81abwH/HMG8Wq0SRvugn4EsXPfmauyMDZIRFQCs4F8HUFei3bOdQ35UVc3qucw0xXoMEuC7oi9mLodERaE1hHfRj3z0s0tZsOvp6eGf//mfufHGG3n//ff17w8fPozP58to52xSx2dCgmKA0qjGbtBvjmC3eV8PAJ9cUIckSZw6s4J/ufQEAO55YSc9w0Gml3m54Pgaw/s2rVQET2TWx87owAmI19gZq5ntHrJO1npBWYGL6VEz++6OoYwfP2Dihm908to+iyQnFtSWateZP6RkRWiPR2jLjMxVKDBKgBepnmpLvKaXExMIX7++PCwrlrJg95WvfIVf//rXbN68mXPOOYc333yTU045haamJqqqqvjmN7+ZjX7aJIGiqAxHN/0ij7EPidKo39rgqDmm2HejPnRLmyr077501iyuXDoD0B5g/3bFyThNcJIVObH6RoKEM5AXTGy2RuawE8Q0dsblN/OHInpFlRoLCXYAx03TtHa7siDYmaqZNbzclHUiYkGbc7HxZ0rTPh7Hwjp3RgW7ulLr3L9ifXvzMOVJyrvca6+9xlNPPcW7777Lfffdx+c+9znKy8t55plnuOeee3j88cdZs2ZNNvpqMwkjoQjCalDiMVbdXRrVEJqhsfOHIuxo04ImTp1Zrn8vSRI/uXIxr/zz+Wz6l09y7nHGa+tAKzgtS6CqmVH7C6HKzI3ASB87sem7HbJu8rcKx9dpgt3H7ZkX7Mx0qtcFeKMEO+FDWWKdjV/XtGdZsNN97EwIGjFKM9sxaJ3ACYEu2OVhWbGUn5J9fX2cdNJJAFx33XXccMMNPPPMM5x++ukAVFRU8NBDD/H3f//3me2pzaSIqg8OWTLcEddMU+zuDh9hRaWyyE1DecFRfxcpT8zCIUtUFnno9gXo8gWm7KhrieCJoHGa2ZgZ1m0ZM47guLosauyC5jnVixJpRiSuhfjgGGto7ECLZt/eNph1jZ3uY2eia0W21zlmirWO4F6Rx2XF0npiyLL2M7fbTWFhITU1MU3Ieeedx+7duzPTO5uUEBGpRW7j02AITYoZUbF7oxUl5tUUW27jF4gNKxPpE4RQZaop1kCNnRUjYgXHC1Ns+1DGnez9YRMFeIODZPTktRaoSiCYViY0dplJUzQegWjCcSPLiQlEUuSsm2KjL2dWij6tzOMkxWkJdv/1X//Ftm3bCIeP3sSLioro6+ubcsdsUkdPTuw1PupI19iZEBUrBLu5tcWGnztZ9NqTGUifYKrGzgQfOytqcwTzaouRJOgbCWU855mppliDo2K74rSyVkHkn8xU0NN4mKmZ9RrkWtGh+9hZR7DLZ41dyqbYc845hzvvvBOfz4fb7SYYDHLnnXdy9tlns2TJEqqrjc8TZqMhTLFGB05AXPCEP4yqqoZqznTBrsZck+tEZLL2pO5jZ4LGrtCEqNhYqhPraHMEXpeDWVVF7O8eZlf7kC7AZwIzTXRiww8YHDxhpTWeJvJPGuVjZ2rwRHZf1Dp1HzvrrG8+a+xSFuxeffVVAHbv3s2WLVt49913effdd7n99tvp7+/XzbQ2xiPMoEbnsIOYxi6iqIwEI4ZWvtjbqSWItbLGLmaKzReNnXGmWKHNsZJjfTzH15Wwv3uYne2DnD0/cy+2ZjrVGxkkoyiqvrlaSbDTNXbZFuzC5ucrzHrwxJD1NHaxdCe2YKczf/585s+fzzXXXKN/t2/fPrZs2cLWrVsz0jmb1Ihp7IwX7LwuGacsEVZUBv0hw/oQUVT2R0s6za22rmBXlcESRWb62InNx8iSYlb2sQM4ob6UdR+1s6MtswEUuonOxHU2QrDrHw0RiRaKtUIdUcE0owQ7U03u2Y+KHQ1G6B/RXHSsKNj1DAcNtzJlm4zuvnPmzGHOnDlceeWVmTysTZLEfOyMF+wkSaK0wEXvcJDB0TD1Zcact8cXIBhRkCWYXm6dh8aRZNQUa6LpptDU4AnrbPrxLKjXAihEyp1M4TfRqd5rkIkOYqlOygpclqgTKxDpToYCYYb8oaz5Lsfu5/xMd9LSPwJAicdpeJ3uiRDJsANhxXArU7ZJaSSzZ89OS6q95ZZb+MY3vpHy72xSQwh2RW5zLtBSr5Pe4SBDBqY8Ef4vtSVeU5IPJ4twCu/JhMYuutmame7EqMS1EJszq2rsFtaXArCn00coouDK0HUYc6rP7+CJLosK7kUeJyVeJ0P+MO0D/qwJdmZWGPEYoJk93KdFFTdUHJ2KykyK3A7cTplgWKF3OHjsCnaPP/54WieZNWtWWr+zSQ2fiaZYiA+gMFKw0x4a9RbW1kEsAisT5YlGTSwpJsyCtik2RkN5AcUeJ75AmH1dw3oKlKkSEOlO3Cb42EXX2W/AOgvB3Url4gSNFYVsbxukuW+E+XWZWdcjsYYpNnua2Zb+qGCXIMeomUiSRE2xh5b+Ubp8ARorC83uUsZISQI477zzstUPmwwg3vDNiIqF+JQnxkVMCo2dcHS2KuVRoTcTofXi7doMH7tCgytPhCIKfVH/HKtpdASyLLFgWgnvHOxjR9tgxgQ7XWNnpik2bIRgZ02NHUBTlSbYHewZydo5zDXFZl8zKzR2MyymsQMtIKulf1QP0MoXrGu7skkZETxRaJIptiyDwkuyCMfmaaXWe2jEIzR2I8GIrolJF1NNdAZqciCWisAhS/ocWpEToubYHe2Z87PToyXNDJ4wYJ2tnM5mZlSLc6g3e4KdcGvwmKixy2ZamxaLmmIhVns6E77PVsIW7PKIERM1OQAVRVHBzsDw8VzR2JV4nchR99SBkamZY63gYzdicOLayiI3smzdqLVYAEXmImPN1NjF0p0YEDwxHE1ObKGqE4KZVVHBLosaO7+JPnZGBMnETLHWM3WKvJP5prHLH29BG30jMFKwU4JBfC+/jBoMUnRYAmTaPvqYAf8uvY3kdlN84YXI7sxrXFqjPnbTLCjYxc8NQKlDpj8scej5F/FEcymnMzfCx84o0038OMJ+AAej/iADzz2nt8nWGotKHVY008Wja+wyGBkrNtt8T1Csa+xKrLfGxmjszPOxM8YUq82dNTV22jVnC3Y2lmUkaLwpdnTrNlpu+SYA8uyzYPHnaHv3A1ofWTOm3cwnnqDo9GUZP/++7l5AYt/wFmB6xo8/FeLnBqDok7fRX1LLvl8+QlHPPv37VOemb3QYkHin8w2Wzb48k11OSPw4+t1FsOr7BBSJ5tv+BQex+qjZWOOX9r8JyKhyZlOJZJrj60qQJG2D6PYFMmJWDITN870yMkGxMINZUWPXVKm9gR3qHUFR1Kxojf15nO4kGFb0OrFW9LHTSz3aplgbqzJigsaucOkSXDNmgCRRGtQSBQ944hIFSxKuxkYKly7J+LmD4RC9w9rb7p8O/JawYlzQRjLEzw1AaVB7cx10R00SacxNWAkzFNAeQv+z+78MGXP8OLyRmJk94IxqWLK0xmElzPq9mwBo8++y3PrGU+Rx0hTV7uzMkDlWaODNqTBiXLoTK+cprC/34pAlAmFFT8uSaWIVRvIvEfWh3hFUVduTqiyUfFogXsBsjZ3NhETCCpGwcQXS4xkNhJFV8DgkA/sgU3nTatq+811KgyPIKgy5ilCk2EOq8qbVKMiQ4T79vw/XISsOQKHTv5e1e17gsjmXZfQcUyM2N0hQGhpFVsHnLtbnJ9W5WbvvBYg4kVXoGmk1aMyxcbgUBYeioEoyI84CvBFN2MrGGq/d9wKDwyqyCn6ly4LrO5aFdSUc6h5h++EBzphdOaVjqapKMKQgq+CWjLyfNVxIyCoEg5GsnltVVboHAsgqVBe4TXt2jocMNJZ5OdQ7yv5OH9VZCOAR6+yRjV9nj6StcyiYnX1rX8cQsgpzqgpRIirEafitQFWhC1mF3qGA5a69I0mlf7Zgl2G2bjhIcWF28h1NxtxOhRq/k963u9myy2fYeVV5EX0nXYkaUFnud+KVaznQtBKQcJSW4pMWIr1wIKPnVFSFN97fzXL/IiQ5gLt1BRuf3UbtghOQJesoosXcRAaHmC9V4fA7CVUt4YBUlfLcKKrCSzu2sXxUM3d62s8ybMzx4zh7VCYkO2lpXMFgaDQra6yoCi/t3MayngVEAk6cAzMsub7xnNAP/X4nHW92sMU3NZNdRFH5xIgm/O9+pZVmg810I8EIy/1O8MM7aw+QrWpL/pDCqT4ZkGnd3EGnBQNkzgi4mO4PsX1jM/L0zLoERFRz13k0FF1n4O21B8j09O852Mdyv5Pjhh1syfAekAn6R0Ms9ztxdUQs2b94fCPJWwKs+YS0SYtgRJPoM5X5PlkkWaZw2TLdTBdwuFCRAJXCZcuQ5Mz3Z3f/Hj0hM7IfUBkMDrK7f0/GzzUVxNyAijuiRcMGHG7SmZvd/XsYDMScuFUpYtiY48fhVDSzTUh2kK013t2/h6HgIKoa1ZDIQUuubzzClJiJesBhJabZcDqMF3bizxnfl0wzrAcCOXBaUKiDWE3R3gys65GEIyavsxy/zpnXWPVHU19VWNAMCzG3pVBE0ffPfMDW2GWYUy9qorS01JRzv7F5F0GHwr99cgYNFcaGlqsXzWDX+l+w2XsWADe3vUZlbSVzVt+D5MzsZRZWwtz5x9UcrGjCH1yEs+QABQ0bkJDoKNjOMyufwSlb59JWL5rBvnU/482BEJvrGygLtXJV5KOU5kaMuaV+CN/w2YBCccN6ZMm4MYtxfMyJtHhr+UzvFuZ7QxlfYzHWtoY2fMHjUeRSCurewFW815LrK6jrHeG7u5pxKRH+7aKZU6p72jXoZ/PmXUgS/HbVLMMLlIcjCps3aZHtv7igIWsb8+t7uti8dS/H1XlZeumsrJxjquypdvBwZzeuMvhmhvvYNWTuOiuKyt9H1/ln5zdkvPrHTw+387Y3zJVn1bP0FGsFtwlu2LKHkWCE/295HU3VRWZ3Z1wGB5PXFlvv6ZjjOJwyDhMKWUcUFX9EAQmKC93G98HpZsbqG/C+NsqIq4BBl5cTbr4RpzfzG8Laves5PNJMOLIIRQLV1Ycia1qk5pFDvNi8nsvnZj9aNGmcbupuvpGSXz2HIsGg20tdinMjxqxQiSIBUgjVESGCgWOOjsO7tg1FAr/spO7mr2Z8jcVYkSESKUGVQHUPEJHD1lzfKDNriijyOhkKhDnYP8KCaem/4AVVUCRNo+A0IXjC4ZRxOmWCEYWgqmbtedI1HEKRoKbMa8pzMxmOqy9BkeDjLl/G+xiKrnOBy6R1BpwurV5qNtZ5b88IigRz6ootu76VJR58vSP0+kPMsWgfgZTmz7qjsEkJkeoEzEtQXHrZZVSHtbxyAzPnUbpqVcbPEVbCPLjtQSQklFAZALJrQP+7hMRD2x6yXARl6WWXUVqihfuPFJenNDfxY1YVLQm0JMfMQkaOufSyyyhwalqFYN30jK/xmLGqMmpE0zxLTs2/xKrrC1rtyVii4qn5YsXKTJlzLwN4DMhx1jGoJRivK7VeHkqBqBHbNuDPeB1sM1OdCLJVL3ZgJKRHPM+usa4mLB+TFNuCXZ4gUp3IEnhMeuuQnE6mTysHwL/qcxk3wQJs7dxKi68FFRU1XBY9b0ywU1E57DvM1s6tGT/3VJCcTupXXQxAsL4xpbmJHzO6z1lsgzFyzJLTSflMzaTivOiSjK/x2PUtQntERZAcmm+hVddXEEtUPLWUJ2ZWIxAUZDnHGcQLdtbLYScoK3Dp/dvdkdmgNCsI8EKozPQ6i/J6DeUFeh1xK5KPZcVsU2yeEMth5zTcTyOexnkz2bzlMP1zFmTl+ItrFnPfefcRjAS567BED/D1pdcwZ9o1ehu3w83imsVZOf9UqDv3LNi5mWFvam+v8WP+uBUeOAB1RRV89+wf6W2MHHP5zAboa0NZsCjjx44fa3M33LsHSgtkfnjOD/U2Vl1fiAl2O9unJtiN6vVDTdTkuI0T7KZZWGMHML+2hI7BAB93DLG0qSJjx/WbWB5QkK0kxUJrfUK9OVkikkVUPMknjZ0t2OUJsaoT5j0gAOrLNXNje7SGa6ZxO9ysnLUSRVH5p5F1gMIVCz/JDIODRdKhtEB7a9WjeZNEjBlgY7ADeIfa4nIun3t2pruYFEUe7bExnIUC8fFj/XO4E3ibGeVlXD73nIyfKxvMqopWKugZntJxrKCxEwlzR4PZixbsGNQ201qLC3aLppfy+p5uPmgZ4AsZPK5fF+CtoJnN7DrHBDtzggmTpa5Eu/baB7OzZ5mBbYrNE8yoOpGI+mjN1rYsCXaC3pEgwYiCJEFtibU3BUGJVxOIBv3p+4eNWmDDL3ILwS67fm7iDVr4wOQCjZXai01L/yiRKaQJMbN+qMBrgMauMwd87AAWN5YD8P7h/oweN3Y/m7cVe7JUfUK4I1hdsBPKiGzvWUZiC3Z5ghDsCgysE5sIowS7tn7t+NXFnimllTASobELhhW9Dmiq6GWmTBTgdY1diprHVImVmsodwa6+rACnLBGKqLqZMR2soLEryHLwhKKoeh1RK/vYAZw8Q/Pn3dk2lFFB128BH7uCLPjYhSIKH3fkiGBn0J5lJLmxI9pMyqhVTLFl2ttPa/9owr93DPq554Ud/OYv+whPISFk24B2/Oll1n7Tj6fY7dQz+A+lqbWzwoZf5NHOPRzIbh3RXNTYOWSJ6VENQHPvyCStx8cK0ZLZriPa7QsQVlRkyfrCe0N5AVVFbsKKyvYpRjzHYwXBLhs+djvbhgiEFUq9sRrKVkUX7PpHUVVrlTxLF1uwyxPEJmu2YDczehMPjIboHR6bqd0XCHPNrzfzyKv7+P+e38F9L36c9nmEP8S0HBLsZFmiOKpRHRxNL23CyDGksctFwQ5i5tjmvsQvN8kwaiHfq0CWBLvD0Ze/aaVew6vlpIokSbrW7r3m/owd1xLBE87MC3ZbDvYCsKSpAtmiFUUEQhkxHIxMyU3GSlj7brJJmpGQNQS7AreDhqjGYk/n2NQA//HaPvZ3x5zKH/vr/rTzQgm1ubgpcwXhZ5euxs4KPnbFHmN97ESprlyhMRrIMzWNnfkbfkGWNXYtUcG3oSI37uHTZlUC8Oa+3owd02+p6OfMBU9sOdQPwNKZmYsgzhYFbgflhZqbTLaC/ozGFuzyhJgp1vxA53m1xQDs7oylfBgJhvntpgMAPPCFU5lXW0wgrPDiRx1pnaMt+rZfn0MaO4CSaD6nqQp2ZppuxDXmy7IpVvjY5Z7GThPsDmdAY2emKVZ3qs9SVGxL9B4WL4JW54y5VQBs2tczpcCYeKxwP3sz7EupqipbDmjCbyZTw2QT3YVoIP171krYgl2eYJWoWIgJdvEau//3djN9IyFmVhZy6YnTuGTRNAD+uqc7rXMIjV0umWIhXmOXnqbSb4F1Fj52IwaZYmtzTLATEZ6dQ+m//QcsoJnV02CkGegzGYf7NI1mLqQqAji5oYxij5OB0RDbWzPjZ2cFzWymfew+7vDROuDH7ZD1aGKrM133s7M1djYWwkqCnYiCEr4o4YjCf/xlPwBfPXcOTofMmdG33zf2dqflsCp87I5VU6yZb/jFBvjY+UMxf5ea4twS3kWy3alExVphnQvcUU1OFvIVQu6ZYp0OmdNna+bYv+5N74X0SKwUJJMpU+wLH7YBcO5x1bo/rtURCoJ2W2NnYyVEgmKz050ALIv6onzQMsBoMMKf3m+lpX+UqiI3Vy6dAWhOtW6HTMdggObe1G4mVVXjfOxya9MXKU/S9S20Qn6zmCk2e4KdMMO6HTKlBeZf06kgUndMxV/HEtGSUaf6dFPzTEaumWIBzplfDcCG7em5kByJFaLc9UTUGdLYvfBBOwCXnFifkeMZgYhkb7V97GyshNDYFVlAY9dYWUB9mZdQROW13V08+Oe9AHzp7Nn6RuV1OTh+mlZq5sPWgXGPlYje4SDBsCbgWD2x6ZHkU/DESDCStfQA3T4torqq2G1qibx0EFUUBv3htLVdVhDghVN9NjR2qqrmnMYOYOWJmgvJloN9U9LICqwgwAvNbCain/d1+djVMYRTlrjohLopH88oppdr96xwD8h1bMEuTxixSLoT0FIDXHaS9rb2f9ZsYU+nj1Kvk78/o2lMu0XTNZPtRykKdkJbl0vJiQVTDZ7Q3/Dd5o1b+NiFFZVAODuO9ULbZfVSU4ko9Tp1wTtdPzsrCPDZzGPXOxxkOBhBknJLY1dfVsCpM8sBWP9R+5SPZ4W0Nplc5xc+1ObkzHnVlEUjTXOBpmgpwIM9tmBnYyFG9A3fGmar686cNUbIvONTCyn1jr3RFzVoeaE+bEnNEbk9R82wEF9WLD1TrF55wgKmWMien53QhtTnoGAnSdKUzbH56HsVz75o2qPpZQWmaqvS4dKo1m7tB21TPla+BU+siwp2Yo5yhdlRwa5twJ81n1IjsQW7PMEqlScEjZWFPPGlZVx12gzuv2oxV53WeFSbE3WNXWqCnag6kZuCndDYpeljFzb/Dd8hS/pGNJKlh2CuRj0LhKaxIxrZmypW8L3KZh67/V2aYDenpijjx842l0Z9x97a3zulyGewRlqbTAnwzb0jfNAygCzBxQtzxwwLUFHkpizq/3ygZ3iS1tbHFuzyBCtFxQo+MauSe/9mMZ9fMiPh3xdM0wS7bl/gqCoVE5GrgROgmekg/cADK2jsIFZ9IlsBFB05WFkkHj0yNm2NnRV87DJfQ1Swt1tLhTSnOvcEu8bKQhY3lqOosP7DqZljrZDWxuvMTB47oa07fXYVVRYvEZeIWdFr8UC3LdhlhQcffJBZs2bh9Xo5/fTTeeutt8ZtGwqFuPvuu5k7dy5er5fFixezbt26MW2Ghoa45ZZbaGpqoqCggDPPPJO33357TBtJkhJ+fvKTn2RljJkmJthZwxSbDBNVqZiIdl2bkzu+OYKiKSb3tYLpBuLrxWZHsBNa2Wk5aIqFWFJlEd2bKqMWqEiQjVJTgn26xq4448c2gstO0kyNz0/RHGsNAT4z6yzSnFx6Um6ZYQWzq7R8ivttjV3m+f3vf8+tt97KnXfeybvvvsvixYtZuXIlnZ2dCdvfcccdPPLIIzzwwANs376dG264gc997nNs3bpVb/OVr3yFDRs2sGbNGj744AMuvvhiVqxYQUtLi96mra1tzOfRRx9FkiSuuOKKrI85E4xYzBSbLImSGU+GyA4uIplyianWWdWd6k1e59IpBoFMRsegJhDlqsauskgrg9aTgiY6HitES3rdWTTFRrUis3NQYwewKhoc9uYUzbHWMsWmv86dQ37ejZYRW7koNwU7W2OXRe6//36++tWvcv3117Nw4UJ+9atfUVhYyKOPPpqw/Zo1a/jOd77DqlWrmDNnDl//+tdZtWoVP/3pTwEYHR3lqaee4t577+Xcc89l3rx53HXXXcybN4+HH35YP860adPGfP74xz9ywQUXMGfOHEPGPVWsaIpNhnQEO11jl4PanKkm99U3fKfJgl00t9zAaHq+ghOhqmpOrzFAVVSwS8XFIB5L+dhluKSYPxTRBTtx/+caMyo0c6yqwsYdiZUOyWAFAb4gAz52r+zsAuDkGWU5l4JKIK7FXR3J70VWxVKCXTAYZMuWLaxYsUL/TpZlVqxYwaZNmxL+JhAI4PWOvZAKCgp4/fXXAQiHw0QikQnbHElHRwfPP/88X/7yl6cyHMNQVTUnTbEQJ9h1JXczKYqqJ5GcnkNpEgTChJmOb5qqqrE3fBPTnQC6o3G60b0TMTga1sd57GrszDe5C2EjE/nN4vm4Y4iIolJR6MpJP1nB+cfVAPDG3p60j2GFCiNCWziV0nEv79SE2wsX1GakT2awaLqWpWFH2yChSHbSOBmFpQS77u5uIpEIdXVjI2rq6upob0/spLpy5Uruv/9+du/ejaIobNiwgaeffpq2Ns3eX1JSwhlnnMEPfvADWltbiUQiPPnkk2zatElvcyRPPPEEJSUlfP7znx+3r4FAgMHBwTEfswhGFL0otdkmulQRgt3eJDV2PdHkxJKUm5t+vMYu1eS+gbCC+InZPnbCFDswknnBTpSLKy905VwqDEFVsdDYTS0q1gqanEybYkWd1YXTS3Mu+XQ8Z0TLIm7a25N2ou6ABQR4j6g8kWaEezii8Hq05ncuC3ZNlYUUe5wEwwp7k1Q0WBVLCXbp8POf/5z58+ezYMEC3G43q1ev5vrrr0eWY0Nbs2YNqqrS0NCAx+PhF7/4BV/4whfGtInn0Ucf5W//9m+P0vLFc88991BWVqZ/GhuPTudhFPE3ZM6ZYqPO0y39o0mZJ4VTfW2JB5cj9y5f4WOnqKmbPuJ9YMwWeKZaGm0icj1wAqCySAue6PWlrrELRRTC4kXNAoJdWFEzqsEQ6Y2EhiRXOXVmOR6nTLcvkJIriSCiqAQj1gmeCIQVFCV1AXVXxxC+QJgSj5MTc3hNZVlioUjBlWJuVathqZ2xuroah8NBR8fYOnwdHR1Mm5bYIbOmpoZnn32W4eFhDh48yM6dOykuLh7jGzd37lxeffVVfD4fzc3NvPXWW4RCoYT+c3/5y1/YtWsXX/nKVybs6+23387AwID+aW5uTmPEmWE4Kti5HXLOCTsVRW7dH0lEyk1Ea7/IYZd7ZljQBG+hpEjVHCsEQacsmb7Ouil2NPPBE+05nsMOYqbY4WAkZaf0+PZmRsXGnzuTkbFbm/uAWOWZXMXjdHBKYzkA25r7U/792Bc184MngLQqyWyNBk2cMrMcWc5dDSygC6bvHe43tyNTxFJSgNvtZunSpWzcuFH/TlEUNm7cyBlnnDHhb71eLw0NDYTDYZ566ik+85nPHNWmqKiI+vp6+vr6WL9+fcI2//mf/8nSpUtZvHjxhOfzeDyUlpaO+ZiFSE6ca2ZYwVzdz25o0rat/dqmn0tliOKRJElPeZJqAIUVykwJRD6+bARPHO7LveLwR1LqdeKMbnKpBlCIdZYk8JhYMs/jlPWXkExl4x/0h3RT7OmzqzJyTDM5MVo9J9Uk63CEYGdiMJTXOTUBXgh2p0aF3Fxm2ewKYGp+k1bAUoIdwK233sp//Md/8MQTT7Bjxw6+/vWvMzw8zPXXXw/Atddey+233663f/PNN3n66afZt28ff/nLX7jkkktQFIXbbrtNb7N+/XrWrVvH/v372bBhAxdccAELFizQjykYHBzkD3/4w6TaOquRqxGxgrk1ws8ueY1dLqY6EaQbQCE2V68F1jmbptjmaCHuxsrCjB/bKCRJoiLNyFjhd+V1Okz1QZMkicIM+9ltOdCHokJTVWFOa2QFJzakV+8awB/VjrmdsqmaLqdDxuWQon1KfZ23RTWwp0Rr6OYyy+dUIUlalgaRJD0XsVwI5dVXX01XVxff+973aG9v55RTTmHdunV6QMWhQ4fG+Mb5/X7uuOMO9u3bR3FxMatWrWLNmjWUl5frbQYGBrj99ts5fPgwlZWVXHHFFfzwhz/E5Rpbu/R3v/sdqqryhS98wZCxZopcFOyUYBDfyy+jBoPM6JQAmZ3v7WYgsEtvI7ndFF94IbLbrX/XmoPlxOLHClAQkgGJzpdfZSDqkpJorEciNleHHEFVVcM3/fhxOPsAHPS1dzPw3HN6myPHoaoqv3j1TZ55e5Sz5lXz/U8vwjmJGbm5NyrYVeSuYAdaypOuodSqqoA1cpsJCj1OhoMRhtNMqH0kr36spcVYngfaOoiZ7ra3DqIoakoCmlWqyID2EhGKhFPWzAbCsdQ1C+tz179OUF7o5qSGMt4/PMCfd3ZyzbKZZncpLSwn2AGsXr2a1atXJ/zbK6+8Mubf5513Htu3b5/weFdddRVXXXXVpOf92te+xte+9rWk+2kVYsmJLbmcCRnduo2WW74JQGnt8XDmV/n4QAetj943pt3MJ56g6PRl+r+3d7QBEq3+j4DcyDEYP1YA13n/CBWNNP/mceo7dujfHznWIxFmkk7/Yf533/9y+dzLs9fpBMSPI1DRBOfdTF9nL6233TOmXfw4Ht/2v/z7OhVwcKDnEI2Vhdxw3twJz9McNcU2VuauKRZifnapCnZWyGEnEC+L4hkzFRRFZf1HWnaDFTlWS3Q85tQU43bIDAcjtA6MMiOFlxG/hQR4r9vBUCCcckDXge4RFFWL9q8rzb0yYom45MRpvH94gKe3tuSsYGf+FWUzZYTGLpd87AqXLsE1YwZIEo1DWg6k1uJqIlL0kpQkXI2NFC5dov8mrIQ53Ke9Hb7U+j+ElexUPcg08WMFKAxrKTBGnNEHYYKxJmI4qvFDCvHQtocMH3/8OIpCmvDlc8UJX0eMI6yE+cUr7wGx6/LXr+2b0I/HH4rQNaTNT65r7CoKNcGufyRVwc78SEmBeFkczoCP3aZ9PbQN+ClyOzhn/v/f3n2Hx1HdewP/zuxs0UpaFasXS7bkji0XkAsGHDC4ATaE5jeXHpKA7UCcSwlJ7EC4OAFf4oQ4kNwEMPBeQvISwAHcwYRiY5DlgAvGcpGs3stqtXXO+8fuzK6klbSrsjsz+n2eR89jybO7Z+bMzvzmd1rKkN9PCXQ8hzxpKaowVyxQwpQ2Eim4DLfJXRoNXJgWp+qpawKtmpkNjgMOnW3GydqB+30rkXpSPCrhcYvwDGJk0VB0drnBMyBO4CP+2YPHI3nNWtQ8+lOMsXcgxuWEQzCgOjYV2Z3eOZGS16yFCB7w7dP2UzsgOs3gATQ5yvBe2Q6sGL8iivsQKv++gvMGdjwDuoQYiJz3ot5zX4M5UFECnvHQcW5Ut9dEYf/9+2F2O337YIKbE8DDO01C4H68e3oH2pvywDPAlPW/iGlfjRarE/uO1WHpBcFHuVc0WL3nslFAvEGnovO5N4tRAM+A1k5nWPvRaXeBZ0CMAr7PcQIPngG2LteQysIYw/Pvl4FnwLdnZUPPcVHft+EyPtmM03VWnKmzYkEYTcw2u/e6bVZAPcfovPXcZQ+vnk/VtoNnQGFKbNT3YbikxxmxbEo6dh6rw6Z3juPPt1+oiKA1nONLgd0wK91TjjhzfEQ/s+18K+bZBYytc6Nkx7mIfvZQMH4aWqbfCE97By7v9KDFKOBs/lK4rI3QWSywclPB+fZHZCL2HT2BefYigBNhrL0Y+946grTJU8Bzyk88B+7reD4NnF0AS56Jc1xyr30NRmQiqg5XYp59PHgxCfqqq6Ky/9J+ODs6Mc/uvXycHrccetHTbT9EJmL3Vycxt2O6t77ac6GzN8Jmz8Shd88i9XzwjslnG73vmyIYcHhnecT2aySknbdjnl2A66tWlDjOhfy6mgYr5tkFZDazqH+fC5tE6O0C6j6rR0lFeJ3J27pcqGrtAs9xaOiww1Pehot5PRa6DFHfr+E0qZmhwy6g7mA9SlpCnweuusF7rme0IOrHY1orkGIXUPVpHUq+CX1OvtavGjHPLmB8gyfq+zCcrjXGocPZDOdXrXjmt59j4YRUeZR7tFhtoWcPlX9HJAOSJg8dqFO60nA8D3NxMQCGBIf3YtJuiAXAYC4uBhcwSOZUaxmsdt80ELwd4Bjane041VoWhZKHL3BfBV8TqosXEGxfgznVWga7S2qKFQFEZ/+l/dAxD3TMe945dHr03I9TrWXosHkHJ/H6FoDzwKWvAACcbeqUJ+DtSZo+RZonT82Mg1xc3e3xHhtppGI0GXzXlHAnKC6rt+LlA+XYfawOO4/WoqS8FQCwoGAMEjVQt4ESzd79aQmzyd0l+ueljDaBl+o5vAmKW33f1ySztuo02WyQV9E4cr4NL31yDl9WtkEc5AojkUYZu2E268q8iM9p99FeJw5W1qFwYhzmLMuP6GcPFbsyB2d2bsGBZjcOpqUiDs1Y6TmG8Ws3gRO8p6dbdGPj22tRnpQNu2MGdLFnYc7eAw4c6mKO480lb0LglX8qS/v6gVWHgxmZyHCUY0KPfQ1G2v9zyePgcBdCsJQjJit6+y/txyk2C/UxSbihuQQTzEzeD6m8Z2LnweV2wzCmBMbUfQDj0OWeBLcrDndNjMPcCam93nv79qM4WO5G0ewxmHNVfsT2aSSUfa7DwfO1MKcJYX0vz3xxHgfLKmHONUX9+/zXzjYcbG/FJZMsmHNpaGVpsjrwvd/8C+0GN6ZkxiMxRg+RMayalYMb5uSMbIGjwH22CU+crUaNyYUnwqivcyWVOHiqEpflGqNez1vrGnDQ3oHrZyRhzuzskF93X+lpNJvcePTKsZiSqe4Jp3uaAyDjWB2eePc4atrs2HuuGnNEG/5464VIiEIgG86ypcq/G6qMTuChi/Ckoja3CJEDzCZ9xD97yAQD0tfdh7G//V+IHFARl4L0W+6DYPJP+/He6V2otJ2H2z0NIgfojE0QeW8W5LytArvP74r4CNFB8e1rzAt7IXJAl06P9HXd9zUYaf89bAJEDmA6Z3T337cf8e/VoDY2CW16M9LX3S7vh1Rel+PbEDmAM5+Xy8tiT0Bsuwj/KmvCoim9R0aWNXZC5IDC9Hj1ncs9JMUZIHJAq8Md1r7YPd7vs9EkRP0YxJr03nPVI4Zclv93pAqtDjemZFnw9tqLVdeSEK7cMbEQOaCq3QGO50Ke8sQh+urZEP16Nhp0EDnAwUKvZ5vTjUabE+C8xyDa+zASlhVl4vJpaXjtswr8955v8Pn5Vtz/9yPYdmdxxOceDOf4aq8mRiH/dCfRH101GJYVK5Af6/2SnLdkIn7ZMvn/3KIbW49sBQcOojMZAMAb/LOCc+CiMkJ0sCwrViAu1juS1J6QDMvy5f1uH7j/YL6nRN4/KXC09t+yYgWSOW85OjLGyvshlRceI0SHtymDj/EvtyfEeecp3H+yPuj7lvkmqS70rUaiZlJzcrirc0gT10ZzNQKJ2TeZti2MybT/cbgKAHDnxfmaD+oAIN1iAscBTreIpjCmtpFGPythNgNpZG4489hJk8XHGQVYYrSbIzIKOtxx8Tj89XvzYBR4fHSqEf/8sjraxeqX9r91o4AaJygOxAkCZt61GjwT0SkY0Wj3X1xK60tRZa0CA4Po9I444/XN8v8zMFRaK1FaXxrxcg8GJwhIW7QQAOApmNhvEyzQff+Z6M2IcZz/5hGt/ecEARkT8gEArksvl/dDKq/bng2ABye0gBf8nbF1sWUAPDjT2ClPRCxps7nQaPVOdVKghcDO11zTGm5gp6D5zWLDnO6kts2OsnoreA5YMi34yGetMQg8UuO8UxfV+CZQD4WS6lmaMzGctWKrApZ3VMKo0ZE2LSsBa79VCAD43b5TYArub6fdMHsU8Qd26q3O1FXXIufYblRY3Thd34m0eO/KEkWpRdh82WY43E48VMbBDuBH825FZpL/tQadAUWp/a/tqyQpcy8EzpTCkTjw1AjS/js9Trz2EYdPW4Ar8xdh6exF8jbR2v+sqYXAh2fQkeOfKFoq73uHnXi7AijKTcTdC5/s9rrfdvAoqwHe/7oety/Il/9+otbbhyQ7MQZxRvWey5LBZuyUtCZwuBMUHzzjzaZfkJ2giQEwocpKjEF9hwPVrV2YkZMY0mukejYqIDMrz2MXRsauSlrTOUndE4mH486F4/D8h6dxuqETJeUtuDA/OdpFCkr9V0+i+qZYwLsuZWFOMiq+rkdZgxXzC7xBj0FnwJL8JWjudMLu2gMAuK1ouSIm9RysOJOUBRn4ZintPwDs+7wUQDVmZUzDNQXRX3VjjC9LEdj8JJX3rY9LANRi2eQpuKag+0oTVTNP41c1X2Pvibpugd2Xla0AgOnZ6l+aCPAHdk63CLvLE/I561DiBMUhLin2+TlvNn3uOGXe8EZKdmIMjpxvRXVr6FPCKKop1hD+CG4trNsdrjijgKUXZOKNw5V4s7RKsYFd9HPAZMjUuPJEMFK/qtP1vedRKm/y9r1KtxgVccMbCikbFe76m10KmqkeAFLjfYGdr/k00L/PtwLwZux6utK3nNTBM01ot7sCXtPW52vUKM4oQOfrYN1qCz1r16Wg73Osr49dlyu0jJ00U/8FGgnOQyWtXS0FO6GQv89KyNj5ymB3DyawGz0ZOwBYMcPbxeDDbxoU2xxLgZ0GdKm8j52kIDUWAHC6oXdgJy1dMz5F/X2vpH5L1jA6pANAl/SEr5DAbkysN7Br7BHY1bfbUd1mB8cFv8EXpMZhfGosXB6GD096F4VnjKGkvAUAUJSjjaCA47hBNcdKN1ejAkYZhpOxY4zhZJ03sJuUEdlJ2qMtwxfY1baHnrFzSE3uhujXs3/wROh97Bp9mXqpf+FoMW/8GOh1HCpbulDeZBv4BVEQ/TOKDJnaB09IJqZ7bwbHq9t7PQmd8gV2E9PVH9j5M3bhBXZKWlsSANJ8i37XtXcP7P5d6c28TUiL67OvnJS1e8c3uuxkXQdq2+0wCjxm5yUFfY0aDSawU1TGLow+djVtdnTY3RB4ThMPYOGQstc9H3L6IwXwSvg+x/j62IWTsZMy9SmjLLAzGwTM8V2jPi5rjHJpgqPATgPkpli9urtMTsm0QOA5NHU6Ud3W/cn3G18mYEK6+jMBUvOWzemB2McKDMHYFfSED/ibYNq6XOjo1qTaCgAo6qcT+fWzvBPV7j1Rj+rWLuw8WgsAmF8wRhE3uuEiBXatYaxKoKTpTqTgMpSMndQMOz41FgYFZBsjSQrsGjpCD+ykAF4J9Sx95+xhDJ5o9mXskmP7n4dTiy7y9a2TrnVKM7q+fRrVpYHBE4D34iI14Xzl60gvOVUnZey0ENj5A/BQBlBI5BuBQgKfOKMgLyVU2eLvW3Skn/51kkkZ8Zg7LhkekWHD20fxv595lxtbNTP0We/VYFBNsS4FZex852pXCJ3qT9Vr5+ErXGmDCOykwRMmBdSzdK6FmrFjjKHJ6g3sxsSNvsBOGuD1VVVblEsSHAV2KscYg82ljaZYAJjh618lNecB3r5oVb6OulpoijUKvLw+ZDgDKJQ0DYYkN9kMwB/YiSKTn2JnjU3s97UPLpkEwJu1q+9wIDc5Bksv0NbcZ0MJ7JQwv5lZztgN/AByvtl7DuSPMY9omZQoNc7bx67d7g55ZKl/8ET061mackUKNgfS4XDD6Vs/WOprO5pID63f1HWEPBVQJEX/jCJD4nCLkLqjKeEJf6ikOaC+CgjsjvqeijITTEg0q//pkOM4ORMSzgAKu4KmwZDk+OawkiYbPt1gRYfDjRi9DpMGyNxcmJ+MX66cBpOeR2aCCc+unq2ofRsO0gLxgwrsFNBEJw30cbhFuD393/QrW7znQE7S6AvsLDECDL5VNkJdfUJJmdlw57Fr9mXrzAadIsofaekWE9LijRAZcKKmI9rF6UXdnbKI3L8OUPcExRKpX1ZpRQtcHhF6HY/SilYAwEyNTIMBeJsx27pcYQ2gsCswYyfdxCt8gZ1UVzNyEkJaTurW+fn4P3PzwAERX3sxEgY1eEIK7BRwwwy8adtcHlj6qVMpa5sziiaslXAch5Q4A6rb7GjocCA7hClApFUelPAwI11TQm2Kber0NjmPxmZYycT0eNR3OHC63ioPplAKytipnJQGNgi8PGeWmk3OiEdyrAGdTo8cJBw5750GY6CmPTWRBlCEGtgxxvxNsQq44UukuQeljvNflHsnqJ0ZRl3pwlg4XW0sJm9g1x5Wxk45gyeMAdcVWz/dBhhjcneJ0ZixA8IfQCGPflZAYBfu4Am5f90obIaVSNe+siDTc0UbBXYqp5U57CQ8z+HiwhQAwEenGuD2iDh4xhssKO2paCjCbYp1eRg8vhG0SnjCl0zNtAAAjtd4p6j5+JR3+P+CgpRoFksxBtXHTkHTnXAcF9KyYi02l9x6MJpWIggUbmAnHU8l1LN/8ERofeyk5uYxo3BErERaz7osyIT60UaBncrJc9gp6GY/VIsmpgIA/vnvahyuaEVblwuJZn2/02eojX9x9dACu8AmEiV0qpdMTI+HXsehrcuFD07Wo7rNDoPAo1ihS+1EmiXGW8/t9jCa3N3KGTwB+M9VWz/ZHKl/XVq8URFrn0ZD2Bk7BXWtkFeeCHHghzSH3Whuii1MpcCOjBCtLCcWaOkFGYg16HCuyYZ7Xv4CAHD5pLSQ+myphdQUaw1xVKyUxeE5yJ20lcAg8HLAvf5v/wYALCgYo6nzcSgsYWbs3B4RLo83M6uEGz4Q2sjY0dy/TiKtwNBgHXj1CVdAPSuhtUUePOHyhLRMVpM8h93obYotSPOulHS+xQZHGBM7R4Jy7hBkUKQ1HLUwcEISaxRwS/FYAP4b4q3z86JZpGEnNcXaQmyKDXy65zhl9UeTVpGQ1kO9YU5ONIujKOH2sQtsClNKk7t0rvaXXR7NI2Il4WTsArOfSngIkgbqMAZ5GpP+SH3sUkZxxi41zgiTngdjQE1r6EvJRQIFdiqnxYwdAPzoyolYWJgCvY7DA4snYNZY7fSvA8JfVkyJAycktxSPlSdoLcpNxLILMqNcIuUIt49dYFOYEtaKBYB4k/dc7einOZkydv7sVXMI051IfaN1PKeIDHzgQB17COvF0qhYb/9T6UEmcIJ2JdBOmmeU0so6sT3FGQW8+t258IhME6N9e/IPngixKdY3UlKJ/ZcSYvR4Z91CHK5owSUTUjVZX4MlNcU63CLsLs+AWTj/6iK8YjKzUmDXXz9Bf2A3ejN20tJaoQR20sAJs0Iy8HodBx3PwSMy2N0eJEDf7/ZSxm40N8UCQG5SDMrqrXLGWimi/6hAhkRro2J70mqQEHbGTuGZ2TSLCUsvyOy2XBoB4o0CpPt2fxkviUNBC8NL4n3NyYHrAffkb4odzRm7cAI7ZX2fOY6TV8AIZQAFjYr1UmrGjgI7lZMvEHq6oaqJFIhbQx0Vq6ARdCR0PM8h3hfshtIcK2VmlVTPAzXFMsaoKRb+wK61yyVPTdQXuwKXgZQeJgZaF1gUGVo6pT52oztjJ6+8Qxk7Mpy6pJS+gi4QZGCxg+1jp6AbPglNgm9ZsfZ+Ml4SedUJBdXzQBm71m5z2I3ewC7JV8+MAa22/rN2Nqfy6lmepHiA9WLb7S64fYFrUmz/TbZaRxk7MiK02sdO6+LkUbGh9rHzbmdUyNxmJHTSyNjQMnbKu+FbBsjYSTe1tHijosodaYKOl9cGHqg5VonX7VDXi2309a+LNwmK7PMbSdm+jF0VBXZkONkUPFqS9C3clScoY6de4Ux5Ejh4QinkwRN9lJ/61/klm73NsU0DBHZKnKbKv/pE/4FdM/Wvk2VYvKusNFgdEAdofo8k5Vw9yKBoffCEVsVJa8WG2MdO6YMnSN+kKU9CCeykeeyUFMD7m2L7z9iN5hGxklAHUCht8ATgn/LEMUAfO/+qE6O7fx3gnceP4wCPyAYM5iOJAjuV8683qJwnPzKwcPvY0eAJ9QpnWTG7AvteDTR4QsrYZVPGLuTATokP5KEOnqARsX6CjscY35Qv9R3KmaSYogGV0+JasVolOp2wvv8+mNMJjx0AdLDaHGjbvl3ehjMYEHf55eAN3S+a0sVWKZPWkv4F1rWpmgPAo/6rE2jrOC5vE6yupSa6aDfFBpaf7wAAHdpa2oOeq+eljN0oHjghkSbsVWcfu9AGT0hz2I3myYkDpVuMaLQ6UN/uwLSsaJfGiwI7lVPikx8Jrqv0CKoe+BEAoMNgBpY/DrvI4fzDP4GO+S+mY7dtQ+zc4m6vPd5QBoBDle0cgAsiV2gyKIF1jYlXAFOXoe7TQ6j+w//rtl3Pui6tOwqAR6O9JoKl7S2w/LbYFODKR9DeaUf1Qz/vtt3Ybdtwoq4eAIcq+5cAtLX0X7iSzCFm7FzKm6Yq1MET8qoTo3xyYklavBHHANS1KydjR4//KqfEvhokOPOc2dDn5AAchxi3fz1Ju8735Mtx0OfmwjxndrfXuUW374YPHGk4BLcYWvMtiZ7Auo5zeTNaHfqAPmhB6totuvHx+UMAgG9aj0W1ngPLH+v23rC6BCNE+GZb9pVfP3M66tq8fQd3Vv7vqD83pabYAQdPyNdt5dyCY33deUJuiqWMHQAg3TeAoj6ENYIjRTmPCxrhcYvwuAdea2+42J1u8Aww6fiIfi4ZDB7Ja9ai5tGfQmCAweOGmxdg1ZsR4/HeHJPXrIUIHgioy/fO7IDN4a3nTlcT3ivbgRXjV0RrJ0hI/HUd63KAZ4BNHwOR8z+A9azr987sgNVuB8+ALndrlOvZX/4Ytws88/6tU2+WA73kNWvxxsm9gMcAHkCj49SoPzeTY/TgGdDa4ej3emyze4+pWadTzHXbrOfBM8Da5eq3TM3t3nM0yaRXTNmjKS3OCJ4Bda1dI3o8wnlvCuyGWemecsSZ4yP2eYUNIjIcAhoPNaDkRHvEPpcMDuOnoWX6jfC0d+DiLh0cOgHVuVeg02mDzmKBlZsKbsc5eXuRidj79REUt+ZDdAgQmidh31tHkDZ5CnhOOU/7pDeprvUeI+bZBSQbsnEubwkArlddS/V8UfMkeOwCdK35Ua/nwHN1QRcPkeNxLm8JYt0O6CwWtGMyPtr+T8yzXwCOd8JQc3nUyxxt7iabt64r7CgJ+B73ZC7rxDy7AOFkB0q6+t4ukhLOdmGeXQB3vA0lnnN9bpdy3oF5dgHuo60oqR7CSFCOAbwIqHzVyNTaTiw3GGGp6EDJntODexMGQOQB1vfBsNo6Qn47CuxUzuXxRvGCTuXfjlGC43mYi4vRsXcvBNENh04PNy8AYDAXF4Pju98QT7WWocPZDjDf3zkP2p3tONVahklJEyO/AyRkUl0bPvkCAODkpctt77r213O278XRr+fAc9XocaFLMMKp0yPWbYe5uBhl7WdgdfiyCLouACzqZY42adT6QP3U3B7vnGd6BV239Trv+ej09D8f29CnXmLg4uwQ4jzgNLAW+JQUHfInJoPnORgMg+9nx0QGt1UHZjVhqNEuBXbDbNaVebBYLBH7vE8+/RpugeHpxbnISKBRaWrArszBmZ1bUMamotyUgRXNhzHBaMf4tZvACf6vpFt0Y+Pba1GTXYNOz1h4bIkwpR6GwXIUdTHH8eaSNyHw9BVWMnZlDpz7t+GgaTbieRfur9gNfXZ2t7oOrGdbdSLcSIdxzFEYkw9EvZ6lc/WM6DtXW/6NCcYujL3vl9j07g04lzgeDudUCJYyxGTtAQcu6mWOpurWLtz/5RkYdCL+sDQPHBf8Br2lqg4HrW7cdFEq5hQpYyjliYMcDlbWIilLjznL8oNu4xEZPvjkBJgJeGZpHlLjTWF/Tm1dLdrbnEhNS4fZbO7zGKlFl9ONypYu6Hke+amxg3oPxhhsNhsa6htgmRiDjPSMXtu0t4feIjf6vnkjTCfw0EVoSgqnW4STMYAD4mIMEftcMkSCAenr7oPx3UqIHGDXCUhfdx8EU/fOyO+d3oVK23mABzxMgMgBTOeAh3fjvK0Cu8/vwjUF10RpJ0hIBAPyb18NsQToMMQAoqdXXQfWs8j0EDlAVEo9+87V+O3nIHJAu96E9HV3Yk/NPlTazsPtng2RA2Bogsh7MzlRL3MUpSaYvN9pUUSXR5Qnd+6p0yNC5IDYGL1irtuxMd5zz+oS+yxTq9UBDwBwQIrFBJ0uvLJ7PB60t7chLT0NY8aMGXqhFYAXPECHByLHISZm8MkVKcitr69HRkY6dLruGdFwzhNlnFFkUALT/TQqVl0sK1Yg1tcM40rLhGX58m7/7xbd2HpkKzgpJc98NwjeO8iCA4c/HPnDqB+FqAY5Vy8FAIgcD3fe+G513bOema+eOd7bd0kJ9WxZsQKJOm+TqzU9B+alV8llFp1J3nLqW+TtlVDmaDHpdfLUU/1NeWJX4DRVsb6y9DdpujQiNtGshxBmUAcALpf3+mU2a2eVEp2vOdnDGEQ2tGXFpOMiHafBosBOxWy+yUwFnoNBIU99JDScICBxXC4AQHfFVd2aYAGgtL4UVdYqMHgvFEz03fA574WVgaHSWonS+tIIlpoMhinGCAPnrUfD3d/rVte961ma+sZ7YVdCPXOCgMwphQAA14JLcaT5K7nMzJUMAOANzfL2SihzNCWFsF6sTZ6IWjmBnVlaDaef/oHy5MRDXHVC7c2vgXQ8Jz+YuQfonziQ4Tou1BSrYjSHnbol5ucCzVVwT5zS6/+KUouw+bLNcHq8F9KflnNodwHr5vwAOb4WDIPOgKLUokgWmQySJdaIRqsT4sLLuv29Zz3/qo5DVRdw14zvYEqOdxsl1HP6tIlAXRk6s/NRlDoJmy/bDIfbiR9/w0EE8ND8u5ES0LVYCWWOljFxBlS1dqGln8BOiRPLS+tX2/pZv1qenJjWiZVxHAedjoPbw+ARRSghX0aBnYop8eJAQhfne0K2BXlCNugMWJK/RP79UXEXADeWjPsWxqfGRaqIZJgkxOjRaHWivav7TbNnPf839wEAGy7PuxgX5idHuJR9k27kzZ1Oucz17Xa4PPvAc8B/zFghj6oc7UKZpFiJS4qZDdL61SOfsdMagefg9gBucWgZu+FC30QV818cKD5XI6npw9pPnxaJ3aW8xeFJ6Cwx3qb0dnv/fWeUmoUPtrj9+RYbACAzIYaCugDJAywr5hGZXM/Sw50SSCtP9J+xo1UnghF8/ewosCNDJn0BY+hmr0rSRb2/zsqAd65Cl6/vhpKe8EnoEnyBXVtX/4Fdl0If1sYEyUKdb/YulZaTRNMsBZKC4L6aYjsDAqdYBQV2Zrkp1gOxjwClyeptik0ehevE7t+/H/n5+UH/Tw7sgvSx6+91I4UCOxWjplh1k0ehDTCZqY1GP6uexTftRftAgZ1Lmd/p9ATvfGU1rV1gvpF/ZxqsAIDxg5y7S6uSfdmsRmsfgZ3DP+jNqKBBb7EBDxO2PtaLlZpiUyhjBwC47LLLwHEc8lLiUJSbhIljM7Fq1So0NDREtVzKOatI2JTabENCExtixk5qhtXxHAzU5KVKUsauv8DO6RblphylfaezfJOfdzo9aLd7z9fTDZ0AgALq89lNSqzUHzH4ovDS9z3WKChqdKhJz0NaCMLWxzVJal4eMwozdj0xxlBaWorNmzfjy2/OYs/nx/Hs/7yIffv2YdOmTVEtm3LywCRsNoU+3ZPQhNoUK/el1OsUdSMgobPEeOtaCoqC6TYvpcK6V8QYdEiONaC504nq1i4kxOhx2pexo8CuO6n/WV+DJzp854CS+tcB3tGdsQYBHQ53n60IjZ1SU+zwZOwYY3KWOtJihng9PXXqFDo6OrBo0SJkZWYCMV2YND4PhYWFsNlsw1jS8CnrzCJh6fL11VBafxwSmlh58MRATbG+Oa8ogFetUPrYSXOb6XWcIgcjZCWa5MBuYno8zjRSxi4YaQRxU59NscobOCExG3XewG6AjN1wNcV2uTyYumHXsLxXuI4/vmRI986SkhIYDAZMnz4dgl6PWIHhlVdeQVlZGV544YVhLGn4lHdmkZBRU6y6xRoHnukdoL6UWhBKHzv5+6ywbJ0kKyEGR6vaUd3ahcoWG5xuEQaBRzYNnuhGGmjSaHWAMdYrK2SVm2KVV8/efnaOoNckl0dEq817/tI8dsDhw4fhcrmQnOydlshmsyEtLQ27d+/GrFmzolo2CuxUrCugiY6oT6h97JR+wycDCyVjp9QRsRIpgCtvsuGrqjYAwOSMeHlJJeIlNcU63CI6nZ5emTnp+x7Xxzqy0RQ4MrYnaZQvzwGJMcNT9hi9DscfXzLwhiNgqNfTw4cPY/Xq1XjssccAAA0NDXjkkUfwgx/8AKWlpeD56GXdlXkFISFR4iSXJHTSKLTOfuaNAqietSCUeeyUXs+T0uMBAF/XdkDnW+d4enZCNIukSGaDALNBB5vTgyaro1dgJ2Xs4hSbsQt+TZL6DCbHGsAPUzDPcZxiH2QGcvjwYTz55JMoLPQut1dYWIj169dj1apVqKysxNixY6NWNuV15CAh8zfFqvOLMdpJF3y7S4TbI/a5XZeL+lKqnX9UbN9BvDwvpUIDu6lZ3jXDjte043B5CwBgRg4FdsH0t/qE3BSrwO+z1IpgC9LvV+ozOFwDJ9TszJkzaG1t7dXkevr0aQiCgMTExOgUzEd5ZxYJmf+Gr8wbAelf4OSknU4PEmKCP2dRX0r1k/rY9dcUa1f4KPeJ6d5m1+ZOp9yJfkFBSpRLpUxj4oyobOkKOoAicLoTpZHOvWCr4TT6JidOof51KCkpAcdxSEtLQ21tLTo7O/Gvf/0Ljz/+OO69915YLJaB32QEKe/MIiGjG766GQQeBh0Pp0dEp8MtZ3V6osET6idNd9Ll8siDDnqSvs9KXTbOpNdhQcEYfHSqEQAwIS0OucnmKJdKmVKkjJ2191x2UmAXb1Le7be/ZcUosPM7fPgwGGMoKCgAACQlJWHChAnYsmULbrvttiiXjppiVU3pfXLIwMwhjIylela/+ICO8n31s1NDPX9nrr/f0PcuHR/Fkihbf3PZSdMbKTFjF+cLNjuCZuxonVjJpk2bwBiTf5qbm/HZZ5/hjjvuiOqgCYnyziwSMpuTmmLVLtYgoNXmCtr0IfGPiqWvq1rpeA7xRu/kr+1drqBZD6WPigWApRdk4v9+dy5ExrCwkJph+yJNB9IYJGNndXgDeyUGdv5peYIMnqCMnWoo78wiIbOp4EZA+icNoAg2vYCkiwJ4TbDE6NHhcPfZz04tXSsupoBuQGPkpthgfey89RyvxMBOXiGl9znqb4qljJ3SRT9nSAbNpuAZzElopElKQ8rYKfyGT/rnn/IkeF1LK0/QvJTqJ2W1moKsF2tV8OCJ/ibSlppiR2vGLj8/Hw888EDEXjcUFNipmNQvizI56hXKJMVdCh8tSUKT4MuG9JWxo0Ey2iH3sQuSsVPyyhP9PXxITbGjddUJCuzIiGOMyZNIUsZOveJCCexo5QlNGGhZMZqXUjvGxEp97HoHdlJg39co+GiySIMnepyjjLGAjB01xSodBXYqZXeJEJn332YK7FRL6h9pDTIhqISaYrVhoGXFKGOnHVLw09zpgChdqH0UHdj1sUJKh8MNp28S9dHaFKsmFNipVOCSL9QnR73iQpnuxEWDZLRgoGXFpCZ3ysyqX5Jv8ITIgNaAQN7um8cQUGZgF7hCCmP+gLSxw9sMG2cUFDvPIvGjwE6lAvvXDde6fSTy5D52/awXS6NitcF/0+yrKVbZS4qR0Ol1PBLN3voOnKRYytbpeE6RXWikhw+nR4Td5V/mUJqPj+awUwcK7FRKGjJPWRx1C2XwBDXFaoPUf6mv9WKpKVZbpClPAvvZSYGdxSSA45T3QB5r0EHKEwRmlqWMHTXDqoPiArutW7ciPz8fJpMJc+fOxaFDh/rc1uVy4fHHH0dBQQFMJhOKioqwc+fObtt0dHTggQceQF5eHmJiYrBgwQJ8/vnnvd7rxIkTuPbaa5GQkIDY2FhcdNFFqKioGPb9Gy42eeAE3QTURnQ60b5zJ9q2b4fumxMAgNazFWjbvl3+ad+5E6LTe0PwD55Q3NeVDCCwroUTRwEATRXVQevaSqPcVS+wvpMcVgDAuf2fynVduft9AP4gX2k4jvN3GQjILEtz2EnBKlE2RZ1dr7/+OtavX4/nn38ec+fOxZYtW7BkyRKcPHkSaWlpvbb/2c9+hldffRX/8z//g8mTJ2PXrl247rrr8Omnn2LWrFkAgO9+97s4evQoXnnlFWRlZeHVV1/F4sWLcfz4cWRnZwMATp8+jYULF+Luu+/GY489BovFgmPHjsFkMkV0/8PhvwkoqgpJCLpKj6DqgR8BAJy5FwJzbkHz8W9Q/Zc/d9tu7LZtiJ1bjA6HAwCHg7X/wpTMa6JQYjJYgXXtTp8CzL8bTecqUb3tt922G7ttG5psVgAcShsPYH4B1bMaBdZ3/JzVQO4clL35HqrL9gMA3iueBmTdCdHVEsVS9s9i0qPV5uqWsatttwMAMhKUe08kfopKATzzzDO45557cOedd2Lq1Kl4/vnnYTab8cILLwTd/pVXXsGjjz6K5cuXY/z48bj33nuxfPly/Pd//zcAoKurC2+88QaeeuopXHrppSgsLMQvfvELFBYW4rnnnpPf56c//SmWL1+Op556CrNmzUJBQQGuvfbaoMGkUkjNc0rsp0H6Z54zG/qcHIDjEOPxPgnbhIAmDo6DPjcX5jmz4XS74HR720b+9+SLcIt9N9kS5Qms61hXFwCgUx9wc/TVtWHWDDlD8kbZ/6V6VqnA+h7T1Q4AaIyxAAA8HPDhFDMAoJmrU2wdy6tPBHQZqG3zXqfSLRTYqYFiogKn04mSkhL85Cc/kf/G8zwWL16MAwcOBH2Nw+HolVWLiYnBxx9/DABwu93weDz9biOKIt5991089NBDWLJkCUpLSzFu3Dj85Cc/wapVq/osr8PhgMPh7xTb3u79EnvcIjxusa+XDZsOmws8A2L1fEQ+jwwnHslr1qLm0Z/C5PbWo11nhMj5m+CS16yFCB5vn3wXPPM+f9V1VuK9sh1YMX5FtApOwuav6zi3AzwDbIK5V12/d3YP4BHAA6i3UT2rl7++U+zt4BnQZEqCyOnw8TQOVmMceAa4WJti6zjRKIBnQFunU7631LXawDMgI844pPuNxy2CMSb/kO6k4xIsjgjnuCsmsGtsbITH40F6enq3v6enp+Prr78O+polS5bgmWeewaWXXoqCggLs27cP//jHP+Dx+Nbii4/H/Pnz8ctf/hJTpkxBeno6XnvtNRw4cACFhYUAgPr6elitVvzqV7/CE088gV//+tfYuXMnrr/+enzwwQe47LLLgn72pk2b8Nhjj/X6e+mecsSZ44dyKELSdr4V8+wC8urcKNlxbsQ/jwwvxk9Dy/QbIbp4zLMLiONTcC5vCQAOOosFVm4q2Htn8OGxo5hnnw0AMFYvwr63jiBt8hTwnKKS7aQfUl1bbU7MswvgmKVbXbdjMva++XfMs18IADDWLqR6VjGpvhNZDObZBSSbx+Fs3hIcnczjwobx8NgF6JCm2DoubBQh2gXUfVaPkmpvP9/Ec12YZxeA420oqQ0+qjskggeGNA+6OlwQHcra75Gy4Rc/w++f+x1WXrMKL/755X63dThdcHZ5cOyjKsDdva+t1dYR8meq+sj+9re/xYQJEzB58mQYDAasXbsWd955J3jev1uvvPIKGGPIzs6G0WjE7373O6xevVreRhS9UfDKlSvxox/9CDNnzsQjjzyCq6++Gs8//3yfn/2Tn/wEbW1t8s/58+dHdmd7cPkmi9TrVF2FoxbH8zAXF0PweJs73Lz0jMVgLi4Gx/M41VoGq7PL9wIPwDG0O9txqrUsOoUmgyLVtcHjvSEyjoOLFyDVdVn7GXQ4fPUMBgYP1bOKSfVtdnn7pdl0JlSkceg0ARB9gw94p2LrWBq80xUwBZM0gXqcQgd9RMLHn3yEG2+5HoVTxiEuyYR/vrs96HY/WHMPHntio/z7j3/0IJ785a/x9zf+htNnTkekrIqppZSUFOh0OtTV1XX7e11dHTIyMoK+JjU1FW+99RbsdjuampqQlZWFRx55BOPHj5e3KSgowIcffojOzk60t7cjMzMTN998s7xNSkoKBEHA1KlTu733lClT5ObaYIxGI4zG3kO/Z12ZB4vFEvJ+D9b+3Q4crKzDxEnxmLMsf8Q/jww/dmUODrz/Fxw0FcPg8eDHFbuhz87G+LWb4OGBjW+vRWWaB522ueB0VsRl7wEHDnUxx/Hmkjch8Ir5+pIBsCtzcHrnFnxhuBhuXsD3aj9B1pg4jL3vl9j07g2oTHei0zYf4LsQn0P1rHbsyhwI+/4HB01zwBs4nJ2wF00JgK0qDW5kwJh6BMakQ4qs489MbhxsaEJulhFzluWjw+7Cvz4+AQjAH68ZP6QBe3a7HeUV5xATr4fJpK4Rth7OiVlzZuK737sb3/72t2E0CzAndN8Hj8eDnbt34J133pH/z5yQinvXfg8P/eTHKDv3NabPmtLnZ/B2EYYYHSZckt2rC5nU3SsUijmbDAYD5syZg3379sl920RRxL59+7B27dp+X2symZCdnQ2Xy4U33ngDN910U69tYmNjERsbi5aWFuzatQtPPfWU/LkXXXQRTp482W37b775Bnl5eWHvh07goRNGPovW6fJA5IC4GH1EPo+MAMGAvLtuhfgFYBf0YExE+rr7IJgM2HH6n6i0nYeHy4HIARzvgsh7n5rP2yqw+/wuXEMjJ9VDMCBj3X0wf9CFVlM8bIIB6evuw56afd56Rra3nnUOqmctEAyY/P3bgU89cOt0qI03g9d1wC3GQuQApm+Dh3crso5TE0wQOaDB5oRO4NFoc0LkvFO0xJuHFozpBB4cx8k/jDGInuj0teN1XFhzCS5fvhzLly+Xf5f2IdCBAweg1+tRXFzc7f88Hg/MZjOOHTuG66+/vs/PkN4zWBwRzn1eMYEdAKxfvx633347LrzwQhQXF2PLli3o7OzEnXfeCQC47bbbkJ2djU2bNgEAPvvsM1RVVWHmzJmoqqrCL37xC4iiiIceekh+z127doExhkmTJqGsrAwPPvggJk+eLL8nADz44IO4+eabcemll+Jb3/oWdu7ciX/+85/Yv39/RPc/HJ3SZKY0j52qpV+9DPhiDwDAlTceluXL4Rbd2HpkKzhwYKI3K8zx/klOOXD4w5E/YNm4ZYp60if9s6xYgbgPXkMrAHv2WJiXXoWt/1zVo579A7KontUt6eoVSP7X/0OjIR5wJQD6DjB3HACAE7xz3CmxjqVJiKW562raRm6qE9HDotZHfM6yfOiE4Z0kevv27bjmmmt6BXw/+9nPYLVacfTo0WH9vL4oKtVz8803Y/PmzdiwYQNmzpyJI0eOYOfOnfKAioqKCtTU1Mjb2+12/OxnP8PUqVNx3XXXITs7Gx9//DESExPlbdra2rBmzRpMnjwZt912GxYuXIhdu3ZBr/ev03fdddfh+eefx1NPPYXp06fjz3/+M9544w0sXLgwYvseLv8Excq4GJDBMZoM0HPeJ9aYu+8BJwgorS9FlbUKDEy+4SPghs/AUGmtRGl9aTSKTAaJEwQkpSQBAPiV1+NI81cB9ey7aVI9awYnCEhM8l6fPW5vvTO3d2Ad7wvslFjHKfHea06Db7WJ883e/p85SeaolUkt3n77bVx77bXd/lZSUoLnn38eK1asiFhgp7ioYO3atX02vfbMoF122WU4fvx4v+930003BW2a7emuu+7CXXfdFXI5o81KS4ppRlyMAS02F/hLFgEAilKLsPmyzXB6nPj8FPByJTBhTC7WLnxSfo1BZ0BRalGUSkwGKykzFTjVCPcFs1CUmt6rnieOycUaqmfNmD5xPMpKa7A4czUWXbAa/3nCm0t57JIfw+jLLSitjlN9gV2T1QnGGMqbOgEAeWOGP7DjdVzU+ojzuuHN1p04cQLV1dW44oor5L+Joojvf//7WLt2LebOnYv/+I//gMvl6pZYGgkUFaiUzUFLimlFrFFAi80lN68bdAYsyV8CAGhtKAdwFPmJGbim4MIolpIMhwRfH6U2u7uPes7ENQVzolhCMpwK0ywAamAQczEzuRDAh4gzCrhh8pJoF61PKXHec9TpEdFqc+GcL7DLHxM77J/l7U+mvDVzB2P79u248soruw16ePbZZ9HY2IjHH38cFRUVcLlc+PrrrzF9+vQRLYuimmJJ6GhJMe2QmtM7fVnYQJ2+eo6lJndNkNYIDVyHEwCsdqpnLZKCobONnTjfbAMA5CYru0nTKOiQ5svalTfbUN7kLfdIZOy05O2338bKlSvl36uqqvDzn/8cW7duRWxsLCZMmACj0RiR5li6iqiUtKRYLGXsVE+6mUvBeqBOB/Wl1BJpgfW2HoFdJ2XgNWlcij+wq/AFdmOTY6JZpJDkp8SivsOBMw1WOWOXNwIZOzWxWq0oK/PPO3j27FkcOXIEycnJMJlM+OKLL7B9u39uux/+8IdYtmwZVqzwri4iCAKmTJlCgR3pG2VytEOaELQzSGBnpXrWlARfYBe4wDrgr+fRPAGsFuWnmMFxQKvNhS/KWwAAuSoYhDBuTCwOnW3GBycbYHeJMOl5jFV4pnGkffHFF/jWt74l/75+/XoAwO23345LLrkExcXFSElJAQC88847eP/993HixIlu7zF9+nQK7EjfOn2jYmOpKVb14k2UsRstLCZfYNdHxo4CeG0xGwRMSo/H17Ud+Oe/qwEAE9NHfsnJocpL8QZxUpmnZlqg47XRF26wFi1a1Of6ttdee2230bBXX301Wlpaem338sv9Lyk2XKiPnQq5PSLsLu+SYnQjUD/pZt9h770Go9TvLtZATXRaIGfsuroH8VYK4DVrdl5St98vyE6IUklCV5ST2P333MSg2xGvhQsXYvXq1dEuhowCOxWyufyd7M10w1c9i9w8R02xWmeJ8Q2e6BHES33upMCPaMelE1Lkf4+JNWBShvIzdnPykmAIWId80aS0KJZG+R566CHk5uZGuxgyCuxUSGq2EXgORlpOTPX6GikJUFOs1iT0MXhC+t1CgZ3mXDElHVMzveuH37uoQBVNmia9Dv9n7lgAwOSMeFxcMCbKJSLhoLuFCnX4MjvxJiGste6IMln66FAPUMZOa/rqYycHdiYK7LRGr+Pxj/sWoLKlC4VpcdEuTsg2XD0Vy6dnYnJmPAQdJRDUhO4WKiT1xYqnm4Am+G/2QQZPOGm0pJZIGbtOpwcujwi974ZJTbHaZtLrVBXUAQDPcygelxztYpBBoDBchdoDMnZE/frqdwX4B09QU6w2BH5npcy7R2TyvymwI4QMFQV2KtRBgZ2mSBm7nv2uAGqK1RpBxyPeV5ctNieA7qOhKbAjhAwVBXYqRE2x2iL3sesR2Lk8Ipxu77Q2cTRfoWak+JZrauhwAPAH9DF6HQw0GIoQMkR0FVEhythpS0LAdCeBE2AGrkRBS8dpR6ovsKvvEdhRto4QMhwosFMhOWNHzXOaIDXFekQmrwEM+AN4o8DTqDQNkRZYr2+3A6DAjhAyvOhuoUL+jB3dCLTApOeh13mnrQkcQCGPiKUAXlPS4k0AejfFUmBHCBkOdMdQIWqK1RaO42Ax6dHU6UR7lxuZvhWHaP1QbUqzdG+Kbe70DqJIiqXAjpC+iE4nrO+/D+Z09rkNZzAg7vLLwRsMw/75Tz75JH7605/2+vtvfvMbPPDAA8P+eUNBdwwVosET2mOJ8QV2ARk7aV47yuRoi9wU2+Ftim30BXgpccaolYkQpesqPYKqB3404HZjt21D7NziYf/8devW4a677pJ/37BhA3bv3o0bbrhh2D9rqKgpVoVoHjvtkZYVa7P5Azv/MlNUz1oiNcXWt3sDugarNwMhDaoghPRmnjMb+pwcoK/VljgO+txcmOfMHpHPj4+PR0ZGBjIyMrB161bs3r0b+/fvR05ODq677jokJSUpJsijwE6FqClWe4ItK0Z9r7SpZ1Nso5UydoQMhBMEpK5bCwTMHNANY0hdtxacMLL3xQ0bNuCVV17B/v37kZ+fDwC4//778fLLL4/o54aDAjsVoqZY7Qm2hmg7BXaaJDXFtnW50OX0UGBHSIgsK1YEz9r5snWW5ctH9PM3btyIl19+uVtQBwCLFi1CfHz8iH52OCiwUyEpY2ehjJ1mSM2trV1BmmIpgNeUhBi9/N2taLbJgV1q/PB3+CZES/rM2kUgW7dx40Zs27atV1CnRBTYqQxjTF5mijJ22pFk9t7UWzr9I778feyonrWE4zjkp8QCAM42WlHn62uXGmeKZrEIUYVeWbsIZOueeOIJPPfcc/jrX/8Kk8mE2tpa1NbWwuFwjNhnDgUFdipjc3rgEb1PK9THTjuSY72BXVNAYCf1t6PATnvyxngDu8/ONsPpFqHjOWQmUmBHyEB6Ze1GOFvHGMPTTz+NhoYGzJ8/H5mZmfLPl19+OSKfOVQUGaiMlMUReA5mAy0zpWaB8zLFNHAAeNSXV6NteyUAoOm892/x9C3VnPwxZgDAR6caAQDZiTHQ0+oihITEsmIFGp79PVyVlSOereM4Dm1tbSP2/iOBriQq02LzZnQSzQZwfQ37JqogzctU/dDDYNv+DACor6hB9UMPo/qhh1HRUAsAOHZqdzSLSUbAOF9TbFm9FQCQ5wv0CCEDk7N2QERGwg5k8eLFuPHGG/Hee+8hJycHBw4ciGp5KBegMq2+ec6SzNQ8p3bSvEyuqiokODoBAG3GOACAhwOazSbAA+xxfoyHxTsh8PR11YqZuYndfp+YrpwRdYSogeXaa2EYPx6mCy6IdlGwd+/eaBehG7pTDDOPW4THLY7Y+zd3OMAzINmkH9HPIZHAI3nNWtQ8+lPEu7rAM8Cqj4WH0+HjaRxE0QyeAU1dlXivbAdWjF8R7QKTYTI2MQapZoPcp3JOTiJ9n4nmedwiGGPyz1BJQd1wvJcSSMclWBwRzvWBArthVrqnHHHmkXv6rq1swzy7gIJmESU7zo3Y55DIYPw0tEy/Ec6OTsyzCwAEfDP+anw1ScQ8qzd7Z6ifh31vHUHa5CngOeo9oRXfsSTiUFMzzAYdLOdsKDl/LtpFImRkCR4Y0jzo6nBBdNC1rCeH0wVnlwfHPqoC3N370FttHSG/Dx1ZlXG4PACAGD0NnNACjudhLi6GjnmgF73T2JxNNaDTKDW1M4Bzod3ZjlOtZdErKBl288Yn46pp6bjhwhwYaOAEIWSYUMZumM26Mg8Wi2XE3n/Xe104WOXG9AsSMGdJ/oh9DokcdmUOzuzcglOsCLWmMTifXYrWOBc6OxeA03UgLmc3OHCoizmON5e8SX3tNOSiaBeAkAiy2+0orziHmHg9TCaakLsn3i7CEKPDhEuyYTJ1n/6ovb095PehO8Qw0wk8dMLIPX232F0QOSApzjiin0MiSDAgfd19iH+3GtVxY9BgNoNjTogcwOs7IfLeLO15WwV2n9+FawquiXKBCSEkfDqBB8dx8g/pTjouweKIcO73FBmoDI2K1SbLihVI4n3LibniwTze/nWczt+vggOHPxz5A9y+JltCCCGkJwrsVEaaxy4hhtLYWsIJAswTxgAARHcimNsX2Amd8jYMDJXWSpTWl0aljIQQQpSPmmJVRsrYSUtQEe2YPftCvL+rDDOSFiExFthbDywcW4Rvz58hb2PQGVCUWhS9QhJCCFE0CuxUpr7dDgBIjTdGuSRkuOUle6fJ4d1jYOFjAFRhbs4UXFNQEN2CEUIIUQ0K7FSk0+FGp9PbkT6NAjvNyUqMAQBUtXbJf8tJiolWcQghhKgQBXYqUt/hAADEGnSINVLVaU22L7CrbbfD6fHOMk6BHSGEkHDQ4AkVkZph0yymAbYkapQWb0SMXgePyNDgC+JzkmhxeEII6YkxhqONRyO2nNiTTz7ZbaoW6WfLli0R+fxwUGCnInW+mz01w2oTz3OYkulfji7eKCAljgbJEEJIT++ceQer312Nd868E5HPW7duHWpqauSfe+65B3l5ebjhhhsi8vnhoMBORShjp33TshLkf8/ITaBJPAkhpAe36MbWI1sBIGJze8bHxyMjIwMZGRnYunUrdu/ejf3794MxhkWLFmHq1KmYMWMG/v73v494WQZCgZ2KlDfZAABjk6nflVYtnpou//viwpQoloQQQpRpx9kdqLJWAQAqrZXYcXZHxD57w4YNeOWVV7B//37k5+dDEARs2bIFx48fx+7du/HAAw+gs7Nz4DcaQRTYqci5Ju/JkpccG+WSkJFySWEK7l44DlfPyMTt8/OjXRxCCFEUKVvHwduaEckVeTZu3IiXX35ZDuoAIDMzEzNnzgQAZGRkICUlBc3NzSNelv7Q0EoVqWj2ZuzyxlCHeq3ieQ4/v3pqtItBCCGKFJitA/wr8uw4u2NE19HeuHEjtm3b1i2o66mkpAQejwe5ubkjVo5QUMZOJdq6XHJTbGFaXJRLQwghhERWz2ydZKSzdk888QSee+45/PWvf4XJZEJtbS1qa2vhcDjkbZqbm3HbbbfhT3/604iUIRwU2KlESbk3tTs22YwxcTQqlhBCyOgiZesYuk9xEpi1G26MMTz99NNoaGjA/PnzkZmZKf98+eWXAACHw4FVq1bhkUcewYIFC4a9DOGiwE4lXjt0HgBw+eS0KJeEEEIIiay+snWSkcracRyHtrY2MMZ6/Vx00UVgjOGOO+7A5ZdfjltvvXVYP3uwKLBTiTsX5GPJtHT8x7yx0S4KIYQQElGl9aVBs3USKWtXWl8a0XJ98skneP311/HWW29h5syZmDlzJr766quIlqEnGjyhEgsKU7CApr8ghBAyChWlFmHzZZvh9Dj73MagM6AotSiCpQIWLlwIURQj+pkDocCOEEIIIYpm0BmwJH9JtIuhCtQUSwghhBCiERTYEUIIIYRoBAV2hBBCCCEaQYEdIYQQQohGUGBHCCGEkIhhLPiUJaPdcB0XCuwIIYQQMuL0ej0AwGazRbkkyiQdF+k4DRZNd0IIIYSQEafT6ZCYmIj6+noAgNlsBscFX0liNGGMwWazob6+HomJidDpdEN6PwrsCCGEEBIRGRkZACAHd8QvMTFRPj5DQYEdIYQQQiKC4zhkZmYiLS0NLpcr2sVRDL1eP+RMnYQCO0IIIYRElE6nG7ZAhnRHgycIIYQQQjSCAjtCCCGEEI2gwI4QQgghRCOoj90wkSYWbG9vj3JJCCGEEKIlUmwRyiTGFNgNk46ODgBAbm5ulEtCCCGEEC3q6OhAQkJCv9twjNb2GBaiKKK6uhrx8fEjMuFie3s7cnNzcf78eVgslmF/f7Wg40DHQELHgY6BhI4DHQNA28eAMYaOjg5kZWWB5/vvRUcZu2HC8zxycnJG/HMsFovmTtjBoONAx0BCx4GOgYSOAx0DQLvHYKBMnYQGTxBCCCGEaAQFdoQQQgghGkGBnUoYjUZs3LgRRqMx2kWJKjoOdAwkdBzoGEjoONAxAOgYSGjwBCGEEEKIRlDGjhBCCCFEIyiwI4QQQgjRCArsCCGEEEI0ggI7Bdm6dSvy8/NhMpkwd+5cHDp0qN/t//73v2Py5MkwmUyYPn063nvvvQiVdGRs2rQJF110EeLj45GWloZVq1bh5MmT/b7mpZdeAsdx3X5MJlOESjz8fvGLX/Tan8mTJ/f7Gq2dBwCQn5/f6zhwHIc1a9YE3V4L58G//vUvXHPNNcjKygLHcXjrrbe6/T9jDBs2bEBmZiZiYmKwePFinDp1asD3Dfe6Em39HQeXy4WHH34Y06dPR2xsLLKysnDbbbehurq63/cczPcqmgY6F+64445e+7N06dIB31dL5wKAoNcIjuPw9NNP9/meajsXBoMCO4V4/fXXsX79emzcuBGHDx9GUVERlixZgvr6+qDbf/rpp1i9ejXuvvtulJaWYtWqVVi1ahWOHj0a4ZIPnw8//BBr1qzBwYMHsWfPHrhcLlx11VXo7Ozs93UWiwU1NTXyT3l5eYRKPDKmTZvWbX8+/vjjPrfV4nkAAJ9//nm3Y7Bnzx4AwI033tjna9R+HnR2dqKoqAhbt24N+v9PPfUUfve73+H555/HZ599htjYWCxZsgR2u73P9wz3uqIE/R0Hm82Gw4cP4+c//zkOHz6Mf/zjHzh58iSuvfbaAd83nO9VtA10LgDA0qVLu+3Pa6+91u97au1cANBt/2tqavDCCy+A4zh8+9vf7vd91XQuDAojilBcXMzWrFkj/+7xeFhWVhbbtGlT0O1vuukmtmLFim5/mzt3Lvv+978/ouWMpPr6egaAffjhh31u8+KLL7KEhITIFWqEbdy4kRUVFYW8/Wg4Dxhj7P7772cFBQVMFMWg/6+18wAAe/PNN+XfRVFkGRkZ7Omnn5b/1trayoxGI3vttdf6fJ9wrytK0/M4BHPo0CEGgJWXl/e5TbjfKyUJdgxuv/12tnLlyrDeZzScCytXrmSXX355v9uo+VwIFWXsFMDpdKKkpASLFy+W/8bzPBYvXowDBw4Efc2BAwe6bQ8AS5Ys6XN7NWprawMAJCcn97ud1WpFXl4ecnNzsXLlShw7diwSxRsxp06dQlZWFsaPH4/vfOc7qKio6HPb0XAeOJ1OvPrqq7jrrrv6XYdZa+dBoLNnz6K2trZbXSckJGDu3Ll91vVgritq1NbWBo7jkJiY2O924Xyv1GD//v1IS0vDpEmTcO+996KpqanPbUfDuVBXV4d3330Xd99994Dbau1c6IkCOwVobGyEx+NBenp6t7+np6ejtrY26Gtqa2vD2l5tRFHEAw88gIsvvhgXXHBBn9tNmjQJL7zwAt5++228+uqrEEURCxYsQGVlZQRLO3zmzp2Ll156CTt37sRzzz2Hs2fP4pJLLkFHR0fQ7bV+HgDAW2+9hdbWVtxxxx19bqO186AnqT7DqevBXFfUxm634+GHH8bq1av7XRs03O+V0i1duhQvv/wy9u3bh1//+tf48MMPsWzZMng8nqDbj4ZzYdu2bYiPj8f111/f73ZaOxeCEaJdAEKCWbNmDY4ePTpg34f58+dj/vz58u8LFizAlClT8Mc//hG//OUvR7qYw27ZsmXyv2fMmIG5c+ciLy8Pf/vb30J6EtWiv/zlL1i2bBmysrL63EZr5wEZmMvlwk033QTGGJ577rl+t9Xa9+qWW26R/z19+nTMmDEDBQUF2L9/P6644ooolix6XnjhBXznO98ZcNCU1s6FYChjpwApKSnQ6XSoq6vr9ve6ujpkZGQEfU1GRkZY26vJ2rVr8c477+CDDz5ATk5OWK/V6/WYNWsWysrKRqh0kZWYmIiJEyf2uT9aPg8AoLy8HHv37sV3v/vdsF6ntfNAqs9w6now1xW1kIK68vJy7Nmzp99sXTADfa/UZvz48UhJSelzf7R8LgDARx99hJMnT4Z9nQC0dy4AFNgpgsFgwJw5c7Bv3z75b6IoYt++fd2yEIHmz5/fbXsA2LNnT5/bqwFjDGvXrsWbb76J999/H+PGjQv7PTweD7766itkZmaOQAkjz2q14vTp033ujxbPg0Avvvgi0tLSsGLFirBep7XzYNy4ccjIyOhW1+3t7fjss8/6rOvBXFfUQArqTp06hb1792LMmDFhv8dA3yu1qaysRFNTU5/7o9VzQfKXv/wFc+bMQVFRUdiv1dq5AIBGxSrFX//6V2Y0GtlLL73Ejh8/zr73ve+xxMREVltbyxhj7NZbb2WPPPKIvP0nn3zCBEFgmzdvZidOnGAbN25ker2effXVV9HahSG79957WUJCAtu/fz+rqamRf2w2m7xNz+Pw2GOPsV27drHTp0+zkpISdssttzCTycSOHTsWjV0Ysh//+Mds//797OzZs+yTTz5hixcvZikpKay+vp4xNjrOA4nH42Fjx45lDz/8cK//0+J50NHRwUpLS1lpaSkDwJ555hlWWloqj/b81a9+xRITE9nbb7/NvvzyS7Zy5Uo2btw41tXVJb/H5Zdfzp599ln594GuK0rU33FwOp3s2muvZTk5OezIkSPdrhMOh0N+j57HYaDvldL0dww6OjrYf/7nf7IDBw6ws2fPsr1797LZs2ezCRMmMLvdLr+H1s8FSVtbGzObzey5554L+h5qPxcGgwI7BXn22WfZ2LFjmcFgYMXFxezgwYPy/1122WXs9ttv77b93/72NzZx4kRmMBjYtGnT2LvvvhvhEg8vAEF/XnzxRXmbnsfhgQcekI9Zeno6W758OTt8+HDkCz9Mbr75ZpaZmckMBgPLzs5mN998MysrK5P/fzScB5Jdu3YxAOzkyZO9/k+L58EHH3wQ9PyX9lMURfbzn/+cpaenM6PRyK644opexyYvL49t3Lix29/6u64oUX/H4ezZs31eJz744AP5PXoeh4G+V0rT3zGw2WzsqquuYqmpqUyv17O8vDx2zz339ArQtH4uSP74xz+ymJgY1traGvQ91H4uDAbHGGMjmhIkhBBCCCERQX3sCCGEEEI0ggI7QgghhBCNoMCOEEIIIUQjKLAjhBBCCNEICuwIIYQQQjSCAjtCCCGEEI2gwI4QQgghRCMosCOEEEII0QgK7AghhBBCNIICO0IIIYQQjaDAjhBCNK6oqAgcx/X6qa2tjXbRCCHDjAI7QgiJgK1btyI/Px8mkwlz587FoUOHRuQ1wezZswc1NTXYt28fCgsLER8fjw0bNiAjI2NQ70cIUS4K7AghZIS9/vrrWL9+PTZu3IjDhw+jqKgIS5YsQX19/bC+pi9paWnYvn07li9fjuLiYpw6dQqPPfbYUHaJEKJQHGOMRbsQhBASLYcOHcJDDz2Ezz77DHl5eXj11Vdx+PBhvPPOO9i+ffuwfMbcuXNx0UUX4fe//z0AQBRF5ObmYt26dXjkkUeG7TV92bJlCx555BH86U9/wm233Ta0nSGEKBpl7Agho9bBgwdx2WWXYcWKFfjyyy8xZcoUPP744/j1r3/dK6P15JNPIi4urt+fioqKXp/hdDpRUlKCxYsXy3/jeR6LFy/GgQMHgpZrMK/py4EDB/Dggw/i9ddfp6COkFFAiHYBCCEkWtavX48bb7wRDz74IABg9erVWL16NVauXIlZs2Z12/YHP/gBbrrppn7fLysrq9ffGhsb4fF4kJ6e3u3v6enp+Prrr4O+z2Be05cf/vCHuPfee7Fy5cqwXkcIUScK7Agho1JlZSUOHDiAzZs3y38TBAGMsaD9z5KTk5GcnBzJIg7ZqVOn8MUXX+Af//hHtItCCIkQaoolhIxKJ06cAADMnj1b/tvJkydRXFyM6dOn99p+sE2xKSkp0Ol0qKur6/b3urq6PkelDuY1wRw4cAApKSnIzc0N+TWEEHWjwI4QMiq1tbVBp9OB4zgAQHNzMzZv3gyz2Rx0+x/84Ac4cuRIvz/BmmINBgPmzJmDffv2yX8TRRH79u3D/Pnzg37WYF4TjMvlgsPhgN1uD/k1hBB1o6ZYQsioNHPmTHg8Hjz11FO48cYbcf/99yM/Px/Hjx9HeXk58vLyum0/lKbY9evX4/bbb8eFF16I4uJibNmyBZ2dnbjzzjvlbX7/+9/jzTfflIO5UF4zkEWLFsFut+POO+/Ej3/8Y0yaNAnx8fGD2gdCiDpQxo4QMioVFhbi8ccfx29/+1vMmjULWVlZ2L17N7Kzs7F06dJh/aybb74ZmzdvxoYNGzBz5kwcOXIEO3fu7DY4orGxEadPnw7rNS+99JKccQymoKAAb7/9Ns6cOYNLLrkECQkJePTRR4d13wghykLz2BFCiEpt3LgRH374Ifbv3x/S9lu3bsV//dd/obq6emQLRgiJGmqKJYQQldqxY4c8gfFAWltb8cUXX6C4uHiES0UIiSYK7AghRKXCWTv2N7/5DaqqqvDSSy+NXIEIIVFHTbGEEEIIIRpBgycIIYQQQjSCAjtCCCGEEI2gwI4QQgghRCMosCOEEEII0QgK7AghhBBCNIICO0IIIYQQjaDAjhBCCCFEIyiwI4QQQgjRCArsCCGEEEI0ggI7QgghhBCNoMCOEEIIIUQj/j/zIseog30Z9gAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnYAAAHWCAYAAAD6oMSKAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOy9eZwcZZ34/67qc3ruSSaTk5wI4RpIMCQKcgjGkI2uu4ur7i4sin4Rwm5kV1zUn3jsyqKAunIqKojuru66oLsEQrhFEo6QkSMJ5D4mmZkcM9Pd09Nn1e+P7qe6J5mjZ6aOp3rq/XrlpfRUdz2feqrq+TyfU9F1XcfDw8PDw8PDw8P1qE4PwMPDw8PDw8PDwxw8xc7Dw8PDw8PDo0LwFDsPDw8PDw8PjwrBU+w8PDw8PDw8PCoET7Hz8PDw8PDw8KgQPMXOw8PDw8PDw6NC8BQ7Dw8PDw8PD48KwVPsPDw8PDw8PDwqBE+x8/Dw8PDw8PCoEDzFzsPDw8PDw8OjQvAUOw8PDw8PDw+PCsFT7Dw8Jji/+MUvUBRl0H8f/vCHB/3Ogw8+iKIo7Nmzx97BjhK3jPPrX/86iqJw5MiRsr/zne98h1NPPRVN04zP5syZw9e//vVxjWWw37jvvvs46aSTSKVS4/ptu7DqOsDg1x1Gfo7cdg2TySSBQICGhoZxX0sPe/EUOw/pEYvza6+9NurvvvTSS3z961+np6fH/IE5gBXynHXWWTz88MM8/PDDPPjggyxevBhgWMXOw1mi0Si33XYbX/rSl1DVkV/j69atO0HZqKurY8mSJTz66KMjfv9v//ZvSafT3H///SaMfmisfF7Hew1g+Os+0nNk1zUEiMfj3HLLLXz4wx+mqakJRVF48MEHhzxe0zSam5v5zne+Y3yWzWZ54IEHmD17Nt/85jfp6uqyfNwe5uApdh4VzUsvvcQ3vvGNilLszJbnrLPO4q//+q+56KKLuP/++9m0aRPnn38+mzZtYs2aNYN+52/+5m/o7+9n9uzZpo3DCtwyztHy05/+lGw2yyc/+cmyjv/jH/8IwL/927/x8MMP89BDD/GlL32JvXv3csUVV7Bt27Zhvx8Oh7nqqqu488470XV93OMfCiuf1/FeAxj+uo/0HNl1DQGOHDnCN7/5TbZu3Upra+uIx7/yyiscOXKElStXGp/V1NRw1VVXcdNNN6HrOm+88YaVQ/YwEb/TA/DwcCN9fX1UV1c7PQzTeOutt/jQhz7E0aNH+cEPfsANN9yAoihDHu/z+fD5fDaOcGyYPU5Z5v1nP/sZH/nIRwiHw2Ud/8Ybb9DQ0MANN9ww4PPJkydz7bXX0tbWxqmnnjrsb3z84x/nO9/5Ds8++yyXXHLJmMfuFGZcg5Gu+0jPkV3XcNq0aRw6dIipU6fy2muv8d73vnfY49euXcvs2bM5/fTTT/ib+Gzr1q1ceumllozXw1w8i52H6xDxSDt27OBv//ZvaWhooL6+nquvvppEIjHguC9+8YsAzJ0713C/iHir9vZ2Pv3pT9PS0kIoFOL000/npz/96ZDn27JlC5/61KdobGzk/PPPByAWi7FmzRrmzJlDKBRiypQpXHbZZbz++uvG98s9T3t7O5/5zGeYPn06oVCIuXPn8vnPf550Oj2iPOWMYyj27NnDpZdeSiqV4vnnn+fv/u7vhlXqYPDYtXLnZTjKuVbiPNu2bePjH/84dXV1TJo0ib//+78nmUyOOM7nnnuOc889l3A4zPz587n//vuN3xzsPIPN+969e7nuuus45ZRTqKqqYtKkSVxxxRUnxPKNZqwAPT09I1673bt388Ybb4xqkf3jH//IokWLTvi8o6MDgIULF474G4sXL6apqYnf/va3Ix47lvtxpOd1vIz3Gox03ct5jkZzDcdDKBRi6tSpZR//2GOPDbDWlSLu0y1btpgyNg/r8Sx2Hq7l4x//OHPnzuXWW2/l9ddf54EHHmDKlCncdtttAPzZn/0Z7777Lv/xH//B9773PSZPngxAc3MznZ2dLF26FEVRWL16Nc3NzTz++ON85jOfIRqNDuqCvOKKKzj55JP59re/bbhSrr32Wv77v/+b1atXc9ppp3H06FFefPFFtm7dyqJFi8o+z8GDB1myZAk9PT187nOf49RTT6W9vZ3//u//JpFIEAwGh5Xnc5/73LDjGApN0/jUpz5FX18fL7zwAuecc47l8zIUo52Tj3/848yZM4dbb72VjRs38m//9m90d3fz85//fMhzbN68mQ9/+MNMmzaNb3zjG+RyOb75zW/S3Nw85HcGm/dXX32Vl156iU984hPMnDmTPXv2cO+993LRRRexZcsWIpHImMZazrV76aWXAIad11LS6TTvvPMOF154oZGc0d3dzbp167jttttYvXp1We46cc4//OEPIx430nMxGMPd3+PFjGsw3HUfzXM00jXMZDL09vaWIxZNTU1lxVgOR0dHB5s3b+ab3/zmoH//h3/4ByBvsfNwCbqHh+T87Gc/0wH91Vdf1XVd12+55RYd0D/96U8POO5jH/uYPmnSpAGfffe739UBfffu3QM+/8xnPqNPmzZNP3LkyIDPP/GJT+j19fV6IpEwPhPn++QnP3nC2Orr6/Xrr79+yLGXe54rr7xSV1XVkLEUTdNGlGekcQzFQw89pAP6T3/601F9T8xJ6ThGMy+DUe61Euf5yEc+MuC46667Tgf0P/7xj0OOc9WqVXokEtHb29uNY7Zv3677/X79+NfhcPNeen8INmzYoAP6z3/+8xN+Y6SxjubaffWrX9UBPRaLnTCG2bNn67fccsuAzzZv3qwDJ/wLBAL697///bJ+Q/C5z31Or6qqGvRvpYz1fhzq/h4tx8sw2msw2G8Md91H8xyNdA2fffbZQcc62L9yrtOrr76qA/rPfvazQf/+k5/8RK+qqhr0nn744Yd1QJ8yZYo+ZcqUEc/lIQeeK9bDtVx77bUD/vuCCy7g6NGjRKPRYb+n6zq/+c1vWLVqFbquc+TIEePf8uXL6e3tHdRldPz5ABoaGnj55Zc5ePDgmM+jaRqPPvooq1at4txzzz3hd0Zyi440juG46667OPPMM7n66qtH9b3hGMu8jGVOrr/++gH/LWKn1q5dO+g5crkcTz31FH/6p3/K9OnTjc8XLFjAihUrypYHoKqqyvj/mUyGo0ePsmDBAhoaGga9d8odaznX7ujRo/j9fmpqaoYccyki6P2hhx5i/fr1rF+/nl/84hecffbZfOlLX2LDhg1l/Q5AY2Mj/f39I7rWx3o/WoUZ12C46z6a52ika9ja2mqMcaR/o3G3DsXatWu5+OKLB9zTkM+s/dKXvsSKFSu48sor6erq4tixY+M+n4f1eK5YD9dy0kknDfjvxsZGIO9iqaurG/J7hw8fpqenhx/96Ef86Ec/GvSYwVL7586de8Jn3/nOd7jqqquYNWsWixcv5vLLL+fKK69k3rx5ZZ/n8OHDRKNRzjjjjCHHPBLDjWMojhw5wmuvvcatt9465vMOxljmZSxzcvLJJw/47/nz56Oq6pAxWV1dXfT397NgwYIT/jbYZ4LB5r2/v59bb72Vn/3sZ7S3tw/IchzMjVbuWMd6Tw/HH//4R/x+P5/85CcJBALG5xdddBEzZ87krrvuYtmyZWX9lpBzpM3GWO5HKzHzGhzPaJ+jka5hY2OjbUkKmUyG9evXDzr2b3/72xw5coQf/OAHvPjii0A+zk7EmXrIi6fYebiWobId9RFKCYjCon/913/NVVddNegxZ5111gmfHb+jhXxM1AUXXMAjjzzCk08+yXe/+11uu+02/ud//seIsxnpPCONtxyGG8dQ1qitW7ei67opcXWljGVexjonpZRj2RwLg837DTfcwM9+9jPWrFnDsmXLqK+vR1EUPvGJT5xQuHYwhhprOddu0qRJZLNZYrEYtbW1I57rjTfeYP78+QMUGoAZM2YQiUQ4cODAiL8h6O7uJhKJDHpNShnL/WglZlyDoa77aJ+jka5hOp0u2zLW3Nw8rqzvF198kWg0yuWXXz7g8507d3LnnXfyD//wD5x88sl0d3cDeVk9xU5+PMXOo6IZbAFtbm6mtraWXC5nys542rRpXHfddVx33XV0dXWxaNEi/uVf/oXnn3++rPNomkZdXR1vvfXWiOcaTnkZahxDLaR9fX0j/qZdjGVOtm/fPsCatmPHDjRNY86cOYMeP2XKFMLhMDt27Djhb4N9Nhz//d//zVVXXcUdd9xhfJZMJoesvzbasQ6HKMmxe/fuEZVdyCs173vf+074/PDhwyQSiVG583bv3l1WBi2M/n4E6+5FM67BUNd9tM/RSNfwpZde4uKLLy77t8ZyDwkee+wxTjvttBN+48Ybb6S5uZmvfOUrQDFj2MuMdQdejJ1HRSNqjpUuuD6fjz//8z/nN7/5zaDK1OHDh8v67Vwud4LbbcqUKUyfPp1UKlX2eVRV5U//9E/53//930G7a5RaawaTZ6RxDIV4mf/P//zP8ILawFjm5O677x7w3z/84Q8BhlQcfD4fl156KY8++uiA2K8dO3bw+OOPj3q8x1sgf/jDH5LL5QY9frRjHQ7hMiynE0tHRwddXV2DKhIi0/bP//zPyz7366+/PqiCVEo592MikWDbtm0ntFAb7P4e7vhyMOsaDHXdR/scjXQN7YyxW7t27QllTtatW8fvfvc7br/9dmM+amtrmTVrlpcZ6xI8i51HRSPa+nzlK1/hE5/4BIFAgFWrVvGv//qvPPvss5x33nl89rOf5bTTTuPYsWO8/vrrPPXUU2W5QmKxGDNnzuQv/uIvaG1tpaamhqeeeopXX33VsOSUe55vf/vbPPnkk1x44YV87nOfY+HChRw6dIj/+q//4sUXX6ShoWFIeS644AJOOeWUYccxGKeeeirLly/nvvvuo7Ozkw996EPMmTOHSy65hGAwOJ7LPiZGOye7d+/mIx/5CB/+8IfZsGEDv/jFL/jUpz41bNmKr3/96zz55JO8//3v5/Of/zy5XI677rqLM844g7a2trLH+id/8ic8/PDD1NfXc9ppp7FhwwaeeuopJk2aNOjxYxnrUMybN48zzjiDp556ik9/+tPDHiu6LXR1dfGLX/wCyMeEPfnkkzz++ON84hOf4IorrijrvJs2beLYsWN89KMfHfa4cp6LV155hYsvvphbbrllQB/SoZ7XV199ddDjy8GsazDUdR/Nc1TONTQrxu6uu+6ip6fH2MT87//+r+FyvuGGGzh27Bhbt27l3nvvNb6TyWRYs2YNF198MX/5l3854PdOO+00T7FzC7bn4Xp4jJKhyp0cPnx40OOOLwHwrW99S58xY4auquqAv3d2durXX3+9PmvWLD0QCOhTp07VP/jBD+o/+tGPBnx/qPOlUin9i1/8ot7a2qrX1tbq1dXVemtrq37PPfcMOK7c8+zdu1e/8sor9ebmZj0UCunz5s3Tr7/+ej2VSg0rzzvvvFPWOAYjFovp//iP/6jPnz9fDwaDOqCvWLFixO8NV+6k3HkZjHKulTjPli1b9L/4i7/Qa2tr9cbGRn316tV6f3//iOd++umn9XPOOUcPBoP6/Pnz9QceeED/h3/4Bz0cDg/47lDy6Lqud3d361dffbU+efJkvaamRl++fLm+bds2ffbs2fpVV1016rGO9trdeeedek1NzQklKo4v0fGd73znhBIZtbW1+vvf/379Jz/5yYBSOkP9huBLX/qSftJJJw36nVLKeS5ESY/BzjPY8zrc8YNRKsNYrsFQ12Go617uc1TuNTSD2bNnD1sm5a677tLr6+v1TCYzQD6/36+/9dZbJ/zejTfeqCuKMmi5Fw+58BQ7Dw8Pg3/6p3/SAf3YsWNOD2VIhlO4xspHP/pRfcGCBab9nsCKseq6rvf09OhNTU36Aw88MODz4WrQlctgv5FMJvWpU6cOWfNNNqy6DkNd9+MZ7DmS7RquWLFCv+KKK5wehocFeDF2Hh4eBs3NzVRVVZ3QOaGS6O/vH/Df27dvZ+3atVx00UXODGgM1NfXc9NNN/Hd7363rCzc8fKzn/2MQCAwaE2/iUS5132w50i2a3jRRRfxhS98welheFiAp9h5eHgA+YD+r3/961x55ZWEQiGnh2MZ8+bN4+abb+bHP/4xX/3qV1m6dCnBYJCbbrrJ6aGNii996Uts27Zt3C2lyuHaa69l3759FX1flMtI132o50i2a3jTTTeNuXafh9x4yRMeHh4A/PznP+dTn/oUd955p9NDsZQPf/jD/Md//AcdHR2EQiGWLVvGt7/97ROKCHt4jIWJ8hx5yIui6yZUR/Xw8PDw8PDw8HAczxXr4eHh4eHh4VEheIqdh4eHh4eHh0eF4MXYlYGmaRw8eJDa2lop2i95eHh4eHh4TBx0XScWizF9+vQRE6Y8xa4MDh48yKxZs5wehoeHh4eHh8cEZv/+/cycOXPYYzzFrgxqa2uB/AWtq6tzeDQeHh4eHh4eE4loNMqsWbMMfWQ4PMWuDIT7ta6uzlPsPDw8PDw8PByhnHAwqZInXnjhBVatWsX06dNRFIVHH310xO8899xzLFq0iFAoxIIFC3jwwQeHPPZf//VfURSFNWvWmDZmDw8PDw8PDw9ZkEqx6+vro7W1lbvvvrus43fv3s3KlSu5+OKLaWtrY82aNVxzzTWsW7fuhGNfffVV7r//fs466yyzh+3h4eHh4eHhIQVSuWJXrFjBihUryj7+vvvuY+7cudxxxx0ALFy4kBdffJHvfe97LF++3DguHo/zV3/1V/z4xz/mn//5n00ft4eHh4eHh4eHDEhlsRstGzZs4NJLLx3w2fLly9mwYcOAz66//npWrlx5wrFDkUqliEajA/55eHh4eHh4eMiOVBa70dLR0UFLS8uAz1paWohGo/T391NVVcV//ud/8vrrr/Pqq6+W/bu33nor3/jGN8weroeHh4eHh4eHpbjaYjcS+/fv5+///u/55S9/STgcLvt7N998M729vca//fv3WzhKDw8PDw8PDw9zcLXFburUqXR2dg74rLOzk7q6Oqqqqti0aRNdXV0sWrTI+Hsul+OFF17grrvuIpVK4fP5TvjdUChEKBSyfPweHh4eHh4eHmbiasVu2bJlrF27dsBn69evZ9myZQB88IMf5M033xzw96uvvppTTz2VL33pS4MqdR4eHh4eHh4ebkUqxS4ej7Njxw7jv3fv3k1bWxtNTU2cdNJJ3HzzzbS3t/Pzn/8cgGuvvZa77rqLm266iU9/+tM888wz/PrXv+axxx4D8h0jzjjjjAHnqK6uZtKkSSd87uHh4eHh4eHhdqSKsXvttdc455xzOOeccwC48cYbOeecc/ja174GwKFDh9i3b59x/Ny5c3nsscdYv349ra2t3HHHHTzwwAMDSp14eHh4eHh4eEwUFF3XdacHITvRaJT6+np6e3u9lmIeHh4eHh4etjIaPUQqi52Hh4eHh4eHh8fY8RQ7Dw8PDw8PD48KwVPsPNh9pI8fv7CLnYfjTg/Fw2KOxlN40RceHh4elYun2E1wOnqTfPSuF/mXtVv5s3teoqM36fSQLOXVPce4+mevcPezOyaUgpPNafy/h19j8T8/xZ/88EW6+9JOD8nDAlLZHD95cTe3rt1Ke0+/08PxsIi+VJZfvbqPF949PKHeYx7l4Sl2E5y7n91BNJkFoLc/w0//sNvhEVlHIp3l87/YxLPvHOa7697hsTcPOT0k2/j5hr2seztfzPvtg1Fuf/Idh0dkD6lszukh2MoX/+sNvvV/W7j/hV1cce9LngJfgSQzOT7544186TdvcuVPX+HHv9/l9JA8JMNT7CYwmZzG/71xEICrls0G4JHN7RW7A1z7ZgdH4sWF7sE/7HFuMDaSzWn85MW8wr7yrGkA/Ob1A0STGSeHZSnJTI6P37+BM25Zx88qeLNSyiu7j/G7Px7EpyrUhv0c7E1yz3M7Rv6ih6v45cv7eONAr/Hft697l65oZXtaPEaHp9hNYDbuOkp3IsPkmhD/tGIh4YDK4ViKdzpjTg/NEl549zAAVyyeiaLAa3u7OdRb+e6ql3Yepb2nn6bqIHdc0cq85mqSGY3fv3vE6aFZxi827uWV3cfI5HT+9fFtHI6lnB6S5Tz4Ul6B/fi5M/m3T+Rrgf7y5X30pyvbann3sztY9K313Pr4VqeHYjmapvPTwibt1j87k8WzG0nnNH6xca/DI7Oejt4kV9z3Eh+84zm2HIw6PRyp8RS7CczGXUcBuPA9zVQFfZw3dxIAf9hx1MlhWYKu67y0M6/I/MXimZw5ox4oXoNK5qmteRfs8tNbCAd8XHLKFACee6fLyWFZyv+83m78/1RW48ktHQ6OxnriqSzPbMvP51+dN5uLTmlmZmMViXTO+LwS2d4Z47vr3uFYX5r7n9/FyxX+PP/xQA/tPf1UB3187JwZXFnwtPzfG4cq1tMi+NfHt/Lqnm52Hu7jq4++OfIXJjCeYjeBeXV3NwBL5jYCsOik/P++1d475HfcyuFYiiPxNKoCrbMaWDYvr8Ru2FnZC4Gu6zy9Nb+wf/DUFgDOP3kyAJv2djs2Livp6E2y5VAURYHPnD8XgGcrWLkBeHH7YZIZjTmTIpw+vQ5FUVjVOh2AJ96uXKX2vzYdGPDf/33cf1caT7yVn8tLFhY2aadOIehT2XWkj+1dlVvVIJrM8H9vFGOiX9/Xw+4jfQ6OSG48xW6CksrmaDvQA8CSgqXu9On5ataVaObe1pF3L8+ZVE044OPcOU0AA2JVKpED3f209/TjVxXevyCv0LXObABg15E+evsrL87utb3HADhjer0RU9i2v6eiLRobd+Vl/sB7mlEUBYCLC5bZDTuPVqzsYmP2ySUnAfD0tq6KlRXg99vzXofLTstv0mrDAc6bl3+XVfIm9Q/bj5DVdOY1V/P+Bfn1qpIt0ePFU+wmKNs746SzGg2RAHMmRQA4fUZesdtxOE4yU1lxOe8UFLtTptYCRSV2R1flyVrK6/vyVrnTp9dRFfQB0FgdZFZTFQBvV6B19q32/MbkrJn1nDatjoBP4Ug8XdHlP17enVfslsxtMj5rnVVPyK9yJJ5iRwVac2LJDG8fzN+/1100n6Bf5VhfumItOdFkhq0d+Xt7ack8n1f4/68U7oFK5KWdxbCh983Pb1A376tMj4MZeIrdBEVYsE6dWmvs8KfWhWmIBMhpesUtBO8WEkLe05JX7KbVh2mMBMhWoKylvF5wty6a3TjgcxFj+NbBylPsxGJ/xox6wgEfp07NK/FvVqh1tjeRYVthwS9V7EJ+nxFe8VoFut23Hoqh6TCjoYpZTRFaZ+bv6UqUFfLPsq7D7EkRptSFjc+Fx+Xl3ccq1lop3lPnnNRoeBzerMBNqVl4it0EZduh/EIgFj0ARVGYO7kagL1HE46Myyr2d+flEfIpisJpBavd2xWo3Ahe39cDFOMnBQum5BXcSrRuvF0IJRBW2ZNbagAqtrPKG+09xQW/Njzgb2cVlJ1KvMe3d4nNWn5+z57VAFSmFRrgtT15hfXc2U0DPj9rZn3BKp2qSKt0TtPZdig/16dPrzM2pXuPJioylMQMPMVugiJKmpxacE0K5k7KKz57jlbWgi9eeDMaq4zPFhaUWmG9rDRS2RxbCgr88Ra7eQUFd+fhyprn3kSGY4WivAum1Az430q1zG4tzPFp0+pO+NvpM4RiV3lxs9s78/N5csEKL6zx73ZW5jwLq9XZJzUM+Dwc8BkbtUqMj959JE5/JkdVwMecSdXURwJMLVgsd1XoZm28eIrdBGVrYQd06nGLwWyh2FWQJSen6RzqyRfwnNFQVOzmNecX/EqStZSdXX3kNJ36qgDT6wdacuY15+d5V4UpdnuP5eWZUhsiEvQDML9ZWOwqS1aBsGYsHEyxK1gttx6KktMqy00nLHZCcRcKnvi80hDzfNq02hP+drrhfag8xW6LsVbV4lPzYUPC81KJHgcz8BS7CcixvjRH4vmCrcKNIZgzOZ9IUUmu2M5okqym41cVWkpiU8TLYU8FyVrKO535l/wpLcU4SoGQ/Ug8VVEdKMRczi4kBEFx4d95OF6RMUjCKjuYYjd3UjWRoI9kRqu4RVBsSoTifnJhno/E04bVtlLo7kvTUeguISyTpQhrrbgXKgmx8RbzDDC32VPshsPv9AA87Ec8DNPrw0SCfrR0mvgzz6Cn00yKAfjYe/Aovb/7nfEdJRik5pJLUINBZwY9Dg4U4uum1YfxqYoh76RYGvCx70icI4/+jkDJNsfN8gpEJvB7phZfiKVz3RxQOZxRePM3j3NGyVrhZtnFIlCq2M1qjKAokEjnOBJP01wbcmp4ppPOakbs4MJBLDmqmo+bfftglN1H+gwl1+1kchqdBUVHZHhXh/zMaKiivaefXYfjNFU3DfcTrkJkw85qqqI2HDjh76dVcKkqYWSY3VR8pkUoyS5PsRsUT7GbgOwtxM+dVFj8+je30b7mCwAooVpYcQuHUzr7v3QzPl0zvnfSQw9Rfd4S+wc8Tv7v3ZcAlXA4/4IQ8upA6E++TcofZPO3vsvMvoEtttwqr+CFXTsBhbRvD3AmMHCumy+4nsOT5vL2T35J08E3BnzXrbK/uOcdQCGp7AfOBiDoV5laF+ZQb5L2nv6KUux2HYmTyenUFpSawZjXXFNQ7OJAi70DtIiO3iSanp/bydXF+ZzVlFfs9ncnjFqVlYDhbp96olUWirHS7T39JNJZIwyhEthXCK+YXVDmIF+PFCo3jGa8eK7YCYjYAYmHI7J4EYGZM0FRqE/F8Wk5NEXlWKhgAVAUArNmEVm8yKkhj5mslmXtuy8D0JXZRlbLGvIqisKMeL5/bHtNc/FLLpZXkNWyRomXl48+QlbLAgPnurm/B4DDVQ3FL7pY9qyW5c1D+er0m489acgMMLOQNCOst5XC7oI7ct6UmhPc7QLhdq+keEqR5T6joQpVLco9qzG/Wd1/rLKyQ0U5m+NjogUNkSBN1XkLeyXNMwxusZte2MQc6k06MibZqRy13gZyWY1cVhv5QMnZeziOqsNJDZGCPCpN16/m0Je/gqJAc3+UrkgjhyNNTErl3TxN169GQwWXyb921+PE+hRUHVJaB2t3PM7KeSsNeWfFj7CnfgYHaqfy3q53je+5VV7Bb7Y9jpaqQwW6s1sNuUvnujnRi6pDV6QRTfEZ33Wr7Gt3PU66P4KqQ292d4nMMLO+ik16N/uPJCriGRbs6so/y3Mbq4aUa25j/prs7opXjOwHjiRQdZhZFx4g00kNVag67D/SVzGyAuzqzM/zgknVQ8o1vylCTzzNzs44CweJw3Mj/ekcR6IpVGBmfXGup9aEUHXoiafp688QDviG/6EKYDT3s6fYjYLN6/dSE3H/A6Nui7E06ad+T4JNiT0A6OrpdJ95BblojPNSAQ6rfrpmXES4rgtfXR1x5TSUx/c4Ou7RoukaT21r473H3oOW8uPvPYmnH21jyqkLUQrynqI0kUn6yU1axJ5sFaC4Vl6Bpms8/8a7LE2egaKmCXZcYMitKqox1zN8DSxN+qmqO409szO4WXZN13hqaxvnxd8LKAQPnzNA5jmdWZYm/fRuOsKmvspxVPRsOcLSpJ95h3NsGmLOfNEkS5N+qnf3D3mM2+jYdZSlST8Le/QBMtV39LM06UfZGq0YWQEa9vSzNO1H3RZlU3tq0GPOjqsEkn72/v7gkMe4jSPxNEuTfkJ+lZ3PHzQ+14ELMkEyOY0Xf7eTxoj74oFHSzxRfrZ35bzhPMqmN5HPgqyvKgbhKqpKZMkSQCeSzZu3E/5w/r+XLEFR3XerbO/ZQSwdBa3w0Kspouko23t2GPJWZ/Ium3hAZMu6V17B9p4dxFP57E/FlwB0Q24oznWkIHufX8RmuVf27T07iCZTgALoA+YaoDac38NWUgYwQE/hWW4YZmETi15fKks6VxlWrFgy72avOy6RoK6qMM/92RO+41ZSWY1EOt/2sCFyYuKEoLHgiu1OVM49HkueuFZB/imvDfsKx1TOXJuFZ7EbBedcNpu6usFjHNxCb3+GZ1/cCj6496PzqQkVbwH9spnseuL7PNPrY2PzZFoyB1mVe5t5q29F8bvrVslqWW757WoOzThELHkGui9L1dQXCUT20Vm1hUeWP4Lvspns/9QjbAy/h9mpfv5235MEZsxwpbwCIfee+pNJpRfir3+XqmnrUVAMuf2qH/2ymSSe/wUbw2fSQI5rXSy7kPlAs0JfYhmKv5eamU8OkDm5q4Z/3n2Qrqos31oxx+khm8bf/XEXXeEsX7xsFmcVWi0Nxg1tO4kms9zy3mYWVICb7gcHO9l4LMufLW1h8aIZxucnRZPc+OYeVCXL9z90EgGf+zYpx/NWey8bN77D5JoQy/5k3pDH9Wyt4vb9HUQjWb5aIff49lf2s3HbPi6Z18ji42S6q6OLjTuO8tFT61i8eKYzA7SRaLT8jGd3vcEdxudX8fnd/aJo702iKTC5Jkh99XG7fH+QlhuuY9KPHkNT4Gi4lpYrr8Mfdp+Ze+3OdRxI7AcVclpNfosX7CWnZtmf2MeT+9exav4qTrtiJdofobO6EVXL0nKDO+UVCLkzmfPQFCB0BE3N7/ZL5cYf5LSrPo72GhyrqiUDzHSp7IbM2mloCqiB6Akynz7pYjQFDkVTrn+GBX2pLB3xFCgwr6V2WLmmNlbR0xHjYDzFKYVuFG6msy+NpsC0pqoBcrc0VuEPqKSzGof70swqCbh3K3t7+tEUOGlyZNg5nj+1Fk2B3UcTqD5lyGQaN9HZl0JTYEpj1QmyT2uMoClH6YhVzjM9HKORsfKvhscARDbZUC+8upUraS6Y+3vqJ1N3+eW2jc0sslqWu9vuRkFB1wKg5d2sii+fCKKgcE/bPWS1LO/56HIAEoEqUnPmu1JewQC50/nG4GqgWMKlVG6AmR+9nHAuX8i1d96prpR9gMyZvDVd9Rd3tkLmSTX5PWxfOkc8VRmuG9H2r6k6eIKr6nhEKZSDFdJL9HAsH0N2fOkaRVFoqct/1hWrjIxJUdJjTkm5j8EQc9yXzlWMO7arUKtwal34hL9Na8h/dqi3Mu5pM/EUuwmGeLFPH6LmleL3M3tVXtmJTZnhOrccwOauzbTH29HR0bOFgqxKGtT8YqCjcyB+gM1dm6mOhGn05+PR0ld9zpXyCkrl1jIFxS541Ph7qdwAaiBgKPHaJ/7GlbIPnOu8YqcEik3ghczv9r5JbSHsQBS2dTv7j+U3aSeVYZUSPZIrQbFLZXNG8/cpg9QkbKnNL/id0cpIIBCK3dwRFLtwwGcoteLecDui24aQq5QphXkWXZQ8irjvTe4xLg4O0jP1eGZ/6CLY8nu6cZ9bDqC1uZXbL7yddC7N7k64cyc0VQf4xgXfNo4J+oK0NrcCMKulge72XrrPcl9B3lKE3LFkmn/cmt+z3fKB64mUvBNL5QZomdrE/r3dJM461+7hmkLpXD/8nMIrR+HDC5byobOXGscImafUvUTscJbOaHJAeyK30i6e5cahn2WB2Mi1d7tfsRPWuoBPGdRS2VLoi9xRITXOhGVW1B0djpmNETqjKfZ3J2id1WDxyKxHzGHLIBa7yTX59UncDx5FPMVugiHM1tPqT3xQBM2FnVBPf4ZMTnNdAHLQF2T5nLzVcV2yA9jESY2NrJr//kGPn9FYxRvtva63Zgi5tx6KAr+nIRLgL0/70LDfEa6sI3F39tYsnetfPfsycISL5pzDqvknBlO31IXZebiPrgqx5Ij7deYwmzRB0RXrfmXHcMPWhAaNIyta7NwvK8C+QrHl0jZ5QzGrsYpNe7s5UAEKPBTncOog65Xb311W4q4V22PcjOSKBWioCuArVHM/6vKHRpjph2sjNaOCrBkA+46dWKl9KMR1qYRdb2d06N196eeVsuCL+3W4Z1lgWOxcvnkB6BKK3RDzPLU+f09XwjwnMznjHTacl0UgYqcrwRWbyhZjBQeLsSt9d+m6buvYZMdT7CYYBwum7en1Q78kVFUx2tO4PX5BKCyTa4ZW7KaJ9jQVsBBAUXkvx0XXXFM5it3RvvwmZHLt4CEEU+rEgu9+WQEO9pav2AkLfVcsiaa5exEstdgNhlDgOyrgeRYts6oCvmFr2AlE67z9FbBJFZb1oF8d1OUu3unpnFZRdQvNwFPsJhCpbM54KU5vGNoVC8WHxu2KnWGxqxk6XlDsBrsqYCGA4mIwbRjlXWDsel0+zzlNpzuRV+yaji/jU8Bw0VVItmTR+j78swzF5zmT0+npd3fGpHiHTRkkoB6Kil0luNxLN2nllC8RvXIroSdyR0lG7GCyhwM+6gqFxw/HK+OZNgtPsZtAdPbmX3Qhvzrk4icQgaluj184VrDiTBrGYicyriphhw9Fd1s5lpxKccX2JNIIb0zTEF0YWipIgc+76PL3djkuuqBfpbFg8XF7GZCuUVjs3O6iG82zDPnkCYAD3f2ut8x2DpMRKyi+v9y9TpmNp9hNIEpdNyPt/sRL86jLLTnFlktDuzGKsVeVEath7PJHYclxu2VWuGEbIgH8QyT7VJICL+a4OugbsYadQJSHcLsSP1QNO4GwwCfSOWIur1k4mmcZ8rXdFAXSWY1jCXcrOyK+e7gwGvE3t3sczEYqxe6FF15g1apVTJ8+HUVRePTRR0f8znPPPceiRYsIhUIsWLCABx98cMDf7733Xs466yzq6uqoq6tj2bJlPP7449YIIDmjcd1MKljsxILpVrrL6KUpXDrprGYogm6mnAQZQTGzLOXqHb5YBIazRFeSAi+yW8vZpAnEfe52F+XhgsVxsBp2AFVBn9Eq0e3JX8azXEZYBUDApzKpurCBcXm5l6OGt2XoZ7pSPA5mI5Vi19fXR2trK3fffXdZx+/evZuVK1dy8cUX09bWxpo1a7jmmmtYt26dcczMmTP513/9VzZt2sRrr73GJZdcwkc/+lHefvttq8SQltHEXglFqNvlil1PYdfaOIzFLuT3GQqB2+Ov0lnNcFWVo9iJl2YmpxtFX92I4XIfRrEzgq2zWsVYcsp10UFJoozLrRtHywivMDamLpe1VIEvF5EV7HrFrjB3TdXluGLdPc9mI1UduxUrVrBixYqyj7/vvvuYO3cud9xxBwALFy7kxRdf5Hvf+x7Ll+drW61atWrAd/7lX/6Fe++9l40bN3L66aebN3gXMJp4DeG6dHugdbeh2A0fUzilNsSxvjQdvUlOnVpnx9AsoTOaRNfzMVXDKTmCkD/vyuvtz3AknqKxjO/IyNG+/It90jCLQFXQR3XQR186x9F4mrpweS5MGRlt7BVAc4VY7LrLUOInVQfZezTh+hCDsSjwU+uqeKs96vqQA7FZmzyMxU5s1o71uXuezUYqi91o2bBhA5deeumAz5YvX86GDRsGPT6Xy/Gf//mf9PX1sWzZsiF/N5VKEY1GB/yrBA4ZZv2RXbFCEepxcZxGMpMjmdEAqB+hVEClZNIdLJnjcl10wprp5v6Shit2mEUAYHJtZcSOdhhli8qLvYJijJ2bkyeSmRx96RzAsJuQSUbsqHvfX7quGwp8OQkygkqp41dOeIVYp471uffdZQWuVuw6OjpoaWkZ8FlLSwvRaJT+/mIdnzfffJOamhpCoRDXXnstjzzyCKeddtqQv3vrrbdSX19v/Js1a5ZlMthJR0FpGayK9/E0FAKy3RxzJsbuVxWjT+hQTK2Q2lejqW0mEAvkMRe73ctxxZb+3e2WHBEyMFQx5sGoBLeVeKZ9qmKUuhiMyUbyl3vv6e5EhlQ2vzFtqR/aEn084l12yO2u2DKs8E3VYlPq3nm2AlcrduVyyimn0NbWxssvv8znP/95rrrqKrZs2TLk8TfffDO9vb3Gv/3799s4WusQZR7Ezn04jBg7Fyt24mFviARGtF611FXGLncsMTlNFWCdFYrdSGV8KsGSA8Uiy0PVchuMKRWg2Il5bowEh32mJxvJX+6VVVhWm6qDhPy+sr83tRBD7fZ3WTnJE40VEgtuNlLF2I2WqVOn0tnZOeCzzs5O6urqqKoqLmzBYJAFCxYAsHjxYl599VV+8IMfcP/99w/6u6FQiFCo/BemG8jkNONBKWcxEDF2vf1pdF0v260nE0KxK6cchGgc7vaX4Vhir4QS7+byCMICN1xAPVSGJQdKM0MnlsWuWIR6+GdaWGbdPM8iLGSo7N+hMLwPLrbYZXLFCgXDWeHFRs7N7y4rcLXFbtmyZTz99NMDPlu/fv2w8XMAmqaRSrn35TYWxMLnV5UhC7iWIhS7TE43YlrcRm/hxTBS4gSUNg53933RYWQ+l7/gG+4MF+96y3XFFgtvu3eeMznNsDgOV7z1eMRzH0tlyeQ0S8ZmNaUWu+GYVAH1GbtGqNc3FEZWrIs3qUKBV5ThS1WJMJLe/gxZl97TViCVYhePx2lra6OtrQ3IlzNpa2tj3759QN5FeuWVVxrHX3vttezatYubbrqJbdu2cc899/DrX/+aL3zhC8YxN998My+88AJ79uzhzTff5Oabb+a5557jr/7qr2yVzWnE7q+5NoSqjmx9qwr4CPrzt4dbXXTl1LATTK0Qi12XEXtV/mIgXo5udruX7Yqtdr+LTljc/KpS1qZFUF8VQDz6bo1JGqltnGBSBSjwIxViHgrhio0ls/S5tKyPkTgRCeIbZr0SseC6jqvLNZmNVIrda6+9xjnnnMM555wDwI033sg555zD1772NQAOHTpkKHkAc+fO5bHHHmP9+vW0trZyxx138MADDxilTgC6urq48sorOeWUU/jgBz/Iq6++yrp167jsssvsFc5hxO6vXLO+oiiuT6DoLqOGncBw0fWlXV2ot+i+Kd9i5/Y4Fa2kT+yIyRMVEGNX+iyXs0kTqCWKYLdLswgNi90I89xc8jy7la4xuNsBakJ+o0CzW6125W7U/D7VCLVx62bFCqSKsbvooouGrQh/fFcJ8Z3NmzcP+Z2f/OQnZgzN9QhLVPMoF/yuWMq1il1PSfLESIgdfk7LN0kf6YUiIzlNNywUo4nLaXR5jF00mUHo4iNZZyuhhZp4lqeMIiNW0Fgd5Ghf2rUZ0GLzMVI4iVDgexIZMjmNwBBt5mRmtJvxUqbUhYgfztIVTTG/ucbsoVlOMWZ25PdwU3WQ3v6MV/KkBPfd7R5jwnhJjMJFVx9x906oZxSu2IBPNRRAty76R+MpNB1UZeQkglKEEutWBV64YCLBYvjAUBjZkhVisRstTUbdL3fKf0zEzY6w8WoodTu7VNbDY8h8Frh9A1OMmR1ZduGRces9bQWeYjdBEFl0LaOw2BmuWJfGLnSPInkCSl6GLs0aFAv+pJrQsHEpx+P2F6NQSMvJfhYKb29/hnTWncHWomzRaGrYCRoLiTJutc6KDgMjZcWqqmK0onKr2124YptHsUkTGO3jXPouExuvci124F4DhBV4it0EoWsMuz+j+4RrF/zyY+ygaM1xay/NsSROgPszy4TFrhzFrqEqYCi9blVkDVfsWCx21e6OpxTutnI2a27PgD5seFlGr8C7XfajZcbYQWn3CXfe01bgKXYThLG4b+qNWnZutdgV6tiVrdi5fIc/hsQJKFpmwZ1z3TMKxS5vyXH3oiee5TFZ7Fy+CHaPYcF3oyWnL5U1ykyNRYF3uyv2aJl1KaG4MXVr9QYr8BS7CULnKLpOCETLnljSnSnzQklpqBqlK9alL8POMRY0dXtmmTHPZSrwxZIn7pMVxtZ1QuBmt5Wu64YLuRyLnXA7uzF2VCjv1UEf1SO0QxwM0RPZrZtUMWfl1Fz1+sWeiKfYTQAGZEuOYjGoDedfjNGkOx+YaH9eIS3XYifqRbk3xm7sLrpGI1HGfXPdO4oOI1ABsZRj2KQJ3GyxS6RzRlxkORa7Bhdb7LqMKgZj64DU7PJNak9/+c+01y/2RKQqd+JhDUf78tmSijJynS8tnSb+zDPo6TT+wwqg0r3/EL2/+51xjBIMUnPJJahBeUuCJDM50oV4sdrQ0H0WS+WNdObl7di5n97f7TWOcYO8MPpK9aWyVydVQOHQcy/S21Q8xg2yj8YVC+6OPyptDTjaWEpwt8VOKKMhv0okOHLvVLFZcaPF7nB8bGEVgsku36SOxgrv5s2KVXiK3QRAxF5NrgnhH6GeU//mNtrX5Dt3ZFoWwrLPcHTPAQ4+9IMBx5300ENUn7fEmgGbQNHKqPFs+zo+umDVoMeVyqsU5O3YfYCDD7pLXoB3D3cACvsSbwJzRjy+VPbg+z4LU05h3y9/xcH9rw84TnbZ3+rcBSgc6t8JnDbi8SJb0o3WSZEt6Btl1wmB0WXEhW6r7hI3bDm9q90cYzearNDBKG5e3NnrezQJUeKYqAvjg63Cc8VOAA6PInEisngRgZkzQVGozubdAYlAya5RUQjMmkVk8SJLxmoW3X2Fiutqkvv+eA9ZbfA4wVJ5G1Lx/HdDtcUDXCJvVsvS3psf//oD/z2kvKWUyl6TyV+veKCqeIALZM9qWd7q2gXAa4efL0tuN/fGFVbGpurgqLpOCETMkhtbqo02lrLoinXfgl9u54WhEOEG6ZxG1GUx0slMjmQm722pK0exi7i7LJcVeBa7UZDLauRcWPuqs6cfVYeW6mAZ41dpun41h778FSLZFKoOCX8VmlJ0fTRdvxoNFSS+Fuu2/x5VV1HUJAejh1i743FWzls5yJFFeevTCVQdosEacooPsWy6Qd7/2/k4WiqCChxN7RlG3lKKstem8/dIPFDtqrleu+txUik1P2/pzrLkbggHUHXojqdc9zwfjiZRdWgu61k+kdqQD1WHdFqjrz9DODCyS1MWeuMZVB3qg/6yZG8oyNoTc988H4vl372TqgJjGntAUagP+omlsnT19FPjonnuKciuKBDxqSPKXxvIz3MskSGbybnOOlkuo7kPPMVuFGxev5eaSO3IB0rG4d3HWJr0s+CIxqbH94x4vK6eTveZV9DXn2Fp0o+q17Fn9nJAwVdXR1w5DaWM33EKTdfY0rabpclTULJVBNs/xNOPtjHl1IWoyolGaiFvOtbH0qQf8LN97p8Q1LKukfept99iaTJvWQt1Lh1W3lKE7DOCLSxN+gnWn86e2X7cMNearvHUtjaWRE9Dz/oJHD29LLmVrjhLk37qdifKeh5kYt+hKEuTfmZHlTGNXddhWcqPrsPLj+02eoq6ga72XpYm/cw7Vt57LN6bzM/zoYzr5tm3LT/P1bvGfo+enwnQnYQ31++nu7Fq5C9IwtG+NEuTfsIBH5vX7R3x+ExOL7y3YeNjuwm6sH1cOcQTsbKPrcwr4DGARDpvio+U+RJXVJXIkiUEc3nTtqao5BQV0IksWYKiyn3bbO/ZQSKTd2UoShbQiaajbO/ZMejxQl6fniNYcOUl/UHcJG8sVZBXTYOiDStvKcW5zsudUYXrQ37Zt/fsIJaOgla4r5VMWXJXFawX/Zmc1UM0nUShtlnVGC0wigIhf/67KZdZscR4QyO0jROIa5R04Tz3j3OeASPBRNwzbiFVmK9woLx59vsUo+i4cOFOdNyzXZOAcy6bTV1dndPDGDUP9XSz8XCWyxZNYvH75pT1Hf2ymex44vu8HDofXVH5fMcfaJlcx7zVt6L45b1tslqWW367mr1NM0mmF+Kv2U/VjPUoKHRWbeGR5Y/gV08cv37ZTHY98X12amfQHpnCR7rbODmcdo28+ydVk+g/FzXUSXUZ8paiXzaT1//2KTaG50LPYT6x70kCM2ZILbuQ+9CMQ0Tj7wM9S/X0Z/AFe0aUu64zxsa399AYUvi3FXPsHfg4efqJJBv3Z1l4ej2Lxzj23Vv3sPdoijXvnczi2U0jf0ESXlifZuP+Dt5zal1Zsvck0nz+9bySf+9lJ43YR1gmbtmxn3f6s/y/C6ayeEHzmH7jwe5jbHw7zodOqWXxstkmj9A6erd2svGtPZw5LVL2Pf5O2y6OxFN8eekUFk5z3xpdDtFotOxj5XxrS4rPr+Jz0ctBcDiRRlNgcn24/PH7g0y74Tqqnk8SD0bo9/lpueE6/GF5y14ArN25jgOJ/WS1eWgKaP5+NDW/A9yf2MeT+9exav4gGbL+IC03XEf9/+5jf+0UegMRWm64xj3y6mejKaAE4uXJW4o/yLTLLkTbDrFAGFXLSj/XQm4dHxpBUEAP9JFTsyPKPakujKbAsWQGVGVUfXWd5kgik3+W60bxLB9HbSSIdqyfWDrnqvdZNJ1FU6AuEihr3I01IVBB0yGWyTIlPLbSIU5gxjw31IbQFOhJZVw2z7n8PFcHyx53bcRPV1/Kdff0aBiNXJV5BTwGUGzPMrqFum7lSqr1vIsuNWM2dZdfbvrYzCSrZbm77W4UFNDyL3FF7Tf+rqBwT9vQGbJ1K1fSpOb/Fp06y1Xy6tkaABRfn/H3keQtZer78uVM4oEqArPkln2A3JqIHdJAzWf2jiS3yKrUdfe1UBPZrGMtgwHF8hBuk12UsygnUxLy7eOErG6qZafr+qhapw2FyIB2k+wwulInguI97b5MdyvwFLsJgChoOrmMvnulKH4/DY35ZBHfn10hrVtOsLlrM+3xdnR09FxBsfMljb/r6ByIH2Bz1+ZBv6/4/UxbuACA9Ps+4DJ5qwFQfHHj7yPJW0pDTf569QWqaL5htdSyD5S7oNipSRRFB0aWO+BTjXZ5bitqKuqbTR6HYlcXdqliVyjbIcZfDm4sXhtNZslq+Xt5LLUKBWID4ybZYfQFx6FY2sZt97RVyPv29jCFTE4zdmyjVewA6lsmwe5j5M4+1+yhmU5rcyu3X3g76VyaB59R2NQDKxdcwiVnXmIcE/QFaW1uHfI3pp7xHujcQWLGHOsHPE5K5f3l8wobj8Ly+e9j+TnvM44ZSV6BsIL01TVRt2qFZWM2g1K5d3XA93bB5Joqbjn/28YxI8ndVB0kmsy6rnitqGM3qXpsraagONei5Z5bKFrsyl+2GozuE+6ZZ6GIVQd94ypH49YuI9FR1isE91qhrcJT7CocYdJXFWgYxQ5IIHbHMRcUuQz6giyfsxyA37zwCnCYZTPPZtX8WWX/RrErgfwvw1J5H/39q0AX55/Uyqr5J436t8SLsS+rk9N0/D55485K5X463Qm8xvS6BlbNP7/s32isDrLnaMJV1gxd14sWuzH2EAX3LoKim8xYLHZuKlJsFCceh1UW3Nt5Y3yuWPfMs5V4rtgK50hcxGqExlSpXrisYkl3PTCxMbhtoLjLFQuoWzjSJ1oQjW3Brw0X93huUOIFwho9mkUAivFHbuo+EUtljf7HI/V8Hg63LoLCwlhujB2Udp9wzzwbit043LDg3vZxwro6mme6zqX3tFV4il2FI4KtxxqTY7htXKbYjcVtA+51XxwtaTU1FgI+lepC3Ss3vRzHsruH4qJ3zEXzLDYbNSH/uFx0rlXsxmSxc1/yhBmJE1BUDN1klYbxWezcNM9W4il2Fc54m0kXLXbuseLA2BYBcGewNZgUVO9CJX6sip2hwLtonsea3X48bmyanslpRqHd0WzWGt04z4WxNo5TsWso9ETuz+RcVaS5+EyXL3+DSzcrVuEpdhXOeIOta8PuWwRg7K5YsWh2JzJohcw02Umks0YXhbG6YsGdlhxjnkdrsTMUePfIWnyWzVHs3DjPwKjaoLkxxk54C8Y7z7UhP/5C+I2bPBC9BZf7WCx2blunrMJT7Cqco33jtNhVuc9iN9bdPRQzsXKa7hqZhbUu5C+6U8eCG7Ml46n8i3y0PU+bCtYMNy14Rwyr7NiVdyg+E26yzIoFuzrowz+KXqDCFeumeRbP83gtdoqiFEMOXGKx1HXdqEVXP5qs2Ij7NitW4il2FY5w34x1Mah1UVasYKy7e8j30awtfEfEJ8pOaZ1CRRl7Nqsb65sVLbOjm2c3utyLYRXjU+zcaLEzQitGaZl1o6xCsRlPDTuB22IM+zM5Mrm8p2Q0VRzcOM9W4il2FY6xGIxx9yeyJSfC7l7Q6LIEivEmTgjqXRhjF0/lFbuaUSp2bkySGW8ilEDMcyKdI5NzR9N0IyN2lKEVbsyWHGvc6GC4bQMjZPerCpFReB9KFTu3hNBYiafYVTjjLYMhLF5iAXUDY427EjS6rOTJeBNkBMJF56ZFUHQjqAmNMSvWJQsejH+TJqgtUY7cMtdFi93oFHg3WnKsUOzcsoEpLV80Gu+DuFaaDvG0e9Yqq/AUuwpnvJl0wmLnJsVurBmxgkkus+Yc6Rt/NwLAcEH3uWiu44W5rh2txa6w4MWSWddYrYzkiXG6Yn2qYlwvtyg8RvmiUT7TIvYqndVckxk61tqMg+G2WnaGUjuK+DqAcMBHyJ9XZ3pd4na2Ek+xq3CMMhhjXPSrSxZ7XXeHiXusNewEbsuYPGZCqRMoujPjLoqnNFyxo4ylrKsKIOp1u0WBF+Mcr8sd3GfJGmuMXU3Qb8yzW2Q102LntiSh8cjutnvaSjzFroLpSxXLYEyuHdtiIBbMTE4nlXWHZSNqWHHGaLGrEYqdu5InxuuKFe7MmIssdsLtPlqLnU9Vil0JXKLAi5Ido+mhORRuS5QpxtiNbp5VVXFVnF0ykzPes2MNJSnFrTF241HsvJInnmJX0QhrXVXARyQ4NutVdcn33OKiG2umpMBtFrsjRvLEOF2xLmsfl9N0o6zNWJR4kTHohkVP13XTOhJA0ZrtFuvsWC124C5LjlBKVKUYGjEexOalxwWyQ9GNOhbFzo0F1q3CU+wqGCP2ahyWHFVVjNpobomzK7pix7bjFe4L11jsTEqeqHFZPGXpOKtDo6/f56bM2HgqS7aQ7WdGGQzDOusSxW6sBcehRLFzQexVb8m7ayy9vY/HTUotFMc5mlIngmIFB3fc01biKXYVjFl1r6pdlhkbHcciAEXL1zEXLARQUgbDpOQJt1hxhGUx6FcJ+Uev2LnJTSXcxVUB37j6xArqDCXeHff4eOJm3aTcmBlfB8V5dot7cjzy17mw5qpVeIpdBWMUJx6n66bGdQv+2GqbCdxksdN13VBMJqrFbqwudzf1ixVWxUYT4uugONduWQTHk+nuphg7sxU7kV3qFsWuZxzellqXKbFWIpVi98ILL7Bq1SqmT5+Ooig8+uijI37nueeeY9GiRYRCIRYsWMCDDz444O+33nor733ve6mtrWXKlCn86Z/+Ke+88441AkiGaUH1hQemzyX1gcbaZkogLHZuCKqPJrNGpfbxxl6J6+WWxT6eHFtGrEDEHx1zgSvWUOxMiK+D0nhKd8y1kTxR4TF2pit2JbK7oaqB4YodQ7iBuDfcck9biVSKXV9fH62trdx9991lHb97925WrlzJxRdfTFtbG2vWrOGaa65h3bp1xjHPP/88119/PRs3bmT9+vVkMhk+9KEP0dfXZ5UY0mBW3SuRQOGWB0ZYckabKSkQNc7iqSyprNy1r3oSxQSZ8broagtxV6msRtoFGdDjtcwK65cbYq+KFjtzFDu3xdiNx2LnRsXOjIxYKF6vbEmikcyMR7F1Y5ckqxh/2o2JrFixghUrVpR9/H333cfcuXO54447AFi4cCEvvvgi3/ve91i+fDkATzzxxIDvPPjgg0yZMoVNmzbxgQ98wLzBS4hZleoNi11K/hcDjN+SUxv241MVcppOd1+GqfXjj2myClECw4xMydIEhL5UlqDfHCXCKkRZltpRdp0QNLioQbywHptvsXPHImhGjJ0bXHRmFicGiAR9+FWFrKYTTWaMeGlZiZoSYyf/PFuNVBa70bJhwwYuvfTSAZ8tX76cDRs2DPmd3t5eAJqamiwdmwwcNSErFkrbirnjgREWu7G+xFRVcU1gvYgPM6O2md+nUlWw+rnBkhMfp8XOTaUgzI6xc1NHmWxOo69gbZooFjuzFDtFUVwlv/BAjMti1y//PW01rlbsOjo6aGlpGfBZS0sL0WiU/v7+E47XNI01a9bw/ve/nzPOOGPI302lUkSj0QH/3Iiowzbe+mZFxc4lFrsxdiMopZhAIbliZ7KLzrDkuECJFzvzsdb7anBRGQzL5tkFCnzpGMcSXuEmxSY6jnIfQ1Hnkvtc13WjosFYNqqGxc4F7y6rcbViN1quv/563nrrLf7zP/9z2ONuvfVW6uvrjX+zZs2yaYTmYhQ0HediUO2yrNj4GLsRlCJcm0clz4w1sxsBuKut2HhjKRtdVMfOcMWaZrHL/44bLHYiZqo66MPvG/2S5SbFzmyLHbgnKzieypIr1GocW4Fi92xWrMbVit3UqVPp7Owc8FlnZyd1dXVUVVUN+Hz16tX83//9H88++ywzZ84c9ndvvvlment7jX/79+83fexWo+u6ke3XWD2+l0StEWMn/wOjabrhthmPxU5YRmR/GfaY2D8USmrZuWCux5s80VCy4Gma3BmDZmfFFjOg5b6/YXwZseApdkaMoeQKj4gvDPrVMSWCic2KG2IprUbuSMoRWLZsGWvXrh3w2fr161m2bJnx37quc8MNN/DII4/w3HPPMXfu3BF/NxQKEQqNz33pNIl0zshsHMuir6XTxJ95Bj2dRj2kACrdu/fS+7s9xjFKMEjNJZegBuUJsi8tySI6ZpRLqcyRw3mZD73+Jr2H3zCOkU1m4Soej+umVO5wTAUUul56hd7tRWVHNrmhqJSMVYEXNb40Pa8k1ptkDbMCYZmdiK7Y8WTEgqfYuUX+8XSdgIEFinVdR1HG37nDrUil2MXjcXbs2GH89+7du2lra6OpqYmTTjqJm2++mfb2dn7+858DcO2113LXXXdx00038elPf5pnnnmGX//61zz22GPGb1x//fX8+7//O7/97W+pra2lo6MDgPr6+hOsepWEWPBD/mJA/Gjo39xG+5ovAJCZdS4s/gTHtrzLwZ88MOC4kx56iOrzlox/wCZRtDRleXLf43xkwaqyv1sqs++0FfCeD3LwuT9w8M3fDjhOJpm3dO0FFNr73wVOGdNvDJB7yVUw/Uza/+sRDu4ZmIQkk9wA248dABT2xLYCC0b9/ZDfRyToI5HO0dOfllux6zM5xu640jZBv7zOm/FkxEJRgU9lNZKZnCmdO6zC7HInUCzgLbtiN56MWChuVrKaTn8mN+b+6JWAVE/za6+9xjnnnMM555wDwI033sg555zD1772NQAOHTrEvn37jOPnzp3LY489xvr162ltbeWOO+7ggQceMEqdANx777309vZy0UUXMW3aNOPfr371K3uFs5nuEhfdWHYukcWLCMycCYpCJJsEIOEvsWIqCoFZs4gsXmTKeM2iJ5GPiVN8Ke794z1ktfItEqUy16YTAMSCkeIBksmc1bK8c+QAABs6nxqVrKUMNtd9gXDxAMnkhrzsO47lZf/9obHLLqwDPRIHluu6XuKKNTeWEuR3u4/XYlcT9CParsruprPUFSu57D3jlD0S9OErTLQbLNFWIpVKe9FFFw1bHfv4rhLiO5s3bx7yO2ZW285lNXIuKNwKcCSaRNWhqSowxjGrNF2/mkNf/gpVuQyqDv2+EJpS3O02Xb8aDRUkuiZP7fw9qq6iKCkORg+xdsfjrJy3ssxvF2WuTeevXyxQLa3Ma3c9TjrlQ9WhN9U+SllLKcodyaRQdUj4w9LKDUJ28rInRzvPRRqrAnT0JDkaS0r7bCfSWTIZDRWoC/pNG2dNIG+t7I2nqJe4vllvPP/+qQ36xix7QzhATyJDdyzFJJOsnmaTzOSMea4Zh6zHUxf0o+oQ7UtLe48D9MTTqDo0hsd+j9eH/PQkMvTEUkyWdJ7HymiuibxPs4RsXr+Xmkit08Moi/0dUZYm/ZzUq7Dp8T1j+g1dPZ3uM68gm1FYmvRTrTazZ/ZyQMFXV0dcOQ1ljL9tBZqusaVtF0uTp6JkIwTbP8TTj7Yx5dSFqEp5xmkhc5UWZmnSz+TQLCll1nSNp7a1cV6sFV3zEzzSOmpZSxFyTw1OYWnST6RuIXtmK8gmN5TKfgZ6zk/g6Nljlv2MXqhP+jnwh0427UxYNOLxEU1mWZrMF83e+swBzIocel8qQDyl8PbTBzhcK29Mcf/OYyxN+pl2MD3md9nSpJ+epM7WZw7Q2yBnCE5fOsfSpB9FgXefacesELFAeyz/TO/oG/P1s4Oevd35NaszO+Zxntfvpzeps/XZdnrrwyN/wUXEE7Gyj5XKFethHv3pvHZfNcoEglIUVSWyZAmBXN6snVXFPkAnsmQJiirX7bO9Zwd9mbzLSlGygE40HWV7z47hv1iCkDmYy/9OShVuAblk3t6zg1g6iq4XxqdmRi1rKcZcF1yaGYnnWsiOXri3leyYZRfxVsmMvDUaxdiqAj7TlDqAoD//aymJrTiA0dYv5B/7uyxUiCFMSiyrSHYL+lTTlDooucclb4+YKtzn44mBFPOcllxWq/EsdqPgnMtmU1dX5/QwyuKF9e+ycV+Wk0+tZfGKOWP+Hf2ymbz89ANsDJ+HT9P4h31PEpwxg3mrb0Xxy3P7ZLUst/x2NXsnTSWZPg1fdTuRGetRUOis2sIjyx/Br5Y3Xv2ymaSf+zkbw4uoUbP83b4nCUgks5D14LQjxGIXARo1M55A9WVGLWsp+mUzef1vn2JjeB50d/FJyeSGouyHZhwiGn8f6Fmqpz2LL9gzJtkfTcfZ2NvDkgXVLL5kjnUDHwcv7jjMxj/u4pSp4XE9y8dz656D/PFAP1ed3cTi01pG/oJD/Ee8l42Hs1zY2sjiC+aM6Tfu6uhi444+/vyMBhafM8PcAZrEm+09bHx9B9PrzZ3n1M4jbHx3PyfX69xm4u+azSOPxtnYkWXJmQ1jfha/197By7v7+Muzmlh81jRzB+gwo2mUIMfb2iX4/Co+ibPHSjmWzKAp0FgbGt+Y/UHmXHMl2qug+XzkgJYbrsMflit+Ye3OdRxI7Cenz0JTQPUn0dT8rm1/Yh9P7l/HqvllZsj6g8y76hNomyAWDKNrOalkFrJqej2aApBF8/ejK2OQtRR/kKmXXYi2HfoCIVQtK5XcUJRdV1Q0gqCAHugjp2bHJHtDdRBNgZ5kVtpnuyeZRVOgoXqcz/Jx1EQCaAr0ZXPSyg4QTeXlr68OjnmctYV5jqblnedERkNTIFLlN3WMDdUh6e9xKM5zw3jmOZKf53hGblnHwmjkqSzJPQzMLFw7ddXlxv9Pz55H3eWXD3O0/WS1LHe33Y2Cgq7l4yoUNWn8XUHhnrbRZcjO/MgKAHRFJTVngTQyD5A1Vw2A4ksYrpuxyFpK89L3AvnkicCsWdLIDQNlRyuJCVMLmdBjkF2UD+mRuPuEyNg1KyNW4JZadkZW7DgyRd1Qy00UEB5PYfXBcIPsUJIRPI6yQ8UixXLf01bjKXYVyjET6175ggEiaj67uOrqz0jjlhNs7tpMe7wdHR09V1jw1WIrMB2dA/EDbO4aOnv6eIKhINW+vMz+q6+RRuaBsuZLsSj+YtD/WGQtpTaSv36JQJjmG1ZLIzccL3shMFpJoyj52KSxyC4WkR6JF71iCQxzLac1LukyYnSeGGO5E3CHclNskWeuAi9kT2Y0I15RRnr682vWeEq9FNuKyTvPdiDPW9vDVERvSbNaTdVUh0nEUvD+D5jye2bS2tzK7RfeTjqX5lcvKrx4DC6dcz6XLz7fOCboC9La3Dqq322si9DX3U9u6fkjH2wTpbJu2gkP7oN5TS38/fnfNo4Zi6wCsdinJrdQt+rDpozZLEplP3AUbtuZX+z/ZRyyu6GOnRW1zaDEuiH5IhhLjq9AMbhDsTM6qYyjx/VglP5etD9Lc62cBZrN2MC45Z62Gk+xq1CMPrEm1fKpCfnpiqXoS8m34wv6giyfky9K/dSrm4GDLJ52OqvmzxvX7zZGghzo7pfKmlMqa3fXHuBtFjRNY9X8xab8fnUo/9JPaIp0LXlKZX9ZOQpsZHJ1DavmXzTm3xS9V2V2xVql2BkWO+ldseZZ7GQu0hs35DR3WfapCjUhP/FUlngqS7OkpW16E+O/z+tcEl5gNZ4rtgLRdb3YgsjkSvWyu23Ey7HWhJdjQ8FNJ6yfsiHGZWbsVXVhsU+kc2iaecW9zabothrfPBsWO4kX/B4TFrzBcEOMXTanGXNd6TF2sZQ1MXalvymrizKn6Yb841Ps5Ffg7cBT7CqQWCpLtrAom2Wxqw66RLEzXo7jXwQbRGC9pC8J0WaqwcQK69Ul/RUTEtd2M+Z5nIqdiLHr7c+Qk1SRHW8PzaEoKnZy3t8w8H0zHiXeFYpd0poYu/xvym2djSUziCZR47nP3bBZsQNPsatAhLUuEvSZ1vDaNRa7wviES3E8NIrAeknddEbms4mKXTigGn01+ySea7MyCBsK8Ty6Lq+CY3WMncyLoEiciAR9BHxjX67codgVYuwssNgJhScq6VyLeYkEfQTHUaZEWHVlvqftwFPsKhAzM2IF4mUj82IP5rnooOim65ZUsTtWcNE1jKM8wPEoimJY7WSe67hJ1o2gX6W60J1F1gQKy2PsJJ5no9TJOOfZDYqdme+u46kpXD9Z59qse7yowMo7z3bgKXYVSLeJNewEbgm0jictcMVKuuD3mJwgI6g2lHiZXbHmWTfEPMuqwFul2Amrdl9a3mdauKHHkxELRcVQ5pIfMRPjg49Hdre7WXGkdS6wQtuBp9hVIMeMoHoTY6+M3b2cL0WBma7YBsMVK+fLUCgiZheujbhgwTdzEWyQuJZdOqvRX4h1NF+xKyTKSPxMm2Wxqw37jSLeshavNcsKPRi1km/MzbbYxVNZaWNm7cBT7CoQEWPXZKKLrkYs9pKa8iG/CIqG5rUmWOwaJbfk9AgF3mSLnRvc7lZkP8sYSykWPEUx35LjhoQoozjxOBd8VVUM5UZWd6wdMXYxSefaPMWu+H1ZlVg78BS7CsSoYWeFxU5iK06pIlLpFrt0VjNe0mYrdpGgsNjJa8mJWZH9LOE8iwWvNuRHVc2tK2gUo85qZHOaqb9tFkWL3fiVHaEcyhp/FTMp03swxHMiq4vSLMUu6FcJB/JqjazzbAeeYleBFC125it2UltxCmOrCvjwjyODTtAgcR9R0X5HUcZvzTgeN1jszKzSL3P3CTP6Zw5FdYllSNZ4ymKM3fjllzmBQtN0S5MnZI+xE3NiRiKY133CU+wqEiMr1oLkCZkX+2J8nTkvRlHupC+dI52Vy6IhqrTXhQP4TLbkuEmJN2MRbJRYgbeqhh3krRvBwgZIVku8GV0nBDJ3n0hkckYdNzPCSI5H9nJVZnSdEHjdJzzFriKxIivWDckTZu9468IBI+BaWMhkwcwd7vFEjHInEs+1iLEzJStW3uQJqzJiBdWSx86alRULcnclEJY0v6oYrkQzkV3ZMfM+r5V4nu3CU+wqEGvq2Mm9AEBp1wlzFDtVVYwXjWxuOqvaTEFxrhOSWnHA3Cr99Ua9QrnmGIoLnhkWq8GISF6z0KysWJDbFWuUaQr7LenRLGLsZE0oEBtnM1zuXpFiT7GrSMQCZYXFTtYFAIovLTMSJwRGZmyfnBY7KxS7iAuyJc0MNBdz3CuhK9Zqi12N5DULRVasKQp8RF7FLmphDbvS35U3xi4vvxntEb0ixZ5iV3HkNL1YuNbM5vAuWOzN7BMrkNVNZ+WCLxb7hKRZsalsMebRnALFcs4x2OeKlfW5Nix2prhiCwu+hHXsrHh3lVIjebkTM2NJZXc724Gn2FUY0f4Moi6jFS3FZC6NYGZtM0ExY1Iua06PlTF2ki/2pe4kUztPSGaVhRJXrGWKndyW+KiJrmiZXbHCkma1xS6eyqJJWLhXvF/NUeyEK1a+ebYLT7GrMEQNu9qwf1xNs4/HDaURzI6xg9KMSbleElZmS8qeAW1kPwd9pmQEC+U4mpSvWr1trlhJ4ymNrFgTY69kVOzMTAYaDJFpq+v5DFyZyOQ0o2ZmgynJE/JaZu3CU+wqjG4LEifAHaURzC53AqV9ROVaDOyIsZO1QHEsaV58HQy8hrIt+ta7YuWNscvmNOOZrvQCxVb2iQUIB1T8hU2QbJas0uxVMxR4EY8ZS8klp514il2FUcyItaKgqdyZsZa4YiVtNyXG01BlrgIP8s+zmRmxAAGfalhKZJtnKy2zkLd6gpxzXRoKYGb2s2zKO1jbdQJAUZRiLTvJYs9Ku6uYYYEX8ZhejJ1HxSBir8wsTiwo1rKT84ERlkRzXbFyljuxMvZKJMokZJ1nC1zu9ZImUNhlsZPxmRautKqAj6B//EuVzIpd3OTNymAUs0Xlmusek99lwu3s1bHzqBhEBW8zYhWOR/rYq6SVrli5LDk9Fi74Mi/2APGU+YHmsnafsM8VK99cm5kRC8WgehkTCIwWeRbF2OV/uyi/TJhdbL3Wy4r1FLtKQyggZtQDOh6ZFwGwxpLTIKnFLmphVmy1UaA4h67LtQCCNfFIMs5zJqcZJWcmYvKEmcWJoXgNdV2+Rd/KPrECWWvZmR1uUIyllGuO7cRT7CoMK8tgyN5WzIoYO8OSI1FLMV3XLbXkiHnOajopyXrkQknyhJmuWAm7T/SaHFQ+GDI/08IVa5bsQb9KVSC/aZHNHWvFPX08Io5Uthg7s7voeAWKPcWu4rDWFStvoDVYa7HrTmSksV4l0jkyufxYLKljFyh27pCxSLEVxVxl7D5RutibEVQ+GEb7OAmf6aLFzrznWbh1ZVv0rXh3HY+sLkrzXbH530lnNVJZ+d5fdmDdXeThCMKyZJYrVkuniT/zDHo6TaBTAVSOtr1J75E3jGOUYJCaSy5BDZrv/h0NpfXNxkOpzGoOwEc6q9H56P9SVfhpJ2UWL0K/CmETgsphoMwAYVUlqSkceuwJfOH8MbLMc0xk0YXNax0nY/eJuA1WHJnjKaMWJAjVVwXojKaks9iJvsxmxgcfj6zdJ8xOBKsN+VGUoss9VGPee8IteIpdhdHdVzBrm7T76d/cRvuaL+T/48yPwvwL6Fz/LAe3Pj7guJMeeojq85aYcs6xoOs6sWQaUNjY+RwLWlaN+bdKZdYB30duI6f6ePcb36Y52Wsc55TM4kWYU2I8tvsxVs0fu6yCAfMMhFZ8nWSohr23fw812mF87vQ8A2w7uhdQ2Bd/FzjFlN8UbiCZYuxEHS4zex8fT7FmoVyLPZQUJzYxU1TWzFhRR9BKxa5W0o4MZoeVqKpCTdBPLJUllswyuSZkyu+6CalcsS+88AKrVq1i+vTpKIrCo48+OuJ3nnvuORYtWkQoFGLBggU8+OCD4/5NNyMeErMKFEcWLyIwcyYoClXZFACJQMmDoigEZs0isniRKecbK33pNJqed1c9vO3HZLWxL1SlMitAbToBQDwYyR/gsMxH+5L5Yfj6uaftnnHJKiiVGaAqmz9Hv78w15LMc1bLsu3IbgA2dD5niuxQtHDLZLETi32NhSUwaiQuUFy02Jnoig3LWQqj6Iq1TomvkTzGzsyanMXuE3LNs11IZbHr6+ujtbWVT3/60/zZn/3ZiMfv3r2blStXcu211/LLX/6Sp59+mmuuuYZp06axfPnyMf3mcOSyGjkJg8lLifalUXWoC/hMGqtK0/WrOfTlr1CVzf920h9GU4ovoKbrV6OhgoPX5tGtT6LqKqBxKL6PtTseZ+W8lWP8taLMKFCfShAN1dIbqjHkdlLm53a9jKqrqGo/B6OHximrYKDMkUx+rhP+KilkFqzd9TiplIKqQzTVaZLsUB/05X8znpLmGY8lzH6WT6TKl7+WiWRWGrkF0YL8tQG/aWOrD/lRdeiJp6WSN5nKour5EAirxlUbyN/j8URGKtljYs0KmjfPdSE/HTr09sk1z+NhNHJIpditWLGCFStWlH38fffdx9y5c7njjjsAWLhwIS+++CLf+973DMVutL85HJvX76UmUmvKb1lBTtM5M6oAfg681MGRgDm7P109ne4zr6BerWdp0s+kqrnsmb0cUPDV1RFXTkN5fI8p5xoLmq6x4a2tLE22gpIldPBDPP1oG1NOXYiqjM0oLWTORWOcnatmRtJPz9Tz2VP9Hkdl1nSNfZsOsDQ5D1WrJ9A+flkFpTKfqdUxNekn3rKMPZH50szzU9vaWBJdiJ71Ezh6hmmy9/X2szTpp+FQhk0OyljK0QO9LE36mXs4a9mYkpkcS5P5ZeCVtbvxKdYkaYyFyI4+lib9BN6Nsalvjym/ObU9zdKkn/4/HmNTnxwOq6yms7gv/67e9ftDHDQpbvZ49EPR/D2+t1+aexygpT3F0qSf5BvH2HQgacpvntkLTUk/+//QwabtcVN+02niiVjZx8pxZ4+RDRs2cOmllw74bPny5WzYsMGhETlLspABpCgQ9Jtn0ldUlciSJfgLbq+MKvYDOpElS1BUZ2+j7T07iKfybmJFyQI60XSU7T07xvybQmbQCeXy5vy0GsBpmbf37CApmngrGcyQVVAqc6Aw11nFh9MyC7b37CCWjoJeuP+UrGmyhwvPS79EWcDpwg496LPOPRcoUSIyWTmyvgWi1E7IxHdZKKAO+G0ZyOSKYwn6rFOsxVynJZIdIJkxf57F+udlxbqQjo4OWlpaBnzW0tJCNBqlv7+fqqqqMf1uKpUiVVAUAKLRKADnXDaburq6sQ/YYnZ0xtj4ynYaIgHee/kcU39bv2wmu/76f9kYXsgp/d18et+TBGbMYN7qW1H8zt1GWS3LLb9dzf7mEInkItTgUapnrEdBobNqC48sfwS/Orbx6ZfNZNcT3+fR/no2Tm7klMQOTs7tdExmIevuhtNJ5+YSaNxOuMUcWQVC5v9MTWbjpAZa4+9wcm6fNPN8aMYhYon3oucCRKY9jz90xBTZj8RTXLd5JwD3L59tWXmR0fDC+jQbD3Rw8ik1LF4xx7LzvP7yu6SzGrd9YBrTG8b2zrSCW3bs553+LP/v/BYWL2g25Tff+ANsPNjFpOlBS6/paDhwLMHGl98lHFB57+VzLTtPaucRNr6zn5MbdL4jiewAf/vyOyQVjVsvm8XMpogpv/nLWA8b471cfEodi8+fY8pvOo3QQ8rB1YqdVdx666184xvfOOFzn1/FZ5GZ3AyimRyaAnWRgPnj9AeZ/pEPo22BhD+MqmVpueE6/GFnS1+s3bmOA4n95FiIpgC+FFq+Rgn7E/t4cv+6sWeN+oO03HAdtQ//AU2BWLCKls86J7Mhq7YYTQHdnzBPVkFB5vB/vo6mQNLnp+VaeeZZVyCnhaAgf07NmiJ7U20of/8AfZmcJb2WR0u88DzXWPE8l1AV8pHMafTnNKneb9FUXv6G6pBp42qoCaIp0JvKSiNrv6ahKVAV8ls6ptpIXvZ4Wp55TmVzJLIaKNBQa9481xVkjWVy0sg6XkYjh6slnjp1Kp2dnQM+6+zspK6ubszWOoCbb76Z3t5e49/+/fvHO1Rb6O7L1yCrt6CdGEDzB94H5DMlA7NmUXf55Zacp1yyWpa72+5GQUHX8tmbiq8Yo6GgjDtrtG7lSuoLWXl9jc2OyTxQ1vy9rfj6jb+bIaugbuVKqgvZg6km52QWlMqed8Pm50NRC+53E2QP+FQja1CWzNhigWLrsmJB3lp2VtWxA7nKnYiC71aWOoFixq1M8yzmQVGKnTHMYKJnxbpasVu2bBlPP/30gM/Wr1/PsmXLxvW7oVCIurq6Af/cgNFOzKL2Q7WRvPKU8IdovmG1o645gM1dm2mPt6OjFxU7tehC19E5ED/A5q7NYz6H4vcz/fylAKTec7pjMg+QNVdQ7NSiYmeGrALF72fyotb8fyw6V7J5LlRLRgM1v5ExS/ZiLTs5uk/02VACI//78vWAzmm6UUjX1M4TokivRAt+3IYadlBSszCVlaaLTm9JOzHVxPCHYs0+ee5pO5HKFRuPx9mxoxgIvXv3btra2mhqauKkk07i5ptvpr29nZ///OcAXHvttdx1113cdNNNfPrTn+aZZ57h17/+NY899ljZv1lJiIek0YI2U1B88SRDEWr/xJxM4/HQ2tzK7RfeTjqXZn0b/K4DFk87g78+/9vGMUFfkNbm1nGdZ+rSxbC7jb76SeMc8dgplfW7jyjs64OrzvwLzpj9F8YxZsgqaDzjVGh/l8x055+RUtm7euFb2yEcULj1gn8xjjFD9sbqAO09/dIUKTZqm1nYGB6Kz7VMtexKa63VmlmgOCKfxS5hkwJ/fA/osElVE8aDVT2vRe1D2Yox24VUit1rr73GxRdfbPz3jTfeCMBVV13Fgw8+yKFDh9i3b5/x97lz5/LYY4/xhS98gR/84AfMnDmTBx54wCh1Us5vVhJmtxM7HuPFoEM6pxN22N4b9AVZPic/19t2bAN2snDyXFbNP93U84jr6eRiUCrr7fqzQILL5r2fc+c0WXI+4f6ToVdsqexvHOgB/kBTpIpV8z9o6nlEgVTxHDlNsUWeXYqdPNYN0cs1HFAJmhgjVeqK1XUdRYLyLmKeI1bPc0mrxb5UtqIVO7EZkK0nsF1IpdhddNFFw5qIB1PELrroIjZvHtoFM9JvVhLdCWseEkHpAiPLi0Egdvi1Flg3RBePbklcdFa9DEuJBOWLx4GS/qkWzLOw5kw0i52wFMnUVszoH2py1w3xe1lNpz+Ts1yZKoeiy93asfh9KuGASjKj0ZfKManG0tOVRY9Fa5ZYByaqK9bVMXYeAxGu2AaLXLE+VaGqoMzJ5LaBYpyKFS9HmfqIappeVOwsmmeQM+4Kig3MrZjnBonmGexb8MWGTSYlXlhazEycgPyGxV+I5ZLFHduXFjF21m+UayRLlLHMFTvBY+w8xa6CEC4ks/rEDoasGXRxo2G6BQt+QYFKZbVicWCHiKWyCAO0pRY7odhJ4IotJWZYZs2XvUGy+CvDOmm1YiehEh/tNz9xAkBRFOkyY+3Kii09R0IS66x1il0hK3aCumI9xa6CMMzallpy5HPbQFHRtMIVWxPyG7t8p605wipbFfCZWqn9eIx5lmixB4gXXtRWuCfFhkiGrFhd14mn7UqekM8Kb5XFrvQ3hfLoNH02xVKWnkOWjbnVMXaxpDwZwHbiKXYVhFA6rCp3AjJb7KxzxSqKYlhznI6zsyO+DoqB3LLs7AWGAm+hy71bAldsIp0zLLMT0WInLLNmx9hBUbGTxWJnV7kTKA2xkEOJF3NgdviQ2ODnCrGUEw1PsasghKXBqqxYKFHsJItdEJYcq16OssTZ2aXYybYACGIWJsmI50aGAsVCgVUVjLhWqzDmWiIlvlic2DoFXhbFTmyerC53AqXWWTnm2qr3WSToM9oCTsQ4O0+xqxDSWc2Ih7Kqjh3IG1QftzjQvFjyxFmLnYijtNLdDsWs2P5MjpwmjyujmDxhYYydBK7YeEncldUlOaqD8inxhivWCoudZF0J7Cp3AvJ5XKxS7BRFmdDdJzzFrkIQC76iWBNYLpDtxSCwstwJyJMxaZfFrtTyKZM71spyJ8YcS7AQGPezLQH1cllxoCR5woL7XDaLnZ3JE7JtzIWXqb7KfC+Todh5FjsPtyKC6uvCAcMEbQU1EgZaa5puWCutttg5vehb6YosJeRXjftIhiLFAlFJ3gr5S7sSaA5bKe2qYQclraYkmmcrLXbyKXbWvrtKMTbmkmzWegsKvBUb1WLJEznm2U48xa5C6LEoCPV4DLeNJC8GGDgWq3a9siRPxCxc8EpRFEXKIsVWJk+IzhO67nxcTtyBEhiyWHHA2hg7IytWkgVfvL/sqGMn01zrum6EtlgRWuJZ7Dxcj5ERa2HiBMjpihVjCfgUQia2HypFuOl6HXbF2mWxg6ISn5DIOhuz0BUb9KtG2yWnFXi7athBUaGQyeUetTArtt4odyKJYmerK1Yej0t/Jkcml7eMW1HJodaz2Hm4HbEQWVnqBOSL0YCBFfqtCjRvkKTdlK2KnYQ1C60sUAzyuNz70jYqdjImTxgWu4njirXTOivDxlxcf79a9A6YyUTuPuEpdhWC1e3EBDKZ8gXiwbXyxVgfkaNBfDHGzNp5Bjnn2urs52JZG6fn2U6LXf4cMmVAF2PsLHDFigbxEhQoTmc10jkNgBobsmJl2pj3lKxZVmzIvaxYD9cjFA6rLXbCiiPDjk9g9WIPxRIyE8piJ1lQva7rlnYYAXnaivXZmDxRGtslgztW04rzXOkWu9LrHbEjxi4oj2LXa6FVFoqbAs9i5+Fa7Iqxk7FwrdWlTqAYWC+LYmdr7JUEiwAMtChZrdg5Pc92bFYEQZ9qtMyT4bku7YdsSfazRIqdmOegXyXgs345ltEVa1XpJqEwejF2Hq6lZwK7Yu3IIDQWfKddsSn7XLERyfpKCgXeym4MYmM0kZInSjOgZYinFK6zcEC1pB+yyLTtz+RIZzXTf3802FnqpPQ8MijwvRa3wPSyYj1cj+GKtVixq5Foxyeww7oh0vGTGY2kg70Hiz007Yu9kqWOXcyOJBlJClHbWe4E5Iq9srKGHQzcFDld8sTOUiel55Fhnq222HlZsR6ux7DYWVDBuxQpLXY2uGJrQ36jYK9Ti76u65ZnhZYiSn/IMtd2yC5LjJ3VsYTHE5HIkmNl1wkAn1psN+X0PBulTmxInICBfYF13dlEmaIxwpo1q9aLsfNwO/a5YoXLJud4dX6BqKJu5ctRUZSSllPOuOnsiDErJVKyCMiAvbGUzrpi+2yMsYNS66zzc21lRqygmBkriWJn8zxrev594iTWJ0945U48XI5YiOxKngBIOPxiEFjZP7SUeocD68ULymdR3afjqTGSJ+SYZ+FSscPl7nQdu5jdC75EXUasrGEnkCWBws4adgCRoA8RxeC0ddbKdmLglTvxcDmZnGaUpLC6OXxVwIdqvBicXwTAvgxCp+OvShUbq2LMSpEteSJmg3tSlg4jdiZPgFzxlFEbXO7SKHZGIWp7YuwURZGm5EmPxUX1xf0TT2el8S7ZhafYVQClOxKrg+pLXwyyLPh2ua0aC9bQXodcsXaWOoHSVlPOL/ZQapm1bsFvrJYjK9Z2V6xE8ZSGxc5KV2yVHBmTcZtj7ECeWqRRy5Mn8tdU14vhOhMF++4mD8sQu86akB+/BbWQtHSa+DPPoKfzi12VrhJDoXP9M0yuyR+jBIPUXHIJatBaV/BgWNl5olT2yFEFUDn02h/pPdRmHGOX7OJFaKXFqlRe5RiAj2jHYXp/9zvjGKfm2ui6YaF1o6HEkqNpOqpqvWX0eDRNNyzwdhQoBsmSJ5L2uWKddtPZHWNXPFfKcSVehDtYFRceDvgI+lXSWY1of8ayLGsZ8RS7CiBqcQmM/s1ttK/5gvHfoQ9+EWpb2HfPj2g8stP4/KSHHqL6vCWWjGE42qNHAYUt3ZtYxXRTf7tUdt8ZH4EFH6B9/XMc3LJ2wHF2yP78vpcBlQxRy85RKm9i8gI4/1p6D3Zy8Be3DzjOibn+Y+e7gEJnch9wliXnEMqEpuddv1aHNgxGabKK7fXNJLBsGFmxE8EVa8TY2eOKBXnm2upyJ5BfE4/E0xMugcJzxVYAVmcXRRYvIjBzJiLqtiqbAqDfH8ofoCgEZs0isniRJecfjqyWpTPeC8DaPf9DVjP3AS6VvTaTACAWjBQPsEn2rJZl7c5nAejs32O6nIJSeatyeQttv7/EMufQXGe1LJs63gbgjaMvWyZ/OOAzih87FWcnXGR+VSHkt+cVHZHIFRszLHbWZ8U6HUvpiMXOCKVxzjqrabrlrliYuJmxnsVuFOSyGjmHK5UPRm88japDfchv0fhUmq5fzaEvfwUUiGTz50v4q9CU/ILQdP1qNFSw+fqs3fU4WsaHqsPR/nbW7niclfNWmniGouy16SSqDvFAtSE32CP72l2P09uXQtUhrfVaIKegKG84l8mfTw3ZLu/xrN31OP39Wv76Z45YKD80VQU4lM5xLJ5kRn3YknMMR6wv/3zVhfxoOR2wPvC72p9/hhLJrOPvuFgiL39twKr3Wf7aqnr+XE7Km0jmn7GIz2fbOGoC+bmOJzKOyd7bnwEtb1mqDlgne10wL2tvPOX4fT1eRjN+T7EbBZvX76UmUuv0ME6g60AvS5N+5h/V2PT4HkvOoaun033mFeSiMU6hiUjST2byuezxT8VXV0dcOQ3FonMPhaZrPLWtjfMS54KuEuxaytOPtjHl1IWoinmWDiF7NRGWJv00h2ezZ/ZyQLFFdiHnud1nkkv68SlTLZFTIOSN9WdYmvSj6rW2yns8Qv4lvfPR0n78x95jqfznJnwcTvrZ/uxB0pN6TP/9kTjUm2Rp0k8dfsue5+NR26MsTfqp2dln2zmHYsqBNEuTfpJvdLOpPWXJOZSOGEuTfmp3JxyVt353P0uTftjay6Yee8YxqyP/XEdfP8KmI85Y7XoL7xa/T+Htp/Zbdp5TuyGS9HNwYyeb9vRbdh47iCdiZR/ruWIrgFQ2/3Ba0VdRoKgqkSVLAB2/lj9fVvUBOpElS1BU+2+l7T07iKZioBfOrWSJpqNs79lh6nmE7KFs3nWQ9gnXgT2yb+/ZQSwdBb2wD7NIToGQN5DLuy80Rc1b6ByaayG/rhfub4vlDxfcn04VcE3n8jvzoN++xA3RgD6Tc96qkSpYJqx0Q4cC+d9OZZyV15hrC5LehiJYuK5O9slNFq572MI1C4rz7HRPYLvxLHaj4JzLZlNXV+f0ME7g6XVJNh7o5NSFdSxeMcey8+iXzWTXE99nbaKKjVOamd2/i5NzW5m3+lYUv723UlbLcstvV3NwWg+x+IUA1Mx8AlXR6azawiPLH8Gvmjcm/bKZRF/4dzaGW5mspbhu35MEZsywXHYh56EZh0gcqiWrTyM46S3Ck160RE6BftlM3ln3b2wMXwDA3x16nqYpTbbPdan88fSpaKkaqlo2EKjebZn8D3YfY+PbMZYvrGPx0tmm/nY5HH27g41b9rJoeo2lz3MpvVs72bjjAIkm1bZzDsXnXttOVM/yjQ/OZF5zjSXnUPZ1s3HrPmbVBrjDQXlv2bGfd5JZ/t/7W1i8oNmWcz6tJNl45Cinz4s4Ntd/2HGEjW/s4j0tYUvH8Jv+GBt7e3jfghoWX2zdeewgGi0/ac5T7EaBz6/isymYeTREUzk0BeqqA9aOzx+k5YbrqHro92gK9Pvy/+0P21/iZO3OdRxI7EfTG9EUQEmj+zLkgP2JfTy5fx2r5q8y74T+IHP/6i/QNkNvKIKqZW2RXciJCpoeQlNA9/eTU7PWyCnwB5m5+lrUF7NkfX5Sqs+RuS6VP6eF0RXQ/QlL5a+vCaIp0JvKOvK8xzP557m6yuLnuYTqSABNgb5MztF3nKbp9Kaz6Ao01IQsG0tjTf5Z6u7POCqvmOuaqqBt44iE83Mdz2iOyR5LF9asiLVy1xbu65jD97UZjGb87pbUA7C+0GMpdStXUlOdz4ZNNTRRd/nllp/zeLJalrvb7kZBQdfyioaiFmNxFBTuabvH9MzJmSs/BEDKH0Q/aY7lspfKCaDn8oH8iprM/69FcgrqVq4kouXvrezM2bbP9Qnya/n7Tsy1VfLXG/1incmYNIoT21TDDkpKYDicFRtPZxG96a2s1yjelbGUs10JRLs+u8raQEm/bwfnWvTbrre4t7noPuF0IWq78RS7CqDYNNt6xU7x+5ny/vMAyJ1ymu0uWIDNXZtpj7ejo6NrhazFEsVOR+dA/ACbuzabet666jC+QoZi4HOft1z2UjkBQ1ah2Fklp0Dx+6mpyZ8z9IlP2T7XA+ZZV6Cg2OGzVv4Go1+sM90njBZ5NnYjEO3j+hzuMiI2qSG/SjhgXfyVKKWi68VWdU5gdJ5woo6dg3LbUcMOivMsSuhMFDxXbAVg10MimLT4bNjzJulJLbac73ham1u5/cLbSefSvL0f7tsLM+sncdP53zaOCfqCtDa3mnpeRVGorw5xrC9N7v0Xmfrbg1EqJ8A32xUOJ+H/nXMV86fmj7FCzlJqGmqhMw5Llll2jqEolb8/DTdty+9Dv3n+lxE6jxXyNwrFzqmewA5a7BIOF601ihNb/C4L+X2EAyrJTL4rgROFqLM5zUgUsddi53xLSFE/0OrrPlEtdp5iVwFELS5QfDw1ofx5nKpcHvQFWT5nOQBK30FgMzPqJrFqvvXKR0NVgGN9aVsq1pfKCfD13HogzYfnX8ipU+1J4nGyOXyp/Id6+4FnCPgU/uw9f4KiWJcxWnTFOmOxc6JobaRgMcrkdFLZnKUZ9sNR9D5YL3t9VYBkJkVvf4ZZlp/tREqtoxEbrbM1Dj7TAvH+bLBcsZuYFjupXLEvvPACq1atYvr06SiKwqOPPjrid5577jkWLVpEKBRiwYIFPPjggyccc/fddzNnzhzC4TDnnXcer7zyivmDdxCxG7Fr1yksCU5WLhcYjeFtWgTrDTed/S8KUT291saeh9WGi87ZHW+sZJ6tVOqg1BXrUOcJMc8OdCOAYtyXE9i5SRWhK071ixUKfNCnGiVI7KBaJlesxTF2E7XzhFSKXV9fH62trdx9991lHb97925WrlzJxRdfTFtbG2vWrOGaa65h3bp1xjG/+tWvuPHGG7nlllt4/fXXaW1tZfny5XR1dVklhq3oul7SUsyuvpLOB98KjHgkmxbBxogz1pxUNmfUvLLTbVNsNeWsEm+nUisUO+daihUC6m10xfpUhXCh5peTLrpi32vr59npfrF9DsTXlZ7PyXnusc0Vm3+GnFLenUIqV+yKFStYsWJF2cffd999zJ07lzvuuAOAhQsX8uKLL/K9732P5cvzLpw777yTz372s1x99dXGdx577DF++tOf8k//9E/mC2EziXSOXCGryy6LnQw7PoFhybFpERSuA7vjr0p3nHYqdrLEXglXipWZkoIG4Yrtz6DruuUWwuOJp/Ky2umKhbzVLplJO+qis9Ni57RiF3fA5Q5F66wMrljLkycmqMVuVHfU3Llzx/SSW7NmDX/3d3836u+NxIYNG7j00ksHfLZ8+XLWrFkDQDqdZtOmTdx8883G31VV5dJLL2XDhg2mj8cJxAPiVxWjebnVFJtIO/+w2B2P5JQrttQV6VPtUzQixu5eDoudHUqtsNjlNJ14Kmur6xuK1lE7XbGQf4aO9qUdttjZF2MnlMeoQ/FXQrGqtjG+Dko25umsIxsXsD8rtj+TI5PTjA4rlc6o7qjB4tfKYc6cOWP63kh0dHTQ0jIwM7OlpYVoNEp/fz/d3d3kcrlBj9m2bduQv5tKpUiliuUzRlPx2W7ES6m+KmDbAyoW11RWI5vT8Dv4sIhFyK5FsMGhGmd2WqxKMXb3Ttc3S9nnig0HihmTPYmM7YqdU5Yc4XZ30jprV1YsyGSxc8YVq+t5hcfOxA2BkTwRsbbgeelGMJbM0lRtfzF9JxjVjF544YVWjUMqbr31Vr7xjW84PYyyEHFAdmXEwsAFpy+Voz7inGIXszvGrlq4Yu2NsSvGmDm1u3faYmevYttQFaQjk6QnkWFWky2nNLDTOllKsb6Zg65YG2ty1kkTY2fvPFcFfKgKaHpeubRbscvkNEOptdpi5/epRII+EukcsWRmwih2rrZLTp06lc7OzgGfdXZ2UldXR1VVFZMnT8bn8w16zNSpU4f83Ztvvpne3l7j3/79+y0ZvxkYwcY2KnZBv2o0rY47HHtluyvWsRg7odjYaz0qJk84HWNnr2LrZJHivpQzSnxEgthZEWNnh+x1RmC9M/L2OeSKVRSlmO3ugBJfmshgi8t9AsbZjVqxO3r0KP/4j//IddddxxtvvGF8fuDAAeLxuKmDG4lly5bx9NNPD/hs/fr1LFuWr2cWDAZZvHjxgGM0TePpp582jhmMUChEXV3dgH+yYmTE2m7JkWPBj9u+4BcD6+0k6rDFzvnkCXvld0qBz+Y0+jOFBd/2oHoJXLFJe2KvSs8x0Sx2UIyddeL9La53bchvSxjPRMyMHfVVveaaa/jRj37Exo0bueCCC3j55Zc5++yzmT17NpMmTeILX/jCmAcTj8dpa2ujra0NyJczaWtrY9++fUDeknbllVcax1977bXs2rWLm266iW3btnHPPffw61//esAYbrzxRn784x/z0EMPsXXrVj7/+c/T19dnZMm6HTv7xJYiQ/Xy0vOLoslWI7Jiex1yxdrtnquWwD0HpfLbNM8OJcmUurztj71yvj5l7wSKsUs4FGOXP6dz1tlemwvqG4rdBLLYjXqVeOGFF/jNb37DZZddxo9//GM+9rGP8Z73vIdHHnmEHTt28K1vfYtFixbxN3/zN6MezGuvvcbFF19s/PeNN94IwFVXXcWDDz7IoUOHDCUP8lm6jz32GF/4whf4wQ9+wMyZM3nggQeMUicAf/mXf8nhw4f52te+RkdHB2effTZPPPHECQkVbsXuh0QgQ79BsD8AWdSx67bZkhN3oDgxFK04ThcoFiVA7LLYiXm2W4EX93PQp9re/UEKi52NHgins2INV6wDFruaksxYu+kxEifsUuyEK3biWOxGfUd1d3dz5plnAnmF69prr+WRRx7hvPPyjeEbGxu55557xqTYXXTRRei6PuTfB8vKveiii9i8efgm4KtXr2b16tWjHo8bsNN1UYosteziNscjiXIn/ZkcyUzO0kblpcRsLANRitEcfoLF2Il5tluBF9fZzuLEAhms8E64Yp1y0QkFWijUduJk4XG7vUxCgfdi7Eb6kpr/WjAYJBKJ0NzcbPztwgsvZPv27eaMzmNEijF2TrlinXPb6Lpe0lLMpt1fyI8oI2fnguBUVqwMfSXBgeQJx8raOO+ec6qlWE7TDfntdsUOZ1CwCvHudKLciJMeF7u6TgiKrtiJY7Ebk2L37//+77S1tZHNnnhTVFdX093dPe6BeZSHyOiy22InQ1uxVFYjW+i6YddCqKpKMbDeTsXOcEXanBUrQfuh0vPbHWPXa3NWrN1yluK02z1eYlGxs9xJJqeTzGiWn+94nIyxizhYZL7XdldsXtaJZLEb9Vbhggsu4JZbbiEejxMMBkmn09xyyy2cf/75LFq0iMmTJ1sxTo8hKLbgcaZwrZMLfum57SwZ0BAJ0p3I2GrNcayOXUn7Iaeq1IMTdeycyYo1Sp04kinprNtdWFSqAj6CfuuzJauDPnyqQk7L99uustklKhRoJ2Lsqh20xNsdF17nxdiNzPPPPw/A9u3b2bRpE6+//jqvv/46N998Mz09PYab1sMeJnKMXbwkU1S1sc1WgxF/ZZ81J+pU8kTBmpDTdFJZzbaYwuOxu9yLU63j4k66YkU8pUNu916bN6mKkre+H+tL09ufYWp92JbzCkR8m9117MBZj4vYLIlwB6txul6hE4z5jjr55JM5+eST+cQnPmF8tmvXLjZt2jRiMoOHeTgVYydDVqxTLXmKJU/stNjlz2V3uZPS+J++VNYRxS6VzZHO5l1ltTa5KEVWrN0dRgxXrM3PMzhfmzLqwLusLuw3FDu7ERa7iCPJE867Yu2LsStY7FKexW5MzJs3j3nz5nHFFVeY+bMew+B8HTvnguqL8Uj2KjvFIsX2Lfp2F2IW+FSFqoCP/kyORDrHJFvPnqc09squbFGjjl0iY6sLunhPO5g84ZDFzgnvg5OZsSJJxclyJ864YvPvTfuyYj2L3bDMnTt3TC+4NWvW8Hd/93ej/p7H8GRymuE2sb+OnfPJE4Yr1mbrhhNdCYxsQYcsOf2ZnGPxlOK8kUJMlB0IN1FW0+lL52zbPDi1WYESV6xD8+xETU4n+8U62XnCydI2didPiHfmRMqKHdUdNVgduXKYM2fOmL7nMTyxAVlkTjWHd06xE+e2O9Dc7iLFmZI2U3Zb7EC4bdKOFa51InEkHFAJ+lXSWY2eRNoBxW4iumLF5sW+eXZKsdN1vZg84YArVsy1E8+03a5YpzuMOMGonqALL7zQqnF4jAFxo1YHfbb03CtFhmKmTtX8srsUhhOuyFKcbisWNTJi7VN2FEWhoSpAVyxFTyLDzEZ7zuto8oRwz2VyaJpua0ISOOyKtdmak8pqFCo1GdnIdlKsamD/M213HbtSxc6J+9oJvBRWF+NUfB3IlTxht3WjNP7KDoQCWxXwEbBZgYeS+mZOuWId6pNbVODtW/SNcidOKPCFxV7XMSzEduKEK9Ypa07psxRxICHJqaoGyUyOVCERqt4uV2xhjnUdYg7X47QLT7FzMU71iQXnrTj5czuzCNodYxe1uYbb8Rj1zRwKqneqhl+D4XK3L0km5mDcVTigGl1VnAixcCIr1jnFTnSd8DliQTJcsTYrOuI6qwrU2FTmJRzwEQ7kVR2n2sfZjafYuRix4Duh2NVI0JHAKVes3aUwYkaSiDOKXY2D8Thgf3FigRNFivscTJ5QFKUkgcKBHqJJ+7voGIH1NmdMFkudOPNMOxVKUxpfZ6dCO9Hi7Jy5qzxMwe4adlo6TfyZZ9DTabQUgI++ZJqe3/4OkSytBIPUXHIJatD64pPxlH213Upl9yUBfHTH+un93e+MY6yS3VBsbFzsS+X1dyiAypHNb9J7+A3jGLvmOuZYWRv7F4O4g65YyLeQi6Wyjrjd7S5QDM6VO0mknYulhIHFqO0s52N34oSgvipAZzTlKXYe8mN3n9j+zW20r/kCAH3+MPzJP5PVFfbe/BWCWnEhOOmhh6g+b4nl49l+9ACgsDu2FVhg6blKZU8EqmDlt+jXFPb805cJakXrhhWy/37/q4BKSu8x9XeHo1Re/aw/hXnn07X+GQ5ufWLAcXbMdVvHO4DC4dR+oNXSc5XS4ECR4mLyhJOWnJQj9c0mkis27mDXCXCuo0x3X6GGXcSerhMCUb7I7haBTuG5Yl2M3TvcyOJFBGbOBEUhnE0Znyf8ofz/URQCs2YRWbzI8rFktSzbj+0H4MWDT5HVrLUwlMpenUmi6PkA4Hggkj/AItmzWpYnd/0egPbETsvlFJTKG8nk57rfX/Iytmmus1qWTYfeAuDNo6/YJj84U6/QyTp24GwtOydCS4zitTZnxSZSzlrsju8oYxeiRV+jTYkTAifrFTqBZ7EbBbmsRq6Q0SMD0UQaVYf6kN+mcak0Xb+aQ1/+CooCVZk0KX+QRCBCXSYJQNP1q9FQweLxrN31OOkUqDr0pjpZu+NxVs5baeEZi7KjQF26n1iwmmiohoZ0ArBG9rW7Hqc3kULVIZ3rsUFOQVHecC5/nyX9YTSluBDZMddrdz1OIqmh6tCXPWKj/NAQCqDq0BNP2/J8ZXIamYyGClT5VEfeNTUBFVWHeH/G9vPHEhlUHWoDPtvOXRvwoer5c9spb7w/i6pDtd8+WY+n2p8vPB7ry9Bgk5W0O5Z/lzXYtmblqQ/5bX2WrWA04/YUu1Gwef1eaiK1Tg/DIPhOjKVJP1Xb+9iU2mPLOXX1dLrPvIJcNMb7kj76/X4OzbyEZCqOr66OuHIayuPWjkXTNZ7a1sZ5sdPRc34CR1p5+tE2ppy6EFWxzghdKvuyZICo5qdjxiVo/T2WyC7kfO+x08kl/fiU6bbIKRDy1vsaWJr001Q1jz2zlwOKLXMt5F/SMx8t7cd/7GRb5acrztKkn4Y9CTZZfE9DvhTE0mT+lfzuc+34bIp7KmX+YQ0l6efwK11sOpAa+QsmkdV0zo6pgMreFzvoDNjjTDKueRJeWbvbtmvevb+HpUk/c7qyttxbg7EsFSCRVnj7mf101YRsOWdixzGWJv1MP5ixVe6p7SmWJv0k3zjGpoQ7HZXxRKzsY90poQeAUQ8oZNNLEEBRVSJLlgA6/kJsWUb1ATqRJUtQVOvHsr1nB7F0FPTCvkTJEE1H2d6zw9Lzlsoe1PIm/bQvgFWynyhn1hY5BULeQGGes6rYB9oz10X5C1ZCm+UP+/PyJTP27PDF8+z3KY4odQCBgsyZrG7redMF2RUFQn773mdBf9ECnbJpniFvnQUcqUspCPrz91jGRguWeJaqbK7dFy7Mc8qB+oxO4FnsRsE5l82mrq7O6WEYfHt3O2/0ZfnbZS0sXthi23n1y2ay64nvs1N/D7vCM1l+rI2Tg33MW30rit/aWyqrZbnlt6s5NOMQ0b5loPmonv4svmAPnVVbeGT5I/hV68YgZH8wPZ1NDdWcF9vKyVqH6bKXypk42ESWFkLNbxJq3GCLnAL9spm8+zf/x8bwKZze183f7nuSwIwZls91qfzx9KloqRqqWjYSqN5lm/xVh3rZuGUvzREf318xx9JzAWzriLJx0w4m1wRZbMP5BuORVIyNPd0se08Niy+2bwy7DsfZ+Mq71Ib9nHu5fecFePu17cRSWb75vhbmNtfYcs4X1qfZeKCT95xS69hcf2PnAbYe6ueaxZNY/J4ptpzzwe5jbDya5UOLJrF42WxbzgmwZYPCxoOdNE4LOHa9x0s0Gi37WE+xGwU+v4rPxt3kSPSmc2gKNNSE7B2XP0jLDdcR/t+9aAokfQFabrgOf9j6TKe1O9dxILEfXVHQ9BAooPkToGbZn9jHk/vXsWr+KusGUJC95td/RFMgFgjT8jnzZRdyokJOC6EpoPsS5OySU+APMm3lcrRtkPAHULWsLXN9vPy6ArrfXvmbasNoCnT3Z1B9iuUlIfqzGpoCkbDfsfdMJBxAU6Avq9k6hngm/y6rqQrYLntNJEBvOkssk7Pt3H3ZnONzXV2Y62ROt20M3cksmgKNtUFb5W6oCaIp0JPKSrWGj4bRjNudEnoAztR9EtStXEl1wZSfnjKNussvt/ycWS3L3W13o6CAFjY+V3z5WCAFhXva7rE8c7Ju5UoagvlHp2/SVNNlHyAnoGuF+Bc1n6Bil5yC5vOXAZD0hwjMmmX5XJ8of36uFZvlFwWK0znNlhZbTnadEBj9Ym0uRu1EcWKBExmTfVLMtf1F5kUXlwaby51MtALFnmLnUnRdd7RXrOL30zh/DgDqRZdY7oIF2Ny1mfZ4Ozo6eq6g2CkZFCW/6OroHIgfYHPXZkvHofj9TF18FgCZsxebLnupnIChxCr5ysi2ySmoLryEE/4QzTestnyuB8yzroCh2OYVeLvkjwR9BAsxUN02lDxxsuuEQPQFdqojgROb1AYnFLu0qGPnTLkTKLYKtLOtWK9X7sQWPFesS0mkc2S1/MJvZ0HPUhrmzYaj+8kuOMWW87U2t3L7hbeTzqU5cBRu25mv0P/t879tHBP0BWlttr6I7ZRzzoQDW0hMmW76b5fKCfD/7VPoScHqRZ/hpOb8MXbJCUVFI1VTT92qFZafr1T+/jTctC2vXH3zgpsR5bfskF9RFOojAQ7HUvQk0sxoqLL0fKI4saOKnbHY2xtk7kRxYkFTdaEncJ99haiFMhVxcK5rSrpP2IWw2DU6ZLGbKAWKPcXOpYiCmn5VIeLQrq/GcNvY82II+oIsn7McgJeVo8BGmqtrWDX/IlvOX4p4MVmxAyyVE+Dm7Dogy+ULLmHu5GrTzzcSophpIquj62B1wmap/Ad7+oFnCPgU/uw9f2Jb6yNBQ1Veseu1YUEwihM71E4Miu65Pttdsc55H0TruGO29gTOvzOdVOIjNrtik5mckRVbb7PFTsxxLJklp+n4bOxT6wSeK9alFF0XAdsXO4HY3cccqFIfSzrbU1O8mLr7rF0McprueP/Q0ur4dsSalVLaD9mJ+1wsCD02uHCc7joBRSXe7s4Tpe8zu2l0oHWcUJyd2pRDycbcprkW1jKfqtja9xoGbhhiNncZcQJPsXMpdveJHQzxYnCi/VAslX84ax1yQ1tpsSuldDft1IJfFfAZVjrbLTkOxpHmz2tfj0kZXLHFZ9puV2xedidcsY3CFWujxU54OWRIlInbNNdG4oQDxoiATzWU6IkQZ+cpdi6laMlw/sXgiGLnsMWuwYjZsHaXL3aXQZ9qW6Pu41EUpaSHqM0LvphnhxS7osXOemuOUJqdtdg57Yq1X/ZGw/pun8VObNictNiJxA273t9ic9RgsxtWMJHi7DzFzqVEHXRdCJxIlxc4rtgVXk596ZxRNd8KnHbDCiI2LwKCXoctdmLRt2MxEPe0k1Ycu+NmBU6+z4T1vdtGV2xCAre7sTG3SYnvcShxQjCRSp54ip1LcTImReCU2waKO3ynXLG14YDhnrTyReG0AitwfMF3TIG3L/6qT4LkiYjhnnPG5e6kK9YuS46m6SQKsaoiptEJ7Pa4dEtisfMUOw9pcTKLTDCRXbE+VSkx7Vu36MccVmAFIoPO7rkW97lTGxg73TeGdVaCEhjprGb0M7UDo0CxA4u+sMoes8kVm8zm0AslKksTk+zG7vAKEc5gd3FigafYeUhPr4M7XEGNQ7t7KFXsnJPfiLObABY7I1vS5tgrp12x9mbFOh9QX1US82VnLTsn32dC0ejP5EjakPUt3peKkk9Mcgq7S9uIzZHdxYkFnmLnIT0yZMU6a7ETliznFsH6iPUunKgkil2NY4VrncuWBGgoZMXaU8cufw4nXbFBv2p027Brwdd13dn2iGG/UdfMDsuseIaqg37HSlWBA67YPs9iZxeeYudSii4qGYqZ5tAKXTDsQliynMwKtiMzViiwNSGHXbEOtZpy+j4XFjs7AutlKHcCJc+1TXMdT+WLxoIzgfWKotjqjpWhhh2UKnZ2uWKdjbET57Vjk+Y0nmLnUpx2UcHABShhc+FaGWLP7MiYlMUVK+Jx7G4O7/R9XuqK1XVrNy8ydCOAUre7TQt+4fkJ+Z0r6WNnkeI+CVzuUBJPmdMszewX9Bh17DyLndVIp9jdfffdzJkzh3A4zHnnnccrr7wy5LGZTIZvfvObzJ8/n3A4TGtrK0888cSAY2KxGGvWrGH27NlUVVXxvve9j1dffdVqMSzHySwyQVXAh+jMYrc7VgaFx8iYtLDGWVwCyySUlkaYOD1EoTjH6axmtEOyglQ2R7qQrOCkKxbs70jQ67AlB0pLnli/6AuLnZOJE1BMiAJ7NmxOx9jVeYqdM/zqV7/ixhtv5JZbbuH111+ntbWV5cuX09XVNejxX/3qV7n//vv54Q9/yJYtW7j22mv52Mc+xubNm41jrrnmGtavX8/DDz/Mm2++yYc+9CEuvfRS2tvb7RLLEpyuyA8DC9fa7aKLS5A8YUfGpAyWSbDfPScwXO4O3efVQR9+EX9loQJf6g6rdrAEBtjfQ9QoXOuQJQdK+8Vab7ETMXZOljqBfDeGoF/EU1q/YSuWO/EsdlYjlWJ355138tnPfparr76a0047jfvuu49IJMJPf/rTQY9/+OGH+fKXv8zll1/OvHnz+PznP8/ll1/OHXfcAUB/fz+/+c1v+M53vsMHPvABFixYwNe//nUWLFjAvffea6dophN1eMETOJFAoWk68bQMFrsJmBVrc/KE065YRVGK82yhAi82KpGgz/EG5UW3u71lMJwodSJoErXs7IixK7wrqx2OsQP72kLqul50xXpZsZYjjWKXTqfZtGkTl156qfGZqqpceumlbNiwYdDvpFIpwuHwgM+qqqp48cUXAchms+RyuWGPGep3o9HogH8ykc1pxm7aSYsdONN9Ip7OGnWgpFDsLE2ecN4yCVBTmGc7Y+xK73MnXdG2WGYLGbFOx13lx+CMxc4pFx0UrUh2WOyKrljn59qupKi+dI6sgwkyUJxjT7GzkSNHjpDL5WhpaRnweUtLCx0dHYN+Z/ny5dx5551s374dTdNYv349//M//8OhQ4cAqK2tZdmyZXzrW9/i4MGD5HI5fvGLX7BhwwbjmMG49dZbqa+vN/7NmjXLPEFNQCz24Lwlx4nuE0L+oF8l5Hdu19tgS7kT58u6QNFiZ6sCX3IuJy3TdgTWi+fHyeLEArsTZYwYOwddsXa2jhOWUKdd7mBfGSNR6iToVwkHnFE7xAYtnsqStbH4thNIo9iNhR/84AecfPLJnHrqqQSDQVavXs3VV1+NqhbFevjhh9F1nRkzZhAKhfi3f/s3PvnJTw445nhuvvlment7jX/79++3Q5yyES/C6qCPgM/ZKXTCFWvEnTm8CDbYEmPnfJspKM6znS3FxH0ecfg+t8PlHpfKYieUeLuyYp110UGxrZgdZW3EuzLicPIElM61te9v8Sw3RgKO1e4rtfpXutVOGsVu8uTJ+Hw+Ojs7B3ze2dnJ1KlTB/1Oc3Mzjz76KH19fezdu5dt27ZRU1PDvHnzjGPmz5/P888/TzweZ//+/bzyyitkMpkBxxxPKBSirq5uwD+ZcLrNUil2vRhKkSXuzA7TvlBinc+KtT95wunixIL6Kusts3FJSp1AUeGwKytWXFcnY+yMrFhbY+wkmOugPc+1UJidcsMC+H2qsWbY0UnGSaRR7ILBIIsXL+bpp582PtM0jaeffpply5YN+91wOMyMGTPIZrP85je/4aMf/egJx1RXVzNt2jS6u7tZt27doMe4BacDykuxK/i2FFkyRRtKTPtW9NXUdb3YP9TpXrEOtBSToR8ylFrsrC9r47RlFor1zewqbdMtQVZso1GI2o5yJ3LUsYMSV6zFz7W4rk4/y3bWK3QS5++sEm688Uauuuoqzj33XJYsWcL3v/99+vr6uPrqqwG48sormTFjBrfeeisAL7/8Mu3t7Zx99tm0t7fz9a9/HU3TuOmmm4zfXLduHbquc8opp7Bjxw6++MUvcuqppxq/6UZksWSAM5YcWSx2dVUBFAV0PW91aK4Nmfr7iXQOTYIkEXCmpZiTbaZKEQq8lRXrxfMjh8XO3s1ab//EcsUmJKljB6Wxs9Y+170SWOzy5w+w7xh091W2xc75t0gJf/mXf8nhw4f52te+RkdHB2effTZPPPGEkVCxb9++AbFxyWSSr371q+zatYuamhouv/xyHn74YRoaGoxjent7ufnmmzlw4ABNTU38+Z//Of/yL/9CIOC8UjRWigue8zLYHY8D8vRP9akKdeEAvf0ZevvTpit2QoH1qYqjzcLBmZZiThcnFthR7iQmkWInynDYlTxRrGPnvCs2lsxb362M6YxLUscOitnu1rtinS9CnT+/fQq8kzh/Zx3H6tWrWb169aB/e+655wb894UXXsiWLVuG/b2Pf/zjfPzjHzdreFLgdP/MUgy3zQR0xUL+RdXbn7Fk0Y+VZMQ62Swcigp8KquRzWn4bUhmkMcVa/1iIFyxMrjn7I6bFfFOTsbY1VtsfS8lYSjxzlvsih1lrJ3rHoeLEwsabez97CTSxNh5lI9MMXbGImBj7JUsrliwNjNWFsskDHQb2dUXWBbLtNE83MKA676UfHNtRwa0ruuGi9vJRd+nKiX1Cq1d9EWMnQwWO7uqGvQYrlinn2X7Wsc5ifN3lseocdpFpaXTxJ95Bj2dRu1UAJXefQfp/d0B4xglGKTmkktQg+a/rGP9zpY7KZW/Jq4CCgdfeoXeHcUm8WbIL+R0yj1XKqeug19RyeoKHf/7OHrBoGHlPAtFymllp8GWrFiZXLH2Wez6M8UeuU66YiHvju1JZDhmcWaskRUrg8XOyIq1uI6dBCVtwEue8JAYpy12/ZvbaF/zBQDS08+CJVfSvWM3Bx+8Z8BxJz30ENXnLTH9/NuO7AUU9ve9C5xi+u+PRKn8gcWfglmL2P/I/3Fw5wsDjhuv/M/texlQyejOdD4plRMgfPk3iQcj7LntdnLxw8bnls3z4fw8H0g4M88CW7JiU/K5Yu1IlBHKcsCnGHGcTtFgU2asiF2UymJntSu233mrLEBjdWGOKzx5wnPFuhCn+8RGFi8iMHMmKApV2RQA/YGSmBRFITBrFpHFi0w/d1bLsvXIHgA2dj5LVrO3KT0MlL82kwAgFowUDzBB/qyW5YmdzwHQkdzjuJxAca79wlxn9TzvBWBjhzPzLBCxX8mMRtIiN7RUFjubFnsoqWFXFXQ8jrTJJmtOn0Q1C+1zxTqfIANe8oTHIOSyGrms861Ion1pVB3qgj6HxqPSdP1qDn35K4RzGVQdkr4QmlLccTddvxoNFUwe39pdj5NOgapDb6qTtTseZ+W8laaeY2SK8tem+1F1iAWqTZV/7a7H6U0kUXVI53oclxMFIpn8fZcIVBmyWjnPqZSSn+f0IYfkzxPxqQQUhZymcyyaoqU+PPKXRklff/45ivhVx98xVWr+uvcns2QzOUsVrmPx/D3eWOV3XO6GcABVh6OxlGVjyWk6qXQOFQipiuMyV/nV/DOdzFo6lt7CmlUfcnae60O+/DulL+34tR8toxmvp9iNgs3r91ITqXV6GMw4mCaS9BPffIxNe/odGYOunk73mVeQTuksTfoJ08Se2csBBV9dHXHlNJTH95h6Tk3XeGpbG0tip6Fn/QSOnsnTj7Yx5dSFqIq9xmch/2RfI0uTfupqTjZNfiHnud1nkkv68SnTHJczF41xllbDjKSfaMv72FP9Hsvn+bzoGeg5Z+dZcGE2SCKdo+3JvUyuMT9jck5njqakn55NR9i0PW7674+GdE5jaTK/NLyydg9+1TrFbm9XnKVJP9OjCptMvo9Gy7T2FEuTfpJ/7GZTwpqxpLLFa7vj+YPssfDalkNvbz9Lk34aOrOWXX9Nh4XdOrru59DGLqLBo5acpxxisfwcV3dYJ69VxBOxso/1XLEuJFXQ3J1qpgygqCqRJUvwF1xkGVXsEXQiS5agDNOLd6xs79lBLB0FrXAuJUM0HWV7zw7TzzUSQv5QLm/ST/uEi2H88hty6vLICToBLe9Cyqp+bJlnvXBNlbRj8gtChWctmbFmly8SCIIO934GCJTMadpiq4ZwbYcdrtMIUFWI8eu3MOtbdKhRFQWfw0odYNTrs3Kek5kceiGvzMk1K3/+/BwnMzn0EY51M57FbhScc9lsx/vG6rrO7zdsI6PqfOeyk5jWUOXcWC6byean7mNjON/y7Yv7nyI8fRrzVt+K4jf31spqWW757WoOzThEtG8ZaFmqpz+LL9hNZ9UWHln+CH7V3ttZv2wm+/7qUTaGFzI/FePT+54kMGPGuOQvlTNxqI6sPo3g5LcIN/3BUTl3PfF9fpluYWNTHYti2zg5d8DSeT44vYNY7ANAluoZT+Hz9zkmP8Btew+yeX8/f9PaxOLTW0z9bV3XefGlbWR9OrdfdpIlrt7R8sar75JI5/j2+dOYNSky8hfGyGvP72Lj7oNMW1DD4hVzLDtPOWx/xcfGA51Emn2WjWX34TgbX91ObdjPuQ7LC3DgWIKNbbuoCujcb9F4dnbF2PjKu9SF/Sy5fK4l5yiXRDrL517bDsDdl8yUIlmpXKLR8pPo3COVBPj8Kj6/szuORDpLStNBgcbakLPj8QeZ8/8+jfZy/j+Tqo/ZN1yHP2x+5tPanes4kNiPrqhoeggU0Px9oGbZn9jHk/vXsWr+KtPPOyz+ILM/djnaWxANRFC1LC3jlF/IiQqaFkJTQPclyTksZ8sN11H1qzY0BRK+AC2ft3ieqUIruF31QJycknNOfqC+Jj8X0XTG9GcumcmR1vPPdF1N0PF3DEBV2E88kyOR0ywdT286g6ZAowRyT6rLz/HRpPlzLOjP6WgKVIX8jssLUBMJoCnQl82Bao0VsSeVy8+x0+sVUOML4A+opLMa0XSWumpns3RHw2iunfN3lseoEH1ifarz5QEAJq9aib/gosvMmkvd5Zebfo6sluXutrtRUNBzRWuG4kvm/xeFe9rucSRzcvqlFwEQC1YRmDVrXPKXygmga3lZFdV5OetWrqS2UHcrOWmKDfNcsBKpKRQlf385Kb+VhahL68VFJHBJgn1txXolaTUFMKkmv8gfjVuXMSkyjSMS1LCDgeV1rMqCPtaXz6Z3ujgxgKIoxjisrEvpNJ5i5zJKa9g5XR4AQPH7qQ7mb6PwlVeZ7poD2Ny1mfZ4Ozo6aAXXs5pEUfJxITo6B+IH2Ny12fRzj0RTbX48iUAVDdevHpf8A+QEQ4kVCqyTcip+P82LWgHQzjnX8nnWc/nrqqgJ4+9Oym9lxXrRTqwm5EeVIO4KSkue2FO4tt7h+mYATQXrjZUFioWiLEOpE4CQXzWSY6yqW3isUDOuSRLrWOMEKHkix93lUTZGn1gJWg8Jamoi9Pb0oyw735Lfb21u5fYLbyedS7OnC+7YCY2REN88/9vGMUFfkNbmVkvOPxyltQT1D35oXL9VKifAN9oVjqTg2rOvYt7U/DFOyQkw6azToH0b6WmzLPn9Uvnf3g/37YEZ9Q18SYJ5LrYVM38xkKmGnaDaph7QxTp2zltzJhUUj3gqSyqbI+Q336oWT4l2YnJY7BQl7/mJJrOWdRoRCpQsip1dhaidRJ43iUdZ9Er0IhTUWLy7D/qCLJ+zHIDnc4eBV5haW8+q+RdYcr7R4FMV6sJ+osksvf1ZmsdRDadUToBbcuuBNB+efxGnTHW+zI5o7RWzaAEolT8XbQfamN04mVXzl1pyvtFgLAYWVKyPS9RiSiBchVYrdsI6NkmCRb8uHMCvKmQ1nWN9aabVm5+YlhBzLUHXCUFNKP/+smquxRw3SjDHUGKxs7h1nJN4rliXYVjsJFLsqm1aBKC0T648L0bhpjPTmqPrOrGkHL1SBUKBF65DKyn2lpRsMbDAfWO4Yh3q/TwYdnUk6Daawzs/z6qqGMqHVXF2MrWOE1jdaUQodk0SzDFMjO4TnmLnMkSMnVyKnWgabn1vSaf75A5GowXWnFRWI5PLx9rVSKLY1RUUj1jKeheGLC2IBFbGX/UZcVfyWOyM5vAWxthpmm64w0TigtNMsjjOznC7S/JMA0QMJd6qGDvZLHZe8oSHZIis2DqJdvfComSHxU5GxU4EfotG12YgLLOKAjWSuG3EYmSHxa5HIksOWGuxiyUljLErjMXKrNhoMkNOy29eZMiKBesTKPokjKessdjjIp4ZGdztUJxjz2LnIQ0yKjbiJSVch1YSlVD+YikM814UxmIflCdTUijwVgVZlyKUZFkWfGFR6k5k0DRza9ZL6Z4LWmvFgaLyVBvyW5KoMBbEon/UaoudRHMdCVrrihVubVksdlZmuMuCp9i5jGKMnTwvBsNFZ4MlR0ZXdDFj0rwXhbiWssTXQXExitoSYycUO1kWg/wc5zTdeAbNQlhKaiVa7O2IsZPNRQdFq9LReMqS3xfhKjIp8TUWz7WRFSvJs1x0xXoWOw9JkNFiJ5Qssxe8wRDnkEl+K4rXFhMn5JFTjCWd1UhlrY2n7BXJE5LMc8jvMxZAs910hnVWIiXeSIiy0BUro2LXVB0CrHfFyqXEC1es+c90MpMjUYjTbJIkjtJLnvCQjmJWqBwLHhSVLDMtVkMho2JrxYsiLrHFDqyPsxOu2MZqeebZqticPgldsREbXLGyxV5BUfmwzBWblG+uraxZKBRkv6pIo8waFjsLShfJgqfYuQwZFRvhFhaJHVYio/wTxRVb2sbO6jg7UWOqvkqeRd+qUhhxCa04VgfUQ1F5kiVBBmDyBMyKtbLcSalVVoZOSVC832KpLJmc5vBorMFT7FyGWPBlijET1kM7XLEyx9iZ6YoV11Km2mZQUqTYQotdPo4t//sy9JcUNBkV661R7GSy4hQD6i202In6ZhJaZS1X7GQqbWNhuRMZrbJ1VQGEjlmpJU88xc5lyGixMmLsbHDFCqtgvUTJI8Kq1GNigWIZLXZQmgFtnWJXavmU6T4vxl+Ze5/LmClpR7mTo4ZiF7LsHKNFZD9blTwho9vdqFlooStWJqusT1WM90qlJlB4ip2LyOY0YxGQqfOCXTF2WklGokwWOytiNmRV7EQChZWuWPGyrQ378fvkeUUJy9KxPnMX/bjMyRMWzrOcFru8khlNZklnzXfTxSRW4q14po2uExJZ7KCoaFplmXUaed6aHiNSaiWRSbEpumKz6Lq5Nb5KiaWyiJ+XyZLTYEHMhsiKlSlJBkpdsdYp8cVSJ3LJ3mi46awpdyLVYm9HHbvCPMtksWuoCiDKRprtcs/kNENZlGmuawzrrAWuWCPGTq5nudKLFHuKnYsQ1qpI0EdAIkuGSJ7IabolLweBcPWGA6o0BU1hoPXULKulvBY764sUi567MrlvoBgnZPZiILMVpz+TM7pDmI2wfMpksVNVxbjvzE6SKbV+yuSKjVjpik3I524H6wtRO4082oHHiMgYXwdQFfDhL2xzrUyg6JWw1AuA36cac9Jt0ovCyJSUTLGzI8ZO9NyV7T43FnwTFwNd16W02InFHqyLsxPzLJsCb1UChXhmQn5Vqo25La5YyazvRk9gk5V3WZDn7vIYEVkVO0VRbImzk7GdmMDs5uFGgeKQXLLWhKzvMtItWZ9YgeG+MXHB78/kEAYxmYpRh/yqsVmzwh2byuYMRWKStNYcc2MpRTkR2TZr1Ra6YmUsQg0lSTKexc7DaURGqGwWKyjNjLU+W1JGxa7RZDedjN0IoNQVa50CL2vAtRWKnZhnn6oQDsjzOlaUYs1CK+qbCWudT1WkU3Qm11jTfULG4sQwsMuI2THSYp7lU97z4/EUOw/HkbGGm0DEmVlZ8kRqxc5kN11U8hg7Ky12YkGVqfYVFBW7WCprWks1Q4EP+aUp4CowguotsNgVy2AEUFW55LbKFWvUKwzK9UyLedZ18612RyVNnih6WKwpa+M0nmLnImRWbOzoFyuz/CIA3CxrjuxZsVa2FDPqm0nSW1JQFw7gKyghZhU2lbGGnSAyActggHWB9cKlLZsVvirgMwr2mmmd1XXd8GDINs/FeoWexc7DYYoWO7leDGBPkWKZLZZmFq9NZzVShbIIslnsjBg7C7NiZbXY5TMmRS07k5JkJLXMQrFwrRXJE8ckjaOE4qJvdmC9CF+QTYlXFMWS8jbRZNbIqJZtnr2sWA9pENYwGS1WwrLUa2GMnaz1zaDEYmdCjF1pjTjZFoEaG12xspVIAPMLm8q62IPF2ZKFzg6TJLPKgnXJE3FhsZNyrs0veSKekeqgj3BAnvJUUIz5O9aXRrOonI+TSKfY3X333cyZM4dwOMx5553HK6+8MuSxmUyGb37zm8yfP59wOExraytPPPHEgGNyuRz/3//3/zF37lyqqqqYP38+3/rWtywtpGsVMrsihRXRSldsj8S7fDNj7ITSFAn6pOq8APYkT4h2TrK5b6C0SHFlJ8lAsV+sJdmSxiZNvjm2ypoja/IElBakNl+xk3mOcyXdjCoJqVaNX/3qV9x4443ccsstvP7667S2trJ8+XK6uroGPf6rX/0q999/Pz/84Q/ZsmUL1157LR/72MfYvHmzccxtt93Gvffey1133cXWrVu57bbb+M53vsMPf/hDu8QyDZnLfRjdJyx0xRplMCRc8IXlwYwYO7HYyxZfB1BrcR27TE4zEkdkc8UCNEXMzX6WOcZONKq3Ip7ySEF5FxmoMlFqzTETWcudQFHZNDPGTmzQJtfKN8dBv2rMQyW6Y6W6w+68804++9nPcvXVVwNw33338dhjj/HTn/6Uf/qnfzrh+IcffpivfOUrXH755QB8/vOf56mnnuKOO+7gF7/4BQAvvfQSH/3oR1m5ciUAc+bM4T/+4z+GtQTKimwFerV0mvgzz6Cn0wQ7FEDl6O799P5ur3GMEgxSc8klqMHxL9JCaWqQJMawVP5ADMDH0SM99P7ud8YxY5Ff7CCDgRy6rjueLVkqp54C8BHvT9Pz298ZQddmzbOYY1WRqx+yoMnkoGuZY+xELKsV7eOOxPKLfrPErtieRIZsTjPNai5rViyUumLNs84eKTwjkyXcoEF+4xhLZjkaTzO/2enRmIs0d1g6nWbTpk3c/P+39+ZhUpTn4vZd1evs+8LMAAMDgiIOyKrRoAZFIChZ1HhMRJOYuGBiyEmCiUr0JBKj8ZCfIZrki3tOYryiaIygiMEtoBGGKCA4bDMw+7719Fr1/dFd1T0wW8/0zFQ1731dfSk9VdXvU29VvU8965136t/JsszixYvZsWNHr/t4PB6cTmeP7xISEnj33Xf1f59//vn8/ve/59NPP+WMM87gP//5D++++y4PP/xwn2PxeDx4POH4ivb29qGKFVN0i51BYsy6y/ZQdcf3APAXzoJ5X6Xx4GGqH3+sx3YTnnqKpAXzh/17NR0dgMTelvf5LCuGfbzhEim/NzELLruT5i4v1T/8SY/topVfW0hPuMp55YiHFSVjK2uknC6rAz7/c/yqxLE7f4JDCb/hx2KetbdnVe7g1WP/GHPZT+Z0sthF9oCONUa22GVEPF9bXD5yYmRxCrtijRVvBiPjim0y8BwDZCU7ONbkisuSJ4ZxxTY2NhIIBMjLy+vxfV5eHrW1tb3us2TJEh5++GHKy8tRFIWtW7fywgsvUFNTo2+zdu1avvKVrzB9+nRsNhuzZ8/mjjvu4LrrrutzLOvXryctLU3/jB8/PjZCDhOjxdglzjkXW1ERSBLJvm4AOm0J4Q0kCdv48STOOXfYv+UL+OjoDmaKvnD4afzKyAXvD5ZI+dO8XQC4rQ48cmiRHqL8raFeqZLs5rd7fjvmskbKmeD3IKnBeejS5jqG89zQEbyOJGuXIWQ/mVjH2LXrdeyMcU9HkjKCtSl1a44B3XRWixzz7GcIK01GtM6ORKJMo4ETZCC+M2ONd4VFwa9//Wtuuukmpk+fjiRJlJSUcOONN/L444/r2/z1r3/lT3/6E//3f//HjBkz2LNnD3fccQcFBQWsWrWq1+PeeeedrFmzRv93e3s748ePJ+BXCITKUIw2qqrS2e1HViHZahmzcfREJvO21dT8+Cck+j3IKnRbE1Ck8Btp5m2rUZBhmOPddHALkmJBAuq7j/Hqoc0sn7x8mOMfLmH5nQEf9oAfv2yl1ZlKTncbMDT53z/+EbIqY5E9VLfXGEDWsJxIkOzz0GVLoMueRLrXBcRunt888kFIdpdBZO9JptOGrEJLhycm92Bnty94T9uMck+HSbFbkVXocPliPrbmjuDzItNpM5zcAFmJNtq6fDS0dzMlOykmx9TmOtEwz+8wSTYZWQWX2x+zsTWG5jgrwW44eQGyEoL3clN7bO7lkSaaMRpGscvOzsZisVBXV9fj+7q6OvLz83vdJycnh02bNuF2u2lqaqKgoIC1a9cyefJkfZsf/OAHutUOYObMmVRUVLB+/fo+FTuHw4HDceqbZNnWCpITU4Yq4rDw+BXmuYIK09F3ajhhMUa1dlWeQcvMq/C6Ayx0W7GTwbGJSwAJS2oqndJZSJuPDes3FFVh+979LHTPAknBUX0x2zbtIXf6mcjS2BqdNfkD7R1c6JLotlo5Pv5SujydQ5JfURU6djew0F2IhTys6mWGkDVSzvPcVjoDVmoKL8bnbo/pPFd9WMNC90RkNQ1blTFkj8TX5GKh20pWpZtdw5QXIPVIFwvdVuQD7exqH/7xYolS18lCt5X0iu6YyKrhCyic0y4BVqp31NFkNcbcRjK7w0Ku28rRt2uwH+yMyTHHVXlZ6LbS/Z9mdp0wlvsvq8LNQrcV/8et7HIfi8kxkw4Fr23bpx29X9uSCrICY7SUTWr2sMzuQC5vYZf/8NgMQkMFFBnUvk9Gp6tj0IczjGJnt9uZM2cO27ZtY+XKlQAoisK2bdtYvXp1v/s6nU4KCwvx+Xz87W9/4+qrr9b/5nK5kOWeDw6LxYKiGF9Dj0QrWGuRJawGUeoAJFkmcf58uv75NgA+ixUVCQmVxPnzkeThP7TLWw/R6Qm5JyUfSCrt3nbKWw8xLeOMYR9/OGjyd7zxBo6Al26rA4/FDkOUv7z1ULhdlewHjCFrpJx2xQck4LXYGKqcvVHeegi3Twn9ng+jyB5JQqgelzbO4eIN3dd2Ayo3jtCYPL7YljvRyqdYLZIh5Qb0PrndMSz14g2E5tpgJYwgfP1pY4wF2jxrha7DqEjJbqzJAaQxbCc3O8vBWWdnYrXI2G3uMRuHhqqo+DstqJ1OhqvtGkaxA1izZg2rVq1i7ty5zJ8/nw0bNtDV1aVnyV5//fUUFhayfv16AN5//32qqqqYNWsWVVVV/PSnP0VRFH74wx/qx1yxYgU///nPmTBhAjNmzKCsrIyHH36Yr3/961GPb/alE0lNTY2NsFHySU07Oz8sJzvZztylxWMyhr5QLy3iwGuPsNN5AQC317xNZm4mk1evR7IO7xLzK37WvbSa49lJuNznIjvqSSrcioREXcJ+XlzyIlZ5bC9j9dIijmzZQLVvAh+lTeEz7fuZKjVGLb8m65HUhfjUAuxZ+3BkvW0YWTU5/+CbwEdpiVzQtm9IcvZGWPZ5+JTxQdmz3zSM7BrVrd1896Mj2CwBfnv5xGFnLK87dJyDbj/f/kwec6YYKzXPeqKVnZ9UUJhs439j+MzZXdnMzl2HKMpIMNyzTOMVfxc721s5d1Iicy4tjskxV+85TKPi566LC5mWPzbrSF+UvaOws7qevCIHc2I0J7fsPkRLwM/dnxvPGflhT1dtXS3tbV5ycvNITEwcs6z/9m4fde1uEuwWijISx2QMGqqq4nK5aKhvIPWMBPLzTvVSRpPEOfZPygiuueYaGhoauOeee6itrWXWrFls2bJFT6iorKzsYX1zu93cddddHDlyhOTkZJYtW8YzzzxDenq6vs0jjzzC3Xffza233kp9fT0FBQV8+9vf5p577ol6fBarjGWM3jA7vAEUCZITbWM2hj6x2hm/+tvY3/Hgtjrosto58/ZbsTqHHzT76uHXOOE6jl8tRZFAsrpQ5OCb4HFXJa8ff23sMyetdvJuv5XU5/eiSNBhTyDv5ujl12QNqItQJFCNJmtIzqS/7UeRoMvmIO+W2M5zQNFk7zCW7CGyU50oEngUFVdAGXbpIe2+Tk20G+6+Tk+yo0jQ6vHFdGxNLj+KBJkpDsPJrKHNc0OXN2ZjbPcG5U4x4FwnJ9pQJOj0BWIyNl9AoanbBxLkpjv1YwYCAdrb28jNyyUrK2vYvzMc/JIVXAqqxUJCQsLAO4wwmpJbX19Pfn4eFktPS2c082IoxQ5g9erVfbpet2/f3uPfixYtYv/+/f0eLyUlhQ0bNrBhw4YYjXBsMFpG7MmkLl9O6vbncVsduIomkRqqLTgc/IqfjXs2Bh27gWAAs2Tp0v8uIfHbPb9l6aSlY27NSV2+nPSX9gHQmT0uavl7yhos4SPJYfeAUWRNXb6c1JcPAODKzo/9PPtD82w15jwn2C0k2i24vAGaOr3DVuw6DZwpmRKSrdPjR1FU5Bi5zYxc6kRDG5s21uHiDyi6+96IpW20McWq3ElkPcrIzhM+X3AdS0wcWwsZgDV0PfsDxulCpZ0Xn893imIXDcZ6bRD0iZH7xAJIViuZmUFzu/TFq4btmgMoqy+jqrMKFRU1ELzgJYtL/7uKyonOE5TVl/V1iFFDslopOHcmAJ7Z86KWv4esyqmKnVFklaxWcs85C4DAvIUjMM+nKvBGkV1DW/Sbhrnoq6qq1zYzcrkTVYXOGHYk0JSlnBRjlsEAyA6V6IiVYhdZ+NeILcW09nFdMYopbNDbAjqw9PJCMNZF1wGsIe9fQFEN02I0VufFeFeYoFfaDdZ1ojeyxmXDoSY8Zw+/nhlAaU4pDy16CG/Ay/PvSbzdCJcUL+Dz88JFcO0WO6U5pTH5veGSP/tsOLGfzpyCqPeNlPXeKolGN9w8exWTI0ItjCJrzszpUPMp7oIJMTlepOxrj0h0AXfM+yYFmeFtjCI7BOtyVTa7hr3oe/wK/lADciP2inXaLDisMh6/Qnu3L2bPHjNY7LSixA0dsVHstBdzp002ZMJIuPNEbBR4rTNLtkFr2AFYQkmIKioBRTVUUuJwMd7TRNArRnfFAmSETO6tMSpoarfYWVK8BIDXPygDqplXeBYrSib3v+MYkRlaqIbSlSBS1nWBrYCXy0suYlr+2JTX6Q/tGmyL8TwHFJXveF8F4IvTL4tZxf9YoykkDcNsK6Yt9pIEiTbjdSOAoDvW0+mhvdsPGbE5ZmOHtugbc34h0hXrjUlbP22uUwz6Yh7rzhNmUN5lScIiSwQUFb+iYjXmLTgkjPfqIOiVdhMpdm0xarcUSWvomBmJxn0D1NpNDadavaqqeksxI8ZdQbiHaHt3bLtCtLi8aB6RDIO0zesNfdEfpjVHd8ParTGLX4s1qaG+zLHsFxt2xRp30dfG5g0oMWmp1hE6hhH7H0PYPRxri51Ru05oaO5YzXIeLwjFziRo1hHtQWtEtMW4xRX7FkSaFSwjybgLfqbebmro8rt9Cr5QMG+qQZX4WFvsNLTFICPRFrPG6yOB1ri+aZg9JvU+sQZd7GFk+sWawZrjtFlICSk7sYiz017MjWqx05MnvIGYxJuZYY4hMoFi4Pp927dvp7i4OOrfGOp+w8G4T09BD8zgik2PcYP0SFpCypKhLXZJYfmH+nDULCOy1FthT2MwUoqdFs9kZEsOBJuHQ9ilOFTCiRPGVexGol+sNs9Gjr+CcB/bWMTZaRY7o1rhE0MxdgFF1YvhD4dGs1jsQnF1Q7XYLVq0CEmS9E9mZiYrV66koaEhlsOMGqHYmQQzKHaaNa11JC12BlbsNPkDijpkC0d7xGJvhMyx3kjTXbExVuw6g1nARlfsYlUKo8MMFrvQXMfKFdvtDeiZl9mGn+fYZcZqMXZGtcJrMXYQG3esZs3OTjL2HNtCnoHBWOxORlVVysrKeOihh6ipqaGqqoo///nPbNu2TW+iMFYY94ki6IG24Bv1wQAjZ7Fz+wJ6exojK3YOq4Vkh5VOj5/mLu+QlHCjLwAQsdh7/AQUtddyBkNBt9gZ3H2Trbti499ip8WExcoVqylJdqusuzqNivaCMdxYSjB+jJ1FlkiwWej2BejyBMhKHt7xdFfsACVtVFWlO8Yt6wZLgs2iu2J9Q6hlV15eTkdHBxdddJHez76goIApU6bgcrkG2HtkMeZVJjiFNhOUO9GzYmNssdMWUJtFMnSMIQStdppiNyk7Ker9wy4b485zpMLa4fb1KEA6HMziis2O0YKvxdgZ+Z7WY+xiZJ3V6pvlJDsMa5HWCGc/x0KxM3aMHQRLnnT7AnTFoGahnjwxgMWu2xfgrHteG/bvDYX99y3RY3mH4ordtWsXdrudmTND9Us9Hp5++mkOHTrE448/HtOxRouxV0mBjhlcsekJWvJEbC12WiHYrCTjLwaZiXaON3frldejxegZsRB0X2jdF9q6Y6fYaXE5hlfsQotVh8eP2xfAOcRSJXryhIEtV2FXbIwsdiaJr4PI7OfhP8+0DHKjWuwgeB02dnqHPdeqqobr2Bn8XtZj7Ibgit29ezc+n4/MzGDBTZfLRW5uLq+//jqzZ8+O6TijxbhXmUDH7QvgDQW0phm4DIRmsXN5A3j8ARwxKgw0WLO+EcjQMmOHqNyGFwDjzjMEXzA0xS5WhIPqjb0YpCZYsVtkvAGFpi4vhelD6zOpLaBGjrHTkydiFGNXF5rj3FRnTI43kuiu2FhY7DzGt9jFKp6y3e3HG1KUspL6f2Yn2Czsv2/JsH5vqCTYLLhDbmDfECx2u3fv5tprr+Xee+8FoKGhgbVr13LzzTdTVlbWo6/9aGPcJ4pAR3ODSFKw5pVRSXFakSVQ1KA7Ni81Vord4Mz6RiBc8mR4Fjsjv9lDULGraXOPiGJndIudJElkJdupaXPT2OEZsmLXGVrsDW2x08udxGae69uDCTL5JlDsYumK1V/YDBxKEqu51hThFId1QGu2JEl6O7OxQHPFBgJK1IWod+/ezf3338+UKVMAmDJlCmvWrGHlypWcOHGCCRNi05lnKIisWBMQGV9n1EKmALIs6W65WMbZmaUmEoSLFA/dFWvssgga2iIQU8XOBIVrNWKRGWuGuQ4XKI6NK7YupNjlpZphjkNZsTFJnghZ7AzYE1hDm+vhFh7XzpfRS51AsI6dBKhEF2d35MgRWltbT3G5Hj58GKvVSnp6ekzHGS3GfaIIdMwQX6eRnmijucsb0zg7M/Qd1MgYpsXODFmxEB5frBQ7X0DRz5nRs2IhvGgNR7EzQ1ZsSoyTJ+razeiKHX5bMVMo8TGa63oTudslScIiy/gVBX9A0cufDMSuXbuQJInc3Fxqa2vp6uri7bff5r777uOWW24hNTV1hEfeP8a9ygQ6ZlLsgnF2XXoLsFigJ0+YQLHLGrYr1vgLAETWsottCyKLLBm6pI1GZC/RoaLVsUsysGIXa8ts2GJn/EVfm2Otrdhwnr9meGHTWwUO0xWrzXGuCSzvEEyg8CvRWex2796NqqqUlJQAkJGRwdSpU9mwYQPXX3/9SA110Bj3iSLQCT8UjD9dI9FWrLHT+E3DNYabPGGGsggQVuxau2OjwDfqmc92Q4cbaMTCFWuG/s/piWHFTlHUYc+NZs0xgytWayvW4fHT0OEZpmJn/Bc2vWbhMF/WtFjZ3BTjK+8QzPJ3+wJR1bJbv379mBch7g8RY2cC2lzGXwA0RqJIsb7om0Cx09uKDdUVa5Ks2Eyty8gw+uJGYpbECY1wV4JhWOxMUHRce+YoatjCOFQ8/oBuyc4zyaIfi8zYyKoGRn5hi5XFLuyKNce9HE2/WLMgFDsT0Kq/2RvfRTVcxaY3Gs0UY5cYmxg7I7/ZQ9gyOdzuCxrmU+yC42yKgcXOyBnQTpuFhFBm43DDK7Q5tltk3RJodGKZJCNJGLrbRqyyYus7zOeKhaH3izUiQrEzAVqGaYYJHoZajFnTMCwZkSiKSnOXebJiNfnb3X58Q3gDNIMVB8JyxsoyG9mRwAwMd8EPKKpuATP6XGvPneFmuocTJ4xfaFxDq53ZMIzMWE1RSrZbDR1mEKus2Pp2zd1uDqusljAx0PO6uLiYO+64I+rjD3W/4SAUOxOgvSmb4S1Xc5c2xsiS09rtQ3uRyhyg2KURSE2woT27h6L0mMZiN8yyLidjOotdyvBcsZ0R5UOMPtdpMQqvqDdR4oRGzmlS1gZiabHTYuzMcS+HXbH9W+yEYieIKVoiQqxaN40kWTGs/QThB2p6om3QqehjiSWill9LlPFnAUXVFwGjx1NmDjNJ5GTMpthpxbJbXN4hxeZoi6fTJsesQ8tIkZEYm8zYWhPVsNPQSnZoVqih0GGCjFiIiLEbxjy7feFuNGZKngDhihWMMlqMXbrBHwwQfsNt6oqtYjdQaxojkanHn0V3DiJb+RhdsdNi7Nq6fTEJOm4wURFqCM6xLIGqDk25jSw6bnRiZZ2tM5mLDsJWJ00pHQqaa9PoFju9hJHbj6oOTcnR4yitsimqOEDYYjeU0BmjIhQ7E6C5YjNMoNxoFrumUFHP4WKmUicamUO02GkxTEl2i+Gtk9pLhqrGpsZZvclqX1lkicyQ1W4o1hwz1DXTSItRCSMzumLzYmCx0+fa4Eq8Nr6AouLyBoZ0jMjECbPEUWptxRRVJRAnVjtjrx4CIPymbAaLnWat8itqTBb8RpM0ho8kI1QKJFpLjpkKUVsjMhuHmgGsoaqqbhHJTzPPoq8poUMJrA+XtTG+VSNWrti6DvO5YrXrcTgWuxY9RtrYL+ZOm4wtlCE61Dg7TQE2ywsaBF/SLFJ8We2EYmdwAoqqF7c0+oMBwGG16IvVcGp8aYQXA/Ms+JolJ1rXle6eM4FiB2HL5HAVu7ZuH25f8IFqpnnWFJS6ISz6ZrLYpSfEJnlCd8WaJPYKwmMNXqNDs2K16THSxp5rSZIi2ooNLTO23mTFiTX0ODuh2AlGg8i3ZKM/GDRiUeNLI5w6b543QK14b7QKjx5LaZJ5zohRyRPNGpKeaMNpM3YiQSS6m25IFjvzWGfTY+SK1VtNmUh5T02w4rQFl8mhKPAQDrEwg8dluEWK601olYVwLTtvFN0njIzx/QCnOVp8XbLDaui4K8XrpfPNN1G9XtI8MiBRuf09pu8NbyPZ7SRfcgmyffCWR7P0HYyUP6FaAmTqPj1C28uH9W0Gkr8tNNdGXuwj5UxpD85z1b8+pO1I+IEY7TzXtobcsCZa8CGsoAzNYmeODiMQTp5oG4YC7/L69YxvMy36kiSRl+qkoslFXbuHiVlJUR9Da7uXboIY6XBbsWG6Yk12L9sHWcvOLAjFzuC0mMSM3122h6o7vgdA4rzrofAcjj7/EtVH/9VjuwlPPUXSgvmDPu7hpkZA4khXGVAUwxHHlkj5GX8uzPkvaveXU/3//aHHdv3J/37Vx4BMm692hEc7dCLltM++CiYuoPKVLVR/+maP7aKZ59cPvw/IyLb2WA93RNFeNuqGkjyhu92N/wiOhcWuti2o/CbZLSQbuPtCb2iK3VDj7E4vi525yhZp2KzxpdgZ1wQkAKCt2xzFiRPnnIutqAgkiXRPJwAtjpTwBpKEbfx4EuecO+hj+hU/DR1B+f9R8X/4leFVRB9JIuVP83QB0GZPDm8wgPx+xc+/ju8B4NP2MsPKOlw5T8av+Hn98AcAVHfvN6zcvRF2xQ4jxs4EFjsttnc4LcVqQorduPQE02RLaoQzY4em2LWZKMQidjF2JlPsLFryhHDFnnYE/AoB/+hq9M3tXmQVMp22Uf/t6JDJvG01NT/+CeneLmQV2h0pKFI4ZirzttUoyDBIOV48uBn8DmSg0X2YVw9tZvnk5SM0/uESlj/V60JWocOeNGj5Xz2yma5uBVkFl7/BwLJGytkdlNORPOR5fvXIZjq6ZGQV3GqtgeU+lZwkG7IKjW2eqO/Nji4fsgopdqvB72tIsVuQVejs9uPx+PXyENFwoil4TxSmOg0v78nkJ9uRVahr7R7S2NtDc51qgrlOdQTnuq3LO6SxNra5kVXITrT3un/Ar6Cqqv4xClZZRiJosYv1uNauXcuGDRv40pe+xJ/+9Kd+t9XOS2+6RjTzIRS7KCjbWkFyYsrAG8aQxspWFrqtTG4IsGvzsVH97WhR5Rm0zLyKHDmNhW4ryclncGziEkDCkppKp3QW0iBlUFSF7XsPsNB9Dkh+HLUXsW3THnKnn4ksGdPQrMnvdXlZ6LYikzko+RVV4Y0De5jXUoLitWJtKTG0rJqc6VIKC91WMhImD2medbmbzwjK3TrB0HKfTKfHH5xnT4B/v3qMaNqApld0s9BtRdnXxq7GoWVbjhaKqrLQHVwqdrxylER79Aku9UeaWei2Mq1ZMfxz7GSyKt0sdFvx721jF8ei3n9KY4BixUr9+/XsSmiJ/QBjSM5xDwvdVjwftbDLfSyqff2KytQmhalYaf53A7tszaduZA1gzw3Q3eFD8RjnHlcDCkmKhOxVcbX1bpl+9713+PUj/0vZf8qora3hz8/+lRXLrzhlu5tvu4lx4wpYd9e9AHz31u+TmzWO//7R91j733dRMrmkz3F4vD683QH2vVMF/p73WaerY9DyGOfMCnrFE0qxTzBBtqAkyyTOn48jELwx3BYtWFglcf58JHnwl1t56yE6Q+4qSfYAKu3edspbD8V41LHjZPkVScYrWxlI/vLWQ3R420ENvWfJPkPLqsvpD8rpGeI8a3KrStBtI1k8hpb7ZBLtFiQpqPh0+6JzXWn3tcNm/EewLEk4QjFIbv/QlFCtq0qKw/juyJNJCsUEdnqid0/6FVVvVWWGjG9tjEMp7aKdH5tFxmECWSORQ29lSj+WRJfLxdlnz+ThBzf0eZxAIMDm1zazfOnn9e/S0tJY9bUbkGWZffv39rlvLBEWuyiYfelEUlNTR/U3//5yFztr/Mydmc6cxcWj+ttDQb20iMZ3/8pO5wwK/N18q/J1bIWFTF69Hsk6uMvNr/hZ99JqKrNy6PaUYkmsIrFwKxISdQn7eXHJi1hlY1666qVFHNmygY8tC+iyJXBD4wcUpzn6lF+Ttaawhk7vNBRPCgm5O7ElHza0rOqlRbS9/Wd2OmeSrXi5Ocp5jpS7wzUX1eoncdybWJ31hpb7ZA59dJSGDg9r5+UwoyBt0Put+fgo1X4/P1hUwDlF6SM3wBhxZP8xjjd7+d68bM6dkBn1/r+prWdns5+VC3OZM8e4SVC9oRxrZl35CSYm+vnF0uKo9q1rc7PzXwewyBJPf36S4eMLj+6ysvN4LY4cC3OilHXnkSZ27jrEpOxE5vaxr9vtpqLyGAkpNpxOO6qqooxRXJtskcLzoUKly4OiqliTbL2+cK388gpWfnkFAP/1tWtwJFpJTOuZ6fzOO+9gt9u48OLze8x1QPaQmJhI+ZEDJKZd1feY3Ar2BAtTLyzE6eyZWdzePvjkMkM+OTdu3MiDDz5IbW0tpaWlPPLII8yf33uGnc/nY/369Tz11FNUVVUxbdo0HnjgAS6//HJ9m+LiYioqKk7Z99Zbb2Xjxo2DHpfFKmOxju4bdovbhyJBWrJj1H97SFjtTPnKSpQ90JiQiqz4ybv9VqzOwaf6v3r4NU64juMPFKNIINvaUOTgG+RxVyWvH3+NFSUrRkiAYWK1k3f7raRubaHDnkCbLYG822/uU35NVmQIKAmoEqi2TgKy39iyWu2c8dUvoeyG5oRkUAJRzbMmt4qFgJIMEmBvNb7cJ5GT5qCu00OjyxvV/dnq8aNIkG6S+zotyU5FSzdt7sCQxlvd4UGRoDAr0RTyRlKQkYgiQU2Hp6cyMAjafcF5zki0YTWBFSszxYEiQXO3L+p5qusMznF+RkKf+1qsMpIk6R8loLJ7y6lr82gwZ2kxsjU0l1Kwm47HH8CvKDilgedKkyGSv//976xYsQL5JK/F3XffTWdnJ/v27ev3+tGO2ZuuEc18GO4Oe+6551izZg3r1q1j9+7dlJaWsmTJEurr63vd/q677uJ3v/sdjzzyCPv37+fmm2/mC1/4AmVlZfo2//73v6mpqdE/W7duBeCqq/rWnI2CllGVYYKMKo2SK5YA4LY68E4sIXXZskHv61f8bNyzEQkJxR+0jkrW8JuKhMRv9/zW0NmTqcuXk64G3ZQdBcV9yh8pK4AaSABAsnQH/2twWYuvWAqAX7biLp4y6HmOlFsNzTGSDyyu4P8aXO5ItAr70ZQ88QcU3W1lhpZiEG4V2NQVfWkXVVWpbg1e0+NM1DJOIzdUd8/tU6LOFm01SbkqDa24+lBK22iZz/mpCTEd02gRi8zYl156iSuu6Bl3t2vXLh577DGWL1/O3r2nqSv24Ycf5qabbuLGG28E4LHHHuMf//gHjz/+OGvXrj1l+2eeeYaf/OQnLAstKrfccgtvvPEGv/rVr3j22WcByMnJ6bHPL37xC0pKSli0aNEISzN8wn0GzfFgAEhKdJJiUekISCg3fmvQLliAsvoyqjqrAPRFP7K+mYrKic4TlNWXMS9/XmwHHiMkq5W8iePY1wz+xUv7lL+HrKoFVC3WLLgIGl1Wh9NOulWl1S+hrvrmoOc5Uu5I5T3sFTG23JEMpa2YVqgXzNFSDMLdZIbSJrC92683lS9IN9+i77RZSE+00eryUdfhJi2KZ3FYsTN+cWIIjzPadogANW3B51ZB+uCVd9kiRe3yjRWypaflzDbMIsWffPIJ1dXVfO5zn9O/UxSFb3/726xevZoFCxbw1a9+FZ/Ph802sve9oRQ7r9fLrl27uPPOO/XvZFlm8eLF7Nixo9d9PB7PKb7ohIQE3n333T5/49lnn2XNmjV9mkQ9Hg8eT/jNNBrfdqxp6TLXg0EjPyuFjvpOOuecF9V+pTmlPLToIbwBLxv+LnG4Hf5rxnLOLQmXwLBb7JTmlMZ6yDFl3NRieL+Srsln9LlNpKztLvjJAZBQ+fmFd6NZ8o0ua15WCq11nbjmLBz0PpFyf3gInqqAkqxMvnvB/fo2RpdbYygWO+1lLcXg3WQiCSt20VvsqkMLfmaS3RQJBL2Rn+qk1eWjurWbM/IGXxlBr0NqEgVe6//c4fHj9SvYo3D/aUWo86OwygbdjsaIO9TuRe8QFbuXX36ZSy+9tIc+8sgjj9DY2Mh9991HZWUlPp+PAwcOMHPmzJiMuS8Mpdg1NjYSCATIy8vr8X1eXh4HDhzodZ8lS5bw8MMP89nPfpaSkhK2bdvGCy+8QCDQe1bPpk2baG1t5YYbbuhzHOvXr+fee+8dshyxRC9uaZIHg0Z+mpPy+s6oq/LbLXaWFAddub9wvwl08/lpn2HOxOgDtseSLK1fbj9vvpGyHqrvBN4ixWnjyqlLRmOIMSEnxcnBus6oLDmRcldWHgIOck5BEStKZo3MIEcQzU3XEEWRYs3NFY3lZ6zJTg65YodgsdPcsNFYcoxGYXoCB2o7qArJMljMNtepCTYkCVQ12ApNe3EZDNWh1oAFaeazygLYrcNzxb700kt861vf0v9dVVXF3XffzZ///GeSkpKYOnUqDoeDvXv3jrhiZ47XxX749a9/zdSpU5k+fTp2u53Vq1dz4403nhK8qPHHP/6RpUuXUlBQ0Ocx77zzTtra2vTP8ePHR2r4/eL1h2NxMkxmscsbRh9NCMYhaS18CtMTYzau0SLahTDcYcRc86xVmNcqzkeLtlAWmdBFB5A3BIud1sHBTPf08Cx2oa4TJl3wIexCrmqJTrELtxMzx1xbZEk3ImjeosGiPa+jsdgZCa1frLePQsCdnZ3s2bOHPXv2AHD06FH27NlDZWUl9fX1fPjhh3z+8+EyJ9/5zndYunQpy5cHvU1Wq5UzzzxzVOLsDGWxy87OxmKxUFdX1+P7uro68vPze90nJyeHTZs24Xa7aWpqoqCggLVr1zJ58uRTtq2oqOCNN97ghRde6HccDocDh2PsW6JoLhtZMnZj+N7QGrpr5vloqe/wEFBUbBbJdO1pALKSolsINcus2eZZ6wnZMETF7kRooSzKMJ/yDkN7gTFL/+dIhqPY1WgWO5Mu+ACFGSHFLkqLXXMo2SQr2RyKHUBGkp0Wl09ffwaD2xegOeSdMKvFTusX6w11nzg5VOvDDz/k4osv1v+9Zs0aAFatWsWFF17I/Pnzyc7OBuCVV17hzTff5JNPPulxjJkzZ55+ip3dbmfOnDls27aNlStXAsHgw23btrF69ep+93U6nRQWFuLz+fjb3/7G1Vdffco2TzzxBLm5uboGbXQ0a09mkl0voGgW8kIP8aE2ztYeoPlpTtPJDtFb7MKxlOZZ7CGs2A3ZYtcSzITVFk6zoSVPNHZ68AeUQbXbMqPFLismrlhzzjEEXbEQvcVOO19ZSeaZ6+B12RVVAoWWEZtgs5CaYCi1YtDYLMG2YqoaLCptOym54qKLLuqzePEVV1zRIxv285//PC0tp3YZefrpp2M65r4wnCt2zZo1/OEPf+Cpp57ik08+4ZZbbqGrq0vPkr3++ut7JFe8//77vPDCCxw5coR33nmHyy+/HEVR+OEPf9jjuIqi8MQTT7Bq1SqsUWRpjiVaaQHN+mMm8ofpitUeoIUmXQyyorRwaG/HmSZaAAByh9EgXVVVXYE38zxbZAlFhYYo59pMJYw0i12zy4s/yuByzSprasVuiBa7xpBypD0PzID2whFNyRMtI3ZcutPwRZj7QpakcAJFlH1yL7jgAq699tqRGNaQMJyGc80119DQ0MA999xDbW0ts2bNYsuWLXpCRWVlZY/4ObfbzV133cWRI0dITk5m2bJlPPPMM6Snp/c47htvvEFlZSVf//rXR1OcYaGZts222MPwXbHhBd+cLjrNYtfu9uPxB3BY+88G1JIszGTFAcgJLViDVWoiaery4vYpSFJwQTAjFlkiP9VJVWs31a3uQcWRtZisBAYEn0FaUH2Ly6dbagdDZXPQKjsxy5z3MoRjQOva3fgCyqCzmZs6TeiKTdRq2UVhsWvV4ijNeR9r2Kwy3oCCN6CQFMV+JxuSxhrDKXYAq1ev7tP1un379h7/XrRoEfv37x/wmJdddlmfZlSjortiTfRQ0MhLi95FFYn2lm9WF12q04ZVlvArKs1d3gEX/BaTKvF6VmiU2c8QtsrmpjgGVHyNTEG6pth1M2dixoDbt5rQYmeRJTIT7TR1eWns9AxasXP7ArqbfrxJ4yghaLG0W4KLfm2bm/GZg5NFe4Znm8jroj2DonHFHtdCKkxslQVwWGS6iN5iZzQM54oVhNFcsdkmW+wh+CCzRumiiqRat9iZ8w1QlqWo4pLMap3VEls6PH66omySfsLk7nYNTWnX3FEDocVTZphsrjV3bDRxdidCC36Kw2q6+NFIZFnSy7UM1h3r8vrp9gXLbpnJYqdZkpujsNgdbw6ekwmDVHiNip5AIRQ7wUgRXuzN87anIcuSnjGo1TeKBrO7YiG6zFizKnYpThspobZYg1VsNKpag4u+WTNiNbTYscFe5+FuMuaa6+yU4HijyYzV3LDjMxNNG3ulocfZDTKBQlOAnTaZRLt5LNJaW7HmIVjsBmvJNCp26/CKFBsFodgZGD2jykRve5FoD0LtrX2wqKoaTp4wqSsWwvM2mOK9zSbMlNTQMwajVODjYY4hXHi3epCWHK22mZlcsRB9CR8IW3LGZ5p7jiHyOh/cPGvnKSvJYSqldigljE40x8dLmlbLzhelxa6920d7ty/qxKKRQih2BkYLqDdTqnwkWkzNiShLBLS4fLoLw8zBuGHX1cAPyJYu8yrxYYtVdPN8XK9hZ+5Fv0B3xUZpsTNJ0VqNoRSj1ix2ZnfRQdh7EK3FLttk93ROcvCZO1jFzutXqAllxZtdgdcsdr6AghJFTH5Nm5tjTV24fb13vBpthGJnYMzqntPQbvLjzdFZ7I41dQHBzFqz9paEiFp2A7g0AopKa7dmxTHfXGsWq5ooFbtjjcF5Ls6KJv/MeIyLwmLn9gXwhKwB6UnmsthpHQUGq8BCnCl2oReQ44P0QOjlqkxU6gTCCVFNXV4CysDKTXVrN6oadDnnmEzWk7HKErIkoRKd1U6z1EWbJDhSGGMUgl7RTfkmvVm0h3lllIpdRUixK84292Kg17Ib4M231eVFezk0Y4C5ljwQjSvWH1D066I429yKnWaxC5Zv6f+NXbPWWWWJFIchixL0iTbPtVHEUmovdUVxoNgVh8q1VDQN7nnWaMLixBAubRNQ1EGVPNEU3aIM88dRSpKkW+08g1TsAopCIPQAH2wZnJHGGKMQnILXr9DhDmYZmu3BoKEF0g72DVfjWGNowTe5JUebt4GygrWHZ1qCzTAPhmgoHIIrtqq1G7+i4rDKjEs1r7sdgsp4QsiyPFDdRs09l5FkN90iGK3FTlVVXbGLB4vdxNDzqLqte1Aut3CMtLlezG0WmcyQ56B+EGWM9DhKk4dUaDiiVOx8gaBSZ5ElLAbpkmS+VeQ0QVvsLbJkuv6hGlqMXXWrO6qgUs0VO9Hkip3WlWGgWJXI1nFmRI+xi8KSc7RRm+NEU7aMi0SSpEG7YzUl34wuKy3eta7djTIIF11Tl5cubwBJMn9JGwiGViQ7rKjq4BLCNI+L2WLsICKBYhDxwfGSEavhCL2kefyDi5fTSqMY6aXcXL6A0wjtoZCRaL4+sRq5KQ7sVjkYXBtFUc9jIVfHJJO7YgfbVs2MLaYiCcfYBRf8wVyv8RJfp1GYnsCRhi6qB7BmaW757Cg6NxiF3BQHshS0UDR2echN6d/SeqQhOMeF6QmmjpXVkCSJiVmJ7Ktu52ijiym5Kf1ur/XJzjWhRTonxcGB2o5BJVBoVtmRLkCteL10vvkmqrdv97Bkt5N8ySXI9qEr007NYufraYy4//77+clPfnLK9j/7xYOsuO6bekatERCKnUFpNnlGLARr2RVlBBe84y2uQSt2FXFisdMaxLe4fP22FWsycb1CgLxUJ7IUrP3U0OnR6xf2R1h5N/cca2jWrIEsdo0mzZSEYGB4boqT2nY3tW3uQSh2nQBMzkkejeGNCsXZSeyrbtdfTPpDe6HLN6liB4PLjNUVuxHOiO0u20PVHd8bcLsJTz1F0oL5Q/6dvlyxt99+e4+WpPfccw+vv/46S1dcCYSLGxsB44xE0APdjJ9ivgUgEu0trnKQAcetLq9e58vMvSUhGDOnBeL2F6sSbidmToudzSLrGYODWfAg7Io1e+KEhuaOHqhIs7ZQmtEVC9HF2R0OKXYlOfExxwCTQi+bWrhIX6iqqsdbmlGx05T2+o7+51lVVd0yOyl7ZBX4xDnnYisqgr5iUyUJ2/jxJM45d1i/Yw+9gPsVpUcIUUpKCvn5+eTn57Nx40Zef/11tm/fTk5+IXd886vMmFTAl7/85WH9dqwQip1BqQspAnkDvBUbHc0ic2SQC75myclLdZBoN7dBWZKkQbljGzvNbbGDsEt1oAVPQ9suXlyxBYPMDNZe2Abba9VoaJbJwZS20Rb8eLLYaS+bA13nbd0+3eKjlQ8xE4O12DV0eujw+JGkkX8Rl6xWcm5fDX3Vl1NVcm5fjWQd3rphkSU9Xq63BIp77rmHZ555hu3bt1NcXIw3oHDdN27m0T/8cVi/G0uEYmdQNEUgx4QPhUim5AYf6uV1HYPa/lB98C0/Xlx0mju2rh+LnfbwzDXpYg8wOTRfRxsHtsy6vH691MnUvPhY9IsGWbMxHFBvzrkeksUuTu5lCD+Xjg1wnWvxdemJNlPGF+YMshi1prwXZYxOHGXq8uW9W+1C1rrUZcti8jt9uWPXrVvH008/rSt1ECxmPO+8C0hPTYvJb8cCodgZFO2GMrvFbmpIsTsUesgPhKYATsvrPzDZLOQOwmKnuTvM+GavUawrdgPP86H6TlQ1GD9qVgXnZLR40BMtrn6LuppdsdOyWwfqJuPxB/TOIiW58aG8Q/g6H6jkiZndsBBhmR0gtEALqZg8wm5YjT6tdjGy1mn0lhm7bt06nnrqqR5Knaqq+PzBsVgtxklyFIqdQalvN/9iD2GL3YmWwdV+OhhS7KbGiWI3GFdsvW6xM+ciAOEFbyBLBsDB2uAcnxEncwzBebZZJHwBtd/FUE+eMGns7GBd7pVNQQU3yW4xtSX6ZLKS7GQk2lDVsHehN7T7fTCJREZEU+BrWt39vqiEE2RGzyp7itUuxtY6CHbRAOj2Btesn/3sZzz66KP85S9/wel0UltbS21tLR2ublRUZEnCaqDqFUKxMyi6xc6kDwaNrGSH/iA8PAirXXldcJtp+fGx6IddsX0rdnpAvYkXwMig8oFqnH2qWWXjZI4hGJczUKKQP6DopW3MarHTusFUNLlQ++mlWR5Sekpyk01XiLk/JEnSr1vtBaU3atuC97RZLXZ5qU6ssoRfUftNoBiLOMpTrHYxttYBesFxt09BURQefPBBGhoaOO+88xg3bpz+2V32HyDYY9ZI17m5o9PjFFVVdUXArG+7kTWHii0yLUh8vPltinLCi8HJNYfau71UhYKyzxigRpSRiZQ9tUECZKqOVNH28nF9G012lyrjCr0V5piwBIYma4rHi1WS8fgVyv/2d/IjLtvIeVZVlQ+P1wDxpdhBsEDrkcYuKptdnN/L3+s6PKgq2CySXtnfbIzPTESSoNPjp7HT2+fLyP7qdgDOzE8dzeGNCtPyUth5pFn3LvSGVvZGK1xtNixysOj28eZuTrR06+3kTkZLihvtOMrU5ctpeOQ3+E6ciLm1DsBptSARzIwNqNDW1tbrdo2dHqpbuw1Vww6EYmdIOjx+3KHiiGZ1z0XWHMov/RJMOo+yV96k9JMtPbaLrDn0ZNlrgExaokqaSYv1Qk/ZpazJcOGtVFc1UP30L3tsN+Gpp6iffFbwH7KHf1ZtYUXJitEe7rCIlHXcJT/geGoeHzzyOHPrD/bYTpvnV468wp4THUBaXLliIZwVWNFHAoWWSZqf5jRt0XGH1UJBWgJVrd1UNHX1qdh9UhNS7MbF1xwDnDEIi11lHLRSK0xP4HhzN1Ut3cwrPvXvbl9Al3O04yg1q131j9bG3FoHwRqsDqsFtz9AtzeALaF3xU3rOvG1L6/gwL6P6erqoqioiOeff57zzjsvpmOKBmOpmQIgHF+X6rSSYDdfRhX0rDlU0lYNwKH0ovAGJ9Uc8it+/vSf7cH/tx7Hr/hHe8gxI1L2LHdwgWt2RlguImSvbQ8+GCVrO7/d81vTyR0p6+T24DwfSSsIbxAhq1/x8+sPnkD1pwEqJbnmbzMVibaI9+WK1bpS9GX9MAuaO/ZYP7UpNcXurALjZArGCi2x69N+LHZamy1zK3bBsffVPq28rpOAopKRaBsTz1LqFVdQ/PxfSV0xMi/DTrvmju07NlzLmt30j800NDTgcrk4ceLEmCp1ICx2URHwKwQG2Rh4ONS2dCOrkJfiGJXfGxlkMm9bTc2Pf0JJWzWyCofTighIQRM3QOZtq1GQwa/w6pHNtLakIqsQsB7m1UObWT55+ZhKMHTCsmd4OpFV8FidtNuTSPYFF3dN9tfL30dWZSxyJ9XtNSaUOyzr5LYa3imczdG0QhQp/EKiyfrqoX9Q02BHVkF21PH28a0mk7V/xqclIKtwvLGr1/u2usmFrEKBqe9rmJiRyA61iWP1nb3K0eryUtvqRgam5iSZWtbeKMlOQlahrtVNc7vnFO+CL6Doz/DCVKdp5S9McyKrUNXs6lWG/SfakFU4Ky8FJaACA/cPDvgVVFXVP8PFefbZADE51inHtspIQLcv0Ofxvb4AEuCwyDEZg3ZeetM1ormOhGIXBWVbK0hOHHnXwuHadha6rUzolNm1+diI/95IocozaJl5FZaOTs7vllGkdPaXrCTJ78aSmkqndBbS5mMoqsIbB/Ywt+lsVL8VW0ce2zbtIXf6mciSOY3KmuyB9g4u6lRwW+2UT/o8GZ5OXXb11SNUfVjDQvdEZDUVW9VlppRbk7UgYGeh20pCypkcm7gEkHrI+saBPZzbcjEBtxULsill7Y9Ap4eFbiuOSnev9237wSYWuq1MrPOb+r6eUOtjodtK++5GdvlPjRU83uJiodtKaoKN8n9WjcEIR57LSKDd7eOfmw4xPqOnBbat28f8bitWWaLy3VqOm9PrTkZ1NwvdVtjfzi7HsVP+XnGwgYVuK7OjWaesAey5Abo7fCgeY9/3Nr9KkiJBdwBX26n9aRVVxeZTsSGhdgdwuYevwHu8PrzdAfa9UwX+nt66TtfgasGCcMUakk530B2X5DC33i3JMonz52NRFdK9wSy5ZmcKoJI4fz6SHLz8ylsP0e7pQvUHA3Alaxvt3nbKWw+N1dCHjSY7qCT7g7FVnbYEImUvbz2E26tt7wFUU8qtyZrhDj542u2J+CULJ8va4W1H9Qdd0vEwxyeTlhC03Hj8Sq/umw53sFVestPc93W4K0Hvzdi1Yty5Ji3pMhhy+8l2b+sOznNqgrXP7ldmQLueW0ItHk8m3PbSnAl+A2EL1aULKGqvJV/8oe9kWUI22ESb+wkzysy+dCKpqSOf5fXipk52nvAzd3YWcz5XPOK/N5KolxZxZMsGXmlNYufEBYxTm7gksI/Jq9cjWa34FT/rXlrN8Uwbrs4LkaxtJE94BQmJuoT9vLjkRayyOS9TTfa/dmWxM72UGe4KLgkcYfLq9QRkWPfSag4nfxa/Wogjpwx75r9MK7d6aRGHt2zgfs6h1ZnCF9r3cWZioIes1QW1dHQtBNlPYtFrWJ21ppS1P36wr4Ladjffm5XBuRMye/ztZ0eq2Nvh54YLxjHnzLwxGuHwKXF5+cG+ClD93H9xIanOnq7IPz7bxE6nn0Xn5zPnwuKxGeQIsytJ4dnXWklPVfn20uIef/tkZwU79/u5ZEoGc076m5ko7vTw3/uOgernwc8V9WjxqKoq3/qwnHannzuXTuSscYOLpXS73VRUHiMhxYbTaXzFX/H66PYFyHDIpJzkcnd3eenqVkl2WEhMi40sslvBnmBh6oWFOJ09Eyfb29sHfZz4eJqOEharjMU68kbOqnY3igRFWYmj8nsjitVO3u23MvOR59hcvICPsieTt+oCrKGb+tXDr3HCdRyv+yIUCayJx1HkoLXjuKuS14+/ZrpMUZ2Q7HlPvYUiQV1CKnnfuhWr087mw3/nhOs4fn8aigSqvdncclvt5N9+K9P/9gn/KpjJvsyJXHrT5T1kDXiLUFQnWLohoYqApJpT1n6YMi6F6g435Q0u5k3O1r9XVZVjLS4UCSbkJJn6vs5KdZKf7qS6zU15QxfzJ4UV2GA5m1YUCeZOzjS1nP0xuzgDRYKyqrZTZCxv7ESRYMq4VFPLn5ueQHqyneYuLxUt3ZxdGFbeKpq6aPX4sVklzohCTkuo3pv2MTqJDisuXwCXL0CG1FN56/YFUAkmWcRKFu289KZrRHMtmfeqi2O0LKSidHNnz2mkLl/OHFuw3tGh9CKUixYDwUzYjXs2IiER6CoBwJJ4WN9PQjJlpmgkqcuXU2APmuzrswpJXbash9yqLx0A2daq72NWuVOXL6fU3wzAvqKzTpHV3zUFAGvSYSQpeE7MKmtfnBEq+3ByxmSLy0d7KMRC695gZs4qCHou9lb1rO9V0eSiqcuL3SIzIw4zYjVmFqYhS8GeuSe7Yz8NFVk/Iw76IOu9vut7Xs+7KloAOLswDYfVnJUbBkNiKDO2y3Pq80mrP5powF7AQrEzGKqqUhXqsViUYd5U+Ugkq5XpN3+d8e11qJLE+5XBxaCsvoyqzioUxUKguxgAS1I45kpF5UTnCcrqy8Zi2DFBslqZtvRiABrGTUKyWnvIrQZCMWe2Fn0fs8otWa0sWv4ZAPZnFqPIFl1WFZVA11QALInxNceRaLX5Tl4ItZ6aBWlOUzaFP5lZ49MB+LCiucf37x5qBKB0fFpcyNkXSQ6rPteakgPB57fW7zoe6jRqvb61jkAamsxzJ2aM+phGk2SHFYlgyRNvRFaqXwnH0SYaMBbeeCM6zWns9OLxK8hSsJBpvJB6xRUsan6bZw928sYn9Vx+9jhKc0p5aNFDlB3z8tjBYGHi/7nkez0Cju0WO6U5pWM38Bgwbdkl8MlbVPutqKqqy32iycv/HAS7VWX9orviQu65X1lB2sHXaPMq/PtYM+dODMra1OnlrgNBAddedAXZqVfo+5hV1t7Qitd+etJCeCyk2BWPcoX+kWLh5CwAdh5pRlFUveDy9oMNACw6I2fMxjZanFeSxYHaDt4pb2DZzHEA1La7aXH5sMgSJaPYZmuk0BS7A7W9W+zmxLliZ7XIJNqtdHn9dLh9ZIVaAbo8QaXOYbVgM1jXCRCKneHQ3LD5qU7sJo7POBlJkrjiopk8e3AHr+2t5edfOBuH1c6S4iW8/sF/gBNccU4xV0w5e6yHGnOKMhKxyhLdvgC17W7GpSWwpHgJ7/gagA+YkJnCFVMWjfUwY4LVInPZzAKe33WCzR/XsHByFkuKl/DMjmMo6j5Ki9K4cfYFYz3MEUNbCBs6PLS6vKSHWocda4ovxe6conQSbBaau7wcrOvgzHGpuH0B/nU4aLG7aFruGI9w5PnsGTk88d4x3v60EVVVkSSJ3RWtAEzPTzFtcflISkOW2bLKFl3Gxk6PruidG+eKHUCKM6jYtXWHFbt2LcPdYcw5jh/NIU7QWrTEixs2krkTM8hPddLh8fPG/nogGLvw+r5aAK6YVdDf7qbFbpX1BT3SkqO55yaauDp9b2jWi79/VEO3N4CiqDyzswKAFaXxOccaSQ4r4zODsbFav1QIu7Imx4liZ7fKnF8StNpt/jjY+/e1fbW4vAEK0xM4a1z89Yg9mYWTsrBbZKpauzncEJxfzZJ17oT4UHhmFKRht8q0uHz68+rtTxtCf0s1bcvLaEgPZcN2evx4/QEUVaW9Oxhzl5pgzNaXQrEzGIfrgw+Iktz4WAAikWWJq+YG24r9dvshVFXl/96vpMPjpzgrkTlx8jDsDS2QujwiqF6b6ymj3GdxpLlwajbjMxNo7vLy9I5jvPSfKj6t6yTFYeXqeePHengjTmlROgC7K8OxV3urg3Gl8ZRQcOXsQgD+trsKX0Dh6R1B5f1Lc4pM2ws3GhLsFs4LKbcv7wm209t+MPjCumByZp/7mQm7Vaa0KHjN7jwSjKfcdiAo48WngVUWwG61kByKo2vo8NDW7cOvKFhl2bC1ZoViZzAOhd784iE+oze+/plJJNot7Ktu5/vP/4cNb3wKwC0XlcT1YjA199TG4fpcx5liZ7XI3H5xMFFi/eYDfP+v/wHgW5+dfErNs3hEs9bsrmwFoKXLy4lQQtSMwvixZF16Zh5ZSXaqWru55nc72FXRgsMq81/zJ4z10EaNL88Jvqg+v+sEe6vaONLYhc0ixVWMoeZW37KvlrZuH2/srwPg0rPGthajqqrsbdw7Iu3ETiY31cn/98ivKMpMIjPJQen4DGYUpmGRZTZs2DDivx8tQrEzGIfrg+bueFvsNTKS7Px42ZkAvLC7ii5vgPmTMvnynPi25EzTgurrw65Yba7jzWIHcNXcIr4YsugoKnxuei43X1QyxqMaHbS4o92VLSiKysehkiDFWYlxpdgm2C388PJpQFiJvf2SKXGV9DUQl80IKrc1bW4+/8i7ACw+M4+UOJpnLbTi3fIG7tq0F49fYVpeCucUja31+ZUjr3DtP67llSOvjPhvJTusrF59O9t2HWDbrgO891E53/zmN5k4cSJf/vKXR/z3o8WYdsTTFF9A0eMYSrLjb7HX+OrCiTisMpv2VDElJ5nvL5mGJY6tdRBW7A7WtuP1K3R6/NSG6l/Fo3VWkiR+dXUp1y2ciKKqzJmQEdcW2UhmFKSS4rDS6vJRdryV90IlQOIx0PyaeRMIKEFrzoVTsvnGBZPGekijisNq4c5lZ/Lfzwet0jaLxO2XTB3jUcWWSdlJLD4zjzc+qePv/wm6nG+7ZMqYFhjW6mMC/HbPb1k6aemId6+ZWpRDfnYGfkXlV+vvY+vWrWzfvh1VVbnooouor6/HarVy9913c9VVV43oWAbCcBa7jRs3UlxcjNPpZMGCBXzwwQd9buvz+bjvvvsoKSnB6XRSWlrKli1bTtmuqqqKr371q2RlZZGQkMDMmTP58MMPR1KMIXGwtgNvQCHFaaUoIz6KE/fFVXPH86dvLuTeK8+OKytGX0zOTiIj0Ybbp/BxVRtlofirkpwkvSdjvCFJEnMmZjCvOPO0UeoAbBaZi6cH3Vev7avVY5LiNVP0vxZM4Omvz+emz04+reZZ48tzinj46lK+OLuQJ2+crxdvjid+esVZTM4Jxn1/beFEVpwzbkzHs/noZqo6qwA40XmCzUc3j/hvSpJEaoKNDQ/8jD89+yzbt2+nuLgYq9XKhg0b2L9/P6+//jp33HEHXV1dIz6e/jCUxe65555jzZo1PPbYYyxYsIANGzawZMkSDh48SG7uqQ/Fu+66i2effZY//OEPTJ8+nddee40vfOEL/Otf/2L27NkAtLS08JnPfIaLL76YzZs3k5OTQ3l5ORkZxnt7/s+JViAYfH06PiDjGUmSmFecyev76/j3sWa9IfzsOE4YOZ1ZNjOfl/9Tze/fPgKA0yazaGr8xF0JevLFc4v44rlFYz2MEaMoI5Gt31uEy+sfczdzj849qHr3mtGw2q1bt46nn35aV+oAxo0bx7hxQUU3Pz+f7OxsmpubSUoauwRIQ1nsHn74YW666SZuvPFGzjrrLB577DESExN5/PHHe93+mWee4cc//jHLli1j8uTJ3HLLLSxbtoxf/epX+jYPPPAA48eP54knnmD+/PlMmjSJyy67jJIS48X77DoWtOKMdeyCYGTQMuhe31fLtk+CVhyt0Ksgvrj0rPwesZNfmTeBtMT4tMwKTg8ssjTmSh2ErXUqwaQJrXvNSFvt1q1bx1NPPdVDqTuZXbt2EQgEGD9+bGPGDaPYeb1edu3axeLFi/XvZFlm8eLF7Nixo9d9PB4PTmfPQN2EhATeffdd/d8vv/wyc+fO5aqrriI3N5fZs2fzhz/8od+xeDwe2tvbe3xGmoCi8laoPtCF4s0+Llk+cxwWWWJ3ZSsHajuwyhKLz4xP99zpjkWW+MP1c1l6dj5fXTiBH10+fayHJBCYnkhrXSQj3XP6Zz/7GY8++ih/+ctfcDqd1NbWUltbi8fj0bdpbm7m+uuv5/e///2IjCEaDKPYNTY2EggEyMvrmUKdl5dHbW1tr/ssWbKEhx9+mPLychRFYevWrbzwwgvU1NTo2xw5coRHH32UqVOn8tprr3HLLbfwne98h6eeeqrPsaxfv560tDT9M9Lad6vLywNbDtDU5SUj0cbcYuGei0dyU51cGVGE+ctzivTOBIL4Y1J2Eo9+dQ4/WzkzLroQCARjzcnWOo2RtNqpqsqDDz5IQ0MD5513nu56HTduHB999BEQNAatXLmStWvXcv7558d8DNFiqBi7aPn1r3/NTTfdxPTp05EkiZKSEm688cYerltFUZg7dy73338/ALNnz2bv3r089thjrFq1qtfj3nnnnaxZs0b/d3t7+4gqd60unx6L840LJhmy95wgNtx35dl6ssT3L5s2xqMRCAQCc3BybN3JjFSsnSRJtLW19fl3VVW54YYbuOSSS/ja174Ws98dDobRILKzs7FYLNTV1fX4vq6ujvz8/F73ycnJYdOmTXR1dVFRUcGBAwdITk5m8uTJ+jbjxo3jrLPO6rHfmWeeSWVlZZ9jcTgcpKam9viMJMXZSXx5ThH/c+UMbrloyoj+lmBsSXZYWbdiButWzNCrmQsEAoGgf8rqy3q11mloVruy+rJRHdd7773Hc889x6ZNm5g1axazZs3i448/HtUxnIxhVha73c6cOXPYtm0bK1euBILWtm3btrF69ep+93U6nRQWFuLz+fjb3/7G1Vdfrf/tM5/5DAcPHuyx/aeffsrEiRNjLsNweOiq0rEegkAgEAgEhqQ0p5SHFj2EN+Dtcxu7xU5pzuiupRdccAGKoozqbw6EYRQ7gDVr1rBq1Srmzp3L/Pnz2bBhA11dXdx4440AXH/99RQWFrJ+/XoA3n//faqqqpg1axZVVVX89Kc/RVEUfvjDH+rH/N73vsf555/P/fffz9VXX80HH3zA73//e0MEOAoEAoFAIBgYu8XOkuIlYz0MU2Aoxe6aa66hoaGBe+65h9raWmbNmsWWLVv0hIrKykpkOew9drvd3HXXXRw5coTk5GSWLVvGM888Q3p6ur7NvHnzePHFF7nzzju57777mDRpEhs2bOC6664bbfEEAoFAIBAIRhRJHY0Ouianvb2dtLQ02traRjzeTiAQCASCeMTtdnP06FEmTZp0SqkyQf/nJxo9xDDJEwKBQCAQCASC4SEUO4FAIBAIBII4QSh2AoFAIBAIRg0RAdY7sTovQrETCAQCgUAw4thsweLsLpdrjEdiTLTzop2noWKorFiBQCAQCATxicViIT09nfr6egASExORJGmAveIfVVVxuVzU19eTnp6OxTK8FoRCsRMIBAKBQDAqaJ2kNOVOECY9Pb3PTlvRIBQ7gUAgEAgEo4IkSYwbN47c3Fx8Pt9YD8cw2Gy2YVvqNIRiJxAIBAKBYFSxWCwxU2QEPRHJEwKBQCAQCARxglDsBAKBQCAQCOIEodgJBAKBQCAQxAkixm4QaEUD29vbx3gkAoFAIBAITjc0/WMwRYyFYjcIOjo6ABg/fvwYj0QgEAgEAsHpSkdHB2lpaf1uI6mit8eAKIpCdXU1KSkpI1ZMsb29nfHjx3P8+HFSU1NH5DfMgDgPYcS5CCLOQxhxLoKI8xBGnIsw8XwuVFWlo6ODgoICZLn/KDphsRsEsixTVFQ0Kr+VmpoadxfkUBDnIYw4F0HEeQgjzkUQcR7CiHMRJl7PxUCWOg2RPCEQCAQCgUAQJwjFTiAQCAQCgSBOEIqdQXA4HKxbtw6HwzHWQxlTxHkII85FEHEewohzEUSchzDiXIQR5yKISJ4QCAQCgUAgiBOExU4gEAgEAoEgThCKnUAgEAgEAkGcIBQ7gUAgEAgEgjhBKHajyMaNGykuLsbpdLJgwQI++OCDfrd//vnnmT59Ok6nk5kzZ/Lqq6+O0khHjvXr1zNv3jxSUlLIzc1l5cqVHDx4sN99nnzySSRJ6vFxOp2jNOKR4ac//ekpMk2fPr3ffeLxegAoLi4+5VxIksRtt93W6/bxcj28/fbbrFixgoKCAiRJYtOmTT3+rqoq99xzD+PGjSMhIYHFixdTXl4+4HGjfc4Ygf7Ohc/n40c/+hEzZ84kKSmJgoICrr/+eqqrq/s95lDusbFmoGvihhtuOEWmyy+/fMDjxts1AfT6zJAkiQcffLDPY5rxmhgKQrEbJZ577jnWrFnDunXr2L17N6WlpSxZsoT6+vpet//Xv/7Ftddeyze+8Q3KyspYuXIlK1euZO/evaM88tjy1ltvcdttt7Fz5062bt2Kz+fjsssuo6urq9/9UlNTqamp0T8VFRWjNOKRY8aMGT1kevfdd/vcNl6vB4B///vfPc7D1q1bAbjqqqv63Cceroeuri5KS0vZuHFjr3//5S9/yf/7f/+Pxx57jPfff5+kpCSWLFmC2+3u85jRPmeMQn/nwuVysXv3bu6++252797NCy+8wMGDB7niiisGPG4095gRGOiaALj88st7yPTnP/+532PG4zUB9DgHNTU1PP7440iSxJe+9KV+j2u2a2JIqIJRYf78+eptt92m/zsQCKgFBQXq+vXre93+6quvVpcvX97juwULFqjf/va3R3Sco019fb0KqG+99Vaf2zzxxBNqWlra6A1qFFi3bp1aWlo66O1Pl+tBVVX1u9/9rlpSUqIqitLr3+PxegDUF198Uf+3oihqfn6++uCDD+rftba2qg6HQ/3zn//c53Gifc4YkZPPRW988MEHKqBWVFT0uU2095jR6O08rFq1Sr3yyiujOs7pck1ceeWV6iWXXNLvNma/JgaLsNiNAl6vl127drF48WL9O1mWWbx4MTt27Oh1nx07dvTYHmDJkiV9bm9W2traAMjMzOx3u87OTiZOnMj48eO58sor2bdv32gMb0QpLy+noKCAyZMnc91111FZWdnntqfL9eD1enn22Wf5+te/3m9f5ni8HiI5evQotbW1PeY8LS2NBQsW9DnnQ3nOmJW2tjYkSSI9Pb3f7aK5x8zC9u3byc3NZdq0adxyyy00NTX1ue3pck3U1dXxj3/8g2984xsDbhuP18TJCMVuFGhsbCQQCJCXl9fj+7y8PGpra3vdp7a2NqrtzYiiKNxxxx185jOf4eyzz+5zu2nTpvH444/z0ksv8eyzz6IoCueffz4nTpwYxdHGlgULFvDkk0+yZcsWHn30UY4ePcqFF15IR0dHr9ufDtcDwKZNm2htbeWGG27oc5t4vB5ORpvXaOZ8KM8ZM+J2u/nRj37Etdde228/0GjvMTNw+eWX8/TTT7Nt2zYeeOAB3nrrLZYuXUogEOh1+9PlmnjqqadISUnhi1/8Yr/bxeM10RvWsR6A4PTltttuY+/evQPGOJx33nmcd955+r/PP/98zjzzTH73u9/xP//zPyM9zBFh6dKl+v+fc845LFiwgIkTJ/LXv/51UG+d8cof//hHli5dSkFBQZ/bxOP1IBgcPp+Pq6++GlVVefTRR/vdNh7vsa985Sv6/8+cOZNzzjmHkpIStm/fzuc+97kxHNnY8vjjj3PdddcNmEQVj9dEbwiL3SiQnZ2NxWKhrq6ux/d1dXXk5+f3uk9+fn5U25uN1atX88orr/DPf/6ToqKiqPa12WzMnj2bQ4cOjdDoRp/09HTOOOOMPmWK9+sBoKKigjfeeINvfvObUe0Xj9eDNq/RzPlQnjNmQlPqKioq2Lp1a7/Wut4Y6B4zI5MnTyY7O7tPmeL9mgB45513OHjwYNTPDYjPawKEYjcq2O125syZw7Zt2/TvFEVh27ZtPSwPkZx33nk9tgfYunVrn9ubBVVVWb16NS+++CJvvvkmkyZNivoYgUCAjz/+mHHjxo3ACMeGzs5ODh8+3KdM8Xo9RPLEE0+Qm5vL8uXLo9ovHq+HSZMmkZ+f32PO29vbef/99/uc86E8Z8yCptSVl5fzxhtvkJWVFfUxBrrHzMiJEydoamrqU6Z4viY0/vjHPzJnzhxKS0uj3jcerwlAZMWOFn/5y19Uh8OhPvnkk+r+/fvVb33rW2p6erpaW1urqqqqfu1rX1PXrl2rb//ee++pVqtVfeihh9RPPvlEXbdunWqz2dSPP/54rESICbfccoualpambt++Xa2pqdE/LpdL3+bkc3Hvvfeqr732mnr48GF1165d6le+8hXV6XSq+/btGwsRYsL3v/99dfv27erRo0fV9957T128eLGanZ2t1tfXq6p6+lwPGoFAQJ0wYYL6ox/96JS/xev10NHRoZaVlallZWUqoD788MNqWVmZnun5i1/8Qk1PT1dfeukl9aOPPlKvvPJKddKkSWp3d7d+jEsuuUR95JFH9H8P9JwxKv2dC6/Xq15xxRVqUVGRumfPnh7PDY/Hox/j5HMx0D1mRPo7Dx0dHep///d/qzt27FCPHj2qvvHGG+q5556rTp06VXW73foxTodrQqOtrU1NTExUH3300V6PEQ/XxFAQit0o8sgjj6gTJkxQ7Xa7On/+fHXnzp363xYtWqSuWrWqx/Z//etf1TPOOEO12+3qjBkz1H/84x+jPOLYA/T6eeKJJ/RtTj4Xd9xxh37e8vLy1GXLlqm7d+8e/cHHkGuuuUYdN26carfb1cLCQvWaa65RDx06pP/9dLkeNF577TUVUA8ePHjK3+L1evjnP//Z672gyaooinr33XereXl5qsPhUD/3uc+dcn4mTpyorlu3rsd3/T1njEp/5+Lo0aN9Pjf++c9/6sc4+VwMdI8Zkf7Og8vlUi+77DI1JydHtdls6sSJE9WbbrrpFAXtdLgmNH73u9+pCQkJamtra6/HiIdrYihIqqqqI2oSFAgEAoFAIBCMCiLGTiAQCAQCgSBOEIqdQCAQCAQCQZwgFDuBQCAQCASCOEEodgKBQCAQCARxglDsBAKBQCAQCOIEodgJBAKBQCAQxAlCsRMIBAKBQCCIE4RiJxAIBAKBQBAnCMVOIBAIBAKBIE4Qip1AIBAIBAJBnCAUO4FAIIgjSktLkSTplE9tbe1YD00gEIwCQrETCASCGLNx40aKi4txOp0sWLCADz74YET26Y2tW7dSU1PDtm3bmDJlCikpKdxzzz3k5+cP6XgCgcBcCMVOIBAIYshzzz3HmjVrWLduHbt376a0tJQlS5ZQX18f0336Ijc3l5dffplly5Yxf/58ysvLuffee4cjkkAgMBGSqqrqWA9CIBAIRoMPPviAH/7wh7z//vtMnDiRZ599lt27d/PKK6/w8ssvx+Q3FixYwLx58/jNb34DgKIojB8/nttvv521a9fGbJ++2LBhA2vXruX3v/89119//fCEEQgEpkNY7AQCwWnBzp07WbRoEcuXL+ejjz7izDPP5L777uOBBx44xaJ1//33k5yc3O+nsrLylN/wer3s2rWLxYsX69/JsszixYvZsWNHr+Mayj59sWPHDn7wgx/w3HPPCaVOIDhNsY71AAQCgWA0WLNmDVdddRU/+MEPALj22mu59tprufLKK5k9e3aPbW+++Wauvvrqfo9XUFBwyneNjY0EAgHy8vJ6fJ+Xl8eBAwd6Pc5Q9umL73znO9xyyy1ceeWVUe0nEAjiB6HYCQSCuOfEiRPs2LGDhx56SP/OarWiqmqv8WeZmZlkZmaO5hCHTXl5OR9++CEvvPDCWA9FIBCMIcIVKxAI4p5PPvkEgHPPPVf/7uDBg8yfP5+ZM2eesv1QXbHZ2dlYLBbq6up6fF9XV9dnVupQ9umNHTt2kJ2dzfjx4we9j0AgiD+EYicQCOKetrY2LBYLkiQB0NzczEMPPURiYmKv2998883s2bOn309vrli73c6cOXPYtm2b/p2iKGzbto3zzjuv198a8mWNVAAAAelJREFUyj694fP58Hg8uN3uQe8jEAjiD+GKFQgEcc+sWbMIBAL88pe/5KqrruK73/0uxcXF7N+/n4qKCiZOnNhj++G4YtesWcOqVauYO3cu8+fPZ8OGDXR1dXHjjTfq2/zmN7/hxRdf1JW5wewzEBdddBFut5sbb7yR73//+0ybNo2UlJQhySAQCMyLsNgJBIK4Z8qUKdx33338+te/Zvbs2RQUFPD6669TWFjI5ZdfHtPfuuaaa3jooYe45557mDVrFnv27GHLli09kiMaGxs5fPhwVPs8+eSTusWxN0pKSnjppZc4cuQIF154IWlpafz4xz+OqWwCgcD4iDp2AoFAYALWrVvHW2+9xfbt2we1/caNG/n5z39OdXX1yA5MIBAYCuGKFQgEAhOwefNmvYDxQLS2tvLhhx8yf/78ER6VQCAwGkKxEwgEAhMQTe/Y//3f/6Wqqoonn3xy5AYkEAgMiXDFCgQCgUAgEMQJInlCIBAIBAKBIE4Qip1AIBAIBAJBnCAUO4FAIBAIBII4QSh2AoFAIBAIBHGCUOwEAoFAIBAI4gSh2AkEAoFAIBDECUKxEwgEAoFAIIgThGInEAgEAoFAECcIxU4gEAgEAoEgThCKnUAgEAgEAkGcIBQ7gUAgEAgEgjjh/wd8UE3xkTpcIwAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnYAAAHWCAYAAAD6oMSKAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydeZgcZZ34P1V9zdkzk/s+CYQzJJGQiEpAMIQYj11R1gMWVv0hBDewCqKuqLuSRQFxBURllYi6K6uCriSEEC4jCUfIgEgCuc9JJpmru6fvrvr90f1W1yRzdM/U2VOf5+HR9FR3vd96q973W99TUlVVxcPDw8PDw8PDw/XIdg/Aw8PDw8PDw8PDGDzFzsPDw8PDw8OjQvAUOw8PDw8PDw+PCsFT7Dw8PDw8PDw8KgRPsfPw8PDw8PDwqBA8xc7Dw8PDw8PDo0LwFDsPDw8PDw8PjwrBU+w8PDw8PDw8PCoET7Hz8PDw8PDw8KgQPMXOw8PDw8PDw6NC8BQ7Dw8PDw8PD48KwVPsPDyGOb/85S+RJKnX/y677LJev/Pwww8jSRJ79+61drBl4pZxfvOb30SSJI4fP17yd7773e8ye/ZsFEXRPps2bRrf/OY3hzSW3n7jwQcfZMqUKaRSqSH9tlWYdR2g9+sOAz9HbruGyWSSQCBAY2PjkK+lh7V4ip2H4xGb86uvvlr2d1988UW++c1v0tnZafzAbMAMec455xweeeQRHnnkER5++GHmz58P0K9i52EvkUiEO++8k1tvvRVZHngZX7du3UnKRjgcZsGCBTz++OMDfv8f//EfSafT/PjHPzZg9H1j5vM61GsA/V/3gZ4jq64hQCwW4/bbb+eyyy5jxIgRSJLEww8/3OfxiqIwevRovvvd72qfZbNZHnroIaZOncq3v/1tWltbTR+3hzF4ip1HRfPiiy/yrW99q6IUO6PlOeecc/j0pz/N4sWL+fGPf8yWLVt4z3vew5YtW1i5cmWv3/nMZz5DIpFg6tSpho3DDNwyznL52c9+Rjab5R/+4R9KOv71118H4D//8z955JFHWL16Nbfeeiv79u3jiiuuYPv27f1+v6qqiquvvpp77rkHVVWHPP6+MPN5Heo1gP6v+0DPkVXXEOD48eN8+9vfZtu2bcyZM2fA419++WWOHz/OsmXLtM/q6uq4+uqrueWWW1BVlTfeeMPMIXsYiN/uAXh4uJHu7m5qa2vtHoZhvPnmm3zgAx+gra2NH/zgB9x4441IktTn8T6fD5/PZ+EIB4fR43TKvP/85z/nQx/6EFVVVSUd/8Ybb9DY2MiNN97Y4/NRo0Zx3XXX0dzczOzZs/v9jY9//ON897vf5dlnn+Xiiy8e9NjtwohrMNB1H+g5suoajh8/npaWFsaNG8err77Keeed1+/xa9asYerUqZx55pkn/U18tm3bNi655BJTxuthLJ7FzsN1iHiknTt38o//+I80NjbS0NDANddcQzwe73Hcl7/8ZQCmT5+uuV9EvNWhQ4e49tprGTt2LKFQiDPPPJOf/exnfZ7vrbfe4pOf/CRNTU285z3vASAajbJy5UqmTZtGKBRizJgxXHrppbz22mva90s9z6FDh/inf/onJkyYQCgUYvr06XzhC18gnU4PKE8p4+iLvXv3cskll5BKpXj++ef54he/2K9SB73HrpU6L/1RyrUS59m+fTsf//jHCYfDjBw5kn/+538mmUwOOM7nnnuOd73rXVRVVTFz5kx+/OMfa7/Z23l6m/d9+/Zx/fXXc9ppp1FdXc3IkSO54oorTorlK2esAJ2dnQNeuz179vDGG2+Utcm+/vrrzJs376TPjxw5AsDpp58+4G/Mnz+fESNG8Ic//GHAYwdzPw70vA6VoV6Dga57Kc9ROddwKIRCIcaNG1fy8U888UQPa50ecZ++9dZbhozNw3w8i52Ha/n4xz/O9OnTWbVqFa+99hoPPfQQY8aM4c477wTg7/7u73jnnXf47//+b77//e8zatQoAEaPHs3Ro0dZuHAhkiSxYsUKRo8ezdq1a/mnf/onIpFIry7IK664glmzZnHHHXdorpTrrruO3/72t6xYsYIzzjiDtrY2Nm7cyLZt25g3b17J5zl8+DALFiygs7OTz3/+88yePZtDhw7x29/+lng8TjAY7Feez3/+8/2Ooy8UReGTn/wk3d3dvPDCC8ydO9f0eemLcufk4x//ONOmTWPVqlVs3ryZ//zP/6Sjo4Nf/OIXfZ5j69atXHbZZYwfP55vfetb5HI5vv3tbzN69Og+v9PbvL/yyiu8+OKLXHnllUyaNIm9e/fyox/9iMWLF/PWW29RU1MzqLGWcu1efPFFgH7nVU86nebtt9/mwgsv1JIzOjo6WLduHXfeeScrVqwoyV0nzvmXv/xlwOMGei56o7/7e6gYcQ36u+7lPEcDXcNMJkNXV1cpYjFixIiSYiz748iRI2zdupVvf/vbvf79X/7lX4C8xc7DJageHg7n5z//uQqor7zyiqqqqnr77bergHrttdf2OO6jH/2oOnLkyB6ffe9731MBdc+ePT0+/6d/+id1/Pjx6vHjx3t8fuWVV6oNDQ1qPB7XPhPn+4d/+IeTxtbQ0KDecMMNfY691PNcddVVqizLmox6FEUZUJ6BxtEXq1evVgH1Zz/7WVnfE3OiH0c589IbpV4rcZ4PfehDPY67/vrrVUB9/fXX+xzn8uXL1ZqaGvXQoUPaMTt27FD9fr964nLY37zr7w/Bpk2bVED9xS9+cdJvDDTWcq7d17/+dRVQo9HoSWOYOnWqevvtt/f4bOvWrSpw0n+BQEC99957S/oNwec//3m1urq617/pGez92Nf9XS4nylDuNejtN/q77uU8RwNdw2effbbXsfb2XynX6ZVXXlEB9ec//3mvf/+v//ovtbq6utd7+pFHHlEBdcyYMeqYMWMGPJeHM/BcsR6u5brrruvx7/e+9720tbURiUT6/Z6qqvzud79j+fLlqKrK8ePHtf+WLFlCV1dXry6jE88H0NjYyEsvvcThw4cHfR5FUXj88cdZvnw573rXu076nYHcogONoz/uu+8+zj77bK655pqyvtcfg5mXwczJDTfc0OPfInZqzZo1vZ4jl8vx9NNP85GPfIQJEyZon59yyiksXbq0ZHkAqqurtf+fyWRoa2vjlFNOobGxsdd7p9SxlnLt2tra8Pv91NXV9TlmPSLoffXq1axfv57169fzy1/+knPPPZdbb72VTZs2lfQ7AE1NTSQSiQFd64O9H83CiGvQ33Uv5zka6BrOmTNHG+NA/5Xjbu2LNWvWcNFFF/W4pyGfWXvrrbeydOlSrrrqKlpbW2lvbx/y+TzMx3PFeriWKVOm9Ph3U1MTkHexhMPhPr937NgxOjs7+clPfsJPfvKTXo/pLbV/+vTpJ3323e9+l6uvvprJkyczf/58Lr/8cq666ipmzJhR8nmOHTtGJBLhrLPO6nPMA9HfOPri+PHjvPrqq6xatWrQ5+2NwczLYOZk1qxZPf49c+ZMZFnuMyartbWVRCLBKaecctLfevtM0Nu8JxIJVq1axc9//nMOHTrUI8uxNzdaqWMd7D3dH6+//jp+v59/+Id/IBAIaJ8vXryYSZMmcd9997Fo0aKSfkvIOdDLxmDuRzMx8hqcSLnP0UDXsKmpybIkhUwmw/r163sd+x133MHx48f5wQ9+wMaNG4F8nJ2IM/VwLp5i5+Fa+sp2VAcoJSAKi37605/m6quv7vWYc84556TPTnyjhXxM1Hvf+14ee+wxnnrqKb73ve9x55138vvf/16LsxnoPAONtxT6G0df1qht27ahqqohcXV6BjMvg50TPaVYNgdDb/N+44038vOf/5yVK1eyaNEiGhoakCSJK6+88qTCtb3R11hLuXYjR44km80SjUapr68f8FxvvPEGM2fO7KHQAEycOJGamhoOHjw44G8IOjo6qKmp6fWa6BnM/WgmRlyDvq57uc/RQNcwnU6XbBkbPXr0kLK+N27cSCQS4fLLL+/x+a5du7jnnnv4l3/5F2bNmkVHRweQl9VT7JyPp9h5VDS9baCjR4+mvr6eXC5nyJvx+PHjuf7667n++utpbW1l3rx5fOc73+H5558v6TyKohAOh3nzzTcHPFd/yktf4+hrI+3u7h7wN61iMHOyY8eOHta0nTt3oigK06ZN6/X4MWPGUFVVxc6dO0/6W2+f9cdvf/tbrr76au6++27ts2Qy2Wf9tXLH2h+iJMeePXsGVHYhr9S8+93vPunzY8eOEY/Hy3Ln7dmzp6QMWij/fgTz7kUjrkFf173c52iga/jiiy9y0UUXlfxbg7mHBE888QRnnHHGSb9x8803M3r0aL72ta8BxYxhLzPWHXgxdh4Vjag5pt9wfT4ff//3f8/vfve7XpWpY8eOlfTbuVzuJLfbmDFjmDBhAqlUquTzyLLMRz7yEf7v//6v1+4aemtNb/IMNI6+EIv573//+/4FtYDBzMn999/f498//OEPAfpUHHw+H5dccgmPP/54j9ivnTt3snbt2rLHe6IF8oc//CG5XK7X48sda38Il2EpnViOHDlCa2trr4qEyLT9+7//+5LP/dprr/WqIOkp5X6Mx+Ns3779pBZqvd3f/R1fCkZdg76ue7nP0UDX0MoYuzVr1pxU5mTdunX88Y9/5K677tLmo76+nsmTJ3uZsS7Bs9h5VDSirc/XvvY1rrzySgKBAMuXL+c//uM/ePbZZzn//PP53Oc+xxlnnEF7ezuvvfYaTz/9dEmukGg0yqRJk/jYxz7GnDlzqKur4+mnn+aVV17RLDmlnueOO+7gqaee4sILL+Tzn/88p59+Oi0tLfzv//4vGzdupLGxsU953vve93Laaaf1O47emD17NkuWLOHBBx/k6NGjfOADH2DatGlcfPHFBIPBoVz2QVHunOzZs4cPfehDXHbZZWzatIlf/vKXfPKTn+y3bMU3v/lNnnrqKS644AK+8IUvkMvluO+++zjrrLNobm4ueawf/OAHeeSRR2hoaOCMM85g06ZNPP3004wcObLX4wcz1r6YMWMGZ511Fk8//TTXXnttv8eKbgutra388pe/BPIxYU899RRr167lyiuv5IorrijpvFu2bKG9vZ0Pf/jD/R5XynPx8ssvc9FFF3H77bf36EPa1/P6yiuv9Hp8KRh1Dfq67uU8R6VcQ6Ni7O677z46Ozu1l5j/+7//01zON954I+3t7Wzbto0f/ehH2ncymQwrV67koosu4hOf+ESP3zvjjDM8xc4tWJ6H6+FRJn2VOzl27Fivx51YAuDf/u3f1IkTJ6qyLPf4+9GjR9UbbrhBnTx5shoIBNRx48ap73//+9Wf/OQnPb7f1/lSqZT65S9/WZ0zZ45aX1+v1tbWqnPmzFEfeOCBHseVep59+/apV111lTp69Gg1FAqpM2bMUG+44QY1lUr1K8/bb79d0jh6IxqNql/60pfUmTNnqsFgUAXUpUuXDvi9/sqdlDovvVHKtRLneeutt9SPfexjan19vdrU1KSuWLFCTSQSA557w4YN6ty5c9VgMKjOnDlTfeihh9R/+Zd/Uauqqnp8ty95VFVVOzo61GuuuUYdNWqUWldXpy5ZskTdvn27OnXqVPXqq68ue6zlXrt77rlHraurO6lExYklOr773e+eVCKjvr5eveCCC9T/+q//6lFKp6/fENx6663qlClTev2OnlKeC1HSo7fz9Pa89nd8b+hlGMw16Os69HXdS32OSr2GRjB16tR+y6Tcd999akNDg5rJZHrI5/f71TfffPOk37v55ptVSZJ6Lffi4Sw8xc7Dw0PjK1/5igqo7e3tdg+lT/pTuAbLhz/8YfWUU04x7PcEZoxVVVW1s7NTHTFihPrQQw/1+Ly/GnSl0ttvJJNJddy4cX3WfHMaZl2Hvq77ifT2HDntGi5dulS94oor7B6Ghwl4MXYeHh4ao0ePprq6+qTOCZVEIpHo8e8dO3awZs0aFi9ebM+ABkFDQwO33HIL3/ve90rKwh0qP//5zwkEAr3W9BtOlHrde3uOnHYNFy9ezE033WT3MDxMwFPsPDw8gHxA/ze/+U2uuuoqQqGQ3cMxjRkzZnDbbbfx05/+lK9//essXLiQYDDILbfcYvfQyuLWW29l+/btQ24pVQrXXXcd+/fvr+j7olQGuu59PUdOu4a33HLLoGv3eTgbL3nCw8MDgF/84hd88pOf5J577rF7KKZy2WWX8d///d8cOXKEUCjEokWLuOOOO04qIuzhMRiGy3Pk4VwkVTWgOqqHh4eHh4eHh4fteK5YDw8PDw8PD48KwVPsPDw8PDw8PDwqBC/GrgQUReHw4cPU19c7ov2Sh4eHh4eHx/BBVVWi0SgTJkwYMGHKU+xK4PDhw0yePNnuYXh4eHh4eHgMYw4cOMCkSZP6PcZT7Eqgvr4eyF/QcDhs82g8PDw8PDw8hhORSITJkydr+kh/eIpdCQj3azgc9hQ7Dw8PDw8PD1soJRzMS57w8PDw8PDw8KgQPMXOw8PDw8PDw6NC8BQ7Dw8PDw8PD48KwVPsPDw8PDw8PDwqBE+x8/Dw8PDw8PCoEDzFzsPDw8PDw8OjQvAUOw8PDw8PDw+PCsFRit0LL7zA8uXLmTBhApIk8fjjjw/4neeee4558+YRCoU45ZRTePjhh3v8PZfL8a//+q9Mnz6d6upqZs6cyb/927+hqqo5Qnh4eHh4eHh42ISjFLvu7m7mzJnD/fffX9Lxe/bsYdmyZVx00UU0NzezcuVKPvvZz7Ju3TrtmDvvvJMf/ehH3HfffWzbto0777yT7373u/zwhz80SwwPDw8PDw8PD1twVOeJpUuXsnTp0pKPf/DBB5k+fTp33303AKeffjobN27k+9//PkuWLAHgxRdf5MMf/jDLli0DYNq0afz3f/83L7/8svECeHh4eHh4eHjYiKMsduWyadMmLrnkkh6fLVmyhE2bNmn/fve7382GDRt45513AHj99dfZuHFjWQqkh4eHh4eHh4cbcJTFrlyOHDnC2LFje3w2duxYIpEIiUSC6upqvvKVrxCJRJg9ezY+n49cLsd3vvMdPvWpT/X5u6lUilQqpf07EomYJoOHh4eHh4eHh1G42mJXCo8++ii/+tWv+PWvf81rr73G6tWrueuuu1i9enWf31m1ahUNDQ3af5MnT7ZwxB4eHh4eHh4eg8PVit24ceM4evRoj8+OHj1KOBymuroagC9/+ct85Stf4corr+Tss8/mM5/5DDfddBOrVq3q83dvu+02urq6tP8OHDhgqhwe1pHK5vjNK/vZuOO43UPx8PDw8PAwHFcrdosWLWLDhg09Plu/fj2LFi3S/h2Px5HlnmL6fD4URenzd0OhEOFwuMd/lUpbLMXfPfAXzvvO0zz3dqvdwzGd7zyxjVt/91c+/V8v8ewwkFcQS2VZtWYb//ant+hKZOwejiX85pX93PxoM+8cjdo9FMs40pXkged28pedw+PFRVVVfvz8Lq59+BW2Hxk+ITMHO+L876sHaI0k7R6KZaiqys7WKN2prN1DcTyOirGLxWLs3LlT+/eePXtobm5mxIgRTJkyhdtuu41Dhw7xi1/8AoDrrruO++67j1tuuYVrr72WZ555hkcffZQnnnhC+43ly5fzne98hylTpnDmmWeydetW7rnnHq699lrL5XMidz65ndf2dwJw6+/e4PkvX0RVwGfvoEwikszwPy8Xra8/em4XF502xsYRWcetv32DJ/7aAsC+tjgPXf0um0dkLlv2dXDr7/4KwBsHu1h/0/uQJMnmUZlLVzzDRx/4Cy1d+c3+wU/P47Kzxts8KnN5cVcbq9ZuB+BQR4InV7634ud5f1ucZT/8M9FkllF1Qdb883sZU19l97BM566n3ub+Z3cxvqGKJ774XkbUBu0ekmNxlMXu1VdfZe7cucydOxeAm2++mblz5/KNb3wDgJaWFvbv368dP336dJ544gnWr1/PnDlzuPvuu3nooYe0UicAP/zhD/nYxz7G9ddfz+mnn86XvvQl/t//+3/827/9m7XCOZBYKssfXz+s/ftoJFXRLsoXd7aRzimE/Pnb/pW97RyLpgb4lvt5+0hUU+oAnt52lG0tlW3d+O2WogK/szXGln0dNo7GGn76592aUgfwH2u3k1MquxD7Y1sPaf//7aNRXj/YZeNorOHOdduJJvNWq+OxND94eofNIzKftliKHz+/G4CWriS/fmmfzSNyNo5S7BYvXoyqqif9J7pJPPzwwzz33HMnfWfr1q2kUil27drFP/7jP/b4e319Pffeey/79u0jkUiwa9cu/v3f/51g0NP2n93eSjKjMH1ULVcvmgrkN/1K5aU9bQB8/F2TOWN8GFUtflbJ/P61gwB84IyxLDkzn0W+VqfoVRqqqrJhW97N3lgTAOAvOyt7nhVF1eb5ex87h3CVn71tcV7aXdlyv7ynHUB7Wat0F/SxaIp1bx4B4F8/eAYAf2g+TCKds3NYpvPk346Q1b2krPnrERtH43wcpdh5WItQai46bQzvnTUagFcr2LKxvSUfa3XOpAbeNa0JgNf2ddo4ImtY97f8IvjRuRO55PS8YvdMBccXHmhP0BpNEfTJ3HjxLABe3lvZCs5r+zs43JWkvsrP8jkTWHLmOKA495XI0UiS/e1xZAm++P7CPBcUvUrlubdbySoqZ09s4Jp3T2NSUzWxVJYXdhyze2im8tLu/Lx+6vwpAGw/EiGaHB6xwoPBU+yGMa/uzStx501r4twpjQDsOhYjUoEPjKqqWnD17HFh5k3JK3ZbD1SuIgvQ0pVgb1t+87tg1iguPDWvwP/tcIRYhQYh/+1w3h136rg6zp8+AoC3Dkcquj/0i7vyiuuFp46mKuDj0jPyCvyfK9iC9faR/Iva9FG1LJo5EqDiQwz+XAiVWXzaaGRZ0mKEX6zgeQa0UIrLzx7PpKZqFBVeP1D5bvfB4il2w5RoMsPbhWzB+VObGFUXYlJTNaoKb1ZgnMqxaIqOeAZZgllj6zhzQj7T+e0j0Yre8MWb7lkTGwhXBRgTrmJCQ1V+ng9V3jwDvFXY3M8c38ApY+qQJeiIZzgeS9s8MvMQliqhyJ43Lf+/u491095dmXLvPhYDYMboOk4bW48kQWs0RVusMuNmVVVlY0GBe1/hBe2CU/IK7V92Va5Fui2W4lBnAoA5kxu1tXs4ZbuXi6fYDVP+djiCqsLExmrGhPMZVbPH1QN5q12lsb89DsCExmqqAj6mjaol4JOIp3PaolGJvLy354YPcM6kRgDeONhpw4jMR1htzpgQpirgY+rIWgB2VOhGkMkpmkVjwfT8Rt9UG+SUMXUAFZs4svt4NwAzR9dRG/IzdUQNANuPVOY872+P096dJuiTmVN4hs8vzPfO1ljFljHadSw/zxMbq6kL+bX7emcF7lNG4Sl2wxSxyQllDvILJBQfpEpCKG8TG/OFqwM+mRmj8vLuOFq5C4RQcs4ubASA9sZbqRvgHt2GD2gbwY7WypznXcdiJDI56kN+ZhVkBZhXCK+oVAV+l2axyyvuYp7F/Fcabx4qhJKMrydYSBZpqg1qa9pbhyvTDS3meeaYns/zzgp9no3AU+yGKe8UlJlZY3tT7CrvgTnYUVDsmqq1z2aNzctbqSZ9RVG1OKQzxuvmubAw7q5ABV5RVA4U5nrqyLwFR1hyDhSstpWGSAqaPb4eWS7WcJs9rrIV+H1t+fmcMSqv2E0uzPP+Cp3nNwuxo2dNbOjx+VkT8/MsYksrDeFyn1lQ4MU+VYnrl1F4it0wRSgzp44tvuHPHJN/cCrxTUhY7CY1FhW7GYUFYm9bZW4E+9rjxNM5Qn6ZaQV3JPRU4CstvvBoNEk6q+CTJcY35EMMxIYvlPtKQyhup+ms71C0xr9dgYqdoqgcLXRdmFB4poUCv6+tMjd8ERN71oQTFLvCv/9aoTGzwoMk1q1JTfl5Ph5LkcxUdpmXweIpdsMQVVU1xW7WmOJmIGKRWrqSpLKV9cD0ZrGbUvGWnLxr5rRx9fh9xUd96sgaJAmiyWzFJRTsLyjpExurNZknFeb8QEeFzvMRMc89Wx8KRW9/e7zi2jAd706RyanIEoyuDwHF9Wtfhb6o6WNH9ZyhSwSrRIRrXVhmm2oCVBe6I+kLcnsU8RS7YUh7d5qOeD7Q9hRdTM7I2qBW6PNIhT0whzrEhl+jfTalwl03YiM4/YQNvyrg05Sd3RXmdhdzKdywULTYVaoCLzb000+w2I2sCzGqLl+IvdLiC8X6NLo+RKCgwE8ZWXyeK80S3ZUoZnXr12woWrL2tnWjVFinEVVVi96WgqVOkiQmNOat8YcrOPFtKDiqV6yHNYjNb3xDFdVBH0o6TeyZZ1DTacb5ZfZlJd5Zs4FGncVfCgapu/hiZJd27BAbwfiGkCZvYzQN+DjU3k3bH/6IX9di0u3yQjFrTMQS6ud5fE7mABI7nnmR2W8WNwO3yy3u7Uk6y6wILo8ks3QlMjRUB2wZmxnEUlnNaqG3vgtmjK7jeKydfW3dnDu50eLRmYeQeVzDyfMcT+foSmRorHHnPdwbwmo1pj5EXajntj2pqZqATyKZUTjcldAUoEqgrTtNOqsgSTC2IaR9PqGxml3Huiu6osFQ8BS7YYjY/CYXFoDE1mYOrbwJgBHv/hz7xpzGtl/8L5MOvNrje1NWr6b2/AXWDtYA4uks3YWWO1vanmPcnrEcWnkTChLB5XeQ9gV441t3Mi7es2q9W+UVvHG4BZA4lvkbMKPHPDfM/ThMXcA7f1zH4Xc29Piem+V+5eAOQCKq7APOAaA25GdkbZC27jQHO+I0VDf0+xtuQriem2oCNNScrLBOGVHDy3vaK849qb2oFUo1Qd4S3VQToCOe4UgkWWGKXf4lbfqo2pP+5vflY2h3tMbYday7ohS7ls78PI+qCxHy+7TPhRLvWex6x3PFDkOES0q4qGrmzyMwaRJIEmPinQAcq2ksfkGSCEyeTM38eRaP1BiORgqbmpThZ397gODccwhMmoQswdjuvDLXUlOs8+Z2eQEyuQyHO/Lu9vWHf01Wyfac50QnAMeqG4tfcrncWSXLX4/uB2DL8WfJKsW4snGFRIrWSGUVr93fnrfkTBl58oYP+oSCylLsiha7qh6fjy0oepUWSiIyQEXC14mIki+VFlpxuCuvuE04YZ5FwoxQ/Dx64lnsyiCXVchlFbuHMWQOHI8jqzC5saogj8yIG1bQ8tWvMTrRhazCseoRKFLxDWnEDStQkMGF8v/ftueRVRnJF6Ml2sLavet5T0He8fEODtWP5UjtaJS2Pdp33CwvwG/efBJyQWQUjqfeYc3OtSybsUyb5zHxwjzXVM48r9m9llQiiKxCJHNAkxlgbG2QbSoc6UhUxDMs2NvajazC1MbqXuWa3FiNrMKB47GKkvtIR34NG18f6iHX+PoQ77REaWmvrHne3RpDVmF6U02vcs0cWYuswq6j0YqS+3Bbfp4nhqt6yDWqJv+ct0WSFSVvf5Qjp6fYlcHW9fuoqzk5jsV1vNXFwqSfpr0JtqzdC4Aqn0nH2VcwVqpjYdJPbf1p7J26BJDwhcPEpDOQCse6CUVVeGvrXhYmT0Xyhwge+gAbHm9m9KmfoOvsKzhdbcSf9JMa/S72Sk24XV7Iy/yX13eyMHkGki9BsOX9bHi8mTGzT0cqzHNdNsDCpJ+G0LSKmeentzdzfvRcVMVPsO1sTWZZkjmlTSGZ9HP8lWNsOV45Gd8d246zMOln5rGc9izrkSNJFib91O1N9vp3txJ8J8bCpJ/qnd1sie3VPj+1TSGV9HPs5daKmmf/9igLk37Ce+I95BWMPpxiYdKP8mYXWwIn/92ttO/I39/TT7i/pWPdLEz6qd8Tr6j7uj9i8dKznj1X7DCkK5l3UemDyCVZpmbBAqozeVdVwifiU1RqFixAkt15q+zo3Em8EF8nyWlAJZKOsDOym5oFC6jJ5k35cb8w9btbXsjL3F3wOEq+BELmHZ07tXmuzeRdHN2BypB7R+dOIqkYqlK4b+WUJjPk4+yAiiv70ZXIZ0qG+0gIEc94LJUlW0EZk4nCM10b9PX4vBLnWQWtXVhjL3GUAOGqvNyRZGW1FYsW5Kmv6mmDqg3l512s7R498Sx2ZTD30qmEw+GBD3QwmZzC03/ZhlIFdy+brvWJBVAvnUTi+V+yuWoODVKOG/Y/RWDiRGasWIXkd9+tklWy3P6HFextPI1UdhaBhp1UjV+PhMTR6rf4/fX/y1+veZLNVdNIRbq40uXyQlHmPeEzSGdOJdC4japxRZkfW/IYvksnsX3dD/lq1UIArm/5MyPGjHCt3ELmQ2PjxGLvA7LUTVqDLKHJ/PYrMpsPt1I7yseXl06ze8iG8aW/7eVgVZYvvn8S86eNOOnvqqryxebdRFNZvnneKGb2kjnrRq7fuov2XJavv39Sj/p9u17xsflwK6GRMrdUyDx3JTK8sHEb+OHHH5pBTfDkZ3RMW5wvv7WPkKRw72VTkSSpl19yH3cdaOHVriz/8O5xzD97vPb5oY44K9/YQ9CncH8FydsfkUjpLePct4rbiM8v4/O706IhONiVIAuEAjJjG6t7tCDCH2TW1R9HeRU6QzWoqsLYG6/HX+XO7LI1u9ZxMH6ArDIXRQI1EEGR8294B+L7Wd+ygVnL3o/yFhyrDiMrWVfLCzqZs+9BkYDQ8R4yP3VgHctnLmfyiv9HzfNxYsEaugLVnO5iuYXMOWUyigSSP4rqy5KjKPO4pgUoErR2p1z/DAvSWYWDXQkUCaaPqetTrrFNVXQdjdHaneHUCpA9p6i0JdKoEoxuqO4h9/gR1SgStEQrZ56PRFMoEoyoDVLfR6bvhJE1IEMip9CRzGpFm91Oa3caRYIxDVU95nNMY36ek4pCd0bpNSO80ijnfq6MO9+jZA60i2KPJyh1BaZ86HJkVUGVZLqnzSJ8+eVWD9EQskqW+5vvR0JCzeYzySR/MWNMQuKB5geY8v4LAGirbiAwebJr5YWeMiuZRgCkQIf2dyFzVskSXraMEbn8vRCZMtO1cveUOW+5kfzFWBQh88i6/Dvs0QrKij3SlURRIeiXGdPPRi5qvbV0VUZpiI54GlUFScqXedEjsmJbo5Uzz6KkhyjK2xtBv8y4guwHK6jDSluhKPOoE+7vqoBPc88ei3mZsSfiKXbDDLG4T9D1TNXjDwYYEcwrfOpnrnWlaw5ga+tWDsUOoaKiZvPuJ71ip6JyMHaQ1lw+Bqs7UE3N9StcKy+cIHNBsZMDndrfhcxbW7ci+f2MHdsEQHbZR10rd2/zLAeKLgttntM7ADgWS1VMdX7xLI9vqOrXFTW+wkqAiM2+sTrQo1Ue5OudQV75y+YqI1tSFOGd2MeaLRDtEiulJ3IykyNaiJUU86pHWCWPRSurLaIRuHM19xg0xQ4Mfb/9jRnVwPGWCIl551s1LMOZM3oOd114F+lcmn9vkTiagM+deyWnTrhSOyboC7Jw4lzqq54lmswSf/dFNo546AiZE5k0N23Pb/Rfu+B6wrp6pUFfkDmj5wAwfvpEeL2F2Kwz7BiuIejn+U+vSKw7Cosmn8nHL7hDOyboC/LeCeciSRvybrzudEW4qo5EBn6WoVjrrSVSKYpd3ho3spfNvqkmgCSBqkJHPFMR81y02PWv2E1qquGVvR0Vo9gdL8xz0CdrySF6RtWF2H2sm2OxyrHOGoWn2A0zxGYwLtz3ZjC6PgQtuLpBfNAXZMm0JQB8K7seSHP5KRdy+viTk1/GN1QRTcY4Eklxylj3BpcLmQ92xFHVZwn4JP7hzA/26nIHGFOfvweOVcg8v/j6X4H9zJ9wKstnnnrSsSNrQxyPpWiNJitkwxeKXf8bvlDsKsVid7w7f7+OrD053szvk2mqCdLenaatO1UR83ywRIvdJM1iVxmuWLH/jKwL9mqRFnN7vILc7kbhuWKHGUd66bF4IsLsXQlvQqqq0hnvv1RApcUgtXQVN/y+lDrQuzLcP88AHf1s+ACj6vKft7lYkdVzROeK7Q/NYlchil27ZrHrfZ7F/FfKPAuLnb7/cW8IBb9iFPjCutSbGxZglJjn7spYv4zEU+yGGS0luGKLb0LuXxi70zmtfldjde8bwbhwXt5KWRDFRjDQhi/muTVaGXK3x/P3a1Mfip1QBNq73X9fQ2nPsv7vRyrkxaVNU+D72PALisDxCngxBTjUUZordlxDXu6jFfI8C4VtVB8KvOgF3BGvrNp9RuApdsOMowVX7Nh+XLHiQaoEi11nYbMP+mWqAr3f7kWXpPvlhaKLbiDXTaVa7Eb0URJiRG1lbfh6y2x/jA/n/94Rz5DMuL+gq95F1xviczeHkgiyOUVblwaaZ7GOHemqjPtbzF9fFjuRES3WeI8inmI3jEhmctrbbn9v+U2FjbESHhjhhs0HVffultQslBWz4Rcsdv2URwCdQlspit1AFrvayrTYjRvAYheu9msvNUcrIIGivbvv5AkoKgJtFfA8H4/lS7v4ZanPEAOBeFlv606RqYCMYLEunVjqRCCe845uz2J3Ip5iN4xoLdTwCvrlPuPNAJpq83/rqCDFri83LOhiCitEwSk1i25EYWHsTGTIubwEiKKomktmxACKXSXEXqWzivYiMtA8S5JUUe5JMX99KTqVNM8iTGJUXajfeFnIy+2XJVS1MuZZyNDXPBddse6fZ6PxFLthhL48Qn91r7QHpgLehDoLvTT7q0xetNhVxgIhXLETBnDdCOVeVYu9KN1KNJnVlNO+XlpGiOSJCrDYCctb0C+fVKS3N4qKnftlFxbXPhV4YbGrgKB68TI+Jjxwdq8sS1qh6kqIFxaKXV+ZzSM8xa5PPMVuGCFcdP2VOoHKdMU29tEkHXQxhZVisRugCLUg4JO16u1ud0+KxIm6kJ+Q39frMUVXrPvnWZ84UUqfzEqy2ImXkL4U+EqKsRMdNPrrLKJnbMEtXwkdVoqW2d5lF/PfEc+gqu72OBiNp9gNI46UGJMjLADd6RzprLtjNQbaBKD4RhhLZUmk3R1cnszkNGV2bAlv+cLq4fa3XqGYijCC3ihactwtKxRddGPr+3+WBZVS6kVVVToT/YdXjKoki11hnkeXOM/ifqiEWMqB1m4RY5fOKiQqICnISDzFbhihFSceKNi6KoAI5xCuTLcirI6NfWRKQt7KI4LL3W7REFbHoF+moR8rpUBYZ91usRsoIxaKSmy7y5UbKNb4KrUAb6VY7GKpgV3uQomthHJNZVvsCi9zlaTY9bWO1QZ9BHz5jcoredITT7EbRhwtoesE5GM1xMPU6fIHRoy/PyVHH1zu9ubhojTC6LpQSS46LYHC7Ra7ATJiAUYVXDrRVJZU1t1v+McGiD86EU3ZcbliJ57nkF+mKtC7y13cA4lMzvXlXcqJsYPKccUmMzlSBW9RuI+1W5IkXTy4u9cvo/EUu2HEMe3tb2CzflOFPDDCbdPUjyUHKqfkSbkbQdFi524Fvr0Ei1242o+/YIp2u4VSKwXRRy23ExlVIQlCA1lxAOpDfnyysOS4W95jBVdsKWs2VI4rNpLMz7Mk5eezL4q17Ny9fhmNp9gNI46V4b7RB6a6ma4B2okJKqXkid5iVwojKqS0TUf3wBY7SZK0v7s91kwoaKVa7EZWSHHmUmJmJUnSkqXcvuG3lulyF7XsXK/YJbJAXqnrr8xLk5cZ2yueYjeMKOctv1IyY0WMYH9ZsVA5FrtjhQW9ZItdhRTtHagEhkCrceZyect5ScsfJ+LO3H1/l1KXEvQvpu6dZ0VRdV6WEl3u9ZVxf2uW2QFeyCtlnzIaT7EbJsTTWboLGZ+lWewqow+fFmM3TCx2rWW426FyXO5a14kBXO7FfrHunudjAzRIPxFxXCSZdXWme/kbvnvXr454WutzXeo8C8tsRzxN1sXdJyKFeQ5XDTDPBY+D20NJjMZRit0LL7zA8uXLmTBhApIk8fjjjw/4neeee4558+YRCoU45ZRTePjhh0865tChQ3z6059m5MiRVFdXc/bZZ/Pqq68aL4CDERliVQGZun5iFgSV0IdPVdXiG36JMXZuV+zKteRUiiujS4ulLG3Dd/NGoCiqVsqj1HkOVwW0+EI3lwHRCo4PYIGvBIudCKtoqgkQ9Je2VedbJ+aLjrv5pVzE2A08z5WxfhmNoxS77u5u5syZw/3331/S8Xv27GHZsmVcdNFFNDc3s3LlSj772c+ybt067ZiOjg4uuOACAoEAa9eu5a233uLuu++mqanJLDEcybGYqIdUWrZkUwXUN0tlFdKFt9ZwVf/K7OgKyRostzxCsY6dezcBKCp2fWXQCYRi1+Xi+7orkSGTy1ty+ireeiKyLBUL97q4DEhXCQXHobjhu9liJ8ry9NUTtzf8PllLIHKzAl9Kkoz+70IR9MgzsOnGQpYuXcrSpUtLPv7BBx9k+vTp3H333QCcfvrpbNy4ke9///ssWbIEgDvvvJPJkyfz85//XPve9OnTjR24CzhWWMxLNemLDdLNraaiyXwAriRBbbD/W10snm6PNSsWNC0vecLtcotg64FcN5WQFCQsOY1lWHIgr9QejaRc/bLWWWIyVCV4HNpKjBs9kZF1Qdq6065OECrVFaspdoXn3yOPoyx25bJp0yYuueSSHp8tWbKETZs2af/+4x//yLve9S6uuOIKxowZw9y5c/npT3/a7++mUikikUiP/9xOudmSwsIllCM3Ekvlx14X7D+zCoqWHDcHHSuKqmVLlhtj15XIuDomp9Q3/Epw3WjFicuw5EBluN2LMXYDJU+43xItXrZGlqvYVUAGdKmxlELxi7jYAGEGrlbsjhw5wtixY3t8NnbsWCKRCIlEvl/m7t27+dGPfsSsWbNYt24dX/jCF/jiF7/I6tWr+/zdVatW0dDQoP03efJkU+WwgnJjr7QHxsUm7u6CYldbQkyhWDyjySwZlyo47fE0OUVFkopJAgOhd126VYnXtxQKV/c/18KS42ZLtHhJK9X6LhCB5m6WvdwYOzdb7ErN9D6RSuiVW7TA9/88i+fdzfuUGbhasSsFRVGYN28ed9xxB3PnzuXzn/88n/vc53jwwQf7/M5tt91GV1eX9t+BAwcsHLE5HC+zUr14YNy62UNx7HUDLA6Q3yiEUc+tGaJCeR9REyTgK+3RDvhkaoP5Cv5u3fCjukW9vmRXrDvnGMp/SRM0VIsMaHfOM+jLnVR+VuxgLXZar9xKsNgNMM+exa53XK3YjRs3jqNHj/b47OjRo4TDYaqrqwEYP348Z5xxRo9jTj/9dPbv39/n74ZCIcLhcI//3E655RHqK+CB0VyxJVjsZFlyvTu23GKmggaXx1OKces7DvRFsQWRO2WF8tuJCZoqQKktpUCx/u9ulrW9hKLbvSHqlLo5xq7UZKhi8oR7DRBm4GrFbtGiRWzYsKHHZ+vXr2fRokXavy+44ALefvvtHse88847TJ061ZIxOoXBu2KzqKpq2rjMJJYqbPglWOxAlyHqVsVOK05cWnydIOzyzDKxqA+0CUDPmEK3Uu5LmqCxAtzQmmI3QIHiSrDYiazW8l2x7o+xE2vRQM+0+HsslXV1jLDROEqxi8ViNDc309zcDOTLmTQ3N2vWtdtuu42rrrpKO/66665j9+7d3HLLLWzfvp0HHniARx99lJtuukk75qabbmLz5s3ccccd7Ny5k1//+tf85Cc/4YYbbrBUNrsZrCs2p6ha/JLbiCVLt9hB8c3YrRa7YuxVeRuB2zOgIyW+3UPRhRdLubdQb7ntxARuTxxJZXPEC0XWS46xS2Rc+2IqrMqllrQRCNftcZeuY1C6K1b/0u7msCGjcVS5k1dffZWLLrpI+/fNN98MwNVXX83DDz9MS0tLDxfq9OnTeeKJJ7jpppv4wQ9+wKRJk3jooYe0UicA5513Ho899hi33XYb3/72t5k+fTr33nsvn/rUp6wTzGZUtdiapr9MOiWdJvbMM6jpNKoKPmRySBz8wxrGFr4mBYPUXXwxcrA85cEOYlryhK/PY/Qyh7tkQOLQ5i107SsWsHaLzML1UkpMjl7u2oLcRzZvoWuv++TuKgTUDxRoDXnlTxRw7UykS84edhIidqrc2Ksml2eKis1ekga2wgtZc4pKNJUdsGyGExl8uRP3x9iVWu4k4JOpCfqIp3NEkpmy3daViqMUu8WLF/f7dtVbV4nFixezdevWfn/3gx/8IB/84AeHOjzXEk1lSRWsE/25bxJbmzm0smjtrF36LSKhWnZ/9x5y0WIs45TVq6k9f4F5AzaIrUe2AxLHkgeBc3s9Ri9zcM7fwfR3c2Dt0xze/lSP49wg8xtHdgMSraldwBn9HquX2zfvEzDlPA7931oO73i2x3FukHvjgdcAmYTSNuCxPlmioTpAZzxDVzzjSsWuY5AbvuaKdanFLqKz4gxUvqgq4KMqIJPMKHR2Z1yn2CmKqllWS81wF7g9xk4pKOMwsMUO8spfPJ3zatnpcJQr1sMchLWuPuSnOti39apm/jwCkyblX4mBmmy+ZEx3oLD5SRKByZOpmT/P3AEbQFbJ8vLhNwB4s/1VskrvD71e5oZ0NwBdwdriAS6ROatkeetY3pr98rFn+pRXoJe7Lp2f51iguniAi+R+Zu9mAPZ1bx9QbnC/5ao9PjjFrsnlxZm1vs8lbPZQjMNzo+s5ksyQK/SJHShR5ETEy3sik9NKPrmJaDKLsO8MVL4IvO4TveEoi53TyWUVci6My2ntTCCrMKYuOMD4ZUbcsIKWr34NJKjPJGlVIRqoRZHyCuGIG1agIIPDr8Oa3WuJJ3PIKsSzx1mzcy3LZizr5ciizA2p/HWKBus0ecEdMq/ZvZZU0oesQiR1qB95BUW56zJJZBW6AzWulDsazyCrkMy1lyA3NIb8yCq0R1Oue54T6RzptIIMhEP+ssZfH8zLHUtkSKdzA2YQO42OaApZzc9fKXI3Vftp7YK2aNJ183y8K/9M1of8+JHKGn9Ilqj2yaSyCse7klSNqDFxpMbTGcvPc1VALkn2hlB+3euMpV03z+VQjmyeYlcGW9fvo66m3u5hlM2uo1EWJv1MjPnYsnZvv8eq8pl0nH0FuUiUs3NhRif9dI9dxN7q6fjCYWLSGUgD/IbdKKrC09ubWdAxHSXtx98+iw2PNzNm9unI0slGaiFzPbUsTPoZWT2dvVOXAJIrZBbynh85B1XxE2w7p195BULuEb5GFib9NNTOcqXc57XNJpf04++cXJLcZ3SqVCf9tGw6ypZ9CQtHPHQiySwLk/myLtufOUg5qllOVVmYzC/5m/60m+pA39Z7J3K4JcLCpJ+pnQy4jgGc3SXRlPRz6MWjbNkVN318RnK4M8HCpJ9GOVCSrCfy3kyQWCrLG+v3c7TMLHm7aY2mWJj0U6f6S5L91DYVf9LP0c1H2XIgaf4AbSIWj5Z8rOeKHQaIrNaaftywAkmWqVmwAFAJFNxaGdkPqNQsWIAkO/+W2dG5k2g6AmpBXilLJB1hR+fOXo8XMoeyeZdN0idcXO6QeUfnTiKpCKpaGLec7ldegZA7mMu7MNI+8Z7nHrmj6QiqWhi3nClJ7qqCQuPGbO9EISu0OuArS6kD8EkSoUJv2aQLZRdxwqX2xxWypjLus+LEM8V5HgxVgbzsCRfKnirIHip1nguypirYWlcunsWuDOZeOtWVxYr/smEHm/e2MH12PfOXThvwePXSSex+8l7+EK9n86gRnBrfyazcTmasWIXkd/Ytk1Wy3P6HFbRMbCGWmYmSDFM95mUC9e9wtPotHlvyGH75ZBnUSyfR/fyv2Fw1hybS3LD/KQITJzpeZiHv4QltRGOLAYW6SU8iy5l+5RWol05i36f+wOaq0zklGeFal8ndMrGFbmUiOWkkVaO3EmxoHlDutUqczR0dnDO9hvlLplk78CHywo5jbH5jN7PHV5f0LJ/I7rf2cqA9zU3njWbelCbjB2giLz+7k837Wph8Sl1Jsj8aj7A52sUFs+qYv3jg453EzlcOsPntA7x/+uDm+d5DR9m8J87Hz25k/pwJxg/QRI6/eYTNb+1j/sTS5vmJbDebOzqYN7OW+ZcOfLxbKadnvXNXbgfi88v4SnyLcBLtiQyKBCPqQ6WN3x9k7I3XU/PIiygSxPxVjL3xevxVzk8lX7NrHQfjB0AGRQ2hSKAEEuTkLAfi+3nqwDqWz1x+8hf9QWZ+5gqU16AzVIukZF0hs5BXUZpQJEDKoPgSqBL9yyvwB5n8kaUof4NooBrZZXIjQ07Jz7Pq7x54noGmuvzxXamM657nrmQWRYKmuuCgxh6uCaJ0JIims66TPZrJoUhQXxMoaezhmiCKBJGM+2TtSObX7Ma6EtfsE2isz8vemXTfPR5J5+/x+trS7vGG2mDheXbfPJdDObJV7lXw0BhMM+nwsmVawddk0yjCl19uytiMJKtkub/5fqSCk0pV8rElkpyPu5CQeKD5gT4zJ6csvwyAnOwjPW2m42XWy6vm8pm8kq9bJDUPKK9g/MUXAtAdqCYwebKr5AZQlUI2ry8fLzeQ3Fp2qAvbimltpmoGp3g3ulh20WFkoH7AAi1b0oVlMLSSNmWWOhGI+6PdhRnQIru11Oxnt3fOMQNPsRsGDKY1jeT3M+6CfP2yzOwzHe2WE2xt3cqh2CFU8rnyai6f9i/JeflVVA7GDrK1tfe6h1XVIWrk/Hflaz7veJn18qrZgmLnj2l/H0heQWOhllssUMWoFStcJTcAubxiJ8l5xW4guRtc3IGhY5ClTgSi+0SnC7uMRJPltQgUpTLc2O+6s8TWaX1RbKnmvnu81K4TgnAF9DU3Gmev4B6GMNjWNKPfNRf2vkFixBgzhmU4c0bP4a4L7yKdS6Mo8M/b8u8tX1v0JeoLRp2gL8ic0XP6/I2RDTXEOxKkz3+PFUMeEnp5N78DvzoIp42ayPXvuUM7ZiB5obiAKrIP+QOXmjpmI9DLrapw09sSOeArC/+Zprr8Mf3JLSx2buwjOlSLnejOEXWhdSOqWexK27bcXN9M3Jvl1rATNLq4ZqGwsJbSSQZ0CrzXUkzDU+yGAYNtTSMW0O60OzLogr4gS6bl28nlF/N894i/n305IX9p2WUj6kIc6Ei4YkHUy3vo4C5gO6ePnsTymeeW9Tshv0zQJ5POKURTOcLVA3/HTvRyx9NZcso6AP5+9lJqS+gLrFkzEu6zZgjFrtxuBIL6Kve6J0ttDC8Qlhw39kCOlGm1OpFKsNgNh3k2C88VW+HoW9OUq9jVhQoN0134JiTGHPTJJSt1ACMKb7rt3e7qsziYOEqBJEnaItrlAoVWj1BQ/LJUUjkfKG6WHXH3NYgfssWuehhZ7Grc66ITLx2DVuxqxT3uPsWubAW+2r3zbBaeYlfh6FvTiIe9VGpD+Y0y5sK2NGLMdSVuAoIRBXe1sHK6BdEXcrDB1g2FDd9tb736t3tJKq2ym2gUns4qrqtlN9QYOy0eyZWKXWmN4QVutuSUG2d2IiKW0o1JMuXKLo5z4zybhafYVThCQakP+cuyXAHUFdxablTsxNt9XQmuOT1ujb8SFsaRg9zw3bo4lhtQD1Ab9BHw5ZVA981zfryDt9i51xU7+Bi7rOsss+X2xT2RinDFlqjAi/shlVXI5LwixeApdhXPUNLmhbWrO+W+hVEoo6XEXOkR1hy3LYhFV2x5CTKCusIi6jYlPpoqb7OHvOu5wYUN4lV18GEVAnGd3Gaxy+YU4oVY31LLnQi3c05RXRMnDPmuIKKLwmCTJ8QLanc6R9plHRnES0epSq1+jXdj2JAZeIpdhdM2hJgc8cBkFdV17Vq6xYZfpmKnj79yE4NNkBGIDT/msg1fzHNtsLx5FhummyyUkWRWC6sY7IYvrCBRl22A+heOUpX46kDRMuum+CtxT/pkqWyPgyBcFUAuRCa46SVVVdVi4kiJ93jAJ2st1Nx2X5uFp9hVOFoW3SA2fP1m6TZLjnhzKzfGzq0ujKHMMxQVYLfOczkWO9AXr3XPhi/muDbo0/rdlktDtTstdmLDrgrIBHylbVuSJLkyplAfY1Zq3OiJyLLkypfUVFYhXXCnllruBIpW3GjKPbKaiafYVThDyZb06TINu1224QsX3WBj7Ny0GCbSOc1NNdjkiXqtvpm75nmwLnc3xhS2D7EbAfQs5uqm8IqIFktZnqWywYXZ3kONrxM0ubAQt3geZam8tVu8mLpt/TILT7GrcIaaLVnr0gdmsBY7rTK/izYC0Vkk4JPKdj0LRGmbqMsU+NggFXixabppnrV42UEmTkBRMVJU99SnhPITJwT1ugQKt1BuHbe+aNQSwdyn2JWT5Q76UBL3zLOZeIpdhaMFWw9yMxCKgtssdrGCSb7cDV+/GLrFoiGUk6aa4KBdN3UuXRgHq8C70mJXeJabBuluB+HKzN8jbqplFy2zT6zAjfPcpbUTM8pi5x7ZB1uYWTz/nis2j6fYVThDDaoXFrvutMs2/FTeGlG+KzZ/nbKK6pp4M71iN1jqXdpqStyXdWUmT7hxw+8YYnFiOCHuzEUlT4o17MqbZ3G8m2IphYVtqK7YRhe7YsuVvd7FxfTNwFPsKhytvtkgXbF1bnXFDtJFVx30EfLnHwu3uOnEwj3YTElwb/JEdBhZ7IZatFag1bJzkRI/WFesG+dZKKFDeZ7133eV7GUWoRbUaWV83LV+mYWn2FU47bGh1TfTLHYp98TjQLFsR7kbPugzY92xIHYaoNjVuTx5YrAxdm7a9DoN2vDrXWjF0gpRh8qT3Y1KbKdBCrwbM7+7Bpk4osXYuezF1Cw8xa6CUVVVc8UOugyG9sC4Z3GA4gM+mGSCRi0z1h0uDGNcse6sb9Y9SMXOjdYMsekNNfbKjbXsIkMua+MeWY2yzLpRdjHPorh0qRSzYt3zPJuJp9hVMAldBfPBBlwX+8W6y2InNq1yy2CA+xQ7ERxdakHP3nBr+7hh6YodosUu7MJadtFBljtxY79Yo8qdhF3Y/3mwGcHivvBi7PJ4il0FI0qdBP0ytcHBFTStdWlWrBZUPxxcsYmhB9WHda4Mt2QDw3BzxRZc7tWDn2foWcvOLQzWkuNGJdZoi52b7vHByu7WUBKz8BS7CkbfjWCwZTC0oHqXPTBaR4JBWexcptgZ4KITC2NOUUlk3GOdHawrVr/pKYo7FNlOAyyzoO8X655neqjlTtykxGrlTobwoga4suuGmKdykye0rH6XGSDMwlPsKpihdJ0QCItdzEXlTlS1WKpkMBY797liRfLE4Oe5OuDDV2gu6RYlfijzLFw9quqezcCwrFgtxs49G37RFVtuuRP3Knaexa503Fq9wSw8xa6CMUKxq3OhxS6VVcjk8laYwTTRbnJZxfYuLXli8BuBJBUbjrvFkqOf53JjKasCPq1xuBs2/ZyiapvWkJMnXBhUP1zKnaiqqrPYGTXP7mkfV3S5DzLGzmVJfmbhKXYVTKcBJv06F8bY6RMAasssXAv6wp7uWCSMsNiB+xIouoc4z27a9PXKp1FB9W5y0UUHWd9MKAjd6RzZQnN5J9OdzpErhAaUK+uJiPtEUd3zTA+284TXUqwnnmJXwWj1zYawEdS6bLOH4oZfG/Qhy+XHFmrJEy7Y8BWl+IY/FIsduG9xjOnm2TeIeXZTv1hxL9aF/Ph9Q1u2RS04N1gqBYO12Ok7VbjBEi3mJOCTNIvyYAn5ZYKFe8UNssMQOk/okifcYp00E0+xq2CEJWcoG36dCws/DrYEhsBNzbOjySwi9t+ooHq3xF4NpaQNuMtiZ1SbKXBfoHk2pxBP5xN6yk2e8PuKFQHccF9r9TerAoNOeBNIkqRZLLtc8PKSzSma/OW2jhPehqyiaiW+hjOeYlfBaNmSw9QVO5j4OigqwqI3p5MRJTBqgj5C/sGVtBFoAcgumevuISTIADQUyoa4QbEzKqAeitfLLc+0/qWyXIsduCumUCifg127TqTBRW53feJDuTF2tUE/Qg92g6xmY8zd4+FIiopdeQ+Jkk4Te+YZ1HQaNQXgI5pI0/XHP2rHSMEgdRdfjBwcWlyXGQxmcdTLLKcBfESSWdr+8Ef8hQXDiTKLBJnBBlrr5Q61SYDM8Veb6Tq8VTvGiXLD0DdBN1nsjAqoB/clRIkNvyogExiEGzpcFaClK+mKDX+wHTb6Iuyie1zMT03QV/Y8y7JEXdBPNJUllswypt6MEboHT7GrYAZbuDaxtZlDK28CIBaogmX/TlaV2PuVrxJUijXOpqxeTe35C4wbsEH8+cArgExC6Sz5O3qZc5IMH/4uADv+9Vs0pOPacU6Ted3ujYCM7EsM6vt6ueU5fw/TF3F47XoOv72+x3FOkxuK85wsY571aDF2CRdYZgf5ktYbmhW+EKg/mPhEK4kMsuuEQEsWcYFyM9hYwr5wUx2/oVql66vyip1X8sRhrtgXXniB5cuXM2HCBCRJ4vHHHx/wO8899xzz5s0jFApxyimn8PDDD/d57H/8x38gSRIrV640bMxOpqN7cAVNa+bPIzBpEkgS1ZmU9nncX5X/P5JEYPJkaubPM2ysRpFVsqzb/TwALfHdZJXSHnK9zD5VoSaTV5Siwdr8AQ6UOatk+cM7eQWsPXOwZFn16OWuySYBiPtDxQMcKDfkZX9y93MAHC5jnvUMp01Pj9513e2C+pRDVXbcVKh3sK3T+sJNLdWEq3yw2cBujAc3C0dZ7Lq7u5kzZw7XXnstf/d3fzfg8Xv27GHZsmVcd911/OpXv2LDhg189rOfZfz48SxZsqTHsa+88go//vGPOeeccwY9vlxWIeeiwMxIdxpZhYagv8xxy4y4YQUtX/0akgTVmTQpf5B4oIZwJr/5j7hhBQoyOOx6rNm9lq54ElmFlNLFmp1rWTZjWQnfLMqMBI2pOEl/NV2hOiZ0twPOk3nN7rV0xjLIKmSVzjJk1VOUuyaTQlYhEahGkYrxek6TG/KyR+L58abLmuciDSE/spp/Tpz+XHfGCs9yKDDksfqRqJJl0jmFaHea2iHGZppNV0H2cNnrWJ5wYZ67YhnHz3OkO/881wd9hozVjfd4Y2iQ8xx0j6yDoRyZHKXYLV26lKVLl5Z8/IMPPsj06dO5++67ATj99NPZuHEj3//+93sodrFYjE996lP89Kc/5d///d8HPb6t6/dRV+MO531OUTk7IgF+Dr14hLZAeYu3Kp9Jx9lXkItEeXfSR8Lvp2XSxSRTMXzhMDHpDKS1e00Z+2BRVIWntzdzXsdZ5JJ+fNJ4NjzezJjZpyNLAxun9TLPz1TTlvTTNv597K0/7jiZhazv6jgnLyujy5JVj5C70dfIwqSfxpqZ7J26BJAcJzfoZRfzPGFQsstHoixM+qnbHWeLg+TrDXlbhIVJP+E9xoz1gnSARCbHG+sPcGgIBcytoKUlL/vUDnVQso8/lGJh0k/i9Xa2xJztdk7t6mBh0s+4gylD5nnk/gQLk36yb3axJTP03zOTo4e6WJj0M6NdGZTsp7YpBJN+jmxuZcv+pPEDtJlYPFrysY5yxZbLpk2buOSSS3p8tmTJEjZt2tTjsxtuuIFly5addGxfpFIpIpFIj//cRjKbj4WTJAgO4o1ckmVqFiwAVPyFuLqM7AdUahYsQJKdd+vs6NxJNB0BtfC+ImWJpCPs6NxZ0vf1Mody+birtBzAiTIXZS24LeRMWbLqEXIHcnkXRn6ewYlyg172wn1d5jwLQv68XKmM89/uxfMsxjxUgoXfSbvAsiHGGByk7GL9S2Wd3wM5XRjjYNbs3gi5SHZRpmSw97ib7mmzcZTFrlyOHDnC2LFje3w2duxYIpEIiUSC6upq/ud//ofXXnuNV155peTfXbVqFd/61rdO+nzupVMJh8NDHrcV7DgaZfPLO2isCXDe5dMG9RvqpZPY/eS97FJPZXfVJC5r38qsYDczVqxC8jvr1skqWW7/wwpaJrYQbwmTVccTHPk3qkZu5Gj1Wzy25DH88sBjFjL/NjmCzSMbOTO+i1m53Y6SuYeshxvJquMJjXqD0IhNZcmqR710Ers//X9srprN7Hgn1+x/isDEiY6SG06c53qy6gSCI98se54BpP0dbN6+n0l1Ae5eOs3cgQ+R7+1vYUs0y6cXjmX+WeOG/Hvf3HWQ7S0JPj9/JPNnjTZghObx0rM72byvhcmn1DF/EPO09c8Km1taGTsxNKjvW8n/xLrYfCzL+85pYv77pg3593a94mPzgSPUjPE7XvZnn0qx+UCW004PD2qsj6WibO7qZOGpdcy/qPzvO51yDEzOWbFN4MCBA/zzP/8z69evp6qqquTv3Xbbbdx8883avyORCJMnT8bnl/EZ9MZsNpF0DkWChtrg4MfsDzL2xuup+r/9KBIkfX7G3ng9/irnuW7W7FrHwfgBkEFRgygSqP4EOTnLgfh+njqwjuUzlw/8QwWZ6361GUWCSCDE2M87S2a9rDmluiBrd/my6vEHmfChy1Degu5AFbKSdeRc95znQF52X3JQsjfVhVAk6EhmHP9cd6ayKBI01g/hedZRV5W/doms4njZo5n8WhauDQxqrA21+fUgms46XlaxboeHsm7raKzLy96ZcoHshXs8XDM42etr3DPPg6EcmVwt/bhx4zh69GiPz44ePUo4HKa6upotW7bQ2trKvHnz8Pv9+P1+nn/+ef7zP/8Tv99PLte7eToUChEOh3v85zY6DKpUH162jJpAPi4lM2Yc4csvH/LYjCarZLm/+X4k8uNUlXxWpyTnM3olJB5ofqDkzMnwsmU0iiKuI8Y6SuaTZM3VACAVyp2UK6ue0e97NwAJf5DA5MmOkht6m+f8y5rkG9w8i9Ih0WRW68/pVDoNzIoFqA0VujG4IINwqJmibixQbHi5ExdkBA8189ttva7NxNWK3aJFi9iwYUOPz9avX8+iRYsAeP/7389f//pXmpubtf/e9a538alPfYrm5mZ8Pmdngw0F0UJmqP1DJb+fxhlTAfBddImj3HKCra1bORQ7hEp+c1ZzPRU7FZWDsYNsbd3a52/okfx+Jrz7PADSs890lMwnyyoUu+78v8uUVU99Tf66JfwhRt+4wlFyQy+yFxR4BjnP+g3EySVPVFXVnuehdJHRU1dQktxQpHioRXvdVe5k+BYoNkqxc0tfXDNx1Modi8XYubMYAL1nzx6am5sZMWIEU6ZM4bbbbuPQoUP84he/AOC6667jvvvu45ZbbuHaa6/lmWee4dFHH+WJJ54AoL6+nrPOOqvHOWpraxk5cuRJn1caxT6xQ98IGqZNgbaD5E6dPeTfMoM5o+dw14V3kS4kPPx7i8TRJHzu3M8wa3z+mKAvyJzRc0r+zXEL5sHe14k1Oiv+6ERZb9klkQBuWnAd4xrzx5Qrq6AmmF8OklW1hJc7y1oHJ8t+xxGJlgR89pxPc9rE/DHlyB7wydQEfcTTOboSGZocmh2azCikc/mAcKMsdm6ybhSVncovUFzsFWusxc4Nip1QyMptJyYQ18wNLytm4yjF7tVXX+Wiiy7S/i3i3K6++moefvhhWlpa2L9/v/b36dOn88QTT3DTTTfxgx/8gEmTJvHQQw+dVMNuONIRH1xx4t4QTdZFI26nEfQFWTKtOOf/rjwNpPjA9Pdx1sSGQf2m2OQ7HNY8Wy9rNqdwY3otAH932gcYWRfq76sDIuY5o0AmpxL0O6s0xInzvErZACT5wIz3cs6kxkH9ZkN1QFPsnIrojOGXJa2h/VCpd1G/2KG6J4sWOzfJaowCL65ZMqOQySmDaslmFREDOk9A8RoOZxyl2C1evBhV7TvWpbeuEosXL2br1tLdTs8999wgRuY+ugbZTqw3agqbSXfKmYrdiYhxDqWRtrhunXHntpvSKyNGWHL0SkN3KkvQ70wLlkDEh9UOYZ4bqvN9RDsdrNjp+8RKkjHKdm3BOuuOGLshumILz0YslSWbU/A7VLlRVdVwV6x+DYwls461SkNRsRMW1nIRyrAbrNBm48w73GPIiHZiRvSWLFrsnP/AKIqqPdh1Q1gci4qdczd8oYzUh/yGbFZ+n0xVIP87Tl8cVVXVrE31Q1TswNmuKnEPDtZF1Rt1LnJbCQvMYFtN6ZUkJ9/XyYxCtpDEY5TFzl8INwAc3UNVVVXDYuycLKdVeIpdhSJi7IwIthaWnG6HumL16HtfDsViJ1zYiUyOZMaZchffcI3b8IUlx+k9RBOZHCKRdSgKvJsUO6Pi66CoDDtZ0REM1YoV0Ck3Ts6MFQqsJGGYyx30SQXOvcfj6Zym1A7VFeuGlxWz8RS7CkVsVEPNigWoERY7F2wCYqMK+KQhVekPV/nxyXm3l1M3fSMbwwuEddbpsVdi8ZYlqC6zXZ4erRyEQ+cYihuyGfPsdMUum1O02N6hWLHckBkrYgDrQn7DXO6gU3gcPNdiXvyyNOjnWbNCp7MoDi9fZDaeYlehaBa7aiMsdsKK40zLlR6x4dcOcXGUJIlwYaEYnoqds+c6ljJmnkWogpNjKYXFarCuyN5wiytW71YbStyZGzJjxT1t5DxDsbSNk12U+rVssM+zuG6q6nyPg9l4il2F0hk3LsauplDM1A0xdlp83RDcsIJGh8fZFcsDGJcDVRcSiTLOnuuYAfF14A5XrFBGjAqoB/eUOxHKSFVAHlJGpxssdkYXJxaENYudc2UXLvKhhJWE/DL+gpfFyUqsFXiKXQWSSOe0hspGZEFpFjuHW3HAWMVObPpOteYMtTxAb4hadk7f8PWW2aHgCsUuaXwspVvKnUQMKv8h5HV2jJ2xGbECNyQVdBkQLyxJkq7kiXNltQJPsatAhBvWqLpXxXInzn9YYgYujk7f9M1wxda5JcbOgMxncEdlfjNcsUIhdnq5E6OUHa2tmCssdsa6Yt2g7GiJYEOc5zoXxBNagafYVSCduvZDRgThOr1AsZ6ooa5YZ2/6xcXQyA3fHRnQRllmne5uB3NdsemsQirr3Lk2StnRXLEOfZahqHgZsXbpqXdZjN1QqA8JWZ07z1bgKXYVSKdW6sTYhuHd6Wy/BaSdgFEuOoBGzRXrzEVCWwwNmmdwUVasQYqdG7Jio0NstdQb+uvm5BCLorVyqBY75/cRHWpP3L4oumKde48bpdh5Frs8nmJXgXQaWOoEijF2qpovoulkjOy16BZXrKEWu+DwVOycOsegjzMzbsP3yZIrQiyGWpxY4IbkiWIYiTmuWCcrO0bFkWr1GR2swFuBp9hVIEYWJ4aedcKcnkbebWTyhHDTOXTTN7e+mXOtOGB88kR3Okcm58yXFjNi7EAXZ+fgTdDwGDtHJ0+YkxXrhhg7w1yxLpDVCjzFrgLRYuwM2vBl3dt93OEbfjHGbuiyNzo8K9aITLITqXNJaRujLLN6F59TrXZFBd7gDd8FJU+ihs2z8y12RrmdT0TroepgZUcrdzLElxfhinV6UpDZeIpdBSIUESMbPte4pNWUWLyGmi0Jzo+/6oobv+G7pSOBUa5Yv0/WFBwnKnY9G8MbXbjW+fXNDEuecEGB4mhhHoxYu/RopV4crNQaVbpJvNA7WYm1Ak+xq0A6DCxOLKh1WeFaYXkaClpXAgduBoqiam+lRlrsatwSY2dgkoyTS57E0zlyhfZIhnckcIHb3aiEgrALMkPFPBjhbdDjhmLUxrtinfcsW4mn2FUgnQa2ExPUuKStmGaxM2BxdHJgfTSVRSQoG9pqyiUtxYTl2NAkGQdmP+t7aFYFjF2ua10QaG6UtTLscOs7FF+mjKg9qscN5U6KyRNDe57dkChiBZ5iV4GIGDujsmKhuNjEHf7AGFW4FoplRLoSGcc1lRYbVMgvUzXIptm9oS9t42RiBtb8cnK9Qn2pEyMbw4M+xs55cguMquEX1sVe5Rz2LAvE2mqEFVqPXtlxarkqw8qduCAhyAo8xa4CMTorFnT1zZxusTOhpZiqOm+hMKPrBLin80TUwE3QyZZZM4oTC9xhsTNGfr3Fz6nyxkxW7HKKSiLjvPU7k1O04vdD9T5o1kmHr19m4yl2FYjYoMyIsRsu2ZIAIb9PK/XitE3fjD6xADVuccWa0GHEiYWozSp1Au54WTNK/qBf1p5lJyYRqKqqzYPRnSeqAz58ct7a67QXVOjpHh9qvLAWT+jAObYST7GrMFRV1TYoM5rDO33DNzKoHvQJFM4qeWJGqROAusI8p3MK6awz67qBsT2BnZw8YVTsUW9o4RUOflkzqo4dFK+hE+c5lVU0F3GtAYlfeiRJcrSLUkuQCfk1BXSweHXs8niKXYWRyOTIFhYIQwvXumATSGVzpAtFZo16622odqY1x4zixNBzU3GqO1ZRitaNYeOKNThTEpxfjDqTUzTXoRGlXuodXMtOH+wvXqKNxMnZoka+pHrJE3k8xa7CEA+JX1dU2AhqXJAyr7cmGq3YOW3TNyvGzu+TCfnzy4JTEyj04zLEFVvIHu9ymFUWitYMUyx2IWcnROlj4Qyx2Il6bg7sPiFeovRuUyNxcskTIxU7Iae+TNBwxPjVwsNW9Bv+ULPolHSa2DPPoKbT+A5KgEznjt10/XGXdowUDFJ38cXIQeMSNQaL2AiqAhJDWRv1ctd2yYDEkZe20LXvVe0Yu+UWFkQjNjy9vAA1yKSQOPLk09TX5o+xW149YnPyyRD0DX0TdKryDvo+sWZa7Jy32UPRnVYVkAn4hm6D0EqeONBqJV5KjU6cEDi5jp+wShvRcUNfDSGWzGqVDYYbnmJXYXQZGF+X2NrMoZU3AZCZ8R445yO0vfY6h3/yqx7HTVm9mtrzFwz5fENFVG5PqV38afefWD5z+aB+Ry934NwrYNr5HPjTOg6/s6HHcXbK/dfWnYBEa3IvcNaQfksvL0Do0tugdiT7//MBajv2aZ87ZZ6FAp+TunlizxODnmeBkxU7U5MngkXrhhMxWql1snIjrNBGFFbvjToXuGKN2LNCfh9Bv0w6qxBNZYatYue5YisMI83aNfPnEZg0CSSJ6mwKgKQ/VDxAkghMnkzN/HlDPpcRdCXyY0RO8UDzA2SVwS3gernrMgkAYoHq4gE2y51Vsrx+5B0AXjv+l0HLKdDLC2hzHRdz7bR5TubHJw1xngVOzorVrBmmuGKdXdrG6N6pTm4rZlapE4GTkwqKCULGKGFu6IFsNp7FrgxyWYWcgzMFATpjaWQVGkJ+A8YqM+KGFbR89WtUZbPIKiT9VShS8a1yxA0rUJDBAdfl+d0vIasyspTkcKSFNTvXsmzGskH8UlHu+nQCWYVYsNYxcq/ZvZZEUsqPK3N0CHIKivIiQU02haxCQjfXTprnZ3dtKsxzaojznKc+4ENWIRrPOO75jsYzyCrUBYx4nntS5cvfQ4lU1nFyA0S682tZOGiM7OGgH1mFSDztOHlj2jz7TBlbnYPv8a5uI/csCId8dMTyv+s0WYdCObJ4il0ZbF2/j7qaeruH0S/t+ztYmPQz41iOLWv3Dvn3VPlMOs6+AjkXYmHSz0jfOPZOXQJI+MJhYtIZSAacZ6goqsLe1/azMHkKcq6BwKEPsOHxZsbMPh1ZKt8wLeRulBtYmPTTVDPTEXIrqsLT25s5P3IaSsZPoO30IckpEPLmIlFOV5toSPpJjl7A3tBkx83zzq37WJichZyrH/I8Q77UxMJkfil86Yk9+E0IXh8so/YnWZj0k32zgy1HjbU0dcYzLEz6CWZVQ9YKo2lpibAw6WdqhzHjq9sXZ2HSj29blC3y0H/PSI4d7mJh0s/044opczGycB/l3uxkS9r43x8S2/KyN+5NGCL7nKjM+KSfvS+0II2KDH18DiEWj5Z8rOeKrTBSBa1eZDYOFUmWqVmwgEDB3ZWRhdVKpWbBAiTZGbfQjs6dJDKFjU/KASqRdIQdnTsH9XtC7mCuELfnE24Ce+Xe0bmTaDqCqhTeyaTMkOQUCHlBxa/kY66ysh+75T2RnvOcZajzDBD0ycILTdJhlflT2fx4gn7jY68C/rzQmZyCE/MH0wavZeJ3xDV1EulsfgYCBiQD9UZRdudZsIzes4I+58pqFZ7FrgzmXjqVcDhs9zD6Zc2f4mw+nGXuWQ3Mv3SaIb+pXjqJ2Au/YnPVXEaqCW7c/xSBiROZsWIVkt/+WyirZLn9DyvYO2IGqews/A17qB6/HgmJo9Vv8diSx/DL5Y9TvXQSh//yOzZXncHUVIzP2Sy3kLNlYgvR+HzUXIia8S/grzo6JDkF6qWT2P3kvfwhUc/m0SM5Nb6DWbmdDpznaaQyp+Kv30/1xKHPM8C2rTvpjGf4xqKxzBrrHKv8F1/fTWsuy20XTeCM8Q2G/nY8neWfXt4BwIPvn2RK/bSh8NKzO9m8r4Ups+qYv3TakH/v6F9b2LznMMpI2ZDfM5KXnt3J5v3GyXoi2zZLbD54lMbxAcfJ/sOWVjZ3ZfnYgtHMP3fikH/vobY2NieiXH5mA/MXTDFghM4gEind+uisJ9nh+PwyPoPeKsyiK5VFkaChNmjcWP1BJn7yCpRm6A6EkJUsY2+8Hn+V/aUvANbsWsfB+AFyymwUCVRfEkXOv5UfiO/nqQPrBpc56Q8y9WPLUf4KkVC17XILOVUJcmo1SKAGYuTk7NDkFPiDjL3xeqp+uQlFgoQv4Mx5Vmfl59lv0DwD4ZoA7YkMkXTOUc94ZyqDIkFjbcjwcdX5AqhyvhdyMqdS7yC5ASLp/FpWXxMwRPaG2iCKBF0Om2OAWDaHIkFttTGynkh9TQBFgmjGebJ3pY3ds+qq87J2O1DWoVCOLJUjtQdgXuHasR94P5DPivVPnkz48ssN/f3BklWy3N98PxISqlIF5LMlBRLSkDInJ156EQCxQA0BG+XWy4kaADX/TibJyfz/DlFOQXjZMupq8tmwqaZRjpxnlIKiaeA8O7HkSTqrkMzk3UlmlDuRJEkreeLEzNhiOzGDyp2IOnYOmmNBt8lZsU7OgDZ6z3JyBrBVeIpdhaGVOzF4I6gtbPaKJBO+foUjXHMAW1u3cih2CBUVVSmU5ygoOwAqKgdjB9naunVQv98Yzpc5SfmDhG+wT+4ecuZE6ZWcptwMVU6B5Pcz6vz5AChnnuPMec6drMAPVX4n9ovV1xyrM6jkx4mI7jRO7DJiZJ9Y0HWecGAtN1Gg2LQ6dppi57z4wojBil2d11bMc8VWGmZZ7PTxN75LPmDobw+FOaPncNeFd5HOpfmvpyWau+DDpy7hfWcs0Y4J+oLMGT1nUL9fF/QjS6CooF50qVHDLhu9nC3tcMdOqA3JrHrvHdoxQ5FTz8hzz4b9b5EeO2HIv2UUevlXPyPxaicsm3kxF59zsXbMUORvrMlbATvjzmkrJtqJ1RnQHL0v6kJ+WqMpZ274RhcoLqyJsVQWRVGRHZT9bHYdO6d2GVFVVdc2zyDFLuTcQtRW4Sl2FUbEwALFenyyRHXARyKTI5FxTrZR0BdkybS8Evfocy8Bx3n3pLksnznJkN+XZYmG6gAd8QxdySxjjY1fLxm9nK/42oFNjKqrZfnMiww/V21hYXRSRwK9/H/Y+ArQyoKJc1g+05jg6AYHFq8VFjujCvT2Rk1o+FjsxO+oKkRTWcNffoeC5oo1KYFFWAKdptjFUlmtp6vxrljnPMtW47liKwyzLHZQbBruxE0AihuB0YujsOY4xU1nZNu43hCbgBPjcaA4z3UGWjcaq501x1BsVm9Gn1iBs2PsjOuHDPl2U6KkhpMUeLA2xk5VnVPcRljrgj7ZsHIn9Z4r1lmK3QsvvMDy5cuZMGECkiTx+OOPD/id5557jnnz5hEKhTjllFN4+OGHe/x91apVnHfeedTX1zNmzBg+8pGP8Pbbb5sjgM0kMzmtdo8ZPfJqgs6N04Dig2x0PJKwfjql5ZRwUZml2NU4eLMHXV9NA+dZXMtOB234msXOhHZiArHhxx34TJvRJ1dLoHCYNae7YB2vNTnGLquojqrvJl5Sw9UBJMkY13idQ93OVuIoxa67u5s5c+Zw//33l3T8nj17WLZsGRdddBHNzc2sXLmSz372s6xbt0475vnnn+eGG25g8+bNrF+/nkwmwwc+8AG6u7vNEsM2xFuoLOVjw4xGBFrHHWqxE4pIfchYhadRU+ycEX9lVoKMQHu7d+g8x0yw2DkxK1broWmmxc7Bm6DRrljQJVAknCWvWLuMvKf16L0YTnphK76kGie3sHB7MXYOYenSpSxdurTk4x988EGmT5/O3XffDcDpp5/Oxo0b+f73v8+SJfl4nCeffLLHdx5++GHGjBnDli1beN/73mfc4B1Aly6+zozAYCenzINuwzfYYue0Tb/LpDhKgbAaONGKAzrLrJGKXY2z5hh0LmcTY+xqHfqylskpJApdQIx0RYtnxmnxV2YnT8iyRE3QRzydozuVY2SdKacpGzPWMrEuDGfFzlEWu3LZtGkTl1xySY/PlixZwqZNm/r8TldXFwAjRozo85hUKkUkEunxnxsw25KjlUZw4IavKCqxtFgcjXVnNDps0xfWBrNcdOLt3olWHDBJsRPKu0Pc7WCOnCdStNg565mO6TZlYy12whXrnHtbVVXTLXbgTOusGTHhXvKEyxW7I0eOMHbs2B6fjR07lkgkQiKROOl4RVFYuXIlF1xwAWeddVafv7tq1SoaGhq0/yZPnmz42M3A7NgrseE77e0eIJ7JIWKCzXPFOmOhMNtFJzaAVFYhm3NOPA7kLTmiaG+lu2LNskDrcarFTlhbqgM+Aj7jtiknFilOZhQKiaHay7MZODH2LGKCMUIodqmsovUbHm64WrErlxtuuIE333yT//mf/+n3uNtuu42uri7tvwMHDlg0wqFhZkYs6GOvnPV2D8VN0CdLVAWMva2dVrzWrJI2Ar3F02lzrQ8DMNJtJayynYmMY7IGY1rM6PCy4oC+hp3BiVAOLFKsv/ZmlTsBXVUDB8210cWJoee64CRZrcRRMXblMm7cOI4ePdrjs6NHjxIOh6muru7x+YoVK/jTn/7ECy+8wKRJ/dc4C4VChEIhw8drNmaXwSjGXjnvYdG7rYzKrhJoxWsdotgVswXNeXyDPhm/LJFVVOJpZ9X7EvMc8ssEDewDKWTMKSrd6ZypLrFSiVrgnqtxaFasaYqdZrFzzhomrKU1QZ+pRZMdabFLGh9WEvDJWs3VaDJLU60zel1biastdosWLWLDhg09Plu/fj2LFi3S/q2qKitWrOCxxx7jmWeeYfr06VYP0zK6tNgrk8tgOMyKA+bGIzVq8VfOyIqNpsx1xUqS5NhEGbPmuTrgI1hw+TnFMmt2bTPQ1Sx0qCvW6Bp+xRg7Z8wxmJ84Iahz4DNtlpdJhC+ItXK44SjFLhaL0dzcTHNzM5AvZ9Lc3Mz+/fuBvIv0qquu0o6/7rrr2L17N7fccgvbt2/ngQce4NFHH+Wmm27Sjrnhhhv45S9/ya9//Wvq6+s5cuQIR44c6TUGz+2Y7op1aDwOmFMCQ+C0jMli4VrzY6+clihjVtyZJEm6eoXOUOBjJpT7OBGn1iw0o9QJFC1DToqxK/aJNVexc6Lb3ayEPxG+EHNQkoyVOEqxe/XVV5k7dy5z584F4Oabb2bu3Ll84xvfAKClpUVT8gCmT5/OE088wfr165kzZw533303Dz30kFbqBOBHP/oRXV1dLF68mPHjx2v//eY3v7FWOAsopo6b1DDcwY2kY4U3MzMCzRsdVrw2anAPzd4YbhY7KNbScooCX5TVis4Tznqmi8WZK99iV7TMmpc4kf995821WcaIYmass9Yvq7A/kETH4sWL+w1cPrGrhPjO1q1b+/yOUwKhrcAqi53TNnswp82UQFjsIomM7c3DVVU1zZqhp8ahiTJmuq3ysZTdjrHmWFLHzuGuWKPjSJ0YYyfu6RoTEydAH2PnjPsbzHfFOsk6aSWOsth5DA3TW005uCOBVgfKhE1QXE9FLQa020Uyo5At1EYwU7Fzar9YzT1pisXOWWVttNZpJlpynGqZFcq18TF2zsuKtaKGHejrUzrnZc2sYutakWKH3ddW4Sl2FYQZqeN6ijF2zlkYBGaWhgj5fVQH8rLbXcBWuKhkydzSCMVEGWctjGZa7JxUy05VVV3cqAUud4c901GTFHihKDrFKgv6PrEmW+yqnKfEm+eKdWaHEavwFLsKwrI6dg5aGARRkzPLnLLpC0tDXchvSWkEp811zALLrN1zDIXi0AXLrBUFitNZhYyDilFrmd9Gx9hVFy05iuKMMJ2ixc7cGDunWeGTmZxWQFiEuxhFnZc84VEpmB9j57zgW4GZWbGgL2Brb8ZkxKQyECfi1PZxlrhiHaDYCYuVJEFNwLwNXx/X5aRadqZlxRaeG1VFa0FoN1ryhMkxdk7LihVWU1mCOoNlH+7JE55iVyFkcormIjWtV6xDA61B54o1ybrhlPgrKxInwLkWu+60eZZZJ/UE1qw4QXMts0G/rNXvc4qiA+bF2FUFfFpha6ds+lbVsat1WIy0Pr7O6Hu83kue8KgE9JuRWQWKxWYfT+ccl21sdgCyU9x0UZP7xAqcWoza1OxnrRC1/YqdVZt9/hzO6yhj5gtM2GFxdlaVO3Gae9JMD5OIS3WK8m41nmJXIWhvuCE/PpPe8IV7LqeopBzWXNns0hBOseZETWjB0xtO7CsJZtexc8YcgzWlTgQ1QedZN7RWUya8wDitSLHIUjXdYuewrFgzFbuiK9YZc2w1nmJXIZiVNq5HH4/j1A3frMVR6xdrc1cCs1xUJ1KrWWedNc/dJrrcnaK8g7kK7InoLfFOIWpSr1jQFyl2xr0dT1sz1/UOy4o11WLnuWI9KgGzEycAfLKklf1wXFC9ieVOwDnWHKti7JwWaC0Q8ptZ7sRu5R3MVWBPRMTOOmWuU9mc5hEwx2LnUFesRckTiUyOnAMygs00RtQ7dP2yCk+xqxCsUOzAuRu+WT1EBc5JnjDPkqHHqTULzSx3IjYYJ5TCiFq02YPeYueMZ1ofF2XKPDusSLF1yRPFGD4nJFCY1ScW9HXs7JfTDjzFrkIwuzixQAu0dsDCoCdqsuvKKW66qEXlThyrwJtomRXPjqravyGY/aKiR8TOOiX2Sp8gY0a8sNPaignvh9mu2JDfR8AnFc5pv+yWuGKHqWLnqF6xHoOnaNY2dkqVdJrYM8+gpvPuqaqkDEi0Pr+Rrjfyx0jBIHUXX4wcDBp67lJJZxWt0KWRi6Nedn8ngI/2o210/fGP2jFWyx4x0WKnl1eNAfiIdcVslVePqqqmZhCKDiOJTI7ORNrwoqnlIPp5WhFjp8VTOmCzB/Ot0sUYO2dY7KzKis2fw09nPJNXeBpMP12/mJsVm7930jmFVDZHyG/+tXUSnmJXIYhAYKMfksTWZg6tvEn7t/8918OoGRxc/SsOH35D+3zK6tXUnr/A0HOXiv7t87lD6/jIrOWG/K5e9nTDRLjoJtrbujh8y7/3OM5K2fd2HAUkdnS9AUw19Lf18sZqR8GlXyHWneTwLf/a4zi75jqVVcjk8i7SjS0b+HijMfOsp7EmQKIrZ7tlNmZRLCXoC487RbEzV3YnZcWqqmpqbcYTqQ0WFDsHzLWZXib9C1E0mSVUN7wUO88VWyGI2ltGPyQ18+cRmDQpXwIfqM6mAEj4Q/kDJInA5MnUzJ9n6HnLoTORLIwlzY/feICsYsyipZe9LpMAIBaoKR5gsexZJcuBruMAbDj4J8PkFOjlrc7lLbRJfwgt2szmue4S8wz87G8/Mlx+cE6SjFUlMPTncErNQrMzv51ksUtmFEQ4pxVzXcyMtX+uzbTY+WRJixMeju5Yz2JXBrmsQs5h9dsEke40sgrhoN/gMcqMuGEFLV/9GkhQm82fJ+GvQpHyD86IG1agIINN12btjueRVRlJTnE40sKanWtZNmOZAb9clL02m0JWIeMLkvSFCBaUCitlX7N7LdmMD1mFjsRhA+UUFOUN5bLIav6zhL+Kqlx+EbZzrv/09jPIqgxyipaoGfJDQ8ifv77RtK3Penci/5zV+n2mj6PWLyOr0J3IOGJ9i3RnkFVoCJoje10g/wxFu+2Xt6uwbgOEJMn08Wiyx+2XPRLPy15v0jyHQ34SqRxd3WlyjdWG/77VlHONPMWuDLau30ddTb3dw+iV8J44C5N+2BZhS8deQ39blc+k4+wryEWiTPGPY2HSj9x0DnuVML5wmJh0BtJaY89ZKoqq8NfXd7EweTqSL0Tw0AfY8HgzY2afjiwN3SAtZM9GoixK+lCR2DXtcqpzaUtlV1SFp7c3c35sLqh+gsfmGyqnQC/vwmR+edg79TKqchlb51pRFba88Q4Lk2chyTnD51lwapuCL+mn9aVWthxKGfa75dK4N8HCpB/1rS62tO819VzB/TEWJv1U7+xmi03PsZ6O/R0sTPqZ2pozZTyptm4WJv2MOZiyXd7OeIaFST9Bn8zWdftMP9+sNoVg0s/Rl46yZX/C9PP1x9QjOUam/HRtaWPLjpjhvz+/20d70s/O5w+Rauow/PetJhaPlnys54qtEJIFbb4qYPyUSrJMzYIFgEqgYKnKSn5ApWbBAiTZvttoR+dO4pnCBixlAZVIOsKOzp2G/L6QXUIlmMvLnvYFsFr2HZ07iaQioBbexaSsoXIK9PL6lby7JiPbP9c7OnfSnTZvngVVhTqNqay9riqRDCT6mppJwC/1OKfdiHGETJJdBNI7oXtOOpcfQ8CCeYbi/ZTJ2S97svCMmbFnQVFWp9zXVuJZ7Mpg7qVTCYfDdg+jV/7lzb0cymS5+cIJzJ3cZPjvq5dOYveT9/LnqMrm8RMZmd7Px3J/Y8aKVUh+e26jrJLl9j+sYP/IUSRSZ+GrOULNxPVISBytfovHljyGXx762ITsO9SzOVw1mo+0v8as6oxlsgs5D49vIxpbDEDdpHXIctZQOQVC3r/J59FRVc8nj21mVr3PtrnW5nlUmERqDnJVK7UmzDPAU2qCze3tnDW9hvmXTTPkNwfDV9/ex+50lhXvGcf86SNNPdfRv7awefdhlFEy85dOM/VcpfDkEwk2H27lnDMamL/E+PE0tkbZ/Nc9NFRJ3GezvC/vaWPz67uZPipoybX/33iEzV2dXDCrnvmLzT9fX6SyOTZu3AYBuO+yaaZkoN93pJXNqRh/d1YT8+dNNPz3rSYSiZR8rKfYlYHPL+Oz6M2qXDpTGRQJmupC5ozRH2TsjddT/dA6FAkShX/7q+wpcQKwZtc6DsYPkFXHo0gg+5Iocv4t8EB8P08dWMfymQZkThZkrX3iMIoE3f4gY2/8nGWyCzkVwigSQA7Fl0SVDJZTUJA3tL4DRaonIfsZe+MXbJtrIX+Oc1EkkMyaZ6CxLogiQVcya+uzHk3nUCQI1wRNH0dddQBFglg254j1LZLO5mWvDZgynsa6UH6OUxlkn4QkmdNbuxQSOQVFguoqvyXXvrYw1902z3V3Ir9fSVL+mZNNqFdYV+MMWY2iHBncL60HOUXVSgSYWaA4vGwZdXX5INRUfSPhyy837VwDkVWy3N98PxISKIUMXbmYNSkh8UCzcRmy4WXLCPvyJv34uEmWya6XU1Wq8h/6kiJJ2XA5BeFly6guRHVnxlsn74n0lD8/z5KvGPtmtPxah5GEvW3FLC13otWxsz9TEvR17EzKii3MsaLanwksslOt6DACzukXKzJi60J+U5Q68dvgvCLrVuApdhVAVJe2b6ZiJ/n9jH3/hQBkp59imwsWYGvrVg7FDqGiagqPfsNXUTkYO8jW1q2GnE/y+xk9c0r+txdfYpnsejnJFeTUKbBGyymQ/H4axo4GILBsuW1z3XOehQJv3jw31OStknaWO1EUVVM4rChQXOw84YwNULykhk1SakN+maAvv/XZXcuu2+SOOSdS7Chjr0JrRQvMegeVtbEazxVbAYiHpCboI+AzV1cftfA82Pka6YYRpp5nIOaMnsNdF95FOpfmd5sknjsOi6cs5EMLzteOCfqCzBk9x7Bzjpo1HY7vIzn9VMN+cyD0cv7tADy4DyaGR3Dre+7QjjFaTkF4/BiIHkM9+1zDf7tU9PL/6RWJda3w7onzuOKCudoxRspfrGNnn5Kj7+NpRUuxYq9Yp1jszLVWSpJEuNrP8ViaSDLDBOwrhWFVn1iBVrPQZiXeihaYmsXOq2Pn4UasePsROGVhCPqCLJm2BIA/b30dOMi542azfOYppp2z0YbitXo5leghoJlJDSNZPnOR6eeuFW4bGzd8vfxb/vY3YC9njz2F5TNnm3I+TbGL2+eKFZt9wCdZ0gqpptDKqjudRVFU01xjpSIsLGY0hxeEqwJ5xc7mfrHdFhaiBqjTzbWdWGOx81yxHi5G6xNrcmN40Fepd87DErPInSHcdJ02uW+KlgxrepiKyu1OseQU59k8+e1Q3k9EWBiscs+J86hqsQSFnVhxn9cX5tl2V2xazLU1La9ELF/UZiuWlYqd3bLagafYVQCWWuy0vpL2bwCCqEUbodj0O22y5pjtojqRWocFH2sKj4nyi2eoO52zrdZXNGW+nHqqAz4tGcfuuVZVVZc8YZ78In7P7vgrcb1rLEqeqHNY8oS5rtj8b3uu2AGYPn36oFLDV65cyRe/+MWyv+dRGsKdELbEFVsw5TtkswedJcfkjbCxxl5rTtQCF5UeocTHHTLXYp7rTVTg9c9QVyLDqLqQaefqi24LLJN6JEmiNugnlsrmM2NtbK6TyipkcvlsbFMVO4dY7OIWJ0/UOSSUxhLFziHKux2UdTc9/PDDgzrJtGnTBvU9j9Kww2KXyipkcwp+k5M1SqHbgg0f7FfsirFHwyuDThC1INDcJ0vUV/mJJrO2KXZFV6w17jnIJ17FUlnbLXbiHpckc0uAhLWMSXvljVkcY+cUK7wWPuTF2JlCWXfThRdeaNY4PIaAHckTkHdXNVTbr9iJjdDsxbGhuhBjFx8mMXYhEWPnjIXRqtIQDdUBTbGzg6jFVhxxrtZoynZLjvA+1JtY3wwgXF2w5tgdY6e9rFijxGsWu3QOVVVtK85sSYydQ5RYO7B/V/YYMlYqdkFdDSi7NwGBVTFJ4vpGkhlyimrquXrD8hi7oLMWRquK9mqWWZsU+GIsoTUKPBQzY+1OlDG7OLEg7JAaZ8XkCWstdjlFJZmxr4eqlXXsosksqmr9em0nZSt2bW1tfOlLX+L666/njTfe0D4/ePAgsVjM0MF5lEaxJpA1i0ONg+LsVFW1JPYKiouQqvYsCm0VVm16glqHbPYCy7Kfbc6MtbpoLThHibfq5UVLnrC53InVdexqAkXLoJ1zbUkduypnKLF2ULZi99nPfpaf/OQnbN68mfe+97289NJLnHvuuUydOpWRI0dy0003mTFOj36wIl5Bj5YZ64ANP57OIV7GzF4cg35ZKwFihztWq8hvkQLvlJqFkO/GYFmSjOZytyf7uajAWhdjp7UVs9ntXuw6YbLFrtohFjuh2FmUFSvLkraG2flcW7Fn1eiyvaOp4ZVAUbZi98ILL/C73/2O1157jbvuuouPfvSjNDY28thjj7Fq1SoefvhhHnnkETPG6tEHYnGywhULzsqMFZugLBVbI5lJo4217MRbrlUWuxpNgbd/nnt0YzC9XqHoF2t3jJ11rlinJMpoCUImv7w4xRUb15InrFfiK91iJ8uStlYMt1p2ZT89HR0dnH322QBcffXVXHfddTz22GOcf36+lVNTUxMPPPAAn/nMZ4wdqUefWBljB86y5Ohr2FkRCNxQHeBQZ8IWa47VMXbF0gj2W2bFGPyyRMhvbmhwk1DsbI+xs9IVW3C72+6KtSjGrtr+DV9VVctj7MS57EyUyeQUzdtj9p5VH8pnuA+3WnaDWiFlOf+1YDBITU0No0eP1v524YUXsmPHDmNG51ESlit2DrLkaPF1Flmx7Cp5oigqsbS1il2NA1w2gljBlVJXZb4CL1yxHTa7Ys2OGdWjWXEc4oo1P8bO/jp2iUwOxaIwEj12dw/SX3OzSzfVDdOSJ4NS7H7961/T3NxMNnvyxaqtraWjo2NQg3nhhRdYvnw5EyZMQJIkHn/88QG/89xzzzFv3jxCoRCnnHJKr7X27r//fqZNm0ZVVRXnn38+L7/88qDG50QURbXErK2n6Iq135JjdfsluxS7WDqrxRJaVaBYXFNRs9BOrOouAsU5ts1iZ3FAvf5ccZufacsUOy3Gzr6MSTHPkkVhJAKxftvldhdrZ13Ib3od1GJmrBdj1y/vfe97uf3225k/fz719fXE43Fuv/12fvzjH/PKK68Qj8cHPZju7m7mzJnD/fffX9Lxe/bsYdmyZVx00UU0NzezcuVKPvvZz7Ju3TrtmN/85jfcfPPN3H777bz22mvMmTOHJUuW0NraOuhxOolYOqu99VmWPOEgV6zekmMFDdX2bPpiwwv6ZKoC1mwCNbq4H7sTZazKiAVoqrE5ecJGV6zdz3TEou4q4vdzimpb1rd4Ma4NWhNGIrC7+4SVHiYvxq5Enn/+eQB27NjBli1beO2113jttde47bbb6Ozs1Ny0g2Hp0qUsXbq05OMffPBBpk+fzt133w3A6aefzsaNG/n+97/PkiVLALjnnnv43Oc+xzXXXKN954knnuBnP/sZX/nKVwY9Vqcgam0F/dZt+E7KirU67syuIsXFxAnrNvuQ30fAJ5HJqXSnspZZhHvDyhIgwmLXYbPFztJyJw4IqAddgWKTFbuqgKzd25FkxlLrqEDc01Za68D+F3MrqziIlyNPsSuRWbNmMWvWLK688krts927d7Nlyxa2bt1qyOAGYtOmTVxyySU9PluyZAkrV64EIJ1Os2XLFm677Tbt77Isc8kll7Bp0yZLxmg2VmfEgv0Lgx6rN0HNTZew1ppjtQIrqAn66UpkHFMGwworVqPdFruU9XPtlJqFxeQJc2WXJIlwVYC27jSRRJbxDaaerlfsqFcI9ivxXRbWXQ0P0xg7Q6/sjBkzmDFjBldccYWRP9snR44cYezYsT0+Gzt2LJFIhEQiQUdHB7lcrtdjtm/f3ufvplIpUqmU9u9IJGLswA3E6sQJcI7bBqxXeBpF8VrLXbHWljoR1IXyip3dZTCsVOCF8h5JZm3ph2yLxc4hBYojWq1G8+/zcHVBsbMp/kokL1htLXSKK1YkKZlJvQOSZOygrDtq+vTpg4oFWLlyJV/84hfL/p5drFq1im9961t2D6MkrE6cAH1Wlf2uWPssdvbE2FlVnFhQ45AyGFa1E4Oi8g75TWhkXcj0cwpS2RzpbD5RxZbkCZsts1auZ8XuE3a53K2vYQd6Jd6e9VuEsYi11Ey0OR5myRNlrRy9ZZyWwrRp0wb1vYEYN24cR48e7fHZ0aNHCYfDVFdX4/P58Pl8vR4zbty4Pn/3tttu4+abb9b+HYlEmDx5srGDNwhbLHYOKlBczJa0Rn4RY2d1VqxmsbOwaC3Y77YRiDIcVlTo9/tk6qvy9a86LVbs9JnmdsTY2Z3pbuV6Znf3Cftcsfau36KMkAh5MBO72wPaRVl31IUXXmjWOAbFokWLWLNmTY/P1q9fz6JFi4B8nb358+ezYcMGPvKRjwCgKAobNmxgxYoVff5uKBQiFLJuMR8K9ih2Doyxq/Cs2IhNMXZOib2yOlO0sSaQV+wsjrMTctYEffhk6zIltfAKGy122ZyiPc9m1zeD4rNkV7/YbhvK2oADXLFWWuyE8m5zT2CrsTZ4ZABisRjNzc00NzcD+XImzc3N7N+/H8hb0q666irt+Ouuu47du3dzyy23sH37dh544AEeffTRHv1qb775Zn7605+yevVqtm3bxhe+8AW6u7u1LFm3o2UYWRpo7aACxRYFWwuKdezSlta/itgUY+eU2CurXe7FkicW1yu0OaDezpc1feaiJTF2NsdfxbSs2OGVPNGpxdhZp9h5FjsbefXVV7nooou0fwt36NVXX83DDz9MS0uLpuRBPubviSee4KabbuIHP/gBkyZN4qGHHtJKnQB84hOf4NixY3zjG9/gyJEjnHvuuTz55JMnJVS4FfEmYm3yhDOKmYL1VfqFYpfJ5etfWfW2bVdWrFNir6yMsYOim8jqkie2KXaFZzqTU0lnFYImt23rDbH51gZ9BCxIWLHbFSus4HUWx9jV2fxibocr1ouxs5HFixf3awXpLcZv8eLFA5ZXWbFiRb+uVzdjZU0gQbFyuf0WOyvLYABUB3wEfTLpnEJnwrr6V1ELswX1OKXLiNXdGBo1l7vFrliLC24L9AH83aksQb/5m+6JWF26KWyzK9aODiP689n1TFvqiq3yLHYeLsSqGDslnSb2zDOo6TRKAsBHdzxJ1x//qB0jBYPUXXwxctC6TUEoPGYG1etlBwjLMsdzEgfXrqeuNn+M2bJHRYFiC97u9fL690uATPtbb9OVKJYIsnquNUuWRW6rJpvailnZOk2P3ycT8suksgrd6SxNtdYrdla/pNptsbMreaLOIa7YJgstdrFUFkVRkS2MW7UTT7FzOVYpdomtzRxamY9djIbqYOk3iWdVDt1yK/pHZcrq1dSev8DUsejpSMQBiS3HNjJv6nJTzqGXHaDm4i9BeBx77v8J4eO7tM/NlH1fZysg8XbX68AUU84h0MubO+0SOP0yjr/4Eod/9Lsex1k510djXYDE6+0vsRhz5llP0RVrrcVOWFGs3uwhb8lJZdP2WXKsVuy0PqJe8oRVKIqqWcGtSZ7Iy6qq+XlusOCcTsBRyRMe5WNV3aea+fMITJoEkkR1Nv9gqpJM0ld465IkApMnUzN/nqnj0JPJZYin8q773+xYTVYxZ6HSyw5Qn873Q44Ga/IHmCx7VslyKNIOwPoDfzRNTkHPuc4X6k74dVniFs91VsnSEU8A8Piu/zFdftDVK7Q8xq7YIN1q7A6xsDrDX2z6drnp7HPFFjPdFcW6BDCAaKrY29yKeQ75fVQF8mrOcHLHeha7MshlFXKF4qFOIRrPIKtQH/SZPDaZETesoOWrXyOg5PArCook0x2oIaTk3/BH3LACBRksukZ/eOdJZDX/0LbG97Nm51qWzVhmwpmKsiNBfSaJrEI0UIci5RdJM2Vfs3stuYwfWYX2xCET5RQU5a3O5u+vpL9KkxWsnes1u9eiZgPIKhy3RH5oDOXP19WdsvSZjxWe5zrTn+eTqQv4kFWIJdK2rHNdsbzs4aDfkvPXB/PyRuL2yBtPZJFVqPFJlp6/yicjF5SrSDxtaaZ9eyS/dlYHfAQka+RuqgpwNJ2iszvFxIYq089nFuVcK0+xK4Ot6/dRV1Nv9zA0VOC0dhVF9dOyqZVYVbu555PPpOPsK8hFolyQkMnIfg5NvoRIJoEvHCYmnYG0dq+pYxAoqsJzf/sbC5NzAZXQ4cVseLyZMbNPR5aMN0TrZT9FHoWc9JMbOY+90ghTZVdUhae3N3N+93xQfQSPnWeqnAIhb5AaFib9jA1OYu/UJYBk6VwrqsL6ba+zMHEeAKEjiyyRP93WzcKkn5H7U2yx6J4GyL3TxcKkn6a9CUvPC3BmJzQl/Rz6y1G27Oi29NwAyZ3tLEz6GXfImmveHk+zMOkn1Jqz/FoDTD6SoS7pJ/JaO1v2JCw7rwq8OxVAUVVee3KfpdbhI5EkC5N+6vFbds3f1e2jLennnWcPkRzRYck5zSAWj5Z8rOeKdTHZnIJSyCIOBcyfSkmWqVmwAFAJFKx0GdkHqNQsWIAkW3c77ejcSSxVWAylHEgqkXSEHZ07TTmfXvZQLm/ST/kCmC37js6dRFJRUAvWMilrqpwCIW8gl5/nrCwWf2vnekfnTqJinlFRpZwl8lcH8tc7mbE23ky0E7Oj3IgoMZLO2eOVSGXy563yW1P+Q8xxKltcR60kk8uf0+q5lnTnTFtsqUyKOQ5YV+JF7I0ph3nbzMSz2JXB3EunEg6H7R6GxpGuBJs3vY1flli4bHB9fMtFvXQSu5+8l3fUszhYNYYPt29hVlWGGStWIfmtuZ2ySpbb/7CCg2MkuhMLkPyd1E1cj4TE0eq3eGzJY/hl48ciZH+pK8Pm8RNpyBzm47m/mSa7kPPw+E6isXzXl7pJTyJLiqlyCtRLJ9G68X/ZXHU2kzIxrtv/FIGJEy2b6+I8p+nufjfISeonPWX6PAPsb+tm5Rt7qAmqPLB0minn6I3Vne1sbs+yZO5I5i+catl5AR7uaGdzd4QlZzRYfm6A1V0dbG7LcsncEcx/9zTTz5fNKVzz0jsAfP99ExhlYes4gM++soOYlOXfLp7EtFG1lp57x5t7OdSZ4ssLx3DOpEbLznv49cNs3raPhZPCzLfoufrxseNsTsZYfkYD889zZmvQUohEIiUf6yl2ZeDzy/hseJPui2gmhyJBfU0Av1VvQP4gY2+8ntCaFhQJkrKfsTd+Dn+VdeUR1uxax8H4AbLMRJFA9idR5Lxl5UB8P08dWMfymSZkThZkr3/wjygSRIJVjL3xetNkF3IqahOKBEgZVF+aHCbLKfAHmXTFh1H+Ct2BILKSNVXeExHy55iEIoHks2iegRH1VSgSxDI5sqiELLIiRdLFZ9rqtaa6KoAiQTyr2LLORVJZFAka64KWnN/nl6mr9hNJZommc4y1UGZVVYlmsqgS1NfaMdc+FAkSFs91V2GOGyyaY4BwbRBFgmgm66j9u1zKGbt7pfTQCj1a2XUCILxsGTWFfS49dgLhyy+37NxZJcv9zfcjIaHmCoGwckr7u4TEA80PmJY5GV62jMa6/Hm765pMk72HnEr+fJKc1P5utpyC0e9fDOSzYgOTJ1s2173K7yvGIZktf32VH1HyysrMWLs6T+TPaW9zeDv6Xot6fVYXoo6ncwjvr12lbcD6DOhOrTixdYaAhmHYVsxT7FyMHV0nACS/n4apEwHwX3qZZS5YgK2tWzkUO4SKCkredaJXeFRUDsYOsrW1/24kg0Xy+5n0wXzLusS4SabJrpdTKLB6xcZsOQX1NflrnPSHGLVihWVz3av8Fs6zLEva5mOpYmdxJxU9dveAtkOxEx1GrG4dJ5RnWSrG+lmJXW3FOiysYScQHUaGk2LnuWJdjF2KHUDjlInQ0YIy+0xLzztn9BzuuvAu0rk0z78Jv22Bc8aeyrXvuUM7JugLMmf0HNPGMP6i98K2F4kGqk07h17ON/bCT/fD5IbRfMlCOQFqChuAIskEL1sywNHGoZd/03b49SGYPWoa11kof2N1gPbutKVFiru13sfWP9O1NhauhWJNTivXs6LybnXruGLHHCtio09EdOqJWVyMukvrOmGhYic6jNjUOs4OPMXOxUQKb/dWu2IBagsbT3fa2oUh6AuyZFpewdi3bwfwDqeNnMLymedYNgbNfWPiG6BeznTnQeB1pjSOZvnM8007Z2/U6KwJ8UxOU/TMRi//0cO7gW3MGjmR5TPnWnJ+sKdIcVQrWmu9Fac2WHDFWvxMQz7mzI71zK7WcaK7h9XFiQV2KfGaxa7aOlds2HPFeriJouvCBreNtgnY9xYUtSkeSSxK8XSOVNb8TTBa6GVZb4N7TpYlaoL2xl6JDd/KQqpQ7GVplTVHVdVijJ0Nc11jo8UulsqSK7QksNQVa1PrODHPNTYo8GBfPKVQoK1s7dVgc09gO/AUOxdjVTux3rDbbQP2xSPVV/lFdzFL3gJFL8uwxYqNoDjX9vQQFfe51Yqt2Hysir/SB9Tb4Yq1s4eoUN6DPpmQhZmLmlXWYmtOt41JMmBf8kTRFeslT5iJp9i5GDuCjQVav0GbNnuwL4NQlqXiYmHBpi8sk3ZY7MB+62zUbotdwhprjj6gvsqCguMnUrTMWv9Mi+coXB2wNObMaqusQDxLItbNamx3xVqaPDH8Yuw8xc7F2KvY5ReGqI0Wu+KGb/3i2GjhW2DRYmW3xc4uxU5s+tbOsxZ/1W3Nm74+tMCOgHq7MiXBvrASO+Iowf4YuzobLHaKomrzbKViJyzvkUQG1YYOI3bgKXYuRsuKtWHDt9NtI4jZZMmBojJtxYZgpwILRauCba7YpD2KbYPF8Vd23s8ANTbOs10vqcUYO7tcsfbE2BVdsdbNdTSZ1UINrJxnUe4knVO0lmaVjqfYuRg7Y+yEkmF1jIYeu5InoLjpWxGbY5diIxBud/tdsTZZ7CyKzem2MSMW7I6xs6d0UzEr1qZyJ7ZZ7KxPnhAvSDVBn2WdXCB/X/sK1caHSwKFp9i5GDvr2NUVgruFlcEOYqm8/HZkEDZWW7ch2G2xszNbEvTJI/ZkP1u16dv5ogLFDM1EJqdlqFqFXS+pxTkenskTVj7TnTYkTgBIkjTsihR7ip2LsTPGTigZdsbYaa4rGxZHESNiTVasfeVOAOoKLrq4DfXNQBdjZ7HFstHirNhilrc9llm9khG32Dprmyu2Nn++RCZHMmPd/a0lTwyjrFhhsbNjvyoWKfYUOw8Hk8zkSGXz8QJW1gQSaMG3Nlns7K751WhDjJ1d5U6EJccOt7u+cK3lWbGFQtRdcWuCrsVmb1fcVcgvay4rq5X4iE3xwvUhP/6CzNb2BHZG8oSVFjuR+dxUa19MtGex83A0YiGUpaJFxUqE9SiRyZHNWR+QmsoqZHL5zdbOGDsr69jZZrErXN+4DYqd3i1otfxCeU/nFEsUHTHPdrnnJKlYjNqu+mZWW3MkSdLVsrO+dZzdyRNWJsp02tB1QqCVPPFi7DycjD6+TpZt6DWo23zssOSITVCS7KkFpVnsTFbsMjmFRMFFZJvFzqa+klCcZ5+uA4ZV1AR9BH35JdKKzNhiXUZ75jl/bnviKe0MKxHn7LCorA3oOk/YVMdOGAPSOYV01poX8w4buk4IrKw76gQ8xc6l2FnqBCDgk7UiqlEb3LHaJhj026LYFhcKczd8vavbDpczFK0KVsddQc+uE1bXduthzbFgQ7DbigP2FSkW7naraxWCPUWK7U+eKN5jVinxxa4T9sXYdQ2TIsWeYudShEnZjjdcgZYZa0dvSZvaiQmsakUklObqgI+Az57HtWixs6/VlF1uaCsVO7vvabDfYmdHhn+jhaWLBMK1b1eMnV/Xus2q59pOV6xWd9RCd7udeIqdS7HTdSGws5ZdVJQ6sWlhtGrDj9icEQvFzceOrFgtI9gm92SjhW3Fog5wxWpFii22zornyI5Nv5j9bN2mH7O5ZiFY32lEuGKt7DohaLKpw4hdeIqdSxGxAvZa7OzLjLXbutFQ2IAiyYypNb/sTpwAXYFiG2Mp7XDRQXFDsKLkid0FivPntj6oXlVVzZpjR8akHZu+3a5YsL6WnWaxs7iOHdjXE9guPMXOpYhYATtcFwKxKNlRy87uDEKhUKtq0apkBlGbu06AbgOwI8bOZvm1Arbd1iVPOEGJtzKeMpbKki28HNljsbN201cU1XZXrP7cViVFtReu74haO62ynsXOw8E4wRUrrGV2WOyiNrUgEgT9MrWFQHMzS544wmJnYw9Ru+UXBWytiL/SrNA2umLtKFwrLGUhv0y1xZnPYP2mr39BstNiZ3VbMZF1bI9i51nsPFxAMdjYvoWhXtsErH8LithctBd0AbkmbggRm7ou6ClmStqowNtssbOy3ImtrtigsNhZWd/MnlZTAqvddOIFySdLWgKDHVipxKeyOe08I2xxxVrb99luPMXOpTgiK9ZGi12xUr19im2DBdl0dlusoGhVSGUVy4tRR0TIgU3yWxl/pblih5nFrkOLvbIrQcbaGDtNgQ/6LC/ho8fKGDthrfPJki1rWaOuoLzVfZDtwFPsXIojXLEOiLGzM8aw2FbMvDd9u/vEQrGlGEC3xZmxdscYWuXCyenirpxQ7sTKLiPixcguxU5Y7KzKii0mydg3z1AsUmyFYtdeiFFtqgnaWndUVYdHv1hPsXMpEScodoUNyI4CxUUXpX2Lo9iIrImxs2+eQ34fAV9+MR5OHQnAOmuOPu7KTlesHV1G7KxvBsWYr454BsUCa45TFDsrkyc6tMQJ+2KixUuLlWVt7MJT7FyK3Rse6GLsbEmesF/hsWLTd4IrFoobvtXdJ4Q1x442RFDc9Nst6jAS9MmE/HaWO7E+nrLTxubwULTY5RTVkl6iMYcodlYmT+gtdnZhVVF5J2DvndUL999/P9/73vc4cuQIc+bM4Yc//CELFizo9dhMJsOqVatYvXo1hw4d4rTTTuPOO+/ksssu047J5XJ885vf5Je//CVHjhxhwoQJ/OM//iNf//rXbY1vGCp2KXZKOk3smWdQ02nkYxIg03mwha4//lE7RgoGqbv4YuSgeQ+xvtWUlejlrzqUl7/1ze10dW/TjjFSfq3ch8WbgF5OgJqcTBcSR9Y/y+j6/DFWzHOXzbGUTSfE5vhMciNpLfJsVuBrbVDgO2ysbwZ5a059yE80laWtO236ODSXu42WWbA4xs7GUieCxpoABzsSwyIz1lGK3W9+8xtuvvlmHnzwQc4//3zuvfdelixZwttvv82YMWNOOv7rX/86v/zlL/npT3/K7NmzWbduHR/96Ed58cUXmTt3LgB33nknP/rRj1i9ejVnnnkmr776Ktdccw0NDQ188YtftFpEQ8jkFG1xsFqxS2xt5tDKmwBIjzsDFl5Lx54DHF79nz2Om7J6NbXn966QG0FLtBOQ+Gv7y7yf5aad50T08kunLIazPsiRl7Zw+Ee/6XGcUfIf6DoGSGzvagYmD/n3SkUvJ0Dg4i9BeBwHfvRTRh7fqX1u9jy3RmOAxBvtm1g007p5Foi3fFXNK3dmbUxOyIjNn9++cieNNnofRtQFiaaydHSnYbS55yomTzjFFWuhxc5GxU6LpeyufIudo1yx99xzD5/73Oe45pprOOOMM3jwwQepqanhZz/7Wa/HP/LII3z1q1/l8ssvZ8aMGXzhC1/g8ssv5+6779aOefHFF/nwhz/MsmXLmDZtGh/72Mf4wAc+wMsvv2yVWIajj+my2hVZM38egUmTQJKoySQBiAdCxQMkicDkydTMn2faGLJKlvZ4AoA/7P4fsop1m5Be/rpMfgzRQE3xAAPlzypZDkc6AHhq/x9skxOgOpsCIOEvzLUF85zJZYil8lm4/7tztaXyCwI+WbMWtptYpNgJNexAX6DY+hg7O910QmFvs6AQtRO6TujPb0Xh8Y7CdbWj1InAjp7AduEYi106nWbLli3cdttt2meyLHPJJZewadOmXr+TSqWoqqrq8Vl1dTUbN27U/v3ud7+bn/zkJ7zzzjuceuqpvP7662zcuJF77rmn7DHmsgq5rLXlHnqjI5pCVgtuSEW1OH1bZsQNK2j56teozqWRVUj6qlCkoqVhxA0rUJDBpGv1xK61qJkgMnA8cYA1O9eybMYyU851MkX56zJJZBViwRpT5F+zey25jB9ZhfbEIdvkRIKabH6uE/7iXJs9z49tfxJZyZ+rNb7PYvmLjKwJEEtkaYsmmT6iZuAvDIJoPIOsQjjgs3WNqfbJyCrEk1nLxtEZy99b4ZDfNtlHVQeQVWiLpEwfQ3ciP9e1Ns91jT8/190J8+e6rbBnNVUFbJO5MZRfSztj5s+xGZQzZscodsePHyeXyzF27Ngen48dO5bt27f3+p0lS5Zwzz338L73vY+ZM2eyYcMGfv/735PLFd82v/KVrxCJRJg9ezY+n49cLsd3vvMdPvWpT/U5llQqRSqV0v4diUQA2Lp+H3U19UMR0xBaupIsTPoJSwG2rN1r+flV+Uw6zr6CeCLLwqSfgNrA3qlLAAlfOExMOgPJpHEpqsLT215nYfI8AEJHLmDD482MmX06smSNAVrI78/6WZj00+CbYLj8iqrw9PZmzu+eD6qP4LHzbJMzF4lyqjSS6qSfzKh3sdc/zpJ5fuHNt1iYPBckhdDhiyyXXzAv5mN80s+u5w8jjY6Yco7WwxEWJv1Mb8vZ8kwLYqn8My2nJF5duxcropDHH05TnfSTeL2dLfsSFpzxZKa15liY9NPx6jG2HDfXWpl7p4uFST9N+xK2znW0I87CpJ8RLRnTx1G3qzu/V7wTZUvE3HP1xaj9+X0z89dOtmTsGcNQiMWjJR/rKFdsufzgBz9g1qxZzJ49m2AwyIoVK7jmmmuQ5aJYjz76KL/61a/49a9/zWuvvcbq1au56667WL16dZ+/u2rVKhoaGrT/Jk+2LrapFJLZ/MJjV9VySZapWbCAQME1lpH9qEiASs2CBUiyeePa0bmTaDJZ+JeKKmWJpCPs6NzZ7/eMRMgfzOVN+imfcJ8ZJ/+Ozp1EUlFQC5ZAG+UEFb+Sv+eysg/L5jmdf7mSpAxIquXyC6oD+TlImuieTBfexoM2ZsRC3vUMoKjWeQKSmbzsVQH7ZK+2sONGRsy1z97tV5w/Y0HR8YQD5licO5mxvjWi1TjGYjdq1Ch8Ph9Hjx7t8fnRo0cZN25cr98ZPXo0jz/+OMlkkra2NiZMmMBXvvIVZsyYoR3z5S9/ma985StceeWVAJx99tns27ePVatWcfXVV/f6u7fddhs333yz9u9IJMLkyZOZe+lUwuHwUEUdModfP8zmbftZOCnM/KXTbBmDeukktq/7IZur3gPAysPP0zh2JDNWrELym3NbZZUst/9hBQfHZuiOLwI5Tv2k9UhIHK1+i8eWPIZftuaWVi+dhG/DQ2yuOg+fonLz/qcITpxoiPxCzkPjuojFLgSgbtKTyJJqi5y7n7yXNfFqNo8ZzbT4bmbltlkyzwdGVRFPzEcOHqd2oj3zDPBoPMLmWBcXzKpj/oXTTDnH5md3snl/C1Nn1dn2TEO+5MfVm98G4N4LJzCyLjTAN4Z+vuf/sg3VB/csmcLo+qqBv2QCW/+ssPnIMcZOCJp+/Vd3dbC5Pcsl545g/rvNPVd/7D4WY/Mbe6ivggdMlnnlG3s4ksly60UTOWtig6nn6osDWw+xeX8LvlE+W5+xwSI8h6XgGMUuGAwyf/58NmzYwEc+8hEAFEVhw4YNrFixot/vVlVVMXHiRDKZDL/73e/4+Mc/rv0tHo/3sOAB+Hw+FKXvt5RQKEQodPKC5vPL+Gzs7SeIpLMoEoRrg/aNxx9k8or/h7wxS9bnJ+nzMfbG6/FXmRccu2bXOg7GD5BjMooEkj+BIuffvg7E9/PUgXUstypz0h/klM9dhfIyKD4fSdnPZIPkF3IqjECRACmN6suQwx45x954PdW/+DOKBEl/wLJ5zqpn2T/PwIj6EIoEncmMac9bdyaHIkFdtd/WNcYHhII+EpkcyZxq+lii8TQ5AAlG1FfZJvvIcBWKBG0J8+ZYUJzrgK1zHa4NokgQTWeRfZJp5b9UVeV4Io0iwchwyDaZxXPcbuJzbCbljNlR0t1888389Kc/ZfXq1Wzbto0vfOELdHd3c8011wBw1VVX9UiueOmll/j973/P7t27+fOf/8xll12Goijccsst2jHLly/nO9/5Dk888QR79+7lscce45577uGjH/2o5fIZhRO6TgCEly2jVslnO6UmTSd8+eWmnSurZLm/+X4kJNRcNQCSXIyDlJB4oPkBSzMnx3xoGVUFd2x86imGyN9DTiVvvZB8Se3vdsgZXraMupr8i06yYYTl84yvGHdlh/wiW9PMjMloyhlZsWBtGYyOQqmTupCfoI2breiI0N6dGuDIoeO0zhOKWnSHm0E8ndNCDeyuYwfW9QS2E8dY7AA+8YlPcOzYMb7xjW9w5MgRzj33XJ588kktoWL//v09rG/JZJKvf/3r7N69m7q6Oi6//HIeeeQRGhsbtWN++MMf8q//+q9cf/31tLa2MmHCBP7f//t/fOMb37BaPMPosrkav0Dy+6mvq6YrBcFP/INprjmAra1bORQ7BKBTeIobvorKwdhBtrZu5bxx55k2Dj2S309jtZ8jaZA/+RlD5O8hZ64gp1xU7OySc9S7z4d9oJ5+poXzXFDgfXHt73bILzb9DivKndhcoBjyJU+Ox6wpUiwK19r9kjqiNv/i0h6zotxJ3vpsd83CGl28WyyV1eIMjUaUCaoKyFoHGztosqjvsxOwfxU5gRUrVvTpen3uued6/PvCCy/krbfe6vf36uvruffee7n33nsNGqH9OKGdmCA8ogFaIqjvWmjqeeaMnsNdF95FOpdm4zb4zSE4c/QMPveeO7Rjgr4gc0bPMXUcJzJyVANHDkfIzD/fkN/Ty/nGXvjpfpjSOJp/sVvO+efCvr+SGtV7vKtR6OX/48sS61vhPZPn8feL5mrHWC2/2BDaTXzTL9Y2s3ezh2LhXCssdl02txMTjLSodRwU68bZXcdOliVqgz660zm6U1lG15sTT9nugBp2ULTYdRcsiHZaiM3GcYqdx8BobZYcoNgJC0PM5Lf7oC/IkmlLADh4YBewnVkjJ7N8prUKzolo1cwN2vT1cqY7DwKvM7lhNMtnGqM4DhbhtjHbiqOX/8XX/wrsZ+6401g+c5ap5+0PrUn8sHHFWpchqrUTq7Z30xdznMwoxNNZUy1LTnHFijF0p3OmKvFCWbaz6wRAuCqALOVdz53xNGPC9iTqWEHlqqwVjJMsdqKHqXAlWUE0KRRb+xdGsVgZpdjp0eS0uLtIbxQbhltXKqAYS2rvPDdZoNg5yxVrfYxdo81hJTVBn2bBaTPZHRtzSOcJ/RjM7BerdZ2wWbGTZUnbMyu9+4Sn2LmQrkT+IXSCYqdZ7CzsLRkpKDxWt1PrjaYa8+KvooXNvt4Bm72wYFjRMFzQmbC3ObxAuOmiqawWBG40Rfecc1yxcUtcsfa3EwOQJKnojjVRgc/mFC1RwSkWOzC3rZjWJ9bmOYbiWmLmS5oT8BQ7F+KUrFgovvFFLbXY5c8VdoDCU3TFmqDYpZyj2GnzbKFi5xTLtHDhgHmB107pFQtFV2y3Ja5YZ1jsoGhRMlOx019Tu5Mn9GMwc/0Wa6PdFjso3mdmeFichKfYuRCnbHhgk8XOQTGGTSam0EcdZJkU7mAxJisQ19Tu7G9ZlnQJFOZs+lqMnQOU+BoLkye0GDsHWHMsUewK1zTgkwjZ3GUE9K5Y85T49u5CgowD5liMoSvhWew8HEQ2p2gLrhMsVmLDtzLGLuIki52Jm0HEQa5YMYZkRrGkBRE46wXGzHlOZxXNxVtnYzkIgZhrK9zu4nqOdIA1x0rFzs6yH3pqrYyxq7N/jhurPYudhwOJ6BQoJ1isxBtfxEJLjpOSCkx1xWqKnf1y6i1JVijxOUXV5G90wH0+QovNMf4+12+qTnDP1VmYENXukMB6/RjMLETtpMQJsCZRRli57S53AtYkQjkBT7FzGcKKURv0aQ277URkploZYxdJOEfhMVOxEy5nJ1jsAj6Z6oD58TiCiC5rzQkvMKLOmhmuWLGpVgd8+B3wTIvnKmLBPB+POUexKyZPmNd9IuaguFmwJitWS56wuVYhFO+z4xYUorYT+1cRj7JwUuIEFK1mtljsHFHupGjaV1XV0N8uxtjZLycUx2HFXHc67AXGzFp2MQfVNQN93Ky586woqvZCNNIBbrqiu908uWMOCq+AYga0mVmxTil3AtYo707A/hXToyycVJwYiuOIWFQXKJtTtMwyJ7li01nF8IKuxexf++WE4mZkhcWu3UFxOaDrPmGiYueUzd6qeY4kM+SU/MvQcNn0o0mnuWLzVviYSckTeuXdCa7YkXWF1nGeK9bDSTgpoBz0FjtrXLH6zcYZGYQ+ggWLktHuWKcpdnUWZsZ2OKQNkUCz2JnhinXYZl9vUYFiEctWH/I7IkNU6xdrRYcRpzzTJrtiI8kMBd3dUZnPZsZROgFPsXMZjlPsCu7QSMJ4V2RvCDdgdcAZLjpJkjR3rJElTzI5hUQm/xbtFEtO2EqLnUPaEAmssNg5IXECijF2Zs+z06yyliRPOEyJN7tclV55d0JvViuKUDsB+6+0R1k4TrErbAJZRdUUETMR8juhoKnAjE0/5jDLJBQVTCvqmzmlcbjAzFIYxUxJZ9zT2mZvsmLX5qDECSiOI5o0r8OIiFt0QqkmML/ciZjjUfUhU36/XMRLRDydI2nBfmUXnmLnMpyWPFET9OEvlOXvsiDOTita6xD5wZzMWGEtcYplEqA+ZL0r1jEWOzOTJxwWUC/Gkc4ppLJmFq51Tg07yJfVMbvDiNNi7Mx2xbbF8vGKTpnj+pCfgC8/yZXsjnXGjuFRMk6z2EmSpEugsKC3pMPkB11mrIELRcRhGbFgU/KEQzaEESZ2nnCaK7ZWVzzXzLkWSQpOmWN9hxGzymE4qcMIFOfarOSJ40J5d4i7XZKkovW9gkueeIqdy9AUGwe5IsM2lMFwkitWayxtYIxd1GFWHLC2vpmT+ktCUXlPZhQSBmc/O80V65MlS4oUt2nKuzPcdFBUQNpMyox1XIydVRa7OufMsbjfjldwyRNPsXMZWrkTh2RVgbUlT8Q5GqudseFD0ZpjpPvGSX1iBUWLnfnzrBU1dUiMXZ3OhWO01c5prlgobvhmWuy0+CuHWHMARhUUkOMxkxQ7rbSNM55rYSVOZHJa6Rkj0ebYIS9oULzfPIudh2NwoivSyiLFQnlyksVSWA/bK9xiVzeMXbF6F47RcXaxQnHY2qAzXLGgm2sTixQ7bY6hqNi1meWKdViIhb4othlFioXl01kWu8rPjPUUO5fhtALFoC95Mjxj7MRCYYbFzlGWWTuyYh3QhkhgVskTzT3noLm2Ip6yzYGKnXDFHjPLYucwV2zIL2vJb2a4Y0WsolNi7GB41LLzFDuX4UTFpsFCV6zIinVSjJ0ZG74TLXb1FhUozuQULY7PKa5YMK9IcTHGzkEWOwti7ETyxEgHxdhprtjo8EiekCTJ1JInxaxY58zxcGgr5il2LkJRVG0TcJJiZ6kr1oGKrVAyjSxQHHVYmymwLitWXEdJcka1ekGTSS4cJ8ZThk1W4lVVdVyBYoDRwhVrwqavqsX1u94hFjvQKfEmZMYKi93oeufMsRUdRuzGU+xcRDSZRTR3cJJiI9zCVtSxc2TyhAmWHCdu9lZ1JBDXsbE6gE8UFnMAIknG6Bg7J1pn60xuKxZNZcnk8ouZU2qcAYyqF+VOjFfsutM5bf120nMtEiiMttils4q2JzjJYue5Yj0chXhIqgM+R7RnEWjlTiyIsXNigWJhVTKymnnEgZu9vvOEGRl0gnaHFScWaBY7k3oCO2mz16yzJil2IiOxJuijKuAcF7RQQMxwxQq3tk+WqAo4Z/2uNUmJFy9oPlly1Hot4v08i52HI3BifB3oyp1Y4Ip1YkuxcJVfsywZ5Y51WocR6KlkmplA4bR2YoIRIvvZwA0hpwuvcJISb3YGdJvDCtcKROurtu6U4b2vRTuxupAfSXKOJdqsWnbC6jmiNojsIMv7yGFQoNg5K4nHgDhJsVPSaWLPPIOaTuPrAPDRceQ4XX/8o3aMFAxSd/HFyEFjFu9kJqf1oxWZuHahlx+gwSfTrkjsX/MU1bX5Y4Yiv5hruzf7E+UMSDIZVaLlT2uh4F0xep5FULPTLHYjTSiFoVeQ7Z5rPcJ6aFbyRLsDixNDcdPP5FQiiayhZZWc1k5MILpPGK3YiefESa52KFplo6ksqWyOkN85FmOjcNYd5tEvTlLsElubObTyJgDSTVPhwhvpaG3j8C3/0eO4KatXU3v+AkPOWcy6VXju0Do+fMpyQ353MOjlB6i9+Mu0h8ey6/6fUn98p/b5YOVviXQCEn/reIVLcY6cNUu/SVeojt3f+z5q5Ij2uZHzvOnAXwGZWO7IgMdaSbErgfGxlEG/7KgNpl4rUGyOFV5Yc0Y7zGJXFfBRX+UnmsxyLJYyRbFzkgIPelessckTIgFllINq2EHeKOCXJbJKPoFn/P9v78zDpCjvxP+pvuc+mIsZhmMG5BDkHg6NGEW5VPDnqjFuNCQxasBoyEbRqCTursRIDEaJ166Kums064FRURCDJ0jkiCKCw80Mc8LcPX1W/f7oruoemKt7emaqmvfzPP3AdFdXv996q+r91vdMS+jvIcUc4Yo1EHqqYZc4eRLWQYNAkkjytgLQYg27QCQJa2EhiZMnxew3T7S4Ars2t/LEP/+MT+79mL6OCJcfIM3TAkCjTTXXRS+/T/Zx0hmQdd3Bv+hKTm2uLY7ABjGeZ5/s47OyLwH4tmFHv8p+Kr3RlUBd7FN1ttin9HLNwpqmoGKXoq9FH3qv+4QeXe4QKrPTaxY7nSnvkiRp3oDeKkTd3+jrDNM5fp+M3yf32+/XN3swKZBmt/TrOAKYyFyylIq7f02iLzCuVksCfsmMGk2RuWQpMiaI0VjfK/0Yk2JCMjk53ljBO/vXs6BoQUz2HTkh+ZEg1ePEpECjLRlZCtwoo5X/7QPrUbw2TEBt6zFdyZnsdWFSoMWa1GM52+Odg+tpcYJJAae/qp9lb0u63RKY4xYvLrcPq7nnz8UNLYFrJ1UX13SIRKsJkwLNrd5eGVdNQ+A8ykq06UpugOxEK0eUwBhjObamFi8mBVKsZl3JnGQ198pc1za6MSkwIKH9Ofb7/Xh9Xui9PKwOGTXAhl3xcbK+iZa0/jeUIIHVYsVs7thqH8ncCMUuAnZuPEJyYkq//b5r/0mmuyzklbvZvv5wv41DRTGdTd24q/A0tTDdFTiV9g9bgFX2Y05NpVkagxSjccqKzN5dh5nuOgvJl4it/BI2vbGLnFGjMUn9Y3hW5fc3NjHclAUuC/KAiRwmPWr5ZUXm/T1fMt01BQB71UxdyTlWTiPLZaEldzqHE4bGdJ5lReb9vbsoqS9G9liw1A3vd9nbjg9muC0oCmz528E27Zii5XBt4NrJbZR0cU2rNDS6mO6ykFrp75VxSd80BvZ/yKkruQFG14HFZaFiSxXby2Jntas7Ws90l4Uh1b1zTKMl6XDgHLTua2K7+XDM9uvfE5B3wNHWU+RVkJJdWJL9SP2UVHHL+BT8cjKOlhOU7qvrlzGciiIr+JrNKM0O4PTj0uxs6va+hGJnINzegMZu10mpE8lkIrGkBP/772NSZGTJhMdkwSr7SCwpQTLFbpyl9ftxeoKFa00+QKHR00hp/X5GZpwVs9+JBFX+pvffx+4PjM1ttgJK1PKX1u+nyd0a/EtBwa8rOa1B16jXZKEncrZHaf1+mjyNKLIt+Lvufpc9HJMUKDXk9PhxevwxUew8Pn1d0yq2oDXS7Yt90VoAZ7AvaaJNf0tQYrBnb6sntrJ7g3Otp1JVgGZ59vhja0V0Bo9fwik9kKVkF7Z0meysHOy2hH7JEG52eXH7ZBLtZhKs/X8OKoqC29NKTW0NHlwozT2L++t/iQzExIuHkJqa2m+/v7a+jq0nfMyeOIDJM4f22zjCUS4exMF3V7NHmkq9I4XrarcxIsVM0dKVSJbYnF4+2ceKdUs5nDEUt3ckltTDJORvREKiKmEPr895HYupf05lVf4d9a1szS/E4a/me/6vo5JflbMsx0+LcwaSuZnkQfqSc11rKluzMhnZUsoI/4GYzbMqe0VBBU3OSSgWH4l5H2JJqOx32cMpKz3Gt1VubpqUyeTh2T3e396tR9i6v4y0oYlMnje05wOMETWNLn628wAmCZ6eOyTmi+8dew5z1OXj9gvymTwkM6b77imf2b1srT3BkEG2mM7Jhnda2Xrcx7jRqUyeG7v99pQjO8rZeqQCS7Y5pvL+56Fyvmr2sXhmHpNH5wIB9+v+A6Xk5AxkwIABMfutSHHVu2hocZOcbCcj1dFv42hLKrYEC9X2aobPLDzNLdvY2NjtPfX/ndJAmC0mzP34tNXo8SFLkJ5s69dxtMFiI/fWn5Gw4SQnpRSazTZyb70JiyN2AbPvHHiPMucx/MooZAkUSwuyKfA0eMx5lA3H3uOy4n7KHA3Kn7bm/5AlaLAlkHvrz6KSX5XTxxBkCSRLq+7kTHhxC7IETos9ajnbQ5VdkST8chJIoNga8Zt8/S97GJkpduTqZupafTG5Bpu8fmQJkhOt+rmmgdRkG7IEMuBRFBJjXES4usWDLEFueoKu5AbISnUgS1DT4o3p2JrVuU7Q2VwnWZGlwLkYy3HVOr3IEmSlObT9en2eQH/apKR+reVnMUsogM+v6KqmoHpcZMWPzdI29i+SudHP2SXoEj2VOwkndcECUqWAAtKaP5jU+fNjtm+f7GPNrjVISCj+gHlaMrdqn0tI/HlX/2bIpi5YQGZK4KmvMTkjKvnD5cSfCIBkcmmf60XOlOC515qRFbN5bjvHiUBAiZAszYF/dSC7yoAYZ0zqsesEBFzOatHtWBcpbnH7NDed3kphQGhMse4Xq3bxSNZZVmyK1jkodqVtFEXRrpH25ri/lSlL0P3s68UOOtEQq+MiFDsDoVfFTrJYyBoUMLUrl8yPmQsWYGf1Tsqby1FQgos+SKaQYqegUNZcxs7qnTH7zUiRLBaGXnEpAE0ZOVHJ30ZOOaAkhiuwepEzZ8ZUAHxjxsVsntvI7ksOvGluQZICMT96kF1lQIz7TIZ6AutrsZckSSukG2vFTi11kmgzxyROMdZk91K/2GadFihO7YUe0C0eP+5gTKHeyp1AwGIH4ItxXKFe0NcZBqxZs4aHHnqIyspKxo8fz6OPPkpJSfuFT71eLytXrmTt2rWUl5czcuRIHnzwQebOndtmu/Lycu68807Wr1+P0+lk+PDhPPvss0yZMqUvRIoZavPxdJ21WgLIHlYIO8txjRgd0/2Ozx7Pqlmr8Pg9PPaOxL5GuGbMfKaOCFmLbGYb47PHx/R3I2XwvNmwezN1shlFidy8Hy7n5t3w6nE4J3cEPzrvAW0bPciZO2UCHPmK1gG5MdtnuOz7yuGxQ5CXksivdSY7QJZapDjmFjvd3YpJtltoaPXGvEhxTbN+a9hB7/WLDSnx+now7w3FTr0+Em1mXSbIWIPWaK/OLHaxQldH/OWXX2bZsmU88cQTTJs2jdWrVzNnzhz27dtHTk7Oadvfc889vPjiizz99NOMGjWK9957jyuuuILPPvuMiRMnAlBXV8e5557Ld7/7XdavX092djalpaVkZGT0tXg9wi8rWmN4PfVJVVELPtbH0JwPgQV9ztA5ADwufww0clHRdGYV9zxwPZaoPSbdPpkWjz/ip/JwOQ8eKgW+ZVTWEC4rHhfrofYI9aEilvMcLrvcVA7sYmjmAC4rnhGz34gVWTFuK6Yu9qk6W+whUAi9vL5Vu+/ECq04sQ7dsBC6llu9fpweX8wUE70WKFbbM7Z6/Xj9ckzqM9bqtDixiuqK9fvlqB7E9Y6uXLEPP/wwN954I4sXL2bMmDE88cQTJCYm8swzz7S7/QsvvMDdd9/N/PnzKSoq4pZbbmH+/Pn84Q9/0LZ58MEHKSws5Nlnn6WkpIRhw4ZxySWXUFxc3FdixYTw+Ae9uWIB0oNjqm/pnRZEAHVOfTaHh0DZBoc1cDn1tLl0o0ufLncIjakhxgq8irro6zH2CsJi7GLmitXnYg+QFlzwYz3Xeu46AZBkM2vXciytdnrtFRs+nlhZ7VQ3tt56AatYghY7he7H2W3evJmhQ4dG/FvRfq8n6Eax83g8bN++ndmzZ2vvmUwmZs+ezZYtW9r9jtvtxuFom6qckJDAJ598ov395ptvMmXKFK666ipycnKYOHEiTz/9dO8I0YuoSk2K3RKTJ6pYk65Z7HqnRYuiKFpcU0aS/hQeCLlwehp0HWodp68FAEKKXSwDrcNRn/T1uugP6DVXrP7O6d5S4vWu2EmSpD1Y1MQwzq5RRy0hw7GYTVrtvlhd1+oc5+h4ji3B+ps+f/Tu2FmzZiFJkvbKzMxk0aJF1NTUxGqoUaEbDaG2tha/309ubtvYndzcXCor228GPmfOHB5++GFKS0uRZZmNGzfy2muvUVFRoW1z8OBBHn/8cUaMGMF7773HLbfcws9//nPWrl3b4VjcbjeNjY1tXv2N6vqKZVPqWJIRHFeds3cWfKfHrxVzHaDTp8DMoHJ7sofWnEadJslAKAyg3ulFUWIfn9JZJp0eyErqHVesPi12vaPEq3OsV1csxD772ecPhGiAPq/rWMfZ6V15h7AECjm6BApFUdi5cyerVq2ioqKC8vJyXnrpJTZt2sTKlStjOdSI0d/dJAIeeeQRbrzxRkaNGoUkSRQXF7N48eI2rltZlpkyZQoPPBAIxJ44cSK7d+/miSee4IYbbmh3vytXruS3v/1tn8jQXRqCCpMe4+sA0hOCFjtn71jsVGXJYTWdVslcL2TGqLG0ZrHTsRXHJysx674Qjt4XfdViF6v4K327YnvXYpel40U/Ozm2TeLDFSY9znWKw0JlIzFLlKnupsVOURRavb3T3aQrgnpd1Ba70tJSmpqauOCCC8jLywMgPz+f4cOH43Q6YzXMqNDNGZaVlYXZbKaqqqrN+1VVVdpBO5Xs7GzeeOMNXC4XJ06cID8/n+XLl1NUVKRtM3DgQMaMGdPme6NHj+bVV1/tcCx33XUXy5Yt0/5ubGyksLAwGrFihuqKzdBhfBmEFM7estipip0e4+tUNDddTy12wUVAby4bCNQ3s5olvH6FhlZvryl2WSn6nOfEYPyVyytT2+Rh8IDo5ZdlhWaPAVyxMb6ma3SuvEPIYhwri52qHCfazLoMpVHvNY0xUuy6a7Fr9foZc997MfnNSNlw+/kAeKO02G3fvh2bzca4cYEEN7fbzfPPP8/+/fs7zAvoK3RzhtlsNiZPnsymTZu092RZZtOmTcyY0Xl2nMPhoKCgAJ/Px6uvvsrChQu1z84991z27dvXZvtvv/2WIUOGdLg/u91Oampqm1d/U+/Ur3sOQlmxDb3kojupKrZJ+lzwIVTj7GQPY+z07IqVJIk0zTobeyVe78kTkiSFymH0cJ6bPT7US0WPVpwzNcYOYq/Y6TkhCsKKFMfMFRsorq5n5T1Uyy669WrHjh14vV4yMzNJTk4mISGBe++9lw0bNmhVOfoLXd1Nli1bxg033MCUKVMoKSlh9erVtLS0sHjxYgCuv/56CgoKNP/1559/Tnl5ORMmTKC8vJzf/OY3yLLMHXfcoe3zF7/4BTNnzuSBBx7g6quvZtu2bTz11FM89dRT/SJjtKgxdnp1xaoxdh6/3CsuOjXTNFPHil2mljwRmxi7VB0u9hDIlqxtdsd8wZdlRXN96VWxg0Atu/L61h676VT3nM1swhHjll2xILUXFDtZDnUk0LNip1rfY6bYtQat8Dq0zELIYhzz5Iku+rAmWM3suX9OTH4zUppdPprdvh4pdtdee60WtlVTU8Py5cu5+eab2blzJyZT/9nNdLVyXHPNNdTU1HDfffdRWVnJhAkTePfdd7WEiqNHj7Y5WC6Xi3vuuYeDBw+SnJzM/PnzeeGFF0hPT9e2mTp1Kq+//jp33XUX999/P8OGDWP16tVcd911fS1ej6jXuSs2wWrGZjbh8cvUOT0xV+y0Uic6VuwGxCB5wi8rWushPbpiofcsOQ2tXq30gF7rX0EosL6nmbF6TpyA3pnnhlYvXr/+51iz2MWo3IlqsdNjpjuEHiJjkTyhKEq3i1BLktRvBYzVZLxokyd27NjBAw88wPDhwwEYPnw4y5YtY9GiRZSVlTF48OCYjTVSdHeWLV26lKVLl7b72ebNm9v8PWvWLPbs2dPlPi+99FIuvfTSWAyv39C7K1aSJNITrVQ3ual3ehkU4/rPqrKkV8UWwkthRL8YNIfdWPX6dK8WKW6IcWkb1TqS6rBgt+jPgqUSq7Ziek6cgN5R7KqCLrr0RKuu51gN+o9VuRO9toNUSYlhVmy9M6S8Z+lYeVdr2XmjsNgdPHiQ+vr601yuBw4cwGKxtDEu9Qf6vKMITiPkitXvhZKRaNMUu1ijKnYDdGyxi0W5E3UBSLCasVl0EwLbhl6LvWrWf7YkxK4Uhl5bTKn0RrmTqsbAMcvrwkXX36guxKpGV0z216jjTHcIWRJjkTyhXsd6V97V7hPRWOy2b9+OJEnk5ORQWVlJS0sLH330Effffz+33HJLv8flC8XOIIRcsfq8MUCoxl5dL5Q80Sx2OlbsYlGgWO9B1tAHQfU6jq+D8H6xZ4bFrsntwy8rmE09b7tU1RBQlHL1rtgFHy6cHj/Nbl+Pu0WEXLH6vK5DFrueX9PVjfouTqyiWuz8soKsKJgiaCu2Y8cOFEXROlhlZGQwYsQIVq9ezfXXX98r440Efd5RBKdRr/M6dhBSOnujlp0RYuwygwu+yytHXeNMz10nVNQFP9aWWXVB0Puir/WL7Wn2s84Vu3AlpLHVG5OHqsqgBUzvFrsku4Vku4Vmt4/qRhfJ2ck92l+DTrtOqMQyxq6mOZgRq3PFzmwKdItQFAWfX8Fm6b5it3Llyn4vQtwZ+vT1CE5DVZbUUhN6RI1/641admo8k54VuySbGXvQfRqtNUfvLhvoPYud6vbKS9P3oh+LWErQvyvWajaRFCwGHqu5VhW7XJ3PMYQsTmqx3Z4QyorVqRKvZsXG1GKn7zkOtBXrWfcJvSIUOwPg88va070RXLG9EWNXZwDFLlDjrGeB9WeyK7ZK5/0lVbQ6djHqMHImzXXIFavvOYaQxSkWcXb6d8XG0GJngDqFKtYe1rLTK0KxMwDhRSP1vAioFrtYu2L9sqIlj+g5KxZC7thoixTr3WUDoXCA3rLY6d4VmxKaY78c/YKg50LUKrGuZadmxerdFQuhBIqamFjs9D3XqTFMlKk2SKwsgCVYPs3r79piN3ToUG6//faIfyPa7/UEodgZAFVRSrFbtEwePZLRS8kTJ1rcKAqYJH1b7CCsSHHUrtiAEq/XBQB63xWrd8VuQJIdkwSy0rNadmeixa6ywRhxlAC5MXTF6rn/M7S12PW0c1CoOLH+FTvVYtedkidCsRPEFDVmLT1JnzcFFdWadjLGrli1SGhmkj0mmXm9SVYPS57UB2vD6TUWB3pHsVMUJUyx0/eCYDZJWsmTniz6Z5pi5/XLWsKJ3uMoIaSYVMfEFasWHdfnda0qnD5ZweXtWbxZtQHaiamofXu7Y7EzEkKxMwBqIdh0HSdOQOwq8p+KVt9Mx8UuVTJ7GGMXyn7Wr6xpYa5YuQeuyHAaXT5tQTGCNUcrYCsUu25T3RSwvFvNEpk6Pr9V1OB/tfZeT9C7KzbRZtYemnuaQGEki51FKHaC/sIIpU4g9ITW02zBUzFSMG5mDzMm1bnO0LF1Vl2cFAWt/VlPUa0iaQlWXfZNPZVszU0XvTVHnWs9x1PGskhxZTBxIifFgUnnlncIs9j1YI4BXF4/7mD7Kr3OtSRJWq2+ntSyc3n9mnUyO1n/D2iRuGKNhFDsDECdAaw4ECoD0er14/TEZsEHYyl2oX6x0T3l1xvAOmu3mEkIKl+xSpSp0mrY6X+OIawURg+sOWecxc4grnYV1WLX0xg71QImSZDcT31Ru4PqJm5ojf7erd6rbRaTbt3O4aiuWJ+w2An6mganutjrdwGAgDnfYe1ZHbf2UFs3GSFmQ02eiDbGrq7FGNZZ1eUcq5qFlQZJnFBRF/1oe4n6ZUUrLaFrxS6GGdCVBqlTqKJa7JpcPlo9/qj3oyZEpdgturZUpth73n0iPCNWiqCTQ3+hKnZ+RelRhrveEIqdAQj1idXvAgBqHbfY9NEMx1AWu+Sexdg1tBrDOqu6iqO1TJ6KUTJiVbJ7aLELXzx1rdglxC7T3WjKe4rdoj2o9sQdq9Wm1Pn9OxbW2Ro1ccIA92oIJEKZJdUdGz9WO/3bSgWaVUSvC4Ds8dD8wQcoHg/pPhPlSBz94GOKMkPbSDYbyRdeiMkWucKiKnZ6TZ4Il9/mAjBT2+Ck4c03tW26I7/HJ9McjFlL16EbI1zO1BYTIFH2yTYavg096UY7z6pip/fixCo5PYyxUxfPRJsZm0W/z9eqZTYWRcfV4sRGqGEHgQfV3FQHR044qW5yM2RAUlT7aVBjKXVa6kQlFvUp1TjKgQaxykIggcLv8wfcsQaI7+0O+ls9BKehxjHp1YrTunMX5bf/AoCk6T+CvDEceulVzjqyrc12g9euJWlaScT7P3SyFpDY37QTGBSDEceWcPldFjtc+p+4ZImDd92Dwx+6SXYlf+iGKvPR8Q0sHHFZbw47YsLldEy+Fgonc+SNdzi+f3Ob7aKZ539WHAYkajylwKiYjLc3CQXW96wQtV4f1lS0EkZRWqDDMZorFgIK/JETzh7FUhqhzzWE1hc1HCQaKg3S7zkcq1nC7YuvBAr9PioKNNSb6gCd3hgSJ0/COmgQSBJp7mYA6m1hTbMlCWthIYmTJ0W8b5/s06wi7xz9Cz45dkkZsSJc/kSfG4s/MMYG9Rh0U/7a5tbAf8ytPPHln3Una3vz3GALs2JEOc8+2ce+mkoAPqt+V3dyt4cWY9fkjqqgq1EUu1AspafHhWuN0kM0nFDJk+hdser9W68P5irpMSgwX9kQuIcZyWIXj7XshMUuAvw+Gb+v7ye/odmDSYE0h6Vffr9rTGQuWUrF3b8m3d2CSYF6ewqyFDJrZy5ZiowJIhz/utL14EvABNS2HuKd/etZULQgxuPvKSH5kWCAq4maxAzqHKlkuxqB7sn/XunHmBQTktTK8cYKHcoakjPV48SkQKM9ucfz/M7B9XhdCZgUaPAc0aHcp5OZYMWkgNcrU9fsiVhBq1evabter+kAaXYLJgX8PoX6Fk/U7kRFUahucGFSICfJpmuZw8lJtmFSoLrBFfWY1bnO0O39O0B6cK4bWjxRj7OqvhWTArnJ9nb34ffJKIqivfSA1SwhEVDsemNMy5cvZ/Xq1Vx55ZX8z//8T6fbqselPV0jkjkRil0E7Nx4hOTElD79TQUoqvEzWLZwYlsN27+q79Pf7y6K6Wzqxl1FniWT6S4LiSmjODzEC0iYU1NplsYgrT8c0T5lRebvu/cw3TUBkLFXnsemN3aRM2o0JklfxmZVfn9jEyUeGydMFqoLLsCWVtst+WVFZu/Ow0x3nYXkS8BWfokuZVXlzDSlMt1lIS1pOIeHzCHaeZYVmfe/2cW05qmAhK1moi7lbo9ZPhtun8y2tw9F7GarKm9gustC8QmZ7RFeF33Nd7w2vH6Zf7xzOOrMfJdX5pxGCbBQubWaE2b9Z0wCZB11M91lwftVHdvlw1Htw7e3nukuCwOOunQ917bjzUx3WUjY3xz1ODOOuJjusiB/3cD24+1Y/ix+bDl+Wpu8yG59XN9mj0KSLEGrH6fUsbXyk08/5pFH/8jOf+6ksrKCl158hcsWXH7adjcvuZGBA/NZcc9vAbjtZ78kZ8BA/u3OX7D83+6huKi4w99we7x4Wv18/XE5+NrG+zU7m7otkz6OrKBDvH4ZXzANO8Gm38BOyWQisaQEhy/gbnFb1IVOIbGkBMkU+alWWr+fJrcnuH8vSAqNnkZK6/fHatgxQ5UfFBz+wJhdZjvdlb+0fj9Ory+4Ly+gT1lVOe2+gIxuc8/mubR+P40uNyABCpjcupS7PZLsgeuxJYoizW5voHyG3QDB2mrNwp6U/FCzgBNtZq0orBEIzXH0sruCc52g87lWM4CjbSmmgJb8lazjloinot6yuqp24nQ6GTt2HA8/tLrDbfx+P+vfW8+CeZdq76WlpXHDD36IyWTi6z27YzDirjHO0dcBEy8eQmpqap/+ZtlJJ1u37MNmMTF9wTBd1wZSLh5E+fdfY6tjNEPdLfzo6AasBQUULV2JZInsVPPJPlasW8rRAam0uiZhclSQVLARCYmqhD28Pud1LCZ9nb7KxYM4+O5q3mpOZuuADIpdh5nn39el/KqshzOKcHvPwpJ6iIR8/cqqXDyIE5+8zFbHWPL8rdwU5Tyrch/LNuN0zkCy1JM8aINu5T6V1eVVbD3UytVj05k8Pj+i725618XWsipGj05l8ryhvTPAGPEfB8vZfbyVH0/MYPLI3Kj28cE3VWz950HG5ifqXt5wPAdquf9AOdVJPv4zynGvLq9ia4OPq6flRHye9CXy4ZNs3XeMIcl+HopC1ganl08++Qas8PRlRe12kHG5XBw5epiEFCsOhw1FUZD7KWnBZJaQJAnJ4+e4y4NFUhiU1rHlfdG/XMaifwkktH3/B9dgT7SQeMr2H3/8MTable98d2abtdpvcpOYmEjpwb0kpl3V8ZhcMrYEMyO+U4DD0TZOsbGxsduy6feuqUPMFhPmPi5NUO/2IUuQkWzDovMnPiw2iv7lUuQvoc6RjEn2kXvrz7A4Ig8afufAe5Q5j+GTpyFLYLI2IpsCT77HnEfZcOw9LivWV9YoFhu5t/6MtOc2I0tQb08i98ddy6/K6pfHIEugWJz6ltVio+h7VyDvCsgY7Txrc+wfhyyB2Vavb7lPISvNgSxBTYsn4vtCQ/C6Tkuy9fk9JVLSU+zIEpxs9UU91opmN7IEAzMTdC9vOPmZicgSHG90a4pApJx0eQP38BS7rmUfEJznOld081ztDMxxRqKVpA5c9maLKaBMBV+yX2HHu0d6OvSomDxvKCaLhNViQgG8sowCmLo5x6oM4fztb3/jsssuw3SK5+Lee++lubmZr7/+utNzSN1ne7pGJHOi37NMAIQyqvSeKq8yZO5FQCBb0lxYSOr8+RHvwyf7WLNrDRISijcNAMnaoH0uIfHnXfrLGgVIXbCALEew3VZGTpfyt5HVnwiAZHZqn+tV1sHzLwbAaU1AGTw04nluO8fpAEjWeu1zvcodTk9q2RklKxZC2fg9yZYsrw9kS+anJ8RkTH3FwLTAeJ0ev9ZBIlK0/s96L1AcVscumi4Mag07I5U6AbCYQgpaT1uLrVu3jssvbxt3t337dp544gkWLFjA7t3CFSvAeIpdZmpAOZFNZuw3L43YBQuws3on5c3lgf34goqdJaTYKSiUNZexs3onU/OmxmDUsUOyWBh68fnwLTQPHt6l/OGytqfY6VXWtOQEzCj4kbDceEvE89xmjoOKnSlMsdOr3OH0pJadkRS7UC276OubHa8PLPoFBlPsEmxmMhKt1Dm9HG9ojap7hKoQZ+i93EmwP7WiBGIiIy3PEk1xYpNZ6jfXvCkY6ylJEjazCbfPj8enEG0732+++Ybjx49z0UUXae/JssxNN93E0qVLmTZtGv/6r/+K1+vFau3d614odjrHaIqdzWIiPcFKfauX1pkXRLWP8dnjWTVrFR6/h0fflvi2Aa45+xJKRlwS+h2zjfHZ42M06thSeMG58O1W6mxdV6oPl/VPb0mUNsH3xlzGlOEhF6QeZTWZJDKS7dQ2e/DOnBXx98PlfnqDxJd1sHDU+Zw/5nxtGz3KHY7aNqmmJ4qdzq04AJnB9nF1PShSfNygFjsIWO3qnF4qGloZPTCyGOtWjx93sExFhs7v4TaLiSSbmRaPnzpnFIpdFAWoA27H/o8bV4sUe3pgsXvzzTe5+OKL28TGPfroo9TW1nL//fdz9OhRvF4ve/fuZdy4cbEYdocIxU7nnDCYYgcBU3x9q5fqJjejBkb+fZvZxpyhcwBY7d0MtDBvxAxmFmfFdJy9RU5qqHhtV4TLukb5CGjiwmHTmVWc3ZtDjAkDkgKKXV0U7abC5X7S9zHQyNzhJVxUHF1wfn/Qk+K19TpvExiOqpCc7IEr1siKXX66gz0VjZrVMRLUY2Y1SyTpuKqBSnqijRZPa7DbUWQt1IzW7zkcm8UE7p4VKV63bh0//elPtb/Ly8u59957eemll0hKSmLEiBHY7XZ2794tFLszHbXJeqbOzfjh5KY52FfV1KNq7RAo1lhhsP6SEOpp2+Lx4/T4SOymbV+14ug9FkclI2jJOdESfbslCLnpjLboq5aJqijaTanuOb12kwlHi7GL0mLn9cvavSA/3TjXsYoaZ1cR7KoQCXVhXSf0XNFAJSPJSnl9a1S9gSsM2CdWRe0+4emkCHBzczP794fKMB06dIhdu3aRmZmJw+Hgiy++4M2w/uA///nPmTdvHgsWBIqtWywWRo8e3SdxdkKx0zlqXEtmsv4XAJXcoIuqp4pdk9uHM1g7y0j9JZPtFhxWEy6vTG2Th8EDuneZqYu9GuuidwYkB+b5RHP0lpxWj18LNzCaYqcuYM1uH40ub7e7Mri8fu281rt7DnreL7aq0YWsgM1sIivJHsuh9QkDg8qoqrhEglESJ1TUe080iTJGTZ6AwLkJnVvsvvjiC7773e9qfy9btgyAG264ge985zuUlJSQlRXwKr311lt88MEHfPPNN232MW7cOKHYCUIWOyM82auoF3Y0loxw1BtFWoK121YvPSBJEtkpdo6dbKWm2cXgAYldfsfl9WuFQY0QdwWQnRx98oDK8aAVJNluIdVARU0BEm0W0hKsNLR6qWxwdVuxUxdNi0kixa5/mTN76IpVLbID0x2YTPq3Wp1Kvmqxi8IVqz2sGcTjovaLjcZip8bYqRZOI2ELlhLpLMbuggsu6LDl2OWXX94mG/bSSy+lrq7utO2ef/75Ho60e4hyJzpHfUrWe0ZVOLlp0ccehWNk035WshpY373FUJ1nq1kyjIITygqNfp5DsVcOQ7iqTkU9NyOx5mjXdJJR3HOBe0+90xtVOQhtjg244EPIWxCVKzao2BkllCak2EWmxLu8fk0ZNFLYjIpVs9hF18P2vPPO49prr431sKJGKHY6R10EBpyBrtjK4I3USG5YFdWaVdPcPWuW6s7MNMhiD6HkgWiyQlWMHFQPoXOzMoJFv04NrzDIYp+RaMMctLRF4441ag07Fc1i1+CKeNFXr2sjuNwhZECINCFKvY4TrGZSE4zxYBqO1SwFamoqCt4oOmHccccdFBYW9sLIokModjrG65dpdAWKYmYaKDalJ0Hl4RjaYhdhKYxazeVunHnWCvT2YJ7L64y96Ktup0gyJlWXppp8onfMJkkLBYnG7a4u+gUGTJwAyE0LnOdunxyxYlsbfLDLNsiDebTxlKryPigjwTAPpuFIkqT1MO5JZqxeEIqdjlEzqiTJGGURVNQYu5pmd1QVzFXUmJa8VOMt+qrFrrabFruTzcazzMbCFXv0ZKAY8+DMruMQ9chAzWLX/WNQZ8ASRj2p2Wd0i53dYtZCKyJNoFCvf/VBT+9oD6TdvG+pqA9oBRnGnGMAazfi7IyCUOx0zImw+DqzgYKOByTZMEnglxVORHiDCOdYXWDRH2TAm0WkC+EJIybJBF2xdU5vp2UCOuNInCh2FRGEHRit6Dj0rH2a0ZV3CJVpUa2P3aU2+MCmKoZ6Ry3V1N0HUpVyzSprvHu1ipYZG+W9TE8IxU7HGHEBALCYTZpi0xN3rKrYFRpwQciK0GIXKkRtjAUAAoHW6s0w0id8laMnjL3oazXOIljwtevaIDF2EL3FTpYVyk4Gjo0Rr2MVVYGPXLELWuwMothpnoYI5zkeLHbdyYw1CkKx0zHq03GOQcz44aju2MooEyh8flmLWyrMNN7NImKLnQFdsWpZF4DqKOa52e3TFNrulITRI3lRuGJDMXbGmetoE2Wqmlx4/DIWk2TIWFmVwozA+VlWF6Fi16QqdsaYa1UBbXT5IrLCq8clHix20Xof9IQuFbs1a9YwdOhQHA4H06ZNY9u2bR1u6/V6uf/++ykuLsbhcDB+/HjefffdDrf/3e9+hyRJ3H777b0w8tii3kSzz0DFrqLBhV9WsJlNmsvPSGhZsU3ubmXSadnPBlrsgR5ZZlVrXUaitds14PSGqqw0uX00ubqXSWjkGLtIkyfUOS7ISMBi1uVy0y3UBw/VrdwdWj1+WoKFqI0SY5eWYMUSDPuJpKNMePKEUVEtdm6h2MWel19+mWXLlrFixQp27NjB+PHjmTNnDtXV1e1uf8899/Dkk0/y6KOPsmfPHm6++WauuOIKdu7cedq2//jHP3jyySc555xzeluMmKAqdka02KlPbuURPuGqqG7YgowEQxY1VRdCty+U2dwZaiziAIO4bFRyNMvkmRl7lRRWWLm7Vjsj1qbMidIVGw9zDCE3ciSKneqGtVlMhihEDWAySZrXoLabNTh9fll7gB+UYdx5tltC3SfkHiT96QHdKXYPP/wwN954I4sXL2bMmDE88cQTJCYm8swzz7S7/QsvvMDdd9/N/PnzKSoq4pZbbmH+/Pn84Q9/aLNdc3Mz1113HU8//TQZGRl9IUqPMbLFTn1yK6vr/o0wHDUux6hPgAk2s5bJ3J16ficMaMWB8MzYKCx2J1sAGDwgsmbjemNgWJ2z7qAVrTXQXEdrsTt20rhxsuGoiumxk85u17Kr0Uqd2A1VAkQtudTd+ODKxpB3JdtgD6bhmE2SlqRo9Dg7XSl2Ho+H7du3M3v2bO09k8nE7Nmz2bJlS7vfcbvdOBxtXXUJCQl88sknbd5bsmQJCxYsaLPvjnC73TQ2NrZ59QfajcGQil10MSkqRk6cUImkK8EJLXvOOIs9hDJjoylGHbLmGFN5V1F7iXbHYqcoiiGTosJjRiMp0mv0rGeVgvQEJAlawnobd4XR4utUIi15onpljNoyTkWSpKjdscdOOjlU20Krp2vvTF+gK/twbW0tfr+f3NzcNu/n5uayd+/edr8zZ84cHn74Yc4//3yKi4vZtGkTr732Gn6/X9vmL3/5Czt27OAf//hHt8axcuVKfvvb30YvSIzQLHbJxosxC1nsolTs1Cd9A5v2c1Md7K1soqqLBd/p8dHqDZyvRlrsAQamR16gV+VIMP5qSKbRLXbBjMludJ+oc3q1yvZGyZSEkGLX6vXT7PaR0s2YSFV5H2Jwxc5hNZOX6qCiwcXRk85uhUwYrdSJSqQlT/qq1Ins8dD8wQcono4Va8lmI/nCCzHZoruP2s1mWvHj8fmBtuf4Aw88wK9//evTvvPHP/6ROdf8CK9f1rou9Te6Uuyi4ZFHHuHGG29k1KhRSJJEcXExixcv1ly3x44d47bbbmPjxo2nWfY64q677mLZsmXa342Njf3SLsTIrlhVIattduPy+nFYzRF9/1idWiLBuNac7lrsVGudzWIi2SCxOCpaLGWEZSAgtOgb2SoLoWPQnYcY9ZrOSLRq1gEjkGizkGy30Oz2UdPk7rZiFy+uWAjIoCp2Ewd3Hc5jtFInKqGSJ92zTPZVRmzrzl2U3/6LLrcbvHYtSdNKovqNzix2t956Kz/60Y+0v++77z42bNjAlVdeSX3wYU0vCUL6GEWQrKwszGYzVVVVbd6vqqoiLy+v3e9kZ2fzxhtv0NLSwpEjR9i7dy/JyckUFRUBsH37dqqrq5k0aRIWiwWLxcKHH37In/70JywWSxvLnordbic1NbXNq6/x+GStX58RFbvUBIsWMBxNnN3BmmYAhho4/korhdHY+YIfnhFrpFgcCFlmy+tbIwo4dvv82qJflG3cOYaQ0nKsG4H1agkjI17Tajxld5NEWtw+zWpl1HI24QyOYJ7BuA/mkdbgLNMKyffuHCdOnoR10KBAK6b2kCSshYUkTp4U9W+oCRTtlTxJSUkhLy+PvLw81qxZw4YNG9i8eTN5Awu47SfXcd7YoXz/e1dH/duxRFeKnc1mY/LkyWzatEl7T5ZlNm3axIwZMzr9rsPhoKCgAJ/Px6uvvsrChQsBuOiii/jqq6/YtWuX9poyZQrXXXcdu3btwmyOzJLUV6ip5lazRLqB2ompSJKkFas8FqE7tq7Foym1Rl7081K7F3tVbeDs59xUB5IUuBGeiKC/5OFaJ7ICKXaLIeUOR13QurPghzLdjRdeoVpkjndTsVMtsmkJxi1nE87gCDNjVUt9nsHq90XaKvBwMKRiaFbvKnaSxUL2rUuhoxhPRSH71qVIlui9Ht2Jsbvvvvt44YUX2Lx5M0OHDsXjl7nuxzfz4CNPRv27sUZXih3AsmXLePrpp1m7di3ffPMNt9xyCy0tLSxevBiA66+/nrvuukvb/vPPP+e1117j4MGDfPzxx8ydOxdZlrnjjjuAgJY9duzYNq+kpCQGDBjA2LFj+0XG7lDTFDLjGzUgNdoEioO1AWtdfpqDRJuxXJPh5HXTFasmHuSkGmsBgMCNUE2giMQdeyBokS3OSTaclfJU1AW/otHVZXHTaoNacQDy09R4yu7N88GaQNazkR/OwolUsVMt9UYrzNzdB1KVw7WBeR7SB96V1AUL2rfaBa11qfPn92j/XZU8WbFiBc8//7ym1KnbTp1xXr949jpCd4rdNddcw6pVq7jvvvuYMGECu3bt4t1339USKo4ePUpFRYW2vcvl4p577mHMmDFcccUVFBQU8Mknn5Cent5PEsQGo5rxw9ESKCKo/QRwoFpdEJJjPqa+RC2D0VWRZrVrg1EtV6plNpKahfurg4qdwecYAsHmCVYzitK10mPo2pQRzrOmvMfBHEPInXwoqMh0RaVBLXbh5Xu6yoB2enzaw8qwPlDsOrTaxcBaB21Lnrh9bcO0VqxYwdq1a9sodRBQ7ACtsLMe0KU5ZOnSpSxdurTdzzZv3tzm71mzZrFnz56I9n/qPvRIdZMxA2/DUZ9w1ezH7nKgVl0QjP2krz751ju9nSaQqHOda0CLHQRcdNuP1FFe3/15Vhf94TnGX/QlSWJQRgKl1c0cq3MyNKvj89bID2z5miv2zFTsVDmqGt00ubydJpC4fX4tvlBVlIxCblqouHqd09tppr56b09PtJKW2Dfu9tQFC6h59DG85eUBBU+SsA4a1GNrHQSuZYfFTIvHh8snkxAU/T/+4z94/PHHefPNN3E4HFRWVgKQkZGhZblbzPpR7HRnsRMEMGp8RjjFwUVbvcF3l5ALx9gLQmqChYSgMteZW0N1xeamGm+xh9CCH43FLh4UO+h+ZwIjJ0/kp0fmco83V2xaglWbtwM1nVvtqhtDXScy+kjhiRV2i1kredKVBfrIib5zw6qcZrWLkbVOxWENxtkFS1ApisJDDz1ETU0NM2bMYODAgdrryy+/1MIv9KTY6dJiJ4CK4AWVb0DFTq03lN3oAcwcrmnixLo3sYSd9x3VG1IUhW8qTwDGXRDC6y3lmE0c8UrsX7+JjLTQNuHyq31WjeSeC5dxQKUEmDi09zAN0kFtm47m2O+X2V/dBBjfKqsSypjsnivWiIqdljxR34qiKJ3GRiqKEncWOwicrzVNbg5UNzOhML3D7dQH84FpDkPGkA5MS6C22UNlg4uxBWkdbneoNvAgM6yPs541q11ZWUxi68KxBx/GXd6AwiZJEg0NDR1uX1oVuJdZTPqxkwnFTqeELHbGMuNDqN6QgoTtsgfwmK3suv/35LecaLNde/WG3ih9i7KTCmA2rMUuvN5S+rk3cyR7OPvWvkxB2Y4226nyH6tvACT2Nm7ju1zWDyOOnHAZk7JHwLk3cfBoDcef/X2b7dqb4xe/ehu3z4TZpBi+I4HKIC0DvAuLnQGVeBXVe+Dydu2iq2x04fT4sZgkhsRBqROV4TnJbD14kv1deCEqGoyZOKGSl+bgq/IGTY6O6A+LHYSsdsfvXB5Tax2ghcy4fKeXQmsPr1/hp9cu4sDer2lpaWHQoEH89a9/7bKSR2+iHxVT0AY1jsWIFju13pBJgoLmGgDKknNCG3RQb8gn+3jk85cBMyazi5wUYz53hNdbymqtB6AqMaygaZj8rV4PTa2BJ/rXDj6LT9ZHS5quCJdRneOKpAH4pOAtpZM5fuqLdwCw2E+AZOyejCrdqWXX6PLS5A7Mr9HiriDgolMtjV253VU37ODMRKw6KdoaC4YHHzbVUIKOqNQsdsabZwitO11l9B8OKna9XeqkPVIvv5yhf32F1Mti+zDsCKtl5++iNqdflvHJMk+99AaVVVU4nU7Kysr6VakDYbGLCL9Pxh9hD7loUBSFqjoXJgVyk+198puxxUTmkqVU3P1rBjfVcCQ1n2MpeUyp/lbbInPJUmRMECbbOwfXU33CikkBs62C9QfeZUHRgv4QoIeE5B/YchKTAtWJA5ClUPKEKv8rX63HpJgAP1XOQ7yzf71BZA7JmOlqJsHrwW2xUZmUTX5LLdDxHJ+oc2BSQLEeNZC8nTMoLSBT2Qlnh9frsdoWTEog0NxhNhnwuoZBqQ5ONLo5WtvCmLyUDrfbX9mESYHiAUmGlLMjhg1IxKTAweqmTuUqP+nEpEBeihHv35CbHDifK+paOx3/4erAOV2YntAtOf0+GUVRtFdPcQRLlsViXypmk4TVZMIny7i8fhJtHde6dXtlJMBsMmGSpB6PQz0u7ekakZxHQrGLgJ0bj5Cc2PHNLFa4vH7GN0mAharPqzmhozTq7qKYzqZu3FWMIgOvy4InazKHfQmAhDk1lWZpDNL6w9r2siLz/t5dTD45E7/LgllysOmNXeSMGo1JMt4Tvyp/HslMd1lITBnF4SFzCJdfeecgn39ZynTX2UgmH7bjFxtKZlVGf2MTF7b4qbNbODRkLp6W2k7neErtJGS3BYsl3VDydobXrzDDbUFxKXy87kC7i8HB2hamuyzkWG1sDzsuRmJSi4kEl4XDHx9n+7GOrTnHv6lmusvCmHrFsLK2h8/tY7rLgqnMy7a3D2mlMU7b7qt6prssZB91GVL+lKrAuWre29jh+F1emaIaP0VYaN1Vx/bdHcehaVj82HL8tDZ5kd36veZTkPDIEq2NHuikHabL6ydJlrBKEs6G7hdo7wi3x4un1c/XH5eDr+3vNjubur0f/R7ZM5gmV8Bdk2A166o2TiRIJhOJJSWkugMui3q7Gi+nkFhSgnRKoGlp/X6aPI0ovoDiLFmaaPQ0Ulq/vy+HHTNU+ZO9Addcs1V1yYTkL63fT7M7GKBrdgGKoWRWZQSFVE9AziZbIt2eY7Ox5zgcq1nSyl/UOdu/wTe5At1UUhzGfZ7OSAzE1dW1eDvdrkbtk2rAWMLOSLZbsFlMyIrCyQ7mGaChNXB8+qoESKxRux3VOzsODVG7I6U6rFph33hBXXd9/s6tZKqrtiMFv78w7h2mH5h48ZA+qS79971VbP3nQUYPTGDyvKG9/nu9hXLxIHx/X8sfHGOwW2z85OhGHAX5FC1d2SbY1Sf7WLFuKcfzK2hqKQGzj8SCDVgclVQl7OH1Oa9jMRnvVFUuHoR101Pc75iEyW5mybH3ScgfSNHSlfhNsGLdUg6nF+P2jMaSup+E/I1ISIaSWbl4EAffXc0ndQpbsy8iXanlMv/XHc9xXh1NTReA1Ufy4L9hMrsMJW9n/Lmqhq2ltVw6PJnJUwtP+3zTe3vZetjHyHHphr2uq76y83B5Fe5kP3d1IINfVvjh5/twOWR+M3+YVvYoXmgtq+Qfh+u4ojiZyZMKTvvc55d5f8tevA6FB+cP08oBGYlGl5fbvjwE+Fj13YJ2a/Z9u+0oW3f7mHVW989nl8vFkaOHSUix4nB0nHzT33isEjV1TmSTQm5ax+M8WeenxauQlGQhMaXn8phcMrYEMyO+U4DD0Ta+vrGxsdv7MfadtI8xW0yY++DJpKLZgyzBwIyEPvm9XsNiY+KN12L/2EWr1cHxpExm3PozLKdc0O8ceI8y5zFkfwaykgiSDxwV+E1+jjmPsuHYe1xWbIxs0TZYbIy+6YdYPvXiMVuptacwJSj/+gN/o8x5DJ93ErIE2E4imwJZWIaS2WIj99afUfDYK8gSHE3OIvf7Hc+xz1OELIFkrUOxNuPHYPJ2QlFuCpv313LgREu71215gwtZgoLMRMNe10W5ycgSHDzp7FCGwzXNOH0yDpuJ4rwU3VkzesqYQWl8fqSOPVWNXGU5XYE/3ujCLSvYrCYKMhMN2RIyI9lORrKNEy0eyhpcjG2nUH5pTTOyBGcNTO32+Wy2mJAkSXvplQSbGYWAu1kBTB2M1eMLfG4PytVT1OPSnq4RyT3DmHeXOOfoCTWjzPg1vtIvXUCxK1Dm5HDRuNPqDflkH2t2rUFCwt86BACT4zhSUMmRkPjzrj8bJlv0VNIuXcBAT+BJq3boKFLnz28js+wNZMtK1jrtO0aTOXXBAoodAZfE4fQCUubNa/N52zkeDIDZcVT73GjydsTwLgpyq4V9CwxowVEZFuyqUef0UtfSvivym4rA+T4yLzXulDqAsfmBum5fl7dvQVG7MRRmJBhSqVNRy9R01Dno26rAeT4it/fjzvsau8WEWZKQFUUrVHwqiqJobcf05orW12gEABwOXkj9kUIeaySLhXNGDASgbOYlp9Ub2lm9k/LmchQUTbEzJx7RPldQKGsuY2f1zr4bdAyRLBaG5AeUt6a5C5EsljYyK0HFzmQLKXZGk1myWJj6o2uwyD6aLQ7Km9rGX7U/xyHFzmjydoRabLmjUhjagm/g2n2JNotWm+1gBz1T9xwPKDxjBsbfgg9oBXu/Pt7QbqP4w/1U2y3WqK3xVHnCURSFb4OFec/KjS9XOwQsZwnBBChnB4qdT1bwyQoSEnZLxwkW/YFwxeqQ/ir62FtMOm8C//t/X7LPPuC0z8Znj2fVrFV4/B4efE2iDPjBxHOZWHSuto3NbGN89vg+HHFsKR5dxEefHaayoBgIyez2efjltxIy8KvpPyI7rMC70WQesOhyzirdyJ6TXnaXN7RRXlR5XT4Pd70g4QRunbGAIdmhMidGk7c9VItdeX0rrR6/tjAA1LV4OBm0cBm1o4rK8JxkKhpc7K1sZPKQjNM+33m0HoBxBel9O7A+ojg7CbvFRIvHz+ETLacVUlc7ERi9Xd7Q4PpzqB0F/niDixMtHswmibPi0GIHAXdss9tHq8cP7VyyrqDCZ7OYdGeZFYqdzpBlRXuyHxonFdsnBm/+/yxrwOX1a5W9IbCgzxk6JxCse3IDAD8tudjQPXJPZXhu26Kmqsw1TW68/veRJLjunPm6e+qLBEmSOKc4jz0nj7H7eAPzxg3UPlPl3V/dhNP9EQ6riZumzourwrUAmUk2BiQF4pL2VTW1aTl1sDYw9/lpDhJtxr7tji1I4+PSWna344r0+WV2HasHaFfpiwcsZhPjCtL44kgdXxyuO02x+6YyoNiN6qTOnxFQFVNVUQ3ny+Acj8pLaXM/jycC16mbFnf7FrvWoGKn9pbVE/ob0RlOVZMLt0/GYpIMHYsTTlFWEtkpdjw+WXuaP5XP9p9AVgLbxpNSBzAy+ET7bWXbG+TBYCxWQXqCoZU6lbODLqqvOog9+qQ0ULh4YmFG3Cl1EFBuQ8egbU2vA9UBq0c8ZIhqMWbHT69btreyiVavnxS7hRFxIGtHTCvKBODzQyfbvK8oCnuDMYaj8nq/gkJvMmZgYPx7K5tOK/vxz7LA3J8zKL2vh9VnJAUt7m6fH287ZU9cnsB7CTpUbOPv7mpwDgebKhdkJGCJk8VPkiRmFAXcsFsPnmh3mw+/DbSlOv+s7D4bV1+hBhcfb3BptcwArd+k0V02KhODFqodR+rarf/0UVCxmzUy/uZY5ZygYre77BTFLmixK8oythsWYFxQxr0VTXhOqYa/42ggVnTikAzduadiScmwwP3s80Nt72eVjS4aXT7MJoniHGPP9eDMRJJsZtw++bR4yi/L6gEYPyitnW/GBxazSVPamt2nJ3Y5PcF6s510pugv4kNziCNKqwNWneLs+FjsVaYHFbtP99ee9pmiKHy4rxqIz0U/LcFKbmqgXICaSQZQGvz/8DiZ6zEDU0lLsNLs9mlP9Cpun58tBwKL4Kw4VN5VxnZgsfumInBdx0MGYWFmAqkOCx6/rGXAqqjX95Q4dcOqTB6SgdkkUVbXSlldKGv0n8cC8z4iJ9nwVniTSWJ00GoXbp11+/ya52Xi4P6bZ0VR2F27O6btxE4lOVhMvMXl44EHHmhTqmV0fhrjCzN4+vHHeu33o0UodjpDXQBGx1lG2QVBhW370TqqGtu2Itp+pI7jDS6SbGbNshdvqAHG+8LcsQfizGJnMoUss1sOtFXgP/q2llavn7xUh+FjjzpjXNCC8W1VkxZcrSiKZuE4Jw4sHJIkaRarzw6ELFZev8yn++NfeYdABwo1hvKDvdXa+9uCrtkpQ+NDsVUfVLYfCWXt7zxaT6vXT1ayrV8zYt86+BbXvn0tbx18q9d+I9keUOwa3T6WLl1KRUUFFRUV7D1whCu/fwMFgwZz9VVX9drvR4tQ7HSG+gSsPinFC/npCUwanI6iwPqvKtp89vrOcgDmjM2L20BcdUFXXVWKovB1sCzEWXGk6Jw7IguAjd9Ut3n/jV2BOb70nIG6LkzaU/LTHOSk2PHJCjuCi2FZXSv1Ti9Ws8TIOJnr84afboH/4nAdzW4fA5Jsmrs2nplzdi4A7+6u1N5TXbOq4mt0ZhQHFfj9IQX+s+CczyzO6rdrWa2NCfRqDcwkuwWzScLnlzHZE8nLyyMvL48///nPbPnoA159+z0UReGCCy5gzJgxnHPOOfz1r3/tlbFEglDsdITPL2sWHaMH3rbHpefkA/CXfxzTzOf1To+m2F05aVC/ja23mTIkEGytPvkeO9nKyRYPVrOkBSnHA3PPzsNskvjnsXrNIlnd5GLjnioAFk44vQVTPCFJEucNDyi3HwcXQFWZH5WXanj3nMp5QQV+2+GTWl/UdUHl/cJROXEdX6cy5+w8IJBAUd3oory+la+PNyJJMH1YZj+PLjZMLxqASQrULDxe34qiKKwPKrL9GQ+9/tB6ypsD51tZcxnrD63vld8xSRKpDrVvbqBc0b333sv/vfy//Ncrb3H2yOFYLBZWr17Nnj172LBhA7fffjstLe3XeOwrhGKnI/ZUNNLq9ZPqsGgV3uOJKycNIslmZm9lk7bQP/nRQZweP2MGpjKzOD6ecttjUjAW5VBtC7XNbnYeCyz2YwamxpWVMjvFzvnBRf/5zw4D8F8fH8Ljk5k4OJ2xBfGjxHaEqvR8FEwIUhODZg6Pn/O7ODuZs3KT8fhk/vbP4zS0enn7y4Al/srJ8fuAFs6QAUlMGZKBX1ZYu+UwbwQfUEuGZpKTGh+Z/WkJVsYHXc7rd1eyp6KR0upmbBYTlwQtln1NeCcb6P3ONRmJqmLn5d5772Pt8y/wX6+8xZAhQ0mymRk4cCATJkwAIC8vj6ysLE6ePNnJHnsfodjpCDVjtGRYZly24klLtPKvMwKdB+5b9zX/9fFBnv7oIAC3zR4R1y66tESrZpn7YG81H+4LLPYlcfJkH86N3ykC4H+3HeXhDft45pNDANx64fC4nmOV88/KxmKS+Pp4I7vLG9gcnOtZI+In7kySJK6eEuiT+sSHB7j/b3tocvsYkZNMydD4O6c74ifBc/3xzQd4eOO3AFwz9fT+sUbm/00MWNlf2HKYP2wIyHjxmFzNktXXqNY6hYDXR+1c01tWuyS7hQSbmcdWPcCza9fy3P+9RUHhYDKTbKfdz7Zv347f76ewsH/PAaHY6QjVijU9ThMIAG67aARF2UlUNrr4j7e/wScrLJqQr7k14pl5YwMy/s/nR3n/m8BcXziqf556e5OZw7OYNzYPr1/hTx/sxycrXD4+Py5lbY+sZDsXjc4B4PLHPuFki4fcVHvcKfHXlgwmL9VBWV0rr+4oA+COuaPOCDesypyzc7loVA6yAn5ZYfygNC4fn9/fw4opiyYWkJVs4/AJJx/srUaSYOl3h/fLWE611qn0ptVOkiRe+PMfeeWFZ/jdY/8FZit1tTX4mk/idru17U6ePMn111/PU089FfMxRIpQ7HRAi9vHnf/3Jf84XIckhWLR4pFEm4W//HQ6l43P56zcZG65oJjf/4uxW0l1l0UTC7AE488aXT6GDkiMu8Ve5eGrJ3D9jCGMykvhp+cX8dBV5/T3kPqUm2YVI0mgthL9yXlFcVOXUiXJbuGp6ydTmJmAw2rirnmjuHjMmaG8q0iSxJrrJvHr+aNZdvFZPP+jaXE3zykOK6uvmUiqw4LVLHH/5Wf3W3LfqdY6ld602imKwiN//AN1J2r5wcJLuGjyKC6YeBaFgwr48ssvAXC73SxatIjly5czc+bMmI8hUiSlN4vAxAmNjY2kpaXR0NBAamrsT+iTLR4m/ftGAP5l8iBWXXVmKDpnIg9v2MefPtiPSYInfzDljFsIzyRe+eIYz316mJnFA1g+b1TcLfjhyLJyRlnqzkRcXj+yovSoJZ7L5eLQoUMMGzYMhyOyOESf7OPS1y/lePPx0xQ7CFjtCpIL+NsVf8Ni6ru2fYqi8P3vf5+RI0fym9/8pkf76uz4RKKHGLtpYZzgsJq46fwislPs/Ov0If09HEEv8ouLz+KCUTmkOqxxU79O0D5XTynU4tDiHaHUxT/9neS1s3qnlgnbHqrVbmf1TqbmTe2zcX366ae8/PLLnHPOObzxxhsAvPDCC4wbN67PxnAqQrHTAYk2C3fNH93fwxD0AZIkaRmyAoFAIOge47PHs2rWKjx+T4fb2Mw2xmf3rcfrvPPOQ5ZPb6HYnwjFTiAQCAQCga6xmW3MGTqnv4dhCOI36EMgEAgEAoHgDEModgKBQCAQCARxglDsBAKBQCAQCOIEodgJBAKBQCAQxAlCsRMIBAKBQNBniPK57ROr4yIUO4FAIBAIBL2O1RroL+t0Ovt5JPpEPS7qcYoWUe5EIBAIBAJBr2M2m0lPT6e6uhqAxMREJEkUt1YUBafTSXV1Nenp6ZjNPSsGrUvFbs2aNTz00ENUVlYyfvx4Hn30UUpKStrd1uv1snLlStauXUt5eTkjR47kwQcfZO7cudo2K1eu5LXXXmPv3r0kJCQwc+ZMHnzwQUaOHNlXIgkEAoFAcMaTl5cHoCl3ghDp6ena8ekJulPsXn75ZZYtW8YTTzzBtGnTWL16NXPmzGHfvn3k5OSctv0999zDiy++yNNPP82oUaN47733uOKKK/jss8+YOHEiAB9++CFLlixh6tSp+Hw+7r77bi655BL27NlDUlJSX4soEAgEAsEZiSRJDBw4kJycHLxeb38PRzdYrdYeW+pUJEVnUYzTpk1j6tSpPPbYYwDIskxhYSG33nory5cvP237/Px8fv3rX7NkyRLtvSuvvJKEhARefPHFdn+jpqaGnJwcPvzwQ84///wuxxRJ812BQCAQCASCWBKJHqKr5AmPx8P27duZPXu29p7JZGL27Nls2bKl3e+43W4cDkeb9xISEvjkk086/J2GhgYAMjMzO9xnY2Njm5dAIBAIBAKB3tGVYldbW4vf7yc3N7fN+7m5uVRWVrb7nTlz5vDwww9TWlqKLMts3LiR1157jYqKina3l2WZ22+/nXPPPZexY8e2u83KlStJS0vTXoWFhT0TTCAQCAQCgaAP0JViFw2PPPIII0aMYNSoUdhsNpYuXcrixYsxmdoXbcmSJezevZu//OUvHe7zrrvuoqGhQXsdO3ast4YvEAgEAoFAEDN0lTyRlZWF2WymqqqqzftVVVUdZopkZ2fzxhtv4HK5OHHiBPn5+SxfvpyioqLTtl26dClvvfUWH330EYMGDepwHHa7Hbvdrv2thiEKl6xAIBAIBIK+RtU/upMWoSvFzmazMXnyZDZt2sSiRYuAgOt006ZNLF26tNPvOhwOCgoK8Hq9vPrqq1x99dXaZ4qicOutt/L666+zefNmhg0bFtG4mpqaAIRLViAQCAQCQb/R1NREWlpap9voSrEDWLZsGTfccANTpkyhpKSE1atX09LSwuLFiwG4/vrrKSgoYOXKlQB8/vnnlJeXM2HCBMrLy/nNb36DLMvccccd2j6XLFnC//7v/7Ju3TpSUlK0eL20tDQSEhK6HFN+fj7Hjh0jJSWl14opNjY2UlhYyLFjx87ozFtxHEKIYxFAHIcQ4lgEEMchhDgWIeL5WCiKQlNTE/n5+V1uqzvF7pprrqGmpob77ruPyspKJkyYwLvvvqslVBw9erRN/JzL5eKee+7h4MGDJCcnM3/+fF544QXS09O1bR5//HEALrjggja/9eyzz/LDH/6wyzGZTKZOXbexJDU1Ne5OyGgQxyGEOBYBxHEIIY5FAHEcQohjESJej0VXljoV3Sl2EIiF68j1unnz5jZ/z5o1iz179nS6P52V6hMIBAKBQCDoFQyfFSsQCAQCgUAgCCAUO51gt9tZsWJFm2zcMxFxHEKIYxFAHIcQ4lgEEMchhDgWIcSxCKC7lmICgUAgEAgEgugQFjuBQCAQCASCOEEodgKBQCAQCARxglDsBAKBQCAQCOIEodj1IWvWrGHo0KE4HA6mTZvGtm3bOt3+r3/9K6NGjcLhcDBu3DjeeeedPhpp77Fy5UqmTp1KSkoKOTk5LFq0iH379nX6neeeew5Jktq8HA5HH424d/jNb35zmkyjRo3q9DvxeD4ADB069LRjIUkSS5YsaXf7eDkfPvroIy677DLy8/ORJIk33nijzeeKonDfffcxcOBAEhISmD17NqWlpV3uN9L7jB7o7Fh4vV7uvPNOxo0bR1JSEvn5+Vx//fUcP368031Gc431N12dEz/84Q9Pk2nu3Lld7jfezgmg3XuGJEk89NBDHe7TiOdENAjFro94+eWXWbZsGStWrGDHjh2MHz+eOXPmUF1d3e72n332Gddeey0//vGP2blzJ4sWLWLRokXs3r27j0ceWz788EOWLFnC1q1b2bhxI16vl0suuYSWlpZOv5eamkpFRYX2OnLkSB+NuPc4++yz28j0ySefdLhtvJ4PAP/4xz/aHIeNGzcCcNVVV3X4nXg4H1paWhg/fjxr1qxp9/Pf//73/OlPf+KJJ57g888/JykpiTlz5uByuTrcZ6T3Gb3Q2bFwOp3s2LGDe++9lx07dvDaa6+xb98+Lr/88i73G8k1pge6OicA5s6d20aml156qdN9xuM5AbQ5BhUVFTzzzDNIksSVV17Z6X6Ndk5EhSLoE0pKSpQlS5Zof/v9fiU/P19ZuXJlu9tfffXVyoIFC9q8N23aNOWmm27q1XH2NdXV1QqgfPjhhx1u8+yzzyppaWl9N6g+YMWKFcr48eO7vf2Zcj4oiqLcdtttSnFxsSLLcrufx+P5ACivv/669rcsy0peXp7y0EMPae/V19crdrtdeemllzrcT6T3GT1y6rFoj23btimAcuTIkQ63ifQa0xvtHYcbbrhBWbhwYUT7OVPOiYULFyoXXnhhp9sY/ZzoLsJi1wd4PB62b9/O7NmztfdMJhOzZ89my5Yt7X5ny5YtbbYHmDNnTofbG5WGhgYAMjMzO92uubmZIUOGUFhYyMKFC/n666/7Yni9SmlpKfn5+RQVFXHddddx9OjRDrc9U84Hj8fDiy++yI9+9KNO+zLH4/kQzqFDh6isrGwz52lpaUybNq3DOY/mPmNUGhoakCSpTevI9ojkGjMKmzdvJicnh5EjR3LLLbdw4sSJDrc9U86Jqqoq3n77bX784x93uW08nhOnIhS7PqC2tha/36/1u1XJzc2lsrKy3e9UVlZGtL0RkWWZ22+/nXPPPZexY8d2uN3IkSN55plnWLduHS+++CKyLDNz5kzKysr6cLSxZdq0aTz33HO8++67PP744xw6dIjvfOc7NDU1tbv9mXA+ALzxxhvU19d32sM5Hs+HU1HnNZI5j+Y+Y0RcLhd33nkn1157baf9QCO9xozA3Llzef7559m0aRMPPvggH374IfPmzcPv97e7/ZlyTqxdu5aUlBT+3//7f51uF4/nRHvosles4MxgyZIl7N69u8sYhxkzZjBjxgzt75kzZzJ69GiefPJJ/v3f/723h9krzJs3T/v/Oeecw7Rp0xgyZAivvPJKt54645X//u//Zt68eeTn53e4TTyeD4Lu4fV6ufrqq1EUhccff7zTbePxGvve976n/X/cuHGcc845FBcXs3nzZi666KJ+HFn/8swzz3Ddddd1mUQVj+dEewiLXR+QlZWF2WymqqqqzftVVVXk5eW1+528vLyItjcaS5cu5a233uLvf/87gwYNiui7VquViRMnsn///l4aXd+Tnp7OWWed1aFM8X4+ABw5coT333+fn/zkJxF9Lx7PB3VeI5nzaO4zRkJV6o4cOcLGjRs7tda1R1fXmBEpKioiKyurQ5ni/ZwA+Pjjj9m3b1/E9w2Iz3MChGLXJ9hsNiZPnsymTZu092RZZtOmTW0sD+HMmDGjzfYAGzdu7HB7o6AoCkuXLuX111/ngw8+YNiwYRHvw+/389VXXzFw4MBeGGH/0NzczIEDBzqUKV7Ph3CeffZZcnJyWLBgQUTfi8fzYdiwYeTl5bWZ88bGRj7//PMO5zya+4xRUJW60tJS3n//fQYMGBDxPrq6xoxIWVkZJ06c6FCmeD4nVP77v/+byZMnM378+Ii/G4/nBCCyYvuKv/zlL4rdbleee+45Zc+ePcpPf/pTJT09XamsrFQURVF+8IMfKMuXL9e2//TTTxWLxaKsWrVK+eabb5QVK1YoVqtV+eqrr/pLhJhwyy23KGlpacrmzZuViooK7eV0OrVtTj0Wv/3tb5X33ntPOXDggLJ9+3ble9/7nuJwOJSvv/66P0SICb/85S+VzZs3K4cOHVI+/fRTZfbs2UpWVpZSXV2tKMqZcz6o+P1+ZfDgwcqdd9552mfxej40NTUpO3fuVHbu3KkAysMPP6zs3LlTy/T83e9+p6Snpyvr1q1TvvzyS2XhwoXKsGHDlNbWVm0fF154ofLoo49qf3d1n9ErnR0Lj8ejXH755cqgQYOUXbt2tblvuN1ubR+nHouurjE90tlxaGpqUv7t3/5N2bJli3Lo0CHl/fffVyZNmqSMGDFCcblc2j7OhHNCpaGhQUlMTFQef/zxdvcRD+dENAjFrg959NFHlcGDBys2m00pKSlRtm7dqn02a9Ys5YYbbmiz/SuvvKKcddZZis1mU84++2zl7bff7uMRxx6g3dezzz6rbXPqsbj99tu145abm6vMnz9f2bFjR98PPoZcc801ysCBAxWbzaYUFBQo11xzjbJ//37t8zPlfFB57733FEDZt2/faZ/F6/nw97//vd1rQZVVlmXl3nvvVXJzcxW73a5cdNFFpx2fIUOGKCtWrGjzXmf3Gb3S2bE4dOhQh/eNv//979o+Tj0WXV1jeqSz4+B0OpVLLrlEyc7OVqxWqzJkyBDlxhtvPE1BOxPOCZUnn3xSSUhIUOrr69vdRzycE9EgKYqi9KpJUCAQCAQCgUDQJ4gYO4FAIBAIBII4QSh2AoFAIBAIBHGCUOwEAoFAIBAI4gSh2AkEAoFAIBDECUKxEwgEAoFAIIgThGInEAgEAoFAECcIxU4gEAgEAoEgThCKnUAgEAgEAkGcIBQ7gUAgEAgEgjhBKHYCgUAgEAgEcYJQ7AQCgSCOGD9+PJIknfaqrKzs76EJBII+QCh2AoFAEGPWrFnD0KFDcTgcTJs2jW3btvXKd9pj48aNVFRUsGnTJoYPH05KSgr33XcfeXl5Ue1PIBAYC6HYCQQCQQx5+eWXWbZsGStWrGDHjh2MHz+eOXPmUF1dHdPvdEROTg5vvvkm8+fPp6SkhNLSUn7729/2RCSBQGAgJEVRlP4ehEAgEPQF27Zt44477uDzzz9nyJAhvPjii+zYsYO33nqLN998Mya/MW3aNKZOncpjjz0GgCzLFBYWcuutt7J8+fKYfacjVq9ezfLly3nqqae4/vrreyaMQCAwHMJiJxAIzgi2bt3KrFmzWLBgAV9++SWjR4/m/vvv58EHHzzNovXAAw+QnJzc6evo0aOn/YbH42H79u3Mnj1be89kMjF79my2bNnS7rii+U5HbNmyhV/96le8/PLLQqkTCM5QLP09AIFAIOgLli1bxlVXXcWvfvUrAK699lquvfZaFi5cyMSJE9tse/PNN3P11Vd3ur/8j6d2zwAAAtpJREFU/PzT3qutrcXv95Obm9vm/dzcXPbu3dvufqL5Tkf8/Oc/55ZbbmHhwoURfU8gEMQPQrETCARxT1lZGVu2bGHVqlXaexaLBUVR2o0/y8zMJDMzsy+H2GNKS0v54osveO211/p7KAKBoB8RrliBQBD3fPPNNwBMmjRJe2/fvn2UlJQwbty407aP1hWblZWF2WymqqqqzftVVVUdZqVG85322LJlC1lZWRQWFnb7OwKBIP4Qip1AIIh7GhoaMJvNSJIEwMmTJ1m1ahWJiYntbn/zzTeza9euTl/tuWJtNhuTJ09m06ZN2nuyLLNp0yZmzJjR7m9F85328Hq9uN1uXC5Xt78jEAjiD+GKFQgEcc+ECRPw+/38/ve/56qrruK2225j6NCh7NmzhyNHjjBkyJA22/fEFbts2TJuuOEGpkyZQklJCatXr6alpYXFixdr2zz22GO8/vrrmjLXne90xQUXXIDL5WLx4sX88pe/ZOTIkaSkpEQlg0AgMC7CYicQCOKe4cOHc//99/PII48wceJE8vPz2bBhAwUFBcydOzemv3XNNdewatUq7rvvPiZMmMCuXbt499132yRH1NbWcuDAgYi+89xzz2kWx/YoLi5m3bp1HDx4kO985zukpaVx9913x1Q2gUCgf0QdO4FAIDAAK1as4MMPP2Tz5s3d2n7NmjX853/+J8ePH+/dgQkEAl0hXLECgUBgANavX68VMO6K+vp6vvjiC0pKSnp5VAKBQG8IxU4gEAgMQCS9Y//4xz9SXl7Oc88913sDEggEukS4YgUCgUAgEAjiBJE8IRAIBAKBQBAnCMVOIBAIBAKBIE4Qip1AIBAIBAJBnCAUO4FAIBAIBII4QSh2AoFAIBAIBHGCUOwEAoFAIBAI4gSh2AkEAoFAIBDECUKxEwgEAoFAIIgThGInEAgEAoFAECcIxU4gEAgEAoEgThCKnUAgEAgEAkGc8P8BXV5E//u8b7MAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnYAAAHWCAYAAAD6oMSKAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAD090lEQVR4nOy9eZwcZZ34/67q6u6ZnnuSyX2REAwgRAiGoCDHgiFk4+ru4qLfXVjPrwthF1lXRf0u6H5Xviq6ugus66KC+tvDXQUPEiGA6CIJR5IBMQQScieTYyYz0/dZ9fuj+qmuSebonq6zp96vFy9NT3XX86mnqp7P8zklTdM0AgICAgICAgICfI/s9gACAgICAgICAgKsIVDsAgICAgICAgIahECxCwgICAgICAhoEALFLiAgICAgICCgQQgUu4CAgICAgICABiFQ7AICAgICAgICGoRAsQsICAgICAgIaBACxS4gICAgICAgoEEIFLuAgICAgICAgAYhUOwCAgICAgICAhqEQLELCAgICAgICGgQAsUuIGCK84Mf/ABJkkb979prrx31Ow8++CCSJLFv3z5nB1sjfhnnXXfdhSRJ9Pf3V/2dL3/5yyxbtgxVVY3PFi1axF133VXXWEb7jW9+85ssWLCAXC5X1287hV3XAUa/7jDxc+S3a5jNZgmHw3R2dtZ9LQOcJVDsAjyPWJxffPHFmr/77LPPctdddzE0NGT9wFzADnnOP/98vv/97/P973+fBx98kBUrVgCMq9gFuEs8HudLX/oSn/rUp5DliV/jjz322GnKRnt7OytXruSRRx6Z8Pt//ud/Tj6f51/+5V8sGP3Y2Pm81nsNYPzrPtFz5NQ1BEgmk9x5551ce+21dHd3I0kSDz744JjHq6pKT08PX/7yl43PisUiDzzwAAsXLuQLX/gCx48ft33cAdYQKHYBDc2zzz7L5z//+YZS7KyW5/zzz+dP//RPueKKK/iXf/kXtm7dyqWXXsrWrVu57bbbRv3On/3Zn5HJZFi4cKFl47ADv4yzVr7zne9QLBZ53/veV9XxL730EgD/+I//yPe//30eeughPvWpT7F//36uv/56du7cOe73m5qauOmmm/ja176Gpml1j38s7Hxe670GMP51n+g5cuoaAvT39/OFL3yBV199leXLl094/PPPP09/fz9r1641PmttbeWmm27ik5/8JJqm8fLLL9s55AALUdweQECAH0mlUrS0tLg9DMt45ZVXeOc738nAwADf+MY3uPXWW5EkaczjQ6EQoVDIwRFODqvH6ZV5/+53v8u73vUumpqaqjr+5ZdfprOzk1tvvXXE59OnT+djH/sYvb29LFu2bNzfeO9738uXv/xlfvnLX3LVVVdNeuxuYcU1mOi6T/QcOXUNZ8+eTV9fH7NmzeLFF1/krW9967jHb9iwgYULF3Luueee9jfx2auvvsrVV19ty3gDrCWw2AX4DhGPtHv3bv78z/+czs5OOjo6+MAHPkA6nR5x3N/8zd8AcMYZZxjuFxFvdfjwYT74wQ8yc+ZMotEo5557Lt/5znfGPN+OHTt4//vfT1dXF5deeikAiUSC2267jUWLFhGNRpkxYwbXXHMN27ZtM75f7XkOHz7Mhz70IebMmUM0GuWMM87gL/7iL8jn8xPKU804xmLfvn1cffXV5HI5fvWrX/GXf/mX4yp1MHrsWrXzMh7VXCtxnp07d/Le976X9vZ2pk2bxl/91V+RzWYnHOfTTz/NRRddRFNTE0uWLOFf/uVfjN8c7Tyjzfv+/fu5+eabedOb3kRzczPTpk3j+uuvPy2Wr5axAgwNDU147fbu3cvLL79c0yL70ksvceGFF572+dGjRwE4++yzJ/yNFStW0N3dzU9+8pMJj53M/TjR81ov9V6Dia57Nc9RLdewHqLRKLNmzar6+EcffXSEtc6MuE937NhhydgC7Cew2AX4lve+972cccYZ3H333Wzbto0HHniAGTNm8KUvfQmAP/zDP+T111/n3//93/mHf/gHpk+fDkBPTw/Hjh1j1apVSJLE+vXr6enpYePGjXzoQx8iHo+P6oK8/vrrWbp0KV/84hcNV8rHPvYx/vu//5v169dzzjnnMDAwwDPPPMOrr77KhRdeWPV5jhw5wsqVKxkaGuKjH/0oy5Yt4/Dhw/z3f/836XSaSCQyrjwf/ehHxx3HWKiqyvvf/35SqRS//vWvueCCC2yfl7GodU7e+973smjRIu6++262bNnCP/7jPzI4OMj3vve9Mc+xfft2rr32WmbPns3nP/95SqUSX/jCF+jp6RnzO6PN+wsvvMCzzz7LDTfcwLx589i3bx///M//zBVXXMGOHTuIxWKTGms11+7ZZ58FGHdezeTzeV577TUuv/xyIzljcHCQxx57jC996UusX7++KnedOOdvfvObCY+b6LkYjfHu73qx4hqMd91reY4muoaFQoHh4eFqxKK7u7uqGMvxOHr0KNu3b+cLX/jCqH//67/+a0C32AX4BC0gwON897vf1QDthRde0DRN0+68804N0D74wQ+OOO4973mPNm3atBGffeUrX9EAbe/evSM+/9CHPqTNnj1b6+/vH/H5DTfcoHV0dGjpdNr4TJzvfe9732lj6+jo0G655ZYxx17teW688UZNlmVDRjOqqk4oz0TjGIuHHnpIA7TvfOc7NX1PzIl5HLXMy2hUe63Eed71rneNOO7mm2/WAO2ll14ac5zr1q3TYrGYdvjwYeOYXbt2aYqiaKe+Dsebd/P9Idi8ebMGaN/73vdO+42JxlrLtfvc5z6nAVoikThtDAsXLtTuvPPOEZ9t375dA077LxwOa1//+ter+g3BRz/6Ua25uXnUv5mZ7P041v1dK6fKUOs1GO03xrvutTxHE13DX/7yl6OOdbT/qrlOL7zwggZo3/3ud0f9+7e//W2tubl51Hv6+9//vgZoM2bM0GbMmDHhuQK8QeCKDfAtH/vYx0b8+7LLLmNgYIB4PD7u9zRN40c/+hHr1q1D0zT6+/uN/1avXs3w8PCoLqNTzwfQ2dnJc889x5EjRyZ9HlVVeeSRR1i3bh0XXXTRab8zkVt0onGMx7333st5553HBz7wgZq+Nx6TmZfJzMktt9wy4t8idmrDhg2jnqNUKvHEE0/w7ne/mzlz5hifn3nmmaxZs6ZqeQCam5uN/18oFBgYGODMM8+ks7Nz1Hun2rFWc+0GBgZQFIXW1tYxx2xGBL0/9NBDbNq0iU2bNvGDH/yAt7zlLXzqU59i8+bNVf0OQFdXF5lMZkLX+mTvR7uw4hqMd91reY4muobLly83xjjRf7W4W8diw4YNXHnllSPuadAzaz/1qU+xZs0abrzxRo4fP87JkyfrPl+A/QSu2ADfsmDBghH/7urqAnQXS3t7+5jfO3HiBENDQ3zrW9/iW9/61qjHjJbaf8YZZ5z22Ze//GVuuukm5s+fz4oVK7juuuu48cYbWbx4cdXnOXHiBPF4nDe/+c1jjnkixhvHWPT39/Piiy9y9913T/q8ozGZeZnMnCxdunTEv5csWYIsy2PGZB0/fpxMJsOZZ5552t9G+0ww2rxnMhnuvvtuvvvd73L48OERWY6judGqHetk7+nxeOmll1AUhfe9732Ew2Hj8yuuuIJ58+Zx7733cskll1T1W0LOiTYbk7kf7cTKa3AqtT5HE13Drq4ux5IUCoUCmzZtGnXsX/ziF+nv7+cb3/gGzzzzDKDH2Yk40wDvEih2Ab5lrGxHbYJSAqKw6J/+6Z9y0003jXrM+eeff9pnp+5oQY+Juuyyy3j44Yd5/PHH+cpXvsKXvvQlfvzjHxtxNhOdZ6LxVsN44xjLGvXqq6+iaZolcXVmJjMvk50TM9VYNifDaPN+66238t3vfpfbbruNSy65hI6ODiRJ4oYbbjitcO1ojDXWaq7dtGnTKBaLJBIJ2traJjzXyy+/zJIlS0YoNABz584lFotx6NChCX9DMDg4SCwWG/WamJnM/WgnVlyDsa57rc/RRNcwn89XbRnr6empK+v7mWeeIR6Pc9111434/I033uBrX/saf/3Xf83SpUsZHBwEdFkDxc77BIpdQEMz2gLa09NDW1sbpVLJkp3x7Nmzufnmm7n55ps5fvw4F154IX//93/Pr371q6rOo6oq7e3tvPLKKxOeazzlZaxxjLWQplKpCX/TKSYzJ7t27RphTdu9ezeqqrJo0aJRj58xYwZNTU3s3r37tL+N9tl4/Pd//zc33XQTX/3qV43PstnsmPXXah3reIiSHHv37p1Q2QVdqXnb29522ucnTpwgnU7X5M7bu3dvVRm0UPv9CPbdi1Zcg7Gue63P0UTX8Nlnn+XKK6+s+rcmcw8JHn30Uc4555zTfuP222+np6eHz372s0AlYzjIjPUHQYxdQEMjao6ZF9xQKMQf/dEf8aMf/WhUZerEiRNV/XapVDrN7TZjxgzmzJlDLper+jyyLPPud7+bn/3sZ6N21zBba0aTZ6JxjIV4mf/4xz8eX1AHmMyc3HfffSP+/U//9E8AYyoOoVCIq6++mkceeWRE7Nfu3bvZuHFjzeM91QL5T//0T5RKpVGPr3Ws4yFchtV0Yjl69CjHjx8fVZEQmbZ/9Ed/VPW5t23bNqqCZKaa+zGdTrNz587TWqiNdn+Pd3w1WHUNxrrutT5HE11DJ2PsNmzYcFqZk8cee4yf/vSn3HPPPcZ8tLW1MX/+/CAz1icEFruAhka09fnsZz/LDTfcQDgcZt26dfy///f/+OUvf8nFF1/MRz7yEc455xxOnjzJtm3beOKJJ6pyhSQSCebNm8cf//Efs3z5clpbW3niiSd44YUXDEtOtef54he/yOOPP87ll1/ORz/6Uc4++2z6+vr4r//6L5555hk6OzvHlOeyyy7jTW9607jjGI1ly5axevVqvvnNb3Ls2DHe+c53smjRIq666ioikUg9l31S1Done/fu5V3vehfXXnstmzdv5gc/+AHvf//7xy1bcdddd/H444/z9re/nb/4i7+gVCpx77338uY3v5ne3t6qx/r7v//7fP/736ejo4NzzjmHzZs388QTTzBt2rRRj5/MWMdi8eLFvPnNb+aJJ57ggx/84LjHim4Lx48f5wc/+AGgx4Q9/vjjbNy4kRtuuIHrr7++qvNu3bqVkydP8gd/8AfjHlfNc/H8889z5ZVXcuedd47oQzrW8/rCCy+Menw1WHUNxrrutTxH1VxDq2Ls7r33XoaGhoxNzM9+9jPD5Xzrrbdy8uRJXn31Vf75n//Z+E6hUOC2227jyiuv5E/+5E9G/N4555wTKHZ+wfE83ICAGhmr3MmJEydGPe7UEgB/93d/p82dO1eTZXnE348dO6bdcsst2vz587VwOKzNmjVL+73f+z3tW9/61ojvj3W+XC6n/c3f/I22fPlyra2tTWtpadGWL1+u3X///SOOq/Y8+/fv12688Uatp6dHi0aj2uLFi7VbbrlFy+Vy48rz2muvVTWO0UgkEtonPvEJbcmSJVokEtEAbc2aNRN+b7xyJ9XOy2hUc63EeXbs2KH98R//sdbW1qZ1dXVp69ev1zKZzITnfvLJJ7ULLrhAi0Qi2pIlS7QHHnhA++u//mutqalpxHfHkkfTNG1wcFD7wAc+oE2fPl1rbW3VVq9ere3cuVNbuHChdtNNN9U81lqv3de+9jWttbX1tBIVp5bo+PKXv3xaiYy2tjbt7W9/u/btb397RCmdsX5D8KlPfUpbsGDBqN8xU81zIUp6jHae0Z7X8Y4fDbMMk7kGY12Hsa57tc9RtdfQChYuXDhumZR7771X6+jo0AqFwgj5FEXRXnnlldN+7/bbb9ckSRq13EuAtwgUu4CAAINPf/rTGqCdPHnS7aGMyXgK12T5gz/4A+3MM8+07PcEdoxV0zRtaGhI6+7u1h544IERn49Xg65aRvuNbDarzZo1a8yab17Drusw1nU/ldGeI69dwzVr1mjXX3+928MIsIEgxi4gIMCgp6eH5ubm0zonNBKZTGbEv3ft2sWGDRu44oor3BnQJOjo6OCTn/wkX/nKV6rKwq2X7373u4TD4VFr+k0lqr3uoz1HXruGV1xxBR//+MfdHkaADQSKXUBAAKAH9N91113ceOONRKNRt4djG4sXL+aOO+7gX//1X/nc5z7HqlWriEQifPKTn3R7aDXxqU99ip07d9bdUqoaPvaxj3HgwIGGvi+qZaLrPtZz5LVr+MlPfnLStfsCvE2QPBEQEADA9773Pd7//vfzta99ze2h2Mq1117Lv//7v3P06FGi0SiXXHIJX/ziF08rIhwQMBmmynMU4F0kTbOgOmpAQEBAQEBAQIDrBK7YgICAgICAgIAGIVDsAgICAgICAgIahCDGrgpUVeXIkSO0tbV5ov1SQEBAQEBAwNRB0zQSiQRz5syZMGEqUOyq4MiRI8yfP9/tYQQEBAQEBARMYQ4ePMi8efPGPSZQ7Kqgra0N0C9oe3u7y6MJCAgICAgImErE43Hmz59v6CPjESh2VSDcr+3t7YFiFxAQEBAQEOAK1YSDBckTAQEBAQEBAQENQqDYBQQEBAQEBAQ0CIFiFxAQEBAQEBDQIASKXUBAQEBAQEBAgxAodgEBAQEBAQEBDUKg2AUEBAQEBAQENAiBYhcQEBAQEBAQ0CAEil1AQEBAQEBAQIMQKHYBAQEBAQEBAQ1CoNgFBAQEBAQEBDQIgWIXEBAQEBAQENAgBIpdQEBAQEBAQECDECh2AQEBAQEBAQENQqDYBQQENCSaptGfzLk9jACb2bTjGA9vP4SmaW4PJSDAEwSK3RSnUFJ5+dAQ6XzR7aE4QknVWP9v2zjvrsf44YsH3R6OY+ztT7Hht31kCyW3h+IImqZx679v56L/+wT/b+NOt4fjGMOZAm+cSLo9DMd47HdH+cj3XuTj//kS/7X1kNvDcQxN0yipU0uRVdWpJ/NkCRS7KYymafzv72/lXff+hnfd+xsy+cZf9Df8to+fv9xHIlvkCz/bwXCm4PaQbGfXsQTXfeN/uPn/28aHHnphSlg2Xtw/yM9f7gPgW79+g+PxrMsjsp8dR+Jc+qWn+L2v/oov/WJqKLP/bVLm/v35Ay6OxDl2H09y+Vee5i1feJxNO465PRxHOJ7IcvU//Iq3/v0TvHxoyO3heJ5AsZvCbH5jgKd2Hgf0l8WPtzf+jvfR8mIPkMwV+WVZ/kbmvl/uJlO21P1m9wDP7O53eUT2Y17wVA2efu2Ei6Nxhs//7Hcksrrl/Z+ffqPhLXeFksqzpnt5+4EhhtONv1H71I9e5sDJNIlskU/810vEs40v8/2/fIM9J1KcTOX54oZX3R6O5wkUuynMI72HR/z7sd819u6vpGo8+4a+EFyyeBoAv3q9sRf8RLbAhleOAnD+vA4AftJ7xM0hOcLmNwYAWNAdA+DF/SfdHI7t7OtP8dzek8gSnDunHYD/fKGxQw32D6RI5Uu0RELM724G4OXDQ+4OymZ2HImzdf8gALFIiOFMgZ+91NjPs6ZpbHylsiHfsuckxxONb4Gvh0Cxm8L8Zre++H1u7dkAPLdngFyxcd2xB06miWeLRBWZj75jMQC9B4fcHZTNvLDvJPmiyoLuGJ++dhkA/7PrREO7YwslldeOJQB4/8ULAPjdkbibQ7KdjWXl/e1nTucvrlgC0PDW6NeP6RbJM2e28Zb5XQC8fGjYzSHZzs9f1pW4NW+exV/93lIANv72qJtDsp3XjyU5Fs8Ri4RY3NMCwLaychswOoFiN0U5MpTh8FCGkCxxw8oFdMXC5Ioqu441rvvm9fJif+aMVsN6tbc/RaKBXRlb9uiWqrctmcaFC7sIhySOxXMcPJlxeWT2sedEinxRpTWqsObNswB97osl1eWR2cfze/VN2pVvmsGlZ05HlmDX8SR9w407z+JdtXRGK8tmtQE0vPt5yx59nq9aNoOrls0A9M1bIydFvXJYV9bfPKfD8LRsDRS7cQkUuynKC/v0Bf/cOe20RhXOKbtvdjSwZeP1o7pid9bMNqa1RpnT0QQ0tjXn+b36PF+8uJumcIjz5uoK7dYDjeua3HlUn89ls9qY3xUjosgUShpHhhrTfaOqmrHQXbSoi85YhGWz9Of5pQa2SAslbumMVs6Yrlty9pxIuTkkW0nlioZFctXiaZw5o5UZbVFyRZXtB4bcHZyNiPfzOXPaeXP5/fV6AxsgrCBQ7KYoO8tKjljoz5mtLwS/O9K4rozXj+svg7Nm6rv7NzX4Ll9VNV4rz/P58zoBOHeOPt9i/huRAwNpAM6Y3oIsS8zv0uOv9p9szEV/94kk8WyR5nCIs8vPsXiuf3u4cZ/nI0O6NXJeV8xw0e05kWzYMIPfHh6mqGrM6WhifncMSZK4cIHugn6lgef51T5dsTt3TjtLelqBxn1nW0Wg2E1RhPVKKDdC2dndwA/M/gF9YReLwKLyLn9ff2Mu+AdOpskUSkQVmUXTdFnPKs93I7vcD5zUFbv55cSJhWXZxeeNhljUz5vXQTikv9LfPE8odo1rjRaK3ezOJuP+jmeLDDZoZuzOPmG56jA+O29e4yvw4rld3NPKkvK7+/BQZkqU55osgWI3RXn9eMUtCZXFb/9AYy5+gOGKm9upW3CE+2Zvf2PKLKxyS2e2EpIlAM6aoe94X2tgi93BQX0+RUas+N8DDXpvC7fUm8rPMlQyY4Uy0GiUVI1jCb2ryJyOZprCIXraogAcHmzMuELxPJ89+/R5blSLXb6ocqQcJ7qgO0Z3S4TOWBhN0+OjA0YnUOymIKlc0QieF4rdomn64ndkKEO+2HhB5rliyWgvNaes2Ild/r6BxnxBiFizN81sNz4TFtrDQxlSucbsNiLubVECY2H53m7UTcvu4xUFXrBkuv7/jydyJBtwno8nspRUDUWWDIVOxMw2asLIq2XFTsRPAkZs9L6BVEMmUBweyqBp0BwOMb01giRJzCuHVgiLbcDpBIrdFEQEGE9vjdDdEgGgpy1KcziEqsGhwcZbAI8O69a6qCLTFQsDFYvdgYE0agO2qhFZwCJjEKAzFqGjWZf/YAPOc76oGgu7cMUKC21fg3afeN3IDq3Mc0cszLTys92IoQbC+j6zvcmwRs/uKM/zcOPNs6pqp4XPAPS0RmlrUlC1xty4CDfsgnJMIZjnOVDsxiJQ7KYg4mER7lcASZIMl9X+BoxFMrthKy+IJmQJ8iW1IZvFixe9iCkUCEtWI5Y86RvOoGq6At/TqltyZrbrlpxGbCuWyZcMBf0sk8UOKvPeiIHmYlGf09lkfDarbLE70oAL/vFEjkyhREiWDAs06O/txeWEgj0NOM+nxstCxTJ7pAEVeKtQ3B5AgPOYd0FqPk/yqafQ8nlm5WVeQ2L3r57jwtcqFiwpEqH1qquQIxG3hlw3RqB1R9MImaeHZY7nJXb97HGilY2w72XWNM2IKZvf1TxynjMyryCx69fPs3J3Y82zsMzOam8yFHix4B9P5CipmmHhaQT29CfRNOiKhZlWVmQFZ0xv4YV9gw0Zi2TMc9l6AxUl72gDLvgi8WtuZ7ORICNY0tPCSweHGlKBP2QodpV5ni0s8IErdkwCxW4KInb487uayWzv5fBtHweg9fw/hMVvY8/GJzny6mMjvrPgoYdouXil42O1il/u3Q7IFEP9I2Tufsd6jncv4tUHvk933ysjvuNnmYfSBRLl2KrfDv+KuftnGjJ3nPv7sPQKXnvyGY789qcjvudnmQEee+NZQCYUrigz01oiyJIecD+QyjGjrWnsH/AZwupqtr4LzijH2TWiYtefzAMYVlkwuegasF7hfsPLEjvtb0sMi13jzfOxeGWjJpgdWOwmJHDFTkEOmszbsRUXEp43DySJaVk9s6q/qbNysCQRnj+f2IoLXRipNRTVIs8c+C0AuxNbiVxwviHz9Iwu84nmzsoXGkDmvQN6PI6kDPPAK/ePkHlWWi9OfCzWXflCA8hcVIv8fNf/AHAiv5uiqiu2Skg2AuyPDTeWy13Ew4qAcjONHGQ+UA6dmNZasS7PbmBXrLC+L+g+XbEzsvsbMAnsRHmeZ7RXFHiR/BbE2I1NYLGrgVJRpdQAGaOHBlLIGsztaEJFpvuW9fR95rNMzySQNRho7kCVQsbx3besR0UGn8q+Yc9G0mkJWYN06Sgb923i0rLMPZlhZA36m7saSuaf7ngWWZMJKSc5Eu8bIfOM1BCyBseauxtK5g17NhJPasga5LUTbNi9kbWL1wIwqzXKieEcRwfTnGMKPvc7hwbSyBrM62g+7d00qy2KrMHRwWxDvLfMDCZyyBp0N4UN2XpiEf39Fc9RLJQMV3wjsL9ff2cv6Dx9nue2NyFr0Hcy03DzfGI4i6zBtOZIZZ6bG3eex6OWuQ0UuxrYvmk/rTF/LwqqBvP6isxWFTK9g2zdmUCTz2XwvOtpKYVZlVXoiCxg38LVgESovZ2kdA7Sxn1uD31SqJrKEzt7WTm0FLWgED55Jk8+0kvPWX/C8HnXMy/UxaqsQqTjXPYtLNEoMh964TirsvOQaSV8+J0jZFZyKquyClFldsPN81sHzqWUVVDic3jykV5mLDsbWZI5Ly7RklXY/8xRtu5rnJ1+8ZUhVmUVph/IsvWUuUvmiqzKKsjHirywYR8NFFpI+74Mq7IKvBpna/8+AAol/b4G2PzzvUSVxnFIhXfGWZVVaNuTZmty34i/ZQolXe5siece3YvSQBM9r6/I9IJCqvckW3fpMYR5Mc9Z2PLoXiKhxpnn8Uimq689OjWuSIBBMlc0AshbovpLUJJlYitXEivoMQvpsIhn0IitXIkk+/c22TW0m0Q+jqbpJT6Q88TzcXbH9+gyF8syK40lcy6vj1+SM4A2UuaC7t7IhcKUJJlGkTmRj6OpZddceZ53De0GoLV8rzda7b54Ru+y0F4uYWMmFlGQJQlV00jlG0vudLnrQHOkYnEOh2QjsSDdYF0J4ll9/kab56ZwyJA7kW2ceS6qmlGbL2aa50gDz7NVBBa7GrjgmoW0t7dPfKCHeXH/Sba8uIsF3c289bpFxufaNfN45fH7+GzTxQDcevhp2mf1sHj93UiKP2+Tolrkzp+sp29uH4n0RWhKkdjsp1GajnOseQc/vvm/GPyf/2BL07nMUAt89MDjhOfObQiZd7espsQMmmY+T7hjOxKSIfP+X3ydreFVFEJhPnz8OeZ1xxpC5r65fSTzb0KVO2ie+RvCrW9wrHkHD69+mN9ECmzpH+CM+VFWrFnk9pAtQdM0PvT866SaSnx+9QKj7IWZAzv2cWgww8cv7ObCBd2j/Io/+eDzr5PWSvz9NfNZYEoc2b9jHwdO5rntommsWNgY8uaKJZ565lVogm+sPcOoPWqm7/UD7D6e4n8v72TFmT0ujNJ6jgxl2PLsTiIhmbevWzzC5br3d/s4NJjn4xdNN/rlNjrxePVdZPz5JneJkCIT8rl5/3gyjyrBjM7mkbIoEc645SNEf50lE25iMNrC0ltvRmnyb+mLDW88xqH0QTRJoqTGQAItEqckFzmYPsCmvic563/9Ieo26G9qQ1KLzGwQmUvFNlQJtMggqqzvaoXM77j1ZrqeGOZoyzQGozFWNIjMyFAqtaFJoEWGjXl+/OBjTGs/D1WCgXTB98+wYDCVJ1EogQTzp7eMKtesrmYODGXoS+QbRu50vkiyLHfPKe+x7rYo+wYznMw0zjwPxLOoEkQUment0VFjyuZ2x3j9RIoj8VzjyJ0poEowrT2KEg6N+Ft3W5QDQ401zxNRi5xT44oEGIyWPi5oX7uW7pIef5Scv5j2665zdGxWUlSL3Nd7HxISWimGuNWlkJ5dJiFxf+/9zF97tX58SCG36MyGkVkt6s3BZaXSQ1LIHFuzmmma7o4dnttA86zJaCXdaiUp5azgssydMX0PezKVd22sVnOo3BN1RluUplMWPoHoutFImbED5VInUUWmJTJSblHL70Syceb5aPz02oynMrecAd1IfXJFQfHpbdHT/ja9nA090EDzbCWBYjfFqBT2PF2xkxSFnp5OANR3/aFvXXMA249v53DyMBoaWqnsqgmlkCQ9s0hD41DyEK8mdtAa0ov0Sn/+kYaQWS1FQNXnVwpXzPdC5t6Tv2XOglkAZK9e0xAya2hoReGKLBkKvJD5ZH4/AP2pxil3cnhIdF84vdSJQJQAaaRirkI5n9YSOU3RmV5W7PoTjTPP5qLbYzG3Uy+DcriB5tkodTKKYjetRf9soAE7BlmBf9/oAZNC7P5mjvGSmDF/Fuw4RnrZ+U4Oy3KW9yznnsvvIV/Ks+sI/OMemNkW43OXftE4JhKKsLxnOdM7f0NyIE3mrW9zccT1I2Q+0J/n71+H5ojG3e+4a8QxQua5y2Lw7D7iC850Z7AWYZ7nQwPwpd3Q3izz95f9vXFMJBRhfvRsYHNDWeyOJ8SzfPrCJxCLYn8DWTYGUqKG3ely9whLTgMp8MLLMnOUzbhAKPDHGqht3vG4Poc9o1ns2vR5bsRWkFYQKHZTjPFcsVB5WZ5MFRwbkx1EQhFWL1oNwM9TR4DtLOycxroll5x2bE9blH0DaQZ8vugLmf+ncAJ4nvldbaxbcvmox1b6p/r7xWie599o/cBzzGo/XW6xsx9KFyiU1NPaMvkRMXdjbdIAetpEO7XGWfCFkmouTiwQbrv+hL+fZTN9hsVuHAW+/LdGUuzEJmz6KMkiwmLXSBsWK/H/2y2gJox4jY7RXxLTG3DHK14Qo2WTQeO5b4TrZrwFX1hyjjXQgi/muSt2+jx3xiJGHbfBdGMsBscmsL5DxdpxokHubdCTRgC6R5nnyoLfOPJW3tlju9xFmzy/b9TMiOe0c5R5Fu/yRnmWrSZQ7KYQmqZxbIJd/rSWxgtKHUrr1seultNrQIFJsWsQmYViN3sc1820Bgw+HkqPrdiFZMn4vFFkPpYYOwZJIP52vIEUu+Fy7b6O2OnPs1jwTzbQgn+sihg74Y5P5IqkG6Rm4Xjv7c7y3ItjAkYSKHZTiMF0gXy5LclYjdCntTbejnd4nCKuYFbsGkPmoxO426Fi2WikmDMRPjCWAi+U2UaRWWQNzqjCYpfOlxqmOPOQUOxGeZ7F3DfSgj+RlwX0AtyiiG+jWO3EczqaxU58Jt7tASMJFLsphGiaPL01QmSMmjiGJadBFj8w7fDHUuwaLBC3kvk8tuumu7XiytA0zZFx2c3gOBY7qFhzGmWehRVuvOSJFtOC3yjuWPE8d46m2JXnfiidR1X9f19rmlZVLKUkSZXwigaJsxvPAi/mfqiBLLNWEih2U4hqYnIaMY18QsWuwWpfGcHW4+zwRXxSoaSRaBRLzgSKnbBGN4IrNlcsGRaNmWNY3wWN5o4dTo/tihUuOlVrjPZa8WyRfEn3skwfJQvYjLDcNso8DwpX7DjznMqXDC9UQIVAsZtCHB3WH/hxXXSGJadAsdQYD0y1il2jJE8cN2Kvxp7n5kiI5nJR25MNoOgAnDRicsZQ7FoaxxUrrG+RkGwscmPRaAkUFYvd6fMcVUKGhXIo4/95Fhvs1qgyZhFqgdiwN4LFLlsokSn3iR3teW5rCiNKGAbu2NPxlGL361//mnXr1jFnzhwkSeKRRx4Z9/i+vj7e//73c9ZZZyHLMrfddtuox/3Xf/0Xy5Yto6mpifPOO48NGzZYP3gfIEoejBeTY7Z2NMoDE59AsavU+sr53i1ZUjVOpsau/2Sm0QLNKxa70edZuG8a4b4+ZqrxNVY3AoFQ8E80SAb0RDGzYp4HGyDOToTEjFba5VRmNpBlVsRIKrJEW/T0qmwhWaK9STzPjfH+shJPKXapVIrly5dz3333VXV8Lpejp6eHz33ucyxfvnzUY5599lne97738aEPfYjt27fz7ne/m3e/+9288sorVg7dF4jYop5xXhL6A6M/SEMNsABC5SUxlmInFJxcUSWdLzk2LjsYTOcRoUVjlXcRGMkEjWKxGyfYGqBDxF81wH19oorixIKeBlrwoaLAj/U8i/lvhFIYwmI3bYJnGRqrll2l1El4zI1LV5AZOyaeKlC8Zs0a1qxZU/XxixYt4hvf+AYA3/nOd0Y95hvf+AbXXnstf/M3fwPA3/3d37Fp0ybuvfdevvnNb9Y/aB8hYotG671npjMWIZ4tNswDM5ErNhYJEVFk8kWVwXSellF2iH5BKO9dsfCERXiFdbYRXJNQecGPpdA2UsD1RGWLzDRSza+SWokJHcsFXcmM9b+8lWLMEyvwjVTLbrwadoKOWAQG0g1hmbUaT1ns7GDz5s1cffXVIz5bvXo1mzdvdmlE7iEW/YmCcMULsxFM3PmiasRqjKXYSZJk7P4Gfd5xw1Deq1gIpjWQKzZfVEmWF/yxXLGNVApDxMtVM89dDRRbmMgWENESE1rsfP4sg/l5nthi10jlfIbGSZwQNNJGzWr8a5qokqNHjzJz5swRn82cOZOjR4+O+Z1cLkcuV9n1xOPxMY/1E8bubwKzfkdz4yyA5niqtqaxXxJdsQjH4jnfKznVKu9girFriIVAl0GWMGJvTqWjWbhi/S9vLbFX3Q2k6IjnuSUSGtMiXXHRNcI8C1dsNRu16Ijv+JmJwir0vzVOzKzVNLzFbjLcfffddHR0GP/Nnz/f7SFZgsj6rMYVC42l2LU1KYTksYPMhZLj98XgRJVzDJVado1Q/kO4YzpjEeQx5rmRqtWLBJlqXHSNlCQzUbwsVEIMGsFFNzBOX9xTMVc08HsNv4kSocBssfP/PFtNwyt2s2bN4tixYyM+O3bsGLNmzRrzO3fccQfDw8PGfwcPHrR7mLaTLZSM2JQJXbHigWmAndBE8XWCRok366/BddNtyOz/Hb5YCEYrWisQf0tki74v5TNQpfUdGssyO1FGLJg2pg3w/hIW+GoUePEOK6ma761YlRp2E8TY0RgWeKtpeMXukksu4cknnxzx2aZNm7jkkkvG/E40GqW9vX3Ef35HuG4iIdnIeh0Lw8TdADv8iUqdCET81aDPF79aXLGNtADGy8Vox1vwzfdA3OfFa4WSVo1iZ04mKPnckmPUsBvHktNYrtjyRq2KeY4olXe7392x1SRPNFJZG6vxVIxdMplk9+7dxr/37t1Lb28v3d3dLFiwgDvuuIPDhw/zve99zzimt7fX+O6JEyfo7e0lEolwzjnnAPBXf/VXXH755Xz1q19l7dq1/Md//Acvvvgi3/rWtxyVzW2EG3Zaa2TCulcdU9Bi190g7puKYjfxQtBIMSrxKiw5SkimrUkhkS0ylM5PWA7Gy1QsOVUoduV7W9X06zRWAWc/MF6fWIG4rxshC3igBoudOC6eLTKQzHPmDDtHZi+VDPeJN2rxBnh/WY2nFLsXX3yRK6+80vj37bffDsBNN93Egw8+SF9fHwcOHBjxnQsuuMD4/1u3buXf/u3fWLhwIfv27QPgbW97G//2b//G5z73OT7zmc+wdOlSHnnkEd785jfbL5CHMIJwq1rwGy/GbiLFTsjs9zikWrJiG+nFGM+WFbsqrNGJbNHXCny+qBoWx2qC6sMmhfZkOu9rxS4+TtcJQaNkxRZLqnGfVvPeBt2Cu7c/5Xu3ezUWu7bys94IreOsxlOK3RVXXDFu5f8HH3zwtM+q6RRw/fXXc/3119czNN/Tn6h+wZ+KMXaNkjxRiyvWnP2sadqEllwvE89M7IoFXSE4SMbXpXzEoheSpQnva0F3S0RXaFN56LFzdPZiFCce1xXbGM+y2GRK0vixZmbEe6zf54qd6Ac8XsxsuxEz6/91ymoaPsYuQOdETbFXjRNjV3XyhBFg7t+XhKZpVRehhso8F1XN9x03Kha7iSyz/s+kE3PcFQuPmQF8Ko2SHFTN8yyUgVS+RMHHSTKVeY6Mm9FvplG6yRjP8zjzLCx2fo+XtYNAsZsi1BKTYyx+DWCxqyb2CjAVKPbvCzGeKZIvL2TVBNU3h0OEQ/qC4fc4u7iprM14NEKNxlpqmwkapftENeVOzPeAn9101RTpPZVGqWVXTTKU2MQFFrvTCRS7KYLY/fVU5aLTF4HhjP/rIYluBBMt+F2m/pLVuPe9iLDKtjUpNIVDEx4vSRVXnu8Vuyp2+NAYmxZhdasl+UPc3wM+3rhAdfOshGRay20B/Xxfi3CB8eLMTkXcE36e52yhRL6ob1DHe28LxS5bUI3jA3QCxW6KMJnYK03z944XKopdS2QCxa78QsyZWpD5DTHH1SjvgvYGsGBB5T6dKHmiEeKv+msoWiswitf6eMGHyjxPtFET94GfE4MGq4gzO5VGcMWKOZYkaB3nvd06wjLr33m2g0CxmyLU4oqNKDKxiG7x8XvxR6HYtU6wELREQkTKLYr8GodUS5V6QecUs9g1givW6DoxCYudn2NIoXoFXtwHcR8v+EOmbirV0giuWDFnrVFl3BjSkCzRUl6n/G6AsBpPZcUG2Ef/BGUw1Hye5FNPoeX141qQSSPR99iTdLbqx0iRCK1XXYUc8U+5hGRWWOxOd02eKnNHSOZESeLQxido86HMRs2rCRZ8s9wtcRmQOLr5BYb3VFzQfpIbTFmx0YnKnfi/KHNFga8lxk5XdPzeZaQSWjG+Am8odhn/LvhDhiu2eotdI3QZqSjvE8vd3hwmlS/5WoG3g0CxmwKUVM1wPY216Ge293L4to8b/2666m+gfSb77v8WHf1vGJ8veOghWi5eae+ALaQ/lQAkege2cOnSdSP+dqrMLVfezomOOez+52/TceJ143O/yPzc4d8CMvHS0XGPM8utrHgfzF/BoZ88ypHdvxpxnF/kBuhPpQCJbf2/YcWidWMeZ1gofeyKHZhEjJ05btavaJpmuNwmdsX63xI9lKrdFVvpMuLfEkbVJkKJY/qGA4vdqQSu2ClAPFNA5ECMZdaPrbiQ8Lx5emAD0FLMAJAKN+kHSBLh+fOJrbjQ9vFaRVEtMpzVLRQ/3v1vFNWRD/+pMnfk0wDEoy36AT6SuagWefbgywC8Nrz1NFnNmOVuK8ucCDdXDvCR3ACFUoF0Tr/B/3PXg+PKXulK4N8Ff6CG7iKCRkiSyRVVCiV9nlsnsMy2N4tSGP6V17DYTcLlXlQ1w7rpN6oNq4CK5dbPsZR2EFjsaqBUVCn5MPumP55F1qAtqhCCMWSQ6b5lPX2f+SxI0FrIIWuQCregSrobs/uW9ajI4JNr8OgbG6EYQQZOpA+xYfdG1i5eazpipMzt+TSyBolwq+9k3rBnI6kMyBqki8dGkdVMRe7Wgn5vJE3zDP6RG+Dhnb9A1vQ96vH0/nFlb4+EdHkzBV8+ywCDSf3Z7GwKVy1DW1nuRLroW7mHynJLEjTJ8rhytEcUZA3iqbxv5R1O5pE16IgoVcsQliSaQzK5osrJeI6YMnF2vNeIpwpVy91Rvq/jKf8+z9VSi3yBYlcD2zftpzXW5vYwaubIcIZVWYUOKczWjfvGPE6Tz2XwvOspxRMslaYRySoUp13IPrmHUHs7SekcpHG+7yVUTeWJHS+zKnsRANGjl/LkI73MWHY2slQxVJtlXizPoJRV0Lrfwj6t3Tcyq5rKEzt7WTm0BDWvoAwuHVVWM0LuaaEu/d5oXcq+hasByTdygy77r1/ZwarsW0BSiR65alzZU7kiq7IKUk7jxY378J+jCs44rjK7oDD4Yj9bX41X9Z14Vpc7lFd9K/dgOs+qrEJUkdn+2P5xj+3er7/z1N8Ns7W0z5kBWsyMQzlWZRVyvx1k6+HqYyMvK0RI5or89omDHKuiULnXGNo/yKqswoJjhXHXK4CFx0usyioMbj3B1hP+tFBWSzKdqPrYwBU7BcjkdU2/OTz+dEuyTGzlSkAjXHZn5eUwoBFbuRJJ9s/tsmtoN4mymxE0NKlEPB9n19DuEceZZY6oujk/H1Lwk8y6rHE0VXdLSFJ+VFnNCLkjpbLMstjj+UduELJnAZCkIkjauLJHy/X9NA1f1r7SNMgV9XI8TRM8z2bEsSVVo1jyZ53GXHm+olVYoSLlY3I+nGNBtqCPvalGq5uYa7+WbcrXMM9RRZfVz/NsB4HFrgYuuGYh7e3tbg+jZva+eIgtrx3g8kWdrFizaNxjtWvmsecXX+epRIgtM2cxK7efpaXfsXj93UiKP26Xolrkzp+s59DMHKnU20DO0jbvcSQkjjXv4OHVD6PIFVmEzFuHsmyZM59Y8Sg3+ERmIWvf3D4S2fPRCjFis/8HpfnwqLKa0a6Zx77/9RO2NC1jaTbOBw48TnjuXF/IDRXZD/ZESGcuQooM0Dp305jzDHoA/rbnXidfUvnSZbOZ09k8xq97k6F0ns2/eRWAb69dTESpTrnTNI0PPPc6JVXjnstmM7Ojyc5h2sJvdvez5eW9nDWzacL32L6th9hyoI9IT2jCY73KTVteIyep3H3NfOZ1x6r+3tcOHeX5fWluOK+LFefPtnGE9vDzn6XY0ldkxZs7WHH1onGP/WUox5b+Ad60qNm381wt8Xh11nkIFLuaCCkyoSpfpF5iKFdAlaCrNTrx+JUIM2+9mZZvb0KVIKVEmXnrzShN/ih7AbDhjcc4lD5ISZuLKoEUyqHK+u71YPoAjx98jHVLTJmTZZlb738YVYJ4pNk3MgtZkaGktoAEWjhJSS6OLqsZJcL8d69B/Z2ePCGrRd/IDeZ5XoYqgRzKjj/PZVpjYfqTOZKFku+e50S+hCrp5Xuaq8gaNNMWC3MylSdRKDHHZ3IDpAq67K3N4QnnraM1girBcL7ouzkGyORLZEoqSNDdXsV724TfZRf3eHssMuH422JhVEn/jh9lrYVa5GvsKxEAwMl0ba1p2teupa1V39FnOrppv+4628ZmNUW1yH299yEhoal6fIkkV+JTJCTu773/tMzJ9rVr6WzTrTep1k5fyDxS1hAIeUMp/X/HkNXMnKsuByAZjhGeP98XcsOpsuv3qhTKGH8fT3aRMenHDFFRf6+WorUCv2fGJqpsDwj+l1VkxCqyNGEG8Kl0itI2Pi3pU+nvPbHc7UFW7KgEit0UYNCoe1VdPSRJUZh91TsAyC860xduOcH249s5nDyMhmYoOpgUOw2NQ8lDbD++fcT3JEVh/rvWAJDpme0Lmc2yaiXhqimBrMecjSWrmfZykdtUuInp69f7Qm44VXZdIZfKcsP4svt5MRD1KDtqqG0maPe5slNpJ1ZF4domfxcornSdCNdci66zxd8lfeJGrcJqyp3o76ugjt1I/PEWD6gL8YB31VAPqeeSlbB7K5m2TptGZQ/Le5Zzz+X3kC/leWE3fO8QnNk9j1sv/aJxTCQUYXnP8tO+O+f3Locdz5BQ/BF/ZJb18AD8v93Q1izzxcsmllUgXp4lOUTk2tW2j9kqzLL/Yhs8egxWzj2P91Uxzx1Guyn/LQbDmcqCXyuVdmr+tOSI4sQTtQcE/9exG6xDgRcWO7+2zaup84RQ4H06z3YRKHZTAGGx66rBfSMemITPilxGQhFWL9IVlOET+4FXWNQ5i3VLLprwu6IQ6LBPqrabZX1W6weeY1ZbG+uWXF71b7REQsgSqJrerilWo9vHLcyyv7xzB7CX82YsYd2Ssyf8rp8tV5N5lgV+d09WLHbVKHa6rPmiSrZQoinsr3puw5PoEysQSv+wT/t819J5QijwgcVuJIErdgogYuxqWQwawcQtKq9Xs8OHSuuefEn1XakAwypb40IgSZUYHj9asMDUJ7ZK64ZoIO9LV2x5zB2Tstj5V26oWOyqseS0RhRE/3g/ylt5nidjsau0FfMjhsWuhs4TicBiN4JAsZsCiAe8lt6S7Q3wwKSEYlelFSoWCaGUVwO/WTUM5b3KOEozfn85Gi2IqlTgK65Y/8lrxF5NwkXnd4tdsobkCVmWKu2m/DjPGeGKnYzFTv/OoA9d7iVVqylJRhwTzxbRNH/WZ7SDQLFrcFRVM2Jqatn9iQcmW1AplPxZ/FHs/KpV7CRJMtwYftvtDk6iMbxAzLVfe0sa81ylYicsAX4MrLcixs6vil2tz3Ml+9mH85ye/DxXXLH+m+ekyWtQjWIn7oWSqgVFik0Eil2DE88WUMsbmVriNcyLpF/dscJi11JD3FiHT90YgzWWtDHjd7d7wrDMVuuK9e/CJzZpnZOx5IgyGD6UGyqhAtVkS4K/s5/FHE0qecK0OfWbFUtYV5vCclWdJ1oi/l+n7CBQ7Bqck2VLTltUqbpKPUA4JNNcDjj2q4suWaMrFvxr1TAsdpNS7Pztiq3V5e5rV2wdFjs/J41A5f6sxpID/p7nSmZo7clMQoEvqhqpvL9ihWspdQK6y1089ymfehzsIFDsGhzDkjOp2Ct/W3Imo9gJi5ffMspO1uG68f0815AtCaZSGD5UcIbqyJb066ZFUPM8+9hiV6uCY6Y5EjJ6qIoNn1+YjELbEtUNEH4NJbGDQLFrcAZT5cSJOlx0ftzxQuVBr8UV69eMMuGiqyfGzq9ZsbW63P284Buu2Lpi7Pw5z7XUNwN/dxipdF+ofZ7Bv3F2lVIn1cstNu5+3ZjaQaDYNTiVbMl6XHT+fGBSNWRXCfzqrhIu9/rm2V8yg97cPpmvNajenwWKVVWrJE9MJis2VlFo/RZ7VTCVIKp2ntt8WosT6nPFgn+LFNdS6kTQWp7nwGJXIVDsGpx6Cpoa2ZI+WwAFqZy+ENRksROBxz5T7OqZZ7FQ+nGe0/kSQkepNcYumStS9FHGdyJXNBKhJlPHTigJ+ZLquwxC871Zbfazn0MM6nHFQuX+GPJZSEmtpYsAWsuu2CDGrkKg2DU4ky1cC5WMo1Tenw+M0YJoEq7YYR/tdHPFkhEkPZmCpu0+XgDFLj0kSzSFq3udtfk041vck7FIqKqMwVNpiSiIZip+C68Q89wcDhEOVTfPfnbRVYpuT85i1+5Tb4uQe1Ku2ECxMwgUuwanUt+s9gVfWLr8aOLWtEpGWE1ZsT6MTRFjlaTq44/MVFxW/pFZYMRRRkJVt4ALh2RiEV0x8pOCYyRCTTLuypxB6DfrbLzGjFjwb5H1bKFEvmxJnmyMnV8ThIzuIjUotKLMkd/uaTsJFLsG52Qd9c38bOLOFlRKZb9Vta4bMMWm+MiFYQRaN4WR5dr72/rZZZWssbaZoMOHRYor7cRqf5YFfrXk1FqEGvwbSiKUWEnSW6NNhnafdt2I19A2TuDndcouAsWuwaknW7LFqA/kr1pIMNLKGKuhAXiHDztPiLFOppgp+DtJppIRW5tr0o9FiofqtNiBf92TiUko8K0+3bCIzUZrVJnURg38211lMkkjrT7vnGMHgWLX4IhsycmUR/DzA2OuYVfLy9GPtb7qaTMF5sXePzILEpOoVQgmV5WPZK53nsFsnfWP3ADJXO1B9X7N9k5Mwmp1Ku0+LVU1maQR4Yr1mwJvJ4Fi1+CImlWTaUHk54rek7XkCGtIIuufjMl62g9BY7hia8l8BrMr1j8LXz3FiQXGXPvsma5Y7Gp3xfpN1vgkSn6cSrsP728wlzsJsmLrIVDsGhhN04wHezLlEURWrB8tdok6F3zwT52z4TqLmQrLQK6okvdZGQyRsV3Lgg/+jEGq1+UO/nW7GzF2NTzPbSaPg6r6p25fpUjv5OLrwGyx89c8m+OFq8XPniW7CBS7BiZbUCvZVZN4SbQ0gMWurUbFTgnJxuLhF3dsvQt+64jyH/6QWTCZBR/8WYhaKKH1KHatPnXFTsZF11Z20Wmav0o21dphYzT82l0lPplYSuGK9eE6ZReBYtfAiJdhyFTmoBZaGyB5olaLHVQWThGs7nXq6UYA+v3RUi7/4TdLTq3txAR+DC63wpLjV7d7rX1iAZrCMko5vtZP8sYnUfLjVNqb/WeZ1TRtkuVO/GuAsItAsWtgDBddk1J1jS8zfm6unJxkUD34r/tEvM4YO/BvBmFykpZZPwaXVxb8+i05fisBMpmsWEmSRrhj/cJk3JGn4sdQg2xBpVDSXeaTKVDst3vaTgLFroGpN6je2An5yI0hSNWh2PktsL7eeQb/ZhBO1jLrS1es6EZQh8WuUqXfP3JD5b6sVYH3431db59YqFi80vkSBZ8kgYk5kiUMD0I1BDF2pxModg2MaEE02R2+OcbOb03DDYvdJF6OnT6rZWeNYufPDMLkJArXgv+Ud6goY/VY7Pzqip1MVixUFFk/JRFYYZk1b2j9MtdmuWvxMBkWO58lydhJoNg1MPUGWwvFrlDS/Nc0vK4Yu3L3CZ8odkOWWuz8sQgIhDW55uQJw1XlH3krFrupN8+TccXqx/tPkbUiltKcBOaXzctwpj7lHSBd8F88uB1M/s4J8DyTKYOh5vMkn3oKLZ+nqAHoJvG+nz5Kd/lnpEiE1quuQo5Mvp6W3RiWnCrr2JnlbjosATInfreT4fSrxjFelXuyFrsRMg/oMh9/cTvDh7cZx3hVZoFR1qYG1w1UXFV+ccWq6uQCy0/FvwWKJ7fot/kwptCKrFj9+wrJXNE3cXaTLczcFJYJyRIlVSOZLU4q/KbRCK5AAzOZBT+zvZfDt33c+Hf0979ITomw9++/RDZ90vh8wUMP0XLxSusGazG7Th4EJPYmdgJLJzzeLLd05hXw5t+n77ltHPnn/xhxnBflHkxnAYkXT/yac+euq/p7I2R+y/Ww6GKOPvoYR15/csRxXpRZcCw5BEi8fPIFrqZ62f1WDiKVLyK8TPUs+H5tKSaUk1pd7n5UZK1wxYrvHxnO+ibzOz5Jd7sk6VUfhjOFcoeSJhtG5y8CV2wDMzyJ7KrYigsJz5und6AGmos5ADJKVD9AkgjPn09sxYXWDtZCimqRXQMHAPhN35MU1YlfbGa52wppABKRWOUAj8qdzOUolvS5+v9e/9eqZBWYZT5tnsGzMguKapGBVAqAn+35YU2yi4LduaJK1gfuG7HoRUIyUWXyr+12H7piVVWrw2LnP0U2PkmX5Kn4LTO2nlZqlTg77z/LThBY7GqgVFQp+SjWbDiVR9agPaLUMG6Z7lvW0/eZz4IELYUc8WgbqXAzqqS7u7pvWY+KDB69Fhv2bCSXB1mD4exxNuzeyNrFayf4VkXulkIOWWOEzOBNuX+843FkTQZKHE0eqFJWQUXm5qJ+r2SUJs/LLNiwZyNqUUHWoD9zuCbZm2WZEHrx2qFkjp42b+/yh5L6PdnZpKCWNGByQeIxRUbWIJcvkcsVUULe39snsgUkFSSgRQnV9A5ui4SQNUik8755d6cyBWQNWmuU9VQ6orrsw0l/yD6c1OVuq2m90hHzHE/5Q9bJUItcgWJXA9s37ac11ub2MKomtjvFqqxCdFeCrel9VX9Pk89l8LzrKcUTXFCKsTCrMDzrUva1nU2ovZ2kdA7Sxup/z0lUTeWJnb1cnDgHragQHjiPJx/pZcays5Gl8RcxIbdSVFiVVegIzWHfwtWA5Em5VU3lud++xqrseUiySuTIO6uWVSBknqZ0syqr0NlypqdlFqiayhOv9rIqrbuII8cuqVn2dxQi5IoqvY8doLvFmzGEgkODGVZlFbrkEFvrmI+SprEqq7/2n3t0L03h2mIT3SCRK7IqqxCSJV554iC1VORs2Z9mVVZBeS3BVmWfXUO0DFXTOC8uAQoHnz1Kfx3zs+CYft2Gtvaztd/7lqzc7pOsyirMOpyr+R5/8zB0ZxUO/eYoW3cl7RmgyyTTiaqP9f52LWDS5Aq6hh9Vans5SLJMbOVKQENR9RdCQVYAjdjKlUiyd2+bXUO7SeTjoJb3LFKReD7OrqHdE35XyB0p6S6BfEjse7wp966h3STzugsVqQhoVcsqEDKPnGfwqsyCXUO7iefSlQ9qmGeBUGr8kPEtevhG61TEQpKEEtJVIz/IDRXZI4pck1IHuuva/BtexzwnkTpc7oDhsvfLPItxTibUICzm2Sc1++wmsNjVwAXXLKS9vd3tYVTN3+46yOvZIv/70pmsOLOnpu9q18xjzy++zvfys3mhq42V8R0sVftYvP5uJMWbt01RLXLnT9bTN7ePeGolqAqx2b9CiQ5wrHkHD69+GEUef+zaNfOQnvo2W5reiqJqfPzA40TmzvWc3ELWA9M6yGTfgtx0lJa5m5CQqpZVoF0zjx03bmBL01IyiQFuPPA4YQ/KLBCyH56VIpm6FCjROvcxZKk22b+w5xA7jmT48IXdrDhrhv0Dr4OD2w+z5bUDXDo/yoo1i+r6rdde2sOJRI7PXDKTs2d7/3227cBJtmx/gwXd4ZplP/LSEbbsO4I2Xa77ujnBwYE0W557neZwiJXXnVHXb/1POM+WEwMsXdjkC9l/EB9iS3+RK5d3s+LSRTV996GhQbak4lyzrJ0Vb6vtu34hHo9Xfaz33toeJqTIhOrcRTnJULaIKkFXa7T2cSsRZt56M03/9VtUCdJKmJn/+2aUJu+6rDa88RiH0gfRJFC1KEigKRlKcpGD6QM8fvAx1i2ZIHNSiXDmh/8M9XndYleQZObf6j25hawlrQdVAknJoMq61a1qWQVKhNlrrkF9DVLhKLJaZKYHZRYYsqPLTiiLFipRojbZ25ojqBIk8iXPP9eJvP4st7VE6h5rS7PCsWSOVMH7cgMkCyqqBC3N4ZrH29FSnmO/yFosoUrQGlPqHm97TJc97oP7Gyr3eEdr7fd4a3MYVYJU0R+yToZa5GrMKxAA1F+guH3tWqPAb757Bu3XXWfZ2KymqBa5r/c+JF2bQ9Tfk2TdVSkhcX/v/VVlTs5cd53hmswuXOI5uc2yaiU9c1cKZYy/1yKrYMbbVwF6Vmx4/nzPySwYMc+qnsEryXnj77XIbnSf8EHGZNyCNlMCvxUpTk6yDIb5O36RVbyzay3EPBqi3qFfSvrUc49X2op5P5bQCQLFrkEplFTSef0mn6xiJykK084/V//HWy/2pFtOsP34dg4nD6OhoammDMfyoq+hcSh5iO3Ht0/4W3I4THtUfzSUP/tzz8k9UtZmYKRiV4usgtaYriSllSg9t673nMyC0eZZkrPG32uR3U8LnxWN4QVtPusXO9muE1BZ8P2i2AkldjIdc05lKpU7aTHKnfhDVrvx5ts7oG7MFfXr2f11n3MW9O2mMH+RBaOyj+U9y7nn8nvIl/KcGIYv7IJoWOPuy/7eOCYSirC8Z3lVv9fV2crJEymKK99m15AnjVnW//qNxK/74aqFq/j9t15sHFOLrAAt5Q4dufYu2tetsXzMVmGW/aW98MABWNg5i9sv/aJxTLWy+6lIsVVFa6FixfJLNwax4LdNQtmpWCcLaJpWUw9SN6i0yKs/W7nd6Ifsj3k2WuZN4h4X94Zf7mm7CRS7BkUodm1RvUzAZGmN6g9ZyuPN4SOhCKsXrQbglcPDwDN0NjexbsnVk/q9zlgESHmy5ZRZ1idf2A4c4aI557BuyeJJ/6Yo8JkueruJtln23NAh4CUWdMxg3ZLaO2MYC58PLBqVPrFWuGLLlkqfLIIJC1yxot+118u7CFeiFW2x/Gaxq7ihA1dsvQSu2AYlPok+saPR4sOK3qJKfT3uDOG+9qJiZ2Zokn1iT0VcK1WDjA86MUBlszHZRbDDRxYNKy12YrOW9PhmTVDpOjEJV2ykcm/4wR2bsuDdJfBTqEHRFDo0mXkOXLEjCRS7BmWyjeFPRbjovG6xMyPM8fXsejvL120o7e0XhTHPsfrmORYJiS5yvlvwJzvPxsLnA4uGVY3hoeLm88szXY8lR5YlU39c789zvZsVM0JBSuVLFD1e382sdE/KMmsodv64p+0mUOwaFKsUu1YfPjCVOJU6LHZlRWnI47tdq+ZZkiRaytaNlE+ss/VaZoWS5HWrLNSn3JxKi8+eabHot05Sdj9lxlrhbRCY339ef6bF3MQiIaPYcC20+ixu1G4Cxa5Bqbhi63tBiBeMX3b3MLVcsXGLFDuoLAR+metknQt+xRXr7TkG60IrwKTY+WQRTNRZAsRIFvHBfW2Ft0EQUWSji4PXM6DjdWTEAsam1E8hQ3YSKHYNylS22Bl1ryxwxQ572BWraZpl8wwVt7sfLBtgir2atCvWH3XsNE0z1fiyUIHPe1tuQSXGbnLz7CtXbHlOWiLWJHn4Ramt1yJdkdP7c+wEgWLXoIiFwKqgehHY6gesCEDWs2JhKJOf4Ej3SOdLFEp6FmtnnTF24EOLnYWuWE3zbjZwOl+ipOrjq9cCD+bNmj+e6USdxZnbmvyhwIMpK9YCBR5Mc+1x2espdQIVObMF1fPxhE4QKHYNirA0WZY8kS96evEzk8jV56IDf7hixdjCIYlmC8o4tPjNklOnK1YoSSVV8/TGRVgzFNniefaJAm/E2EXrdMV6XLkBc/KEVRY7f3QZqddi1+KjeEInCBS7BmXYopgcsRPSplAZDDAlT3jYFWuOS7Gi8KrfgurrLebaHA4RDunXzcuZsWZrhhXz7DvLbB117PTv+UO5AWvLnYDJDe3xua436zuiyER8Ek/oBIFi16BYFXvVHJ56ZTDAHzF29RRuHQ2/LviTteRIkmTqPuFdmRMWZsRCxQrvh+c5WyiRL7vW6o2/8kOMnZVZseCfbFGRHFTPPR6UPKkQKHYNilUFTf1ZBkMfpxUxdolc0bMxG/VmC55KZcH3yzyLRXDybqt2H7jc680YPBWzAu/18ArzIt0SmaRiZyRPeH/Bt7KOHZiVHe/e32Cy2NWxXgkl1i8bUzsJFLsGxcpsyVjEXwVNk+WFsJ6XozlQ26tB11Zb7PwWe1XJip38Pd7ug5InFVestfPshy4jCVP5D3mSrRH9khkK1lvs/FLDz4rNS6uPFHi7CRS7BsWIsbOyPIIPXoxQsSzWo9gpIdnY7Q6lvZkZG7dYsWvz0TybEx7qstgZfVM9rNhZbLHzU5eReuPr9O/6o2dqrljJcm+dpHXyVFr9othZ4Ir1W4ywnQSKXQNSUjXjQbamvpm/Sp5Y4aKDSgKFV910CYsXfD+9GM2Zu/VkP/vCFWvhJg308IpWn4RXJCywvvtFuTHPRb3vLoFf+gJb4Yo13M4en2cn8JRi9+tf/5p169YxZ84cJEnikUcemfA7Tz/9NBdeeCHRaJQzzzyTBx98cMTf77rrLiRJGvHfsmXL7BHAI5iDhK10xXr95SCot6CpQFw7r7YVEy4662Ls/GOxE2MMhySiSj0WO+8nTxjFiS1yxYJ/5jphwbPsl+QJMRdNYRllEm21RsM3yRMWJAi1+sjlbjeeUuxSqRTLly/nvvvuq+r4vXv3snbtWq688kp6e3u57bbb+PCHP8xjjz024rhzzz2Xvr4+479nnnnGjuF7BrFINYdDRgp4PfjJFatpmmUlA0TRX69mxlqdLemnLiNWtV4y2op5eNG32mIH/ukyUukTW0ccZZM/rFZWZPOfipE44pfkiSDGzhKsu4MsYM2aNaxZs6bq47/5zW9yxhln8NWvfhWAs88+m2eeeYZ/+Id/YPXq1cZxiqIwa9Ysy8frVaxMnACIGYVrve22AcgVVYrlKv31viA7m8vdJzwaY2dX8oQfsmKNRbBO2YUVzMvJE4k6CzGPhl82a0kLNi9+SSCwuoYd+Kc4s9hYddRhlQ6yYit4ymJXK5s3b+bqq68e8dnq1avZvHnziM927drFnDlzWLx4Mf/rf/0vDhw44OQwHadSnNgqS45/smKtKI8gqMRfeVNuq2Ps/DjPdc9xk/dj7CruSCstdv7oMmJsXuqJsTPFCHu1dBFYd0+b8UOBYk3TTJtUC2LsPCyrU/hasTt69CgzZ84c8dnMmTOJx+NkMhkALr74Yh588EF+8Ytf8M///M/s3buXyy67jEQiMebv5nI54vH4iP/8hOUWu4g/FgGo7ExbIqFJl0cQCFesV/vFJiyOvfJL3BVYky0JpnInHnbFWlG+51T8kihjRbysWVnwsrx2uGL9EGM3ohdyHYpdiw+UWKfwtWJXDWvWrOH666/n/PPPZ/Xq1WzYsIGhoSF++MMfjvmdu+++m46ODuO/+fPnOzji+qmYtadeUL2VdaC83n0ibnGBYl/F2Fk0z0aMnUetsmBdMpAZv7hijb7PddQqjCgyUdFuysMKTsqi8AIzosajl+U290JuCk9eJWkNsmINfK3YzZo1i2PHjo347NixY7S3t9Pc3Dzqdzo7OznrrLPYvXv3mL97xx13MDw8bPx38OBBS8dtN1b1iRUIF116CsVeQWXR96qbzq6WYrmi6mmXFVin2Ik6dl6dY7AuUcRMq0/iKa26x/1Qy86KjjmnIq5bpuBdN7S51Ek9vZD9VIjabnyt2F1yySU8+eSTIz7btGkTl1xyyZjfSSaTvPHGG8yePXvMY6LRKO3t7SP+8xNWFieGiivWDw+MlS15Kq5Yby4GVsSlmDEvKF6vbybmuZ7YK/CHK9aKkh+n0uIT64bhhq7X5e6DBIrKu8uaGnbgj2e6kvVd3xwLq67XrdBO4CnFLplM0tvbS29vL6CXM+nt7TWSHe644w5uvPFG4/iPfexj7Nmzh09+8pPs3LmT+++/nx/+8Id8/OMfN475xCc+wa9+9Sv27dvHs88+y3ve8x5CoRDve9/7HJXNSayOsWv1SaA1WBuA3OHhrNiSqlnuoguHZKM8TtLjc22VdUM8I8lcEVX1Xt9U1TTP1mbF+iNRxorkCfBHZmzKhuSJEW5oj5Y8sSqkxC+FqJ3AU+VOXnzxRa688krj37fffjsAN910Ew8++CB9fX0jMlrPOOMMHn30UT7+8Y/zjW98g3nz5vHAAw+MKHVy6NAh3ve+9zEwMEBPTw+XXnopW7ZsoaenxznBHCZuefKEWAS8ueMzY48r1nsvCrP11OrYq5PFvOcXfKtKQ4hrp2m6ZcyqZ8Yq0oUSWlnfrKcn7qkYFjvPK/DWWKXF971cpNjqPrGCtiaFXDLvWYXHqiQwP8UI242nFLsrrrgCTRt713xqVwnxne3bt4/5nf/4j/+wYmi+wgqLnZrPk3zqKbR8HoYBQsT7Bxn+6U+NY6RIhNarrkKOROocsXWYs2Ing1nuUA4gxFAqy9BPfmr01/SC3GKBiigSkTqq1I+YZ6C5KAMSR5/4JTPb9GO8IO+pCPknO8+CqBKiKSyTLajEMwXPKXbifg7VGVh+Kn5JiLKqhp9QGryq3IC1YSRmWqMK/cm8ZxUeo09snRsXs2KnaVpd8Xp+x1OKXYA1xC1Inshs7+XwbbpLO905H674K5IDQxz55N+POG7BQw/RcvHKyQ/WYrYffRWQGMgfBi6o+ftmubOhCKz7IkVNYs9n/g/NpYpL1m25RRZnQYvz8z0/Z92SdZP6HbO8AJErb4eOORz45rfpOfG68bnb8p7KG4OHAYm9iR3Akrp+q70pTLaQYzhTwGv578lcpdSJlQuVb7JiLequUskOnYoWu3K4gUeVWqta5gnlv6RqZAsqzXVu+vyMp2LsAqzBCotdbMWFhOfNA0miuZgDIK1EKwdIEuH584mtuLCusVpJUS3y3JFeAHac3EZRrf1FZpY7WsqjlPTfSEbKWdYekXsok9X/TyjL/b33T0pWGCkvYMx1Jlyea4/Ia6aoFnnj5CEAfn1k06RlF3i5rZjVmc8CP3QZ0TRTHKlFLve4R5UbsDaMxIzXixTHLSq0HguHDK+KV62TThFY7GqgVFQpFb2ZMm4mkS4ga9AWDtUxXpnuW9bT95nPEi0VkTXIhyKoUmUX1H3LelRk8Mg12bBnI+lMCVmDVLGfDbs3snbx2hp/pSI3EnTk0ww2tROPtDItmwS8IffTe55D1mRkKcuReN8kZYVT5W0p5pE1yISajbn2grxmNuzZSD4PsgbD2WN1yK7TEVX030oWPPd8D6f0+WiL1PMsn05MkZE1SGe9J7MglSuCqlsfYkp98rdF9DlOpPOelTed0d+zLYpk6RjbIiFkDeIpb8oeT5XXq4hS9/jawwqJXJF4Kk+3x8Iq6qWWaxModjWwfdN+WmNtbg9jXDTg7EFQNYW+LcdIRAcm/1vyuQyedz2ZZIZVWQVQeGPRGkKaRqi9naR0DtLGfVYNvS5UTeWJnb28degM1JyCMngmTz7Sy4xlZyNLtRmmhdyleIKVuSjDKByfeyVS16An5FY1lf3bDrIquwRZ7SB8+J2TlhVGynumNJ1wVqE07UL2hXo8Ia8ZMc8XJ85FKymE+5fXJTvAm06qRLIKR7ccY+uBjMUjro/Dx5OsyirMHYKtFs5BfzLPqqxCc79q6e9aSTJXZFVWQZYkfvfkQepxRDcd0K9j9PWkZ+Wdf7RAa1ZheOtJtu6x7j6cf7TAqqxCfNsAWwe8p9hFX0+wKqvQtDvJ1ty+un5rVU4hkYUdTx5ioD068Rd8RDI9dresUwlcsQ1GoaSilhNQRJr7ZJFkmdjKlYRNrq6iHAI0YitXIsneuX12De0mkY+DVt6rSEXi+Ti7hsYuRD0WQm7QiKi6myAvK3hF7l1Du8kUym5DqQBok5YVRsqrlOe64Jd5lic/z4Koolsmc0XvuSXz5V16pM5n+VQiijTi972IWfZ6owuj5cSTnJflLenvbavnWqwDBY/KLuak3vUK9JJNAPmS955lJwksdjVwwTULPV+s+MhQhi2bXyMckrh47Rl1B1xr18xjzy++zrbwpeRDYT589FnmdcdYvP5uJMUbt09RLXLnT9bTN7ePZHERqtxBU8+LRNpf5VjzDh5e/TCKXNtYhdzfy8/mha5W3pp4jaXqEdflFrLu61pKrngm4Y69NM3ehIQ0aVmhIu/jqQhbZs5kfnYvS0u/c11eM+Z5jqdWgRqiZfbThCKDdcn+82KKLUODXLSkhRVXL7J+4HXw8m/2sWXPYaYtbmHFmkWW/e5QOs+WF3Vl+F/fucBYEL3E9oODbNn+BvO6wnXLfnLHMba8cZhMl2TpdbSSDz3/OimpxP+9ah4Lp7dY9ru/UnJsOTHAWYuaPSn7/9t/hN5UkZtWzWTFOTMn/sI43L3vCC8dSnPTW6bV/Vteo5ae9d54Y/uEkCITsng3ZTWJfAlVgrZYGCVsQVaQEmHmrTcTfTpLVgmTDYWYeevNKE3eKX2x4Y3HOJQ+CDKoWhOqBFo4Q0kucjB9gMcPPlZ71mhZ7tb/7EWVIBGOMvOj7sstZC2qb0aVQFUyqLK+O520rGDI2/zg06gSZEJhz86zJkmoWhOU5aeeeQbaYxFUCYZzRc8936lC5Xm2cmztLbrMANmSSpPFmZhWkC6oqBK0NNcve3tLGFWCeN57cwx6IepEoQQStLVELB1ja7M+14l8yZOyD+eKqBJ0tNYvd2tMn+dU0Zuy1kMt8jSW5AGVDCMLA0fb164lpukuuuKc+bRfd51lv10vRbXIfb33IZWdNZqqx1VIsp7dKSFNOmu0fe1aOqL6I5KaPst1uUfIqjYBIMlZ4+/1yAq6vK0t+u/mOqa5Lq+ZkbJX7m1L5rnZuxmTRrkPixWvEV1GPJpBaFXXCahkXHq1jp25q4/VGdCtRg9V72V9Q+W5s0Juv5TxsZtAsWswrG4nBiApCm3dHQCE//CPPeOaA9h+fDuHk4fR0ONTNLVsYSov+Boah5KH2H587CLWYyEpCjNXLAeguPxC1+U2y6oJxS5UUezqkRV0eWdcpvdZLp11tuvymhkpuwiKLpVjDOuT3Sh34sGewEmbitZCRWHyqmInFBErFnzPK3blsjMhWbIk1syM1+c5YVG5E/B+aRen8M6bO8AShjPWPSRm2nu6Yf8g2gUXWfq79bK8Zzn3XH4P+VIeTYPbdkqowKcvvo2uVv2YSCjC8p7lk/r9mRecB4d2kO6ZY92gJ4lZ1vs3Srwahz9etpZVZ1VKfdQjK8C0iy6EvS+Rm+atlntm2Y8Nwf/dDc0Rmbsv+6JxzGRlF8+KJ+vY2VTbDPRadgMp77aPs6rrBFSUw0yhRKGkei6msNLjOmR5xwQhuxcLFOeLKtmCnjxhiWLnYVmdJFDsGgyr+8QKYuWdUDrvrcyqSCjC6kV6b+BsoYSq/QKAd7/pWkteFF0tugVw2APWHLOs35V/AwzxjgVvZfWSWZadw6utpsyyv3RwCPgNXc3NrFvye3X/drvRE9j9OT6VpOGmsr4ml9eLFBuKnQXWSrNymMgW6W7xTuwo2NdOzPybXrRWmjuBWKHAB/1idby1bQmoGztcsQCtUT0Rw2sLvhnzw9wSseYF6dVF38q4FDOthgLvzcUeKvegVa2XKq5Y793bdrpivf5MJyxUasMhmeZyMpkX24pZfU+bEQqTF92TcVMcZUiu31JpKHYeVGKdJFDsGgy7LHZCUTIH+XoN8XKMRUKWvCQAOsvXcSjtrcXAyrgUMy3lxd7LO16rWy952RWbtEmBB7PFzptzbWWMHVSSZLxoubKrTyx4u0+uWK+smuNKooj35thJAsWuwTBi7OpsqHwqXnXRmbHSdSPojHnHFWvGrh6ifsgqE5sLq+ZZPCvpvB5/5SXEYmyHxc7rz7TV97iw/HkxScbqe9qMUHayBZWi5+5vXW6rqjgErlidQLFrMOxyxbYYbhvvu+isfDmK65jMFT2z6BdLquEqtTr2qrLYe3eehRXLKne7+Rp6bdG3M3miNeJtt5XVbmihIHqxrE3Shk2pQLy7AVIeC7EQVnLrlPdAsYNAsWs47FLsYhFv7+7BehcdQLvpt7yy6JtfWlZb7ISylC+pnm03JYL9rXJbhWTJKAnhpUVf0zRjru1wxRpuK4+GV8QtThxpa/KuS9Lqe9pMVAkRDumhKV57f1sdUtJadjt7dbPiFIFi12DELTZtCwwXnUcXATCXDLDu5aiEZGNRHfKIYieC/JvDIcvLNph392mPznXKBmWn3YO17NL5EuW2z0aclJV43RWbtNgNLTZpXoyxq3gbLOgWNApejacU7zKr1ivx/vJiooiTBIpdg2FXHTtfuOhsCkDu8FhmrNXuCzNKSDYKpHptERBU5tm6RVBcS6/MMVTkDMkSTWHrX9WtHg+vsNpa2eblJBkbkyfAu7FnlrtiA4sdECh2DYdtMXYRb5dGAHssOQCdsbJi55HMWLsSJwStHlfi7VgEDYudhxZ9c+KE1UVrwbtWHIHV97kfLHZ2K3Zee38byRNWuWJNhahLqmbJb/qRQLFrILKFkhEX1RGzyWLnseBbM5U4FWvdGZ3NembsUCZv6e9OFqN/qA1FawFiHi95YmeSjJdq2dmR5W2mxcNxsyVVszxBqM1Q7LyjvAvszIoF77rdrS53Yn73e/X95QSBYtdAiIdElioZb1bR4vFipmDOLLNW4emYYhY7seB7NcbOjqK9wmLgRVesbfPs0cUeRrrSrNqoCausFy12YlNqt2LnNdmtjgmPKiEiHg8lcYJAsWsgKjXswsgWFegViBeDVxd7sL6gqUBYc7ySPGFkklnsbhd41W0jsMcVK7JivTHHYG9xYjBt1jxohU+Un+WIIhNVrFHs2jzsihWJIva5Yr25MY/bUGhdZLhP5Ti7QLFrIOxKnICKFcfLuyAREybiAa3Ca90njF2uzZYcr/YQtdcV6405BlMNuykWdwXm2CvrZBeB9V5S3gUpmy12rR4NpbHaFQvm95f35tkpAsWugbArcQIqD4sXq5cLKsVcrZXfSJ7wyKJvd4ydlxd8MCnwNrhivVTHzggtsGmevZw8YYe73dMWOxsyvc14da7tCCtp9fjG1AkCxa6BsFexM9U3K3jzgbGrFpTXyp0YL0ObdvcxkQHtUbe7LTF2HptjsD95wqzAa5q3Mgjt2Lx4uUCx3ckTXt2s2dHb3Ci87UEF3ikCxa6BsOMhEURCMorszerlAtuSJ0RWbNorWbFTN6je3I3B2uSJcoydhxQ74Uqy2+Wuarol3kvYodRW4ii9d1/bXe6kxYNxZyVVM7wsVq5ZbYErNlDsGolho4q39S8HSZI8X6TYjpZiUHHFeiV5Iu5Y8oT35jlXVI36VFa6rTo8WMfODgXWTCzs3dIQdmxehMUuX1TJesjrkCuWKJT0e9qOnsDgzQLF5k2Ule+yVg+73J0iUOwaCHNWrB14vUhx0mZXrFesOVb30DwVr8bjwMgxWdk6zostxQyrlU2LvSxLnn2m7dikmRVkLy365g2Ulfe0GS+2hBTrVUvE2taIXlRinSZQ7BoIO2PswPsuukqMnT3JE0PpgidikRI2thQDb9csNFxWkZClJX3aTQWKvTDHYL/FDryrxFvdHB701mziWnopzk64R5vDIUIWl6kSeDHT3a71yqvxhE4SKHYNhHAj2a7YeSxlHnQXXdEGFx1UOk8UVc0TsjtVoNgLsp6KkN2ufsD5kkqu6I14M7vnGby7WUvalDjixbZidveJ1X/be5s1uzxMgcUuUOwaCjvr2IE3Xw4C84vaandGU1gmUnYVeCFr0g5rhhmvLvZgTw07KFsAy8YSr7hjkza73MFcpNhbc22XUtvW5L1YykpGrD2lTvTf9l7yhG2KnQeVd6cJFLsGws6sWDBbcrz3wNjlogM9caTDcMe6mxlbKKlGBqNdip2XXRni3rPauiFJkudKnjjiijX6xXrLOpuwKRHKi7XsnLDYefGZttsVG1jsAhqCqRxjZ1dGrEB0n3C7X6x5QbJLVmHF8eKL0c6emu0es+YIy6xd8wzeXPDBviLcFcXOG3MM9pc6gZHJE16JIbUrdKgtqGOHfXdSgOPYodip+TzJp55Cy+cJH5EAmZMv72B46HfGMVIkQutVVyFHIpadt1aEEhJWSmiahiTVb7Uzy96SkQGJvv95luEdlWOcll1YZZvDElYaJs2yqmmAEMlEmuGf/tQ4xgvznDB6alrvtuowJVC4jblen12FqMG7yRN2yS6ssl6y2KUcnGdVg0yhRMym7NtasM9ip/+e1+5pJ3F/dgMsoVBSSZeD3a2MWchs7+XwbR8HQD13LSy9kuNP/w9HXvnZiOMWPPQQLRevtOy8tSJ2Z0fSe/n5np+zbsm6un/TLHv04g/A7HPZ/x8/5sj+50Yc56TsYkHKakOWyQkjZU02d8Lqz5HKFTnyyTtGHOf2PL9w5GVAZqhwzPLfrhSwdd+akymUKOcC2Wqx82ptSrtKvbR5shC19S3yTiUWCSFJoGm6wuMFxc6u0CEvexycInDFNggjij1a+DKMrbiQ8Lx5IEk0F3MApJVo5QBJIjx/PrEVF1p2zskQz+pjk+Qs9/feT1Gt/6E2y95WSAOQiMQqB7gg+1Amq5/aQjlh9HkuhMIUpfIrwgPzXFSL/M/BFwDYPfyKZbILhCvWCzF2QrEJyRLNYTuD6qdq8oR35E3alOltRpIkI57SKy5Kuyx2hit2Cit27qvtPqJUVCl5pBTCqQwmcsiaHkshaVg4TpnuW9bT95nP0lwsIGuQC0VRpcpi033LelRkcPHaPHfwJWRNJiQVOBLvY8PujaxdvLbOX63I3pbPIGuQDMdclf1Xe59H1mRkOWuhnGCWNVoqIpetRalwjLZCBnB/njfs2Ugyo9+D2dJJC2XX6YgqyBrEk3nXn/PhZB5Zg/aIglrSAHviolrCIf2+zhRcl1mgaRqp8jy3KiFLx9ValjeR9o68qWxZ1rBs65jaIwrpbNEzssdTlXvcyvHEQvocpzNFioWSJWE5XqCWaxQodjWwfdN+WmNtbg9jVPqGs6zKKrQTZuvGfZb+tiafy+B519MqtbMqqzC9eRH7Fq4GJELt7SSlc5AsPmctqJrKyRePsiq7AJkewoffyZOP9DJj2dnIUn1GaSH7rHAPq7IKze1ns2+hhhuyq5rKgW2HWJVdjKx2WConVGQtxRO8PSNTkmQOLFhNSzHr+jyrmsoTO3tZeXIppayCMrTIUtkBeg7mWJVVyP12iK3ZfZb85mQ5GhfPs2L582ym6UCSVVmFpteTtp6nFgoljRUpffO075k+jljYlSB6SJc3tts78ko746zKKrTtSds6pgtTEiezCrt/dYRc16Bt56mW6eXnLf/bQbb2WVdtIF9SWZXVVZvnN+wzepz7nWQ6UfWxgSu2QRBFVaNh66dUkmViK1eilF1fRcNipRFbuRJJdvc22jW0m2xRj1ORpCKgEc/H2TW0u+7fFrJHSvqLJy8Lt4Hzsu8a2k22UHYvWCwnVGQFrTLXcggvzPOuod0k8nE0rbwXlUqWyg4QVXT5ch7oI5ovP88Rxd5FSbRyypfct+AIcsazjKWtpgAiYo49YLESFIy5tvf5ErU4Cx6RPVcQa5a1oQZhWUYY6bw0z04SWOxq4IJrFtLe3u72MEal7+U+try6n5Vz21ixZpHlv69dM4/9mx9hS9M5nJkd5sMHHic8dy6L19+NpLh3GxXVInf+ZD17Oy4gr84n0v0a0Z5NSEgca97Bw6sfRpHrG592zTxevXEDW5qWkk4O8WcuyC7k3Ne5jFxxMeHON2iaZa2coMu65xdf5zWWc7RpGn808AJLY6qr8yxk75vbR0qdTUmaRlNPL5GObZbKvnOLxJbDx+iYFbblGaqFgd8dZcuO/ayY02rrWI68dIQte4+gTZddl1mw+1iCLS/sojMW5iKLx5R87Thbdh/inC48I++/9vezZajIuguns+Kt8207zzeOHGPLnhTvXd7FiuVzbDtPtXz0xV3EtSJ3XTWPJTNaLf3tV17cRSJX5P++fRYLp7dY+ttuEY/Hqz42UOxqIKTIhGzeVU2WeL6IKkF7S8SeMSoR5r77OtTf6ckTslpk5q03ozS5V/oCYMMbj3EofZCidjGqBGoogyrrO/6D6QM8fvCx+jNHlQjzr7sGdSfEw02uyF6R83xUCTTFBjkBlAgzb72Z6C+Oo0qQlRVm3vphV+dZyI4MqhYx5rkkFy2VvastiirBYK7g+nOeKJRQJWiNhW0dS1ssjCpBsqC6LrMgWVRRJWhpViwfU0erfv8M54qekdepuY41i7kuuS67qmoM54tokv7cWT2e5iaF4XyRdMk793W91CJHY0gcYHvXCYAZl18GQEaJEp4/n/brrrPtXNVQVIvc13sfEhKoeqauJOeMv0tIlmWOzr7ibQAkIzHHZR8hZ6lJ/1DOGn+3Uk6A9rVriZWzJ/Kz5ro6zyNkBzRjnsvZwRbK3ml0F3E/K9bolWpjOzEw93/2TgZh3MaWeR0eKTRuJmVj0W0zbR4qRp3IFhF1kkWZISuZ6m3FAsWuQXBCsWuJ6YtqWonSc+t6V12wANuPb+dw8jAaWmXBD1UUOw2NQ8lDbD++ve5zdbU2A5AINzsu+0g5dcVOMil2VsoJICkKHfNmA6Csvs7VeTbLDmbFTp9nK2XvbNatkl4od+JEOzHz73thsRfEbex5bRQozhVRVW90YHCipZj5970w1+IZawrLRBXry/lM9bZigSu2QbCrobIZUfgxG26i7ffX2Haealnes5x7Lr+HfCnPV38isS8Ff3ru9SxfdL1xTCQUYXnP8rrPJRTmTLiJ5uuurfv3asEs570bJF5LwJ+c8y7eeua7jGOsklPQMX8ODB9FPefNlv3mZDDLDnDHXolkAf7qoo8xp1s/xirZhcVu0OV+wGDqvGBjcWLwZoFiUWPODkuOUBY1TbfmiB7QblJR7OyrV6j/vlB23J9ru9qJCSq17NzfpLlBoNg1CHb3iYVKw3ANyBZVYhF3Db6RUITVi1YD8E/Sr4AkVy28hLctmW75ucwKczxbZHqrvS9hM2Y5/1V6Bhjm8gUr+b0lM207Z6W3pLuLgFl2gL8ubgRUrlvye8zvjo39xUkgFvlsQSVbKNFkY2HgiTA6L9huxakUKLaqFV+9JGx0xTaFQ0QVmVxRJZ4teEKxSzlmnQ2NOJ+b2L1eGRa7wBUb4GecUOxEWxrw1g4fzDFJ9rwcQ7JkdPRwMwarUpHfodgrDywCgkJJNcqA2GHJaosqhMo1r9x2xwrlxm6LnVgANQ2jJaHbiF69dt3jRpydB1zuqqoZ190pV6wX3JN2r1desk66QaDYNQhOKHbmtjReWvBBj5kBe1+OYnfv5oLg1IJvWHI89GI033N2zLMkScbz43YChVNxV83hELKxWfPGM20kT9jgigVvKXbmpBWn4imngmJXkdX9OXaDQLFrEOx+GQpiEe81WNY0zViU2mx8OVaC692LwYrb1EPzVLxosRP3XESRLS9cK6hkxrobZyeuu5V9n0djRA9Rj8y1nckT4DHFrrxxUmTJKJBtF15KlLE7JtyIsZuirtia3hpnnHHGpGIwbrvtNv7yL/+y5u8FVI9I37fTYgf6y+F4IucZtw1AplBCJLjZaeFwuxxGtlAyXJF2JsmAOcbOOy9GJzJFO4XFznVXrDMWO4BYNEQiV/SMdTZhJE80vmInLEotUcX2+Map5IoV74iEB2R1g5reGg8++OCkTrJo0aJJfS+gOlRVM25guxf8mIcCcAXiRSVJFYuiHbS7vCCIBU+SoDVis8Uu4r0YlaQD1srOmG6Vddti51S5ExALfs4TCz5UvA92zbO3FDtnatiBt2oW2q7YBRa76rn88svtGkdAHYwo9mh3UH3EOy8HgZE4EbF319vpcvyViK9rjSjINje29qIr1olMUbfnWOBUuRPwlosO7HfFur1BM5NyqNQJeCtT1LkYO/dldYMgxq4BEDvcqCLbXqLBiwu+Ubnd5kWw0+XkiYRD8XVgTp7wzjwnHFB2RIKMm65YTdMqm5Wo/eU4vLZZs7OOHXjNYuecy128H73gcrddeS//btB5okoGBgb4xCc+wc0338zLL79sfH7o0CGSyaSlgwuoDicyYgVeLGiaKMep2O3OcLszgVOlTsBbbhuBE8qOmGM3LXa5okqxHDTqhCXHa8+0nXXswFuKnVM17KASvpE3lQ1yC7vXLLEpEEaPqUbNit2HP/xhvvWtb7FlyxYuu+wynnvuOd7ylrewcOFCpk2bxsc//nE7xhkwDk4qdl4qcikQC5Ldu95KKQx34q8SDmU+g9k9543FHswLvv0JMm5mPpvdRy02x1KCt57pXLFEtmBvgpB4juNTTLEzbxLcnmtjzbKpQLTY/Hphjt2gZsXu17/+NT/60Y/Ytm0b99xzD+95z3vo7Ozk4Ycf5u677+bBBx/k+9//vh1jDRgDJxW7mAiq95IlJ+dMbTe33XRuWOy8FKNiJBQ4oNi5abFLmmIJ7Y6lBG/Ntdl1Zpey4yXFLunQphRACclGSRW359p2i53JFatp3ugJ7CQ1302Dg4Ocd955ANx000187GMf4+GHH+biiy8GoKuri/vvv58/+7M/s3akAWPihis27SFLjlgI7bZuiMD6YZcWfbuzBc20lLOL80WVQkm1rW5cLTgRY1jJinVRsXPQimM+j9tWHKgoW+YuIFbjhULjgqRDYSSC1qhCrph3VbHTNM2YZ7t7xRZVjUyhZBgkpgqTelvLsv61SCRCLBajp6fH+Nvll1/Orl27rBldQFXEbS72aEYs+F5YBARJh5In3F4QnCpODCMtCF5R4hOOxNi5X6DYqabwAi/FU9pdww68FmMnLHbOzHUlgcK9uU7mikbdUbsUu1gkZGwMpmICxaQUu3/7t3+jt7eXYvH0C9bS0sLg4GDdAwuoHleSJzywCAic2vUagfWZgivm/Uo7MfvnORySiQi3jUfm2ol2ap0eyIqt9D12pkG9l/pqOmGVFm66uAfcdE5mxQKe6DIi1quIjVUcJEky7iEvuNydpua76bLLLuPOO+8kmUwSiUTI5/PceeedXHrppVx44YVMnz7djnEGjIPd7VnMeDGoPuVQkU+x6JdUjWSu6IiCZcbJciegX8+TxbxnrLNO1HYTyns6XyJXLBFVnLGkmDHkdGyx944VPp4RrdTst9i59RybcTJ5wnweN9/fThki2pvCDKULhqdjKlHz3fSrX/0KgF27drF161a2bdvGtm3buOOOOxgaGjLctAHO4WzyhPd6xRouOpsVnqZwiIgiky+qDGcKLih29paBOJWWaIiTKe/MtROKbVuTgiSBpunP1Yw25xW7hMOLvZeSJ5zoed0UlomEZPIld55jM07HUwqXr/ByuIFT65VhsZuCJU8mfTctXbqUpUuXcsMNNxif7dmzh61bt7J9+3ZLBhdQHUZBTwer1Kc94p4Dc/V2++XvbA5zPJFjKF1gXpftpxuBsGY4ZbEzCtd6YMEH8yJo34IgyxIdzfpOfzhdYEZbk23nGoukQxsVgZeSJ5zYvEiSRHtzmP5kjuGM88+xGSffXVBx77vpdhfJZ50OWOwgcMXWzeLFi1m8eDHXX3+9lT8bMAGOWuw8YMo/FSddV50xXbFzI/BaFGJ2zmLnrbl2IsYOoCsWYShdcC3Ozmn3nJHpnnd/ng1XrM3vso5mxVDs3MSpMBKBF2oWDgrFrpyBbhfC6jsVkydqupvOOOOMSfXivO222/jLv/zLmr8XUB12p46bMV4MHrLYORmA7GZGndMxdl5rH+dEr1iozPFgyp3MWPfcc+7Ps1MlfbxSy86t5Ak3n+mhcvHvTpuKEwuMIsWBK3Z8HnzwwUmdZNGiRZP6XkB12F3F20zMAy+GU3FyIexwseWUkwWKwVtKfL6okiu3QbLbYul2ZqxTMaMCL7li7e4hKvBKyZPKu8vZ0jZuKvHi3dll83o1lfvF1vTmuPzyy+0aB6B3tfjKV77C1q1b6evr4+GHH+bd7373uN95+umnuf322/nd737H/Pnz+dznPsef//mfjzjmvvvu4ytf+QpHjx5l+fLl/NM//RMrV660TxAHMRd7dMJFJ14MhZJGvqgaJTHcJOmgJauy6DtrzdE0zdGWYmDqMuKBBX9Emy2bF0G3C1E7XbTW7IpVVc2RbhdjUalj55TFzt1CvY7H2HlAsROWcLtdsVO53In7q7KJVCrF8uXLue+++6o6fu/evaxdu5Yrr7yS3t5ebrvtNj784Q/z2GOPGcf853/+J7fffjt33nkn27ZtY/ny5axevZrjx4/bJYajpPMlo2G4I3XsIt7pNyhw8uXo1k4/V1QplPR5ds5i550uI0KpjUVCKDZ3wTC6T7jUL9b5uKvKedy2zsYdyvz2gsUuV1SNd7djc+2BAsXCEm63K1bEaQblTlxmzZo1rFmzpurjv/nNb3LGGWfw1a9+FYCzzz6bZ555hn/4h39g9erVAHzta1/jIx/5CB/4wAeM7zz66KN85zvf4dOf/rT1QjiMeDEpsmSUIrET0W8wV1RJ5op0tdi765oITdOMArpOvBzdsuaIXacsjVSu7cRLsVdOxddBZdF3q62Y0+VOoopMSJYoqRqpXMnV8h/OJU+4r9iZlSu72yEa5/GAxU50delyyGKXmIIxdp6y2NXK5s2bufrqq0d8tnr1ajZv3gxAPp9n69atI46RZZmrr77aOGY0crkc8Xh8xH9exZwRO5nElsnQ6qEsunS+hCge74hi51KT+LhJsXFqnr2UPOFk4ojbMXbJ8kLkVIydJEnGZsFtJd6p5Il2Tyh2+vszFgk55v6uZMW69+4eCsqd2I6nLHa1cvToUWbOnDnis5kzZxKPx8lkMgwODlIqlUY9ZufOnWP+7t13383nP/95W8ZsNU6UOlHzeZJPPYWW13daTUUZkDj25C+Z1aYfI0UitF51FXLEWQueWIhkCaKKPS9Hs/zhfgmQGTjYx/BPf2ocY7f8YtfZFNHQNM025c4sa6hPl3Vo30GGf7rfOMaNuRbzHAoVbJUfKpYE92LsnLXYga7Ex7NF15V4pxKEvGCxczojFryRFetYuRPDYuf+xtRpfK3Y2cUdd9zB7bffbvw7Ho8zf/58F0c0Nk60E8ts7+XwbR83/h258nbomMPBbz5Az4ldxucLHnqIloudTUoRL0dVyvDo3kdZt2Sd5ecwy1+ccRa87aMMHDzCke/9w4jj7JRfvJz6c4f4+Z6f2yInjJQ1N/8iWHEDJ3e8xpFvPzDiOKfnWii2byRe4ed7srbJD5Xs8sH01IixA29YZwsl1XiebbfmeEixc2OeEy7Ns6ZpFVdsi1MxdlPPYudrV+ysWbM4duzYiM+OHTtGe3s7zc3NTJ8+nVAoNOoxs2bNGvN3o9Eo7e3tI/7zKk5Y7GIrLiQ8bx6UrSTNxRwAGSWqHyBJhOfPJ7biQtvGMBZD6aw+hFCW+3vvp6ha/8Iyy9+azwCQCMcqBzgg/1BGv+ZSKGObnDBS1lhRv7bGPINrcz1cTmSQ5Jyt8kNFqXAjxk4t9y8F51yx4I3YK7PLzKkYOzfddJWkL+fa1rW5nDyRMiX7ib7MdtEWWOz8ySWXXMKGDRtGfLZp0yYuueQSACKRCCtWrODJJ580yqaoqsqTTz7J+vXraz5fqahSKtfS8grDyTyyBh1RxcaxyXTfsp6+z3wWJIgV9XNmlGZUSX8pdd+yHhUZHL4+T72xGVmTkaUsR+J9bNi9kbWL11p8lor8rYUcsgapcMyQHeyX/9kD28ty5myUE8yyNpUKyBpkQ1FHZR2NbUd+h6zJhGyXH9ojCrIGiXTB8ec9kdWvOUBzSHbs/G1hWb+vM0XX3nEnE/qz1dakgKpRKisAdtAWCbk2x4JEWp/rtnDIsTE0hfR5zuZKFPIlx0vbDAxnkTU9YSciS7bK3aKEDFmzuSJhm7Pp7aaWa+UpxS6ZTLJ7927j33v37qW3t5fu7m4WLFjAHXfcweHDh/ne974HwMc+9jHuvfdePvnJT/LBD36Qp556ih/+8Ic8+uijxm/cfvvt3HTTTVx00UWsXLmSr3/966RSKSNLtha2b9pPa6ytfkEtJP3GSVZlFeYeybN14z7bzqPJ5zJ43vWU4gnOlKYTySoUp13IvtAMQu3tJKVzkGw8/2iomsru7ftZlV2KXGojfPidPPlILzOWnY0sWfsQC/kzqQyrsgqgsGfhGmQ02+VXNZWBF46yKrsAWZtuq5xgmuuCzKqsQqvcw76FqwHJlblWNZV07wCrsrMJSXNQVHvlzxRK+hxn4fkNewk5lKwCuotsVVYhJEu88sRBnDrzGcdLqFmFgRdOsLXPHRd033CWVVmFdils67sMdCvOqqyCnNN4ceM+x66zmf7Dw6zKKizuV22XV1BUtfL7C7Y8upeow3VIjydy+jslqtgus6pVZH3u0b00h52zjNpBMp2o+lhPqbAvvvgiF1xwARdccAGgK2UXXHABf/u3fwtAX18fBw4cMI4/44wzePTRR9m0aRPLly/nq1/9Kg888IBR6gTgT/7kT7jnnnv427/9W97ylrfQ29vLL37xi9MSKvxKtqjH40RtvmklWSa2ciWgEVb1cxZlBdCIrVyJJDt/K+0a2k2mUHalSEVAI56Ps2to97jfmwxC/nCpiIRuSciHnJF/19BuY54l2V459XPosiol3YVRkMW95c5c7xraTb4sv93zDBBVKs9StuCsNSdf3pWHQ7KjyoYoNJ4vueeRyBb0OW4K239/RcvnUDWNgksyi2sdcdCSFJIl5PJGxQ25Mw7OsSxJhpUu5zFPm914ymJ3xRVXoGljm99Ha2l2xRVXsH379nF/d/369ZNyvZ7KBdcs9Fy83f+XGGLLiSJXLO9mxWWLbD2Xds089vzi6zyWjrJl5gwWZPawtLSDxevvRlKcvZWKapE7f7KefV2LyBXOQmnfR/OcTUhIHGvewcOrH0aRrR2TkP+38sUkIzFuPPEcizsitsov5NzbcSF5dT6R7p1Ee56wVU7QZd381LfZ0rSSSKnEJw48TnjuXMfnWsj/RvulFJlFdPpviXQ/a7v8r27bzXCmwF2XzGDJDOes9L0HB9my/Q3mdYVZsWaRY+f9WSHFlsFBLjqzhRVXO3deM4d7j7Bl5wHeNr/ddtk1TeNDz79OoaTx5UtnM7uz2dbzjcbmp4psOXCURWe1OjrXr7y4i3i2yF1vm+novQ3Q93IfW3bs5+L5bY7IvOvlvRyN5/nUxTN489wO289nJ7WUXfOUYud1QopMyAMttMwM54qoEnS2RuwfmxJh5q030/zg06gSZMr/VpqcL1K84Y3HOJQ+SEl7E6oEWiiDKuu7wYPpAzx+8DHrMyfL8saeGCIejZFyQH4hZ1FbpcupOCAngBJh4Qf/DPVFyCphNE11Za4r8xxBlUB1SP7O1giD2QJDuZKjz3y6qKJKEGtSHD1vS3MYVYJkQXXtHTecK6BK0NESdWQMbbEI/ckc8XyJeS7InCqWUCVobQ47PtdDuSLpkub4XMcdnuOWZgU1AamCs8+xHdQyfn9LGuBIuRMz7WvX0tKi725zHd20X3edI+c1U1SL3Nd7HxISmtoEgBTKGX+XkGzLnGxfu5Z29N/NzFloq/xmOSmVLQpy1vi7nXICzFpX6QJTWLjY8bkeKX95nmVn5lk0KD+ZcjbezMm+x2YqhWvdyyAcdqjrhKBSbNydmEKRrelU1wlBi4tzLWrY2V3qRDBVS54Eip3PcaLciRlJUZhx6SoA1Ded7bgLFmD78e0cTh5GQ0MrL/hmhUdD41DyENuPj++inwySojBtzgz9H9f+vq3yj5DTUGCdkRMgEo0QkfTQiOYPfcTxuR4pv15yRXJonrvLrfKcrmWXcKForfl8SRd7xYrevHb3EBV0GfUK3Vn03Sh3op/PvdI2Qw4VJxaIDZJoVTdVCFyxPifusGIHMO2iC2Dfy+SmuZOAsrxnOfdcfg/5Up4HNkm8NAx/cNY7ecc57zSOiYQiLO9Zbsv5py2cCy/3kV92ri2/LzDL+aXjEofS8MHzbuDs+TcYx9gpJ0BLc4R8uoB02RW2nWMszPLfeVDiZA7+4oIPcIbptrNLfrHwOK3YpVwoWgve6Ejg9CbVrTkWuDXXrS4WoxbWUbsLUAuMtmJTzGIXKHY+RtO0ysvQoV0umHvFurMIREIRVi/SM5//45dbgAHePu9C1i2Z68j5K71E7ZXfLOeX1KeADFcvvpQLF3TZel4zLVGFwXTBlb7AZvn/j/o4UOC6M6/gTAcCvg2L3RRxxXqh88SwQz1EBV0uu2LdKEQNFSXeDYudUKK7nLbYTbEixYEr1sdkCiUKJd1V5qTFLmaY8t1rJC1wYyEUFdOHHVwQRDxOu+OxV2LBd2+uNU0z5G+NOrXo63N8MuXsTt+NNlNQcQe6+Uw7bbHrMix2U6cnMFQUSVdcsQ4bIkSMXWKKWewCxc7HiBdhSJZoiTgXpyECrd2y2JmpLPjOvRydbiCuKzblJBmbm6OfihdaTWULqtGFwCkFvrvFnX6xbsXYuW2FB+cX/cAV616MneMWuykWYxcodj7GvMOVHKyO7wW3jSBuWOycU3g6DFesM4pdKl9CdFdyUk6AWMT9bEmh1MpSZTx249ain3RhowLeeKadt9i51xMYKtZR5xNlxDPtvHV2yHDFOhtjF1jsAnyDiElx0g0L5kBr912x4oF11hXr7IIgZFRkyZGK7Wa8YMkxW7Gc2sC4FWMnFCvny524a5nVNK0SY+eQNcdti10yp8vrlhLv9FyrqvMx4cIV69Qm3CsEip2PcbqGnUC8GDKFkq2NuiciX1SNVjFOuiiFIh136GVhxNc5bJkF8yLgnhLvRuZ3JcbOHVesU7GEAjHP2YJK0YVWU9mCarTYmgoWu2JJNdrVOa3YtYln2uGEgni2YHgeRJyy3XQ6/K72CoFi52Ocdl0IzO6wlIuWHPOO08laUGKn79QuULyUnLbigLvxOIK4kTji3H0uLHbxbNHRnppisXW+tpn5mXbBRVeuYac4GC/c5VKtQhjp7XA8nrL8HnH63S0U6NaoYvQmtptOl93tbhEodj7GLcUuqsgosm45SrtoyREuylgkhOJgI21zxXrVAYtlwqUSGGDOlnQ/9qq92dkEGWEcdXJRSLrkio0qIcIhXWA3g+qdjBcWz/FwpuDIc2xGFIKOKLJjSo5AhNIkHLbYCQXayfXKqGAQWOwC/ELFReXsIiBJkieyJd1SeMSLSdWcqdQfdykjFiDmgcK1brhiQ7JknM/JOmcpl1yx4G4ChRv1OMWir2nOF7B1KyMW3Ct3IjwcTrUTg8r9lCmUyBbcjwl3ikCx8zFuWewAw13iZlB93EiccFb+pnCIaHmXPeyANSfuosWukjzhYoydS4pttwtxdgmXitaCu4VrhxwuTgy6tUzc307XsnOjTJOgrbxpcDrGrtJ1wpn4OtDjCYUBeCrF2QWKnY9xVbGbwhY7GOnGsZuESwoseGOe3UoScjoGK1cskS8nA7U63Bge3C2D4YZV1nw+t1rHOR1fB6YYO4ef6cGUyHp2bo5ls+U9UOwC/ICbip3oPuFujJ17u16x63Qi/irhQvKAoDXqfh07UVzUafmd7j4xMqDe2eQJ/ZxudiQoW3McKnUiEG5Bp9uKGbGULry7jLjZfNHR2ELDFevwHHc6XFDeCwSKnY9xU7EzFnw3s2JdjD1zsvuEm1mxMRfdcwLhinU6llSUw3DKmiNcY81hZ5OBBG7WLHTrXWa0FXOpdZwbCrxwxWoapB2MOxM1IZ202AF0xJzbhHuFQLHzMW65qMDdeByBm67YSvcJ+xd9d7NiPRBj59J97nSRYreawgtaXEyUGXKp2LrbHUbccMU2hWVC5aoGTsbZnSxfY/FcOUWnC0lQbhModj5muOyicjPGzlVXrEulIcDZ7hNG8oArllnvZMU67ootL0AnnbLYueieA3eLUbtnsXOnzplbHUZAr2pQ6TTinNwnk+4odk739vYCgWLnUzRNcy3gGLxR38zNpAInu09UYuymZh27uKnzhpN0x5y22On3khtWHHA3nlIsuk676Vyz2JXd3S0uJMmAuYWcg65Ytyx2U7BIcaDY+RQ3WvCYES8kd8uduJg84WD8lZsKrLi2uaI7rabAPWtOZY6dbR3nxv0M7iZPTDWLnXCBuuV2b3WhrdhAyl1XbGCxC/A84iYNyZIrC4EXeogmXS13Inb6TiRPuCdnzGRRcKMMhtky7WTnCTDF2DlkzRHX17UYOxfd7m7F2HW5ZLFzs0AxmIsUO6PsaJpmWL4dd8U63ALSCwSKnU8xEieaFMcbw0OlX6ybsVduWrK6jEwr5yx2bmT/RhSZSDlD040M6EyhRLFcksG1GDuHXbGuxdhF3Mt0F4t+l0tuOqcLFCfdVuyizrYVi2eLxnPsVrmTIHkiwPO4WeoE3C2NIHAz9qzLoQWhWFKNpuxuWOzAXLjWPRddSJaMzYRTiBi7RLZIwQE3tJuZkubzOm2FL5RUIxGq2+k6dg5u0MwkXSxQDM4XKRaKe0skRFPY2efYyWLyXiFQ7HyK24qdFzoSJFyMU+l0aEEwX183LJPg7lzHTZnfTlum25vDlKtCOFOI2uVyJ25lQAs3qCS50F3ENVds2e3ulmLncLkqI76u1VnFHTD1fA4UuwCP42YNO6hYcdysb+aqK7al8rLQNPuqtwvltSksE1HceVwr9c1caDWVrYQcOE3I1I7IiYXf7bgrt2LszH1iRX01p+gsP8fZgupok3i3axaK8yYcmmsRzuC0RRYCi12Aj3DdYudygeKSqrnqohQ7/aKq2fpyjLuovApaXOwyMpx2dwPjZJxd0sXaZmBS7Bye55MuxdeBHs+olJVJJ612hivW7XInDsXYuZU4AdBRbv8YzxYoOdhCzU3cuasC6sYNxU7N50k+9RRaPo+WBAiRHE4y/NOfGsdIkQitV12FHLH3ATYrlK0OteUxyw/QJMtkVYmDP93IvCb9GKvlF67IaLiEpmmOuCNPlTMalwGJE5tfYPgN/cXo1DwPu1ScWNAdi7CHlCO17IR11u3F3mnLrJE44YI1R5IkuloinEjkGEjmmd3R7Mh53czoN5/XKevsgIvKu1gjNU338jjdj9gNAsXOp7hRnDizvZfDt30cgGTLdLjm0yRTWY588v+MOG7BQw/RcvFKW8ci3LBIBTYd2Mi6JetsPR+MlB+g9Z2fIxvrZNfX7kUeOmh8bqX8Qs4j6T38fM/PXZFTfuuNMPd8+n70CEf2Pmt87sQ8bz60HZBJlU7Yep6x6GpxrqyN2+45t4pRi2vrhmIHMK2s2DmV/VxSNTJlt6/7iTIOWezK1tBpLih2EUWmJRIilS8xlJ4ail3givUpbljsYisuJDxvHkgSzcUcAFklimHcliTC8+cTW3Gh7WMZSuvnl+Qc9/feT1G1/wVllh+gvZACIBGJ6QfYIP9wpixnKOuanLHyXKeVqH6AQ/NcVIs8feB5APYmdzgi+6l0OViI2rDiuFwCI19UHckCFohr2+Vw1wlBt8Nlbcyu7haHvA2n4nS5k4GkexY7mHptxQKLXQ2UiiqlojvV908lnsoja9AeURwck0z3Levp+8xniZaKyJr+WUZpoqmkPzDdt6xHRQabx7Rp9zPImowkZTkS72PD7o2sXbzW1nOa5UeC9nwGWYN4pBVV0l/QVsu/5eDLyJpMSMq5JmdTSb/XMkqTbXKOxoY9G0mk9fssUxxwSPaRdDWHkTU4mcjZ/pxlsrqssbDsynumKSSXn2n9/eKUZWMwkUPWoLs57Irc3eU57o/bP8cA8aT+PEVCMgqSKzK3hPW5TmULjpx/KFme4yZ35rizOczRoSwnk87MsR3UMu5AsauB7Zv20xprc3sYAHTtz7Aqq6DuGGZrv3MxMZp8LoPnXU8xnuCSbAgNiX0Lr6WpVCDU3k5SOgdp4z5bx6BqKq/17mNV9iykYozI4Xfy5CO9zFh2NrJkrxFayF+KJzhb6yKWVcj1vJV9yizL5Vc1leFtx1mVnUeIGSguyTk7soBVWYVY2zL2LZQdmWdVU3liZy8rT55FKaugDC9wTHYzHeXnjB3DbJX22XqupQMqC4oKR7ccJx8bsvVcY/H2fJiSqrH9sf2OxTVqO4ZZlVXo2Jdhq83vjtFYcLTAqqxCYls/W+P2n28glWdVVqE5HHJFXoD4kH5fdx4tOjKGjn36+bQdw2w94Xx2/XlD0JlVOPjMUbbuTjl+fitIphNVHxu4Yn1KtqBr700Ol8CQZJnYypVIaCiq/oAWZAXQ9M9l+8eza2g36XyhPJ4CoBHPx9k1tNv2cwv5QSNS0t0LuVAYO+TfNbSbnCjBIBVxS06l7AJ1cp53De0mkY+jaeW9p1R0THYzzeViqnaXwtDA6P0cDbn3WhZdRvJF57IHxbVtCrsjd3M5WSXjULmTfNny4lb5IvO58w5ZrzLlCgbNDhcZF4iiyLmie+W5nCSw2NXABdcspL293e1hAHDrS3s4USry6Svncu6cDkfPrV0zjz2/+Do7pBUMNHVwQ/9zLG2VWbz+biTF3luqqBa58yfr2de9iFzhTShtB2ieuwkJiWPNO3h49cMosr1jEPL/T1xjy6zZTMsf5o9Kv7NUfiHnnvaLKWhziUzfQXTa067I+cpQgi3zz0A5eYw/s1jO0RCy983tI1VaQEnqpmnGViLtv3VMdsHwq8fYsucw6U6JL6xZZNt5Urkim595FYB/uW7RiB69TrLrd/s4NJjj4xf3cOGCLkfOefe+I7yULHLTJbNYcc5MR85p5rXnZLYcPkbrDIUVNs6x4JndJ9jy2728aWaTI+cbjUMn02zp3UNUUfkXB8bw4Rd2kdSKfOH35nNGT6vt5zuVh3MJtsSHWHVmKyuuXOT4+a0gHq/enBwodjUQUmRCLu6yzAxmC6gSdLVGnR+TEmHmrTfT9NgAqtRBJhRh5q0fRWmyPyZnwxuPcSh9kJJ6FqoEmpJGlfVd2MH0AR4/+Jj9maNl+du/9SiqBPFIMzNvvdlS+Q05tct0OUPuydl833+jSpAu/9vueRayI0NJbS7Pc5KSXHRO9jLd7VFUCQYyeVufs2xaRZVAlqDVhS4bgliTgipBpqg69l45WX6Xdbe78C4DphtzXHDk/OmCPtctTWHX1pOO1og+zyWVEvZaD3PFEvF8ESTo6Wh2RebOVn2OB7POzLEd1DJuf0o4xckWSoYJvcOlTLL2tWtpKysa2VnzaL/uOtvPWVSL3Nd7HxISmqrXm5JCGePvEpJjmaPta9fS2aoXr0u2d1sq/0g59XNIoazxd6flbG3Xd9jZWJvt82yWHUAr6RnHUiit/6+DsgN0t+iZwIMpe7PpEqbeoW4pdeL84Gz3iZMu1rGDSlbsQDLnyPncLmsDI8us2D3X4tkJyZJrdftExwunMp/dJlDsfIhI2ZalSs8/p5EUha55s/RxXLvWdhcswPbj2zmcPIyGhlYqVwSWK4qdhsah5CG2H99u+1gkRWH+mqsBSM9eYKn8I+UsK7ByRbFzWs7Z69YAUJg5x/Z5NssOpyt2TsoOlUU/mSvaGmeXcLnUiaDSfcKZWKRCSTVkd6MrAcC0cv/SAafKnZiUeLcIh2QjptHuWnZmxV12uGWcwMkOMl4gcMX6EHOfWLceFICuBXNhqI/CsnMdOd/ynuXcc/k95Et5vvW4xG+H4T1nrebSc1Ybx0RCEZb3LHdkPHOvvBR2biYejln6u2Y5/+6IxPEsfPQtf8aZsyvHOCnnjMsvhVc3k2lqsf1cZtnzRfjrV/XF585L/4ZyZyBHZW9vUgiHJAoljZOpPHM67elM4GbfYzOii4tTFjvRJ1aS3GuPOK1slU1ki+SLqu1JDUbrOJeV+NaoQraQd0yx625x796eZhQaDxS7AI8iFLtOl16EAtG/M5F1ZncfCUVYvUhX4n4gbwZOcumCFaxbMseR859KV3lBGLL4ZWGW8/OlJ4Acqxdfzjlz3EncaS0rG04s9mbZ+4YzwFMossT1y37fFRelJEl0t0Q4Fs/ZrNi522JK4HQPaPHsdDSHCbm0SRXnLqkag+k8M9ubbD1fMudu1wlBa1ShP2m/YjeQ0l3cbllkwdRBxuaQCq8QuGJ9iGiM7tYOVyAWIdGo3knMVku3EJXyU/mSbWUD4oYlx71FIBZxqdVU+SXcGXMvmQAqFp1+G2Ow3O4dKnA6xs7t+DoAWZaMZ9nOORYkc/p93eq2Yle+15I2d58YNCx27s2xiLETSmajEyh2PsQLSg1UGrMnXFDshIXDTeW2vSmMMDJYbbUDPZtMKIxuzrVYgHJFlaKDraaGMvo1dbu3o4jBsjM+J+4ZV6yzip3b7cQETrYVS5Utdq4rdg71iz3pBcWu/AxnC6pRU6+RCRQ7H+JGn9jRaG9ytt+gGUO5ddHCIcuSMQd2NIk3X1c3F4ERGXQOvhRF/JXbIQeVrEn7Fn3PuGKNxd6ZeRbPjZsWO3BWsUt6IHkCHFTsysp7t4tz3BIJGcW3T06BOLtAsfMhXlHshHXBaVdssaQaLyO3r4FYkOwIyo1nKi4bt+KPQK9xJV6KTpbBENfUdYtd2RVrZ9akUOzcLIEBlab0jrtiXbTmAExrLc+xjcq7IOmRuTYUO5s35l6w2EmSRFc5eWNwCmTGBoqdD/GKYtfe7I7Fznw+t93RnWUXkh2uWCGnm1ZJQczhBR8qFju33XQVV6x98TkinMGp/qxjIZInUnlnkyfcXPShkjXpiCu2fG1FBrJbCMUy4VS5E5fnuNuBDZpXCBQ7HxL3iGJnWOwyzlrshGIbi4QIu9hXE8wWO+uvgVfirsC84DvpivXGgjBtSrpinbLYVRJk3MRwtzsQXG9Y7KJux1Pq558KFjv9/IHFLsDDeMVi1+ZSjF3cI9YNqLgJ7XDFemWxB+eD6qGiLLt9n1cWffsWBKO2mUfcc07Ns1CkppetKW7hhPIuqHQZcdli55AVXlzT6a3uznHXFOo+ESh2PmRI1LFzOfaokhVbRNM0x87rFcUWKm7CITssdhn3S50IxCLkZMmTIY8E1hvxVw64YttctuJUYuycscyKRV+4u91CzLETi75X3O5OJE8US6qRrOD2HDuZIOM2gWLnQ4aMoHJvWOzyJZWcTXXcRiOeKceeNbuv8FQKX9qQPJH1jgLrRg/RIY+UwjDir6aAK9aw2DkUYyf6s05z2Zrj1KJfKKlkC/q70vW5FhtzG5/pwXQBTdM7i7iZFQumOQ6yYgO8iFEGwuUFryWiGHXcnMyM9ZLFzkiesCHO0EtyGjF2UzArVtTASuVLtvWLjRuKndsWO+fmWdM0+suK1DSPxFHaXaA46ZESRubzJ218d4vr2R2LoLgcD91t4ybcawSKnc/QNK3iim1292Uoy5LxchBWNCfwUoydcBPakRXrKcXO4ebwYGqd57ZlOqoY5V7sirNLeKDDCFTmuVDSyBXtnetkrmgU4HY7/kos+vFskYKNRbiFZTYWCbmu6Ih7zU63u1dc7RDE2AV4mGSuSEnV49ncXvCgYmFwsvuEVzpvQKV4ri1ZsYbL2X05nW4Or2maZ2LsRL9YqLgOrSRfrIQyuK7YRSoB/XbH2fWXF/2WSIjmiLuJBJ2xCKJrnZ0WHbEpddtaB85kQAuLnduKOzhb0sZtAsXOZ4jFLqrINIXdfRlCRelwMjM27iXFzgGLnRfkFIuAU/OcyBUpemgDIywOdljszJsitxd8JSTTFHamGLVX4usAQrJkxID1T4FYSqjca3Zuyvs9NMdGPHQQYxfgNbzinhKIF9RUjbET1cyH0gXLM4O9JKfTCvxQub5ZczjkiQ2MnW3FhMXEC+45qNQ3s3uu+z3kpoOKVcmR7GcPhJGId3cyZ19Vg36j1In7c2zE2KULqKpzVRzcwP23SEBNeMU9JTCXPHGKuIc6Moh5KKqa5dllXilEDZV5dkqBH8p4I/NbMN0oh2H9ou8lKw5Uniu751ooUNNcrmEnmN6mP8snEnYqdt6Za2GxUzWMTF2r8ZIrVryrS6rmSn9zJwkUO58hFjwvLPZgWgQc7D7hJUtWUzhkuK6ElckqvFTupFKM2pl5NtoQeWQDY2eRYi91GAHnCo8L62dPmzfmuKesfNiZGeuVGnagW4hFXGEiZ89zPWAodu7PcUSRaSsrs050GHGTQLHzGYMeKXUicKP7RMJDsWdgbitm3aKvaZqnYuzEGJzKfvZSNh3Y64r1khUHzG53my12SY9Z7MqKnZ0WO690GAE9Kag1Ikqe2PNc93uk64RgqsTZBYqdzxgWtb1cLnUicGoRMOMlix3Y01YsUyhRKOlxIF6Q0yn3nOCkR+qbCYTFwY6MuoRHatgJ2hyywnstxq6nzX7FzmtKfGuTvZmxXkqQgcoGzc4EGS8QKHY+wyvFiQWV5AnnymB4TbGzo62YsIyFZGlECQq3EEqHUy73/pTXFoRyYL0Nbjqv1LATtDmWPOGtOZ5uuGLtLHeiX9NWl1vHCSpFiq2fa03TPJU8AZVxONET2E0Cxc5niOLEHR5R7NodrmOXNJXB8Er8lR2uWMMN26QgiUAYFxHt25K5oiMZZaJ9V7dHLHb2ljspW3E8UNsMKnNtZ6spqFzL6R6ZY2csdt5S4o0yRjbMdTxbJF/yRgFqwXQH4ii9QKDY+QzDYucRV2zFkuNQGQxTHT+3i5oKhPXUyiLFXrNKCgVe1ZzpI2os+h7Z6U9zoNyJVxZ7p6yzRmB9mzcWfaHY2Zs84bW5ts9iJ+a3Nap4omQRBIpdgEcZ9lgZCKfr2A2mvZUtCfa0FfOaYtcUDhFR9NeFE253odh1eySwXrgLM4USaYsVWy/VNoNKPKWdrthiSTU2Qt6JoyyXtEnnKdrUVsxzcy2Somx4f3vNDQuVsQSKXYCn8FqMXUezs7FXXssKhspYrAys91J3DYGTpW0qQdfeWBRaIhXF1mqrXdxzVhz7axaKZ0WWKslHbtPdEkGWQNPsazuV8FANTrBXifda4gRUrMN2utu9gDfuroCqGfSAK1bN50k+9RRaPk8oCxBiKJFh+Kc/NY6RIhFar7oKOWLtOIdS3rBYmq9B03EJkDmx/wjDPz1kHFPPNRCWWTfrXZllBGgpyvQjcfTJp5nTrh9j1zyLhbXbIwq8JElMb4lwZDjLyVSe+d0xy37bs1mxNlrs+k0xlCHZ/RhSKLcVa4nSn8xxPJFjRnuT5eeouN29MdftNrrd+z1Uw07gRIKMFwgUOx+hZ4S6r9hktvdy+LaPA5AON8PavyOtSuz/1GcIa5XG4QseeoiWi1daeu7/ObgNkMlqA5b+bq2Yr4E2403wto9w/EAfRx762ojjJnsNXjiyA5AYKhwBLrRgxLVjlhGg6R1/Cd0L2PfAQ8w6usP43Op5zuRLpPP6ffTCiV+yaPo6y367HrpbK4qdlXgtoN6JEkZe6zoh6GnTFTu7XHVejbGz0xXrKYudUOwa3GLnSVfsfffdx6JFi2hqauLiiy/m+eefH/PYQqHAF77wBZYsWUJTUxPLly/nF7/4xYhj7rrrLiRJGvHfsmXL7BbDctL5Sm0zNxW72IoLCc+bB5JESyGLpOnxKMlIs36AJBGeP5/YCmsVkqJa5Ol9LwCwL/k7iqp7bWHM16AjlwQgHmmpHFDHNSiqRbYcfgmAnUPbXJPTLCNASyEDQCpctmTYNM/HE+ny7xf49u/ud3WezYh4P6sXfa8u9nbG2Al39nSPdJ0QCOuSHa66kqp5LlHGzh7QXmonJhDdRRK5ItlCaYKj/Ys37i4T//mf/8ntt9/ON7/5TS6++GK+/vWvs3r1al577TVmzJhx2vGf+9zn+MEPfsC//uu/smzZMh577DHe85738Oyzz3LBBRcYx5177rk88cQTxr8VpXbRS0WVUtGeoNpqOJnIIWsQCclEJMnFsch037Kevs98FiRoy2dJRmLEI6105PXFv/uW9ajIYOEYN+zZSCJdQtYgW+pnw+6NrF281rLfr43KNWgrZJE1SERaKEkhhGNpstdgw56NpDIqsgap0nEX5Rw5z61F/f5LhltQJT3LzY55/tnOp5E1GSmUoi/R5/I8V5jeHEbWYCCes/TZS2eKyBq0hkOuvl8ErUpIn+d0wbbxnBjWn5lpzRFPyCzoaYkga3Bi2No5Bj0hSi5XCmpWZE/I3RZW9HdXOm/5eAbi+hxPbw6P+tulUolCsQD2V08yCGkaZ3SEKZRUjpwYYmZ7s3MnHw8JwkqYUGjs7OFa5sdzit3XvvY1PvKRj/CBD3wAgG9+85s8+uijfOc73+HTn/70acd///vf57Of/SzXXXcdAH/xF3/BE088wVe/+lV+8IMfGMcpisKsWbPqGtv2TftpjbXV9Rv1cDyRY1VWoSWqsO0X+10bB4Amn8vgeddTiie4JKuQUBWOzruKUmaYUHs7SekcpI37LDufqqk8sbOXlSfPopRTUIYW8uQjvcxYdjay5I7hWVyDfCLFqqwCKOw+Yy1htTTpa2DIOXgGal5BOXmmq3Ka53lRaAbFrILUtZx9artt8/xK715WZd+EpESIHH6n6/MsmHMkz6qsQqr3JFtT1o3lrAGVRSWFo5uPk40NWva7kyVbUMv3Mzz/6F5bYuDiu/pZlVVYcLTAVgvvn3qZd6RQnuMBtqatvd/iWf23Q7LEK5sOWvrbkyXXr7+7eg7mLJ+H1j1pXd7XEmwdNP+2htSaRWktIbkQX/l3l/egaRqDRw4T7/NGfCeApmoUkyG0ZBNw+riS6UTVv+UpxS6fz7N161buuOMO4zNZlrn66qvZvHnzqN/J5XI0NY0Mcm1ubuaZZ54Z8dmuXbuYM2cOTU1NXHLJJdx9990sWLBgzN/M5Sqm+Hg8PlmRLCVXNh03Ke570CVZJrZyJYknniCi6vEZuVAY0IitXIkkWzvGXUO7SeTjaFrZBS0XiOfj7BrazZu6zrL0XNUirkHpiSdQ1BJFOUQ2FCGspid9DYScGHIWXZVzxDyXdHdNXlawc55FfJ0kFwDN9XkWxMrFXK0sd6JqGEVcIx54rmHkOHJFlZgN9SJTOX2OWzxSlFkQi+qyinvQSnJli0vUI/MMlbHkbLAeimt46v0jtWaJdKr0TJ9BNNLseAH24UyBYkmlrVkhMo6FzEk0TSOXz3Ci/wR5smjJ+iyJnnqq+vv7KZVKzJw5c8TnM2fOZOfOnaN+Z/Xq1Xzta1/jHe94B0uWLOHJJ5/kxz/+MaVS5cG8+OKLefDBB3nTm95EX18fn//857nssst45ZVXaGs73QJ399138/nPf/60zy+4ZiHt7e11Sjl5TrxylC079nPRvFZWrFnk2jgE2jXz2POLr/Pd/Dy2dbawKv4qS7VjLF5/N9IkXN1jUVSL3PmT9fTN7SNZWIIqd9A84znCba9xrHkHD69+GEV251YW12CX9haONXXzRye3sTRWmtQ1GCFnfhlqrpXmmZsJt+xxVU4h4/PDebbMmUd78Qh/UvqdbfO8r2sxucJZKB17aJ69CQnJ9XkG2L8tzJaDR1GmyXzGoudvOF1gy29eBeDba8/wjHL32xdeJ5Uv8Xdvn8Wi6S0Tf6FGvn74GFuGily/aiYr3jLH8t+fLId7I2w5cBS6JD5n8Tv2hX0n2dK7h0XTI554fwO0HU2w5ZV9TGuW+SeLx/SRF3aRaCry+avns7inFdDdr7vf2MWMGbOZNm2apeerlnh/imyuSHdbM10eqaGo006kWeF49Dhnvm3+aW7ZWgxMnlLsJsM3vvENPvKRj7Bs2TIkSWLJkiV84AMf4Dvf+Y5xzJo1a4z/f/7553PxxRezcOFCfvjDH/KhD33otN+84447uP32241/x+Nx5s+fT0iRCbn44h3OFVEl6GiNujoOAyXCzFtvpvWHL6NKkAxHmfm/b0ZpsvZh2fDGYxxKHwQZSmozmgRqOElJLnIwfYDHDz7GuiUuZU6Wr0HbhiP0Sd3Ew03MvPWmSV2D0eTUlJT7cpZlbPnmT1ElSChNzLzVvnkult6MKoGmJFFlfYPm+jwDMzqbUCU4kS5Y9vyliiVUqdxJxSMB9QCtsTCJQolUsWTLu+ZYKocqwczOJm+8y8pU5jhv+bhSBX2uW5vDnpG5ozWCKsFQroAckiyznmULJYbzRZBgRmezIW+hmEeSJFpaWlxrlRgKyWjoySxeaNdoRlwXVSsRUUYmSNZyz3jj7iozffp0QqEQx44dG/H5sWPHxoyP6+np4ZFHHiGVSrF//3527txJa2srixcvHvM8nZ2dnHXWWezevXvUv0ejUdrb20f85wVE14VOLxWtXbuWjqh+G6WnzaK9HOtoFUW1yH299yGVYw60km49kEJ65qSExP297mZOtq9dS6ekKyDJWQsmdQ1Ol1M3xUshPRnFbTnb166lo00fU6at09Z51kr67l4KJY2/uy0/2JMx6bUadgKjDIZNrQKPl6/hjHbvZEyCqV+sDeVOvJYRC5Ws2EJJI1uwzh0rMmIjIXnUYsxuKlRKSD930YGe17Vi1XXxlGIXiURYsWIFTz75pPGZqqo8+eSTXHLJJeN+t6mpiblz51IsFvnRj37EH/zBH4x5bDKZ5I033mD27NmWjd0JRJspt4vzmpEUhZkXnA9A4cK3WuqaA9h+fDuHk4fR0NA0GVSh8OiKnYbGoeQhth/fbul5a0FSFGYtXQhA4R1XTeoajJQzBJquRAjFzm05JUVhznXvBCA3e76981zUlXdZSRl/d1t+qCz6J1M5ShYtCpXWcd5Z7KGiaNpRyy5bKBkKbU+b9UWA60GU5hhKF8hbHHdmdBiJeuf93RIJIfIXrJxrobj3tEU9ZxVTynHBBZvaxnkBb71NgNtvv52bbrqJiy66iJUrV/L1r3+dVCplZMneeOONzJ07l7vvvhuA5557jsOHD/OWt7yFw4cPc9ddd6GqKp/85CeN3/zEJz7BunXrWLhwIUeOHOHOO+8kFArxvve9zxUZJ4voReqVFjyCmW85Fw6/SmbmXMt/e3nPcu65/B7ypTzJLNxRDrX8+3d8llB5WxIJRVjes9zyc9fCjGVL4MRe0guXTOr7ZjkTGfiMkPOy/4PsETlnXv522LmFVJP1MVdm+b/0Y4lDKfjz8/+Qcxf8oXGM2/J3xyJIkp7wcDKVNxS9ehCFYb3SE1hgZ6up43F90Y8qo1tz3KSzOYwiSxRVjYFUjtkd1pXDEIpTq4dkliTp/2/vzcOkqO79/3dVVy/TszL7CsMmuMCACAMuARVFJSzGqCGLW64xRIxekii5KiTeG72JXIPXEJf8YgRN3L7XBRcQRFFUFtlUVgdmGJh9n+7pvbvO74/qU93DdM/0Ut1T1ZzX88zzQPep6rNU1fnUZ0WmSY9ehwcWp0exahvtQYKd2tCrWGOnFOq5wvzcfPPNaG9vx8qVK9HS0oIpU6Zg06ZNckDFqVOnwAdF4jmdTjz00EOora1FRkYGrrvuOrz44ovIycmR2zQ0NGDJkiXo7OxEQUEBLr30UuzcuRMFBQXJHl5c0DqxatsEqKDZkwCzjUFnwLzKeQCAE+19AD5BplHA4vHzFP+teKAZ9GOtShBunItUNM5sfxm7RJSaCh7/I+4PAbjw3XO+gwvKshX/rVgRdDzy0g3o6HOjo8+lyKbVq8KawEBi68W2WZ0AJDOs2rQ5PM8hL8OAVosL7ValBTv1mWIBICtN8At2yt3XsqldhYKd4FdRen1MsEsqy5Ytw7Jly0J+t23btn7/nz17Ng4fPhyyLeWVV15RqmvDSo8KTbFAQNDstSe2/p6ssUxX1/gBIM8fXaVEuSmLSjf7rDSqxfGAkMQ4HvtEIhcPV+OmkJ9hREefG+1WF85VwJPD4lDny1oi68UGNn11mWEpBZlGtFqULysWKB2nsrU26gE4FK0X224JCO9qQ/CberxidKbYbdu24bbbbsPJkyeTclw8qMrHjjE4vX6NXU6aukyxVNDsSUAh6WC6bdL5R6jMFA1IxcwBZQS7XpVu9rRguNKO1sF02lwQCcBz6qoxSQkUEVdm05eFeJVt9omsF9vq3/SLVLjpA4E1VrqsWK/foqG6+zpNeSFezcI71dj5RAKRxKe1mz17dr9Spbm5uVi8eDHa29uV6GrMMMFOQ/Q4qI+duh4MsmBnT6xgF9BYqlCw80dM0hqY8aBWwc5s0MlVCBJhogMC/ld5GcaEVDyIFzlqUqFNX61rncioWDVv+kCgnqjygp1a11p5Ib5NxT52Oj6Q1iUecywhBPv378fq1avR3NyMxsZGvPzyy9i6dascAzBcqNIUyxgIIQTddrWaYqnvlQc+kSRsQ+62qS/dCyUxplh13Z6So7WAHrsHFocHRQo5WgcjO12rUFsHBFKeKKWxO5s2ewoV3tW46QOQr+u2s0Swo9piJYV42Y9yiDUmhMDhUb7Kx1D4fCI4DvD6xJiTgtfU1MBqtWLOnDlyOrbS0lKMGzcOdrtdye5Gjbp2DkZYnB5RDr9Xm8aKPqgIkTaCRPWv0y805atw06emWIfHB4fbh7Q4yjCpdQMApE2gx+5JmMauXaX5zShUGOlQQDMLBMxfahPiExoVG+GmP1xQEzE1GSuFWv0pg31nlYIK70NpZR0eH85b+YFivxsNr901E544ImP37t0Lg8GASZMmAZBKka5fvx7Hjx/vVyBhOFDX04QRFmqGFXgO6Qmo3RgPBoFHukEHm9uHHnsCBbs+aqZTl2ALABlGAQYdD7dPRKfNhXKDOeZzUc2sGn0J5UCZBPlTqn3TV9r/Sq1CfFYCo2IDwrs6TbG0X62Ws0Njp3QEtE8kskZbrS9olHhy2e3btw8ejwe5ubkAALvdjsLCQmzevBlTp05VqosxwQQ7jUADB3LMetWlCAAkLaLN7UhoAAXV2OWpqr6fBMdxyE03oMXiRLfNg/IRsZ+rx65eX0LqBkCvR6VRs28OEKyxU1awU18EdOIEeDWnwgCCTLEKauwIIaoV7LIU9qekAVAcN/SzOk2vw+FHkp/SqanHCZvLA2+cgt2SJUvkuvLt7e1YsWIFfv7zn2P//v390rIlGybYaQRaTixXhUINID2sGnscckqSRCALdio0xQLACL9g12mLb9OnczhCZb6UQHDOwsQGT6jVsV5pjZ1ao2KpAK+0YOf2irIfqnoFO6lfbVYXRJGAV8Bn2Ob2ydVKVCfYKRwBTe+NvHSjnFokHBzHwWxIvhiSlSbA7vbCE0fwxL59+/Doo49i3LhxAIBx48Zh+fLlWLx4MRoaGjBy5Eiluhs1LCpWI9CHoRrNc0ByImOpKVatwq1SARRyTWA1CnZpdJ0TI8C3qziHHRBUVszujuttn6JWLU6OvNl7FRknhWo6BZ5T7bMsP8MoOdaLBF0KXed0nQ06Hia9urbdLIVzFqpdIwsA+jjLitXW1qKnp2eAyfXEiRMQBKFfgYThgGnsNILaNXYjFIwKDQdNJZKvQh87QLlcdmo2xY5IsABPfezUaoodYTaADyorFo+fmNPjg8sfEJWtMiE+WNC0OL2KPXdoQEJBplERTVgi0AdVGGm1OBUJ1qI5SLPS1OdKk6VwBHS7Rf3+dUKcZcX27t0LjuNQWFiIlpYW2Gw2fPrpp3jkkUewdOlSZGVlKdndqGGCnUaQNXYqFeyUTPcRCrvbK4fFq9UUSze/zngFO4eKgycSaIolhKjeFKvjOeRlGNFudaG9zxWXYEed1TkOyBgGc9RgCDoemUYBVpcXPXa3YoKdFrQ5gHT9dfS50WZx4fzS+M8X0Myqa52BoOAJhXzs1B4ABUjCOxC7xm7fvn0ghGDsWKk2+IgRIzB+/HisWbMGt9xyi2L9jBX1XWWMkNAcbrkq3OyBYKFG2UgyCtXW0QhcNSILt3GkwhBFEiidpjItDhCssVNegLe6vLIGS60aO0Ay1bVbXXH72QX716lRe5Vt1kuCnYJCfEuvtOkXZ6tTcKcUZRlxuFm5lCdqNbkDwZUnlFlntSegBgIaO59IYvKjfOyxx4Y9CfFgqMvYzwhLF02BoXKNnRKVF0Ih57BLN6jOlEGRq0/EobGzOr2g1gE1CnaJ9KWk2rpMoxBXHsBEo1QuOzVv9kBQAIWCa93sF+xKstMUO2ciKFI45Ylac9gBAVOs3e1TxJ9S7QmoAUDHceD9+4gnypqxWoAJdhpB1tilq+/BAAC56X6n8gSZYrtsgVJTaiVgjo59M6D5Cs0GHYyC+oQb6vfXnQCNnexfp2LfHCDg4xm/xk6dyYkptCY1vSaVoKXXAQAoUbnGTs5lZ019jV2GKXD9KZGQWgumWI7joNfFX1ZMrTDBTiOoPSpWqcCBcFDtiFqDR4CAcNsdh4ZDLhunwg0ACPRLSS0OpV0j/ldK5bJT82YPBAI6lNTONmvIFAsol8tOzWut1/Ew+zXkSqS3aVN59RiKEKWfXWVlJe67776ofyfW4+KBCXYaQe1RsXkKmCEHg5p41Vh1gkLXJp4NP5DqRJ3jpC8WVpc3rqztodCKmY7WsU11wS6Q2kZBHzuLNta4KFNZU6za15re1/EKdoSQoBc0dQvvgZQnkWnsmGDHUBRCiGY0dr0Oj+IbPhAwb6qxTiyFmuisTi9c3tgKW/fKvpTq3ACCKyQonby2RRbs1L0hUI2dksETakTpJMWEkCDhXd1rHPCxU1Zjp7YKIxQqcMbrYmFxaiMACkCQKZb52DGGAUdQviu1auxGmA2gMQ2J8L+SNXYqHT8gPRzpwyLWIBK1a+x0PCcnNFU6MrapRxv+V/lnjcbO72On0Dp32dxw+59jRSqtE0uhptiOPldKJ6KmKCXEt/v967JMAkx69fkIBxMwxTIfO8YwQLV1BiHgC6E2dDwnm24S4WfXYVO3KRqQHHLjLTmldh87IBCZrXRkLDXTFavcTKdUWTHVa3Goj51CGjuqrcvPMMIgqHvrycswyomolXAv0YpgF+893dIr3RNqF9yBgMaORcUyhgVacD3XrN5UH0BQAEUCUp7QcmJq9rED4jfTBerEqnecObLZRlnBTitmOrrG3fb43A5o3jC1CnZK+9hpxdQOSC+qdJ2VMMeqOd0JoFy0e+DlTP1rTDV2zBTLGBZovUK15rCj5PmjQhMRQKGFpJdA/Ga6QDkxdW4AQGATUNIU6/aK8pypfVPICTK5x2OOVb8WRxmHekqzhjZ9QNlcdvJaq/S+VkqIp+lsijWgsTP472G3j4CQ1DLHMsFOA6g9hx0lUSlPvD5R1tipPYS+IG5TrLp97IDEJCluszpBiFQkXa3VVSg8z8kvGPFs+j0qN7vnKFxlpFkjPpSUwBrHp7EjhGhAiFfGxy4Q9az+NaYaO0JIzDVj1Yo6M2My+tGtYvOc6Haj76OPQNxuZHRwAHg07fsGvR1fy204gwEZV1wB3hBb/zttbogE4Dl1llQLnoPMZmkOGr85il7bEblNpHMglxNTWdLa4DGaW6Qxtn51CL09B+U28awz3fSLstRbHD6YwiwjGnscknmxIrZzqD2FkZyz0OGJqezSmbRoJJ0NRc5lF6cvpdXllQUHNT7DAQVNsf41LtKAYMdzHPQ6Hh6fCI9PlOvHpgLq2j0YIelWceCAY/8BNN737wAA/bnzgAlXoeHTnWj6+o1+7UauW4f06hkx/QYtUUN0vdh48j0sGLsgvk4rTPAcCGMuASZfj4a936DpmRf7tYtkDposvQA4HO75EnOhnnEGj5GfeDUw8Wo0fbYTTWuVWef3ar4AwMNgtCvR3YRD85y1xViZgBASCJRRqXmO+v6JRBJO4tU2acWHkiKbYnvj09jR57fZoFNtpKhiplgNaewA9BPsUonUEVFTmC4Va+zM0y6Evrwc4Dhku2wAgF5jeqABx0FfUQHztAtj/o2mXum8nGDFXw/8FV4x/rI3ShI8ByOcfQCAHmNmoEGEc+AVvfIb81u1/1LVOIPHmOmWhC+rQZl19opev2AHtLtrVDXucFA/sVjNdHa3T079ocb7GgBMeh3S/IKIEpVGtORYDwQ0ds1xmmLVnoMUUM6fUtbYacDHDghExrq9zBR71uLzivB5ky/Zd1vd4AkwwqQflt8fHB65dy9D8388iCyXHTwBeo2ZELnAm2nu3csgggdi7PvHJ/aCJzx0OiuaLM14//hGzB8zX6kBKEBgDnLctpjn4J3jGwGvETyAdke9ysYZGGOm2wGeAFZDhiLr/H7tRlj6OPAEcJEWlY07NAXpBvAEaOl2xnRPdlqc4P0+hUaeU+F9LZGbpkez24dOqxNlcQhkhBC09kjXTVG6QbXjDaY40+hfY3tc/e2ySmudmyaodtxZBp303LK5Y+6jy+tDl9UNHkBhujHkeXxeEYQQ+W+4Meh4cJDKiiWqPytWrMCaNWtwww034J///Oegbem8hJI1olkXJthFwf4t9cgwZw7dUGEyTtgw0ylAd8yCvT0nk/77Q0H489E96UaYvAJmOgVk6ctxctQ8ABx0WVno484Dt/FkTOcWiYiO3e2Y6SyDDrkQGq/G1rcOoHDiueA59Sic6RyITh9mOgXo+YKo5kAkIrYeOoiZTknjZWy5VHXjpGM0+vSY6RSQoy+Le51FIuLDowcwvfNciC4BgqVcdeMORXqzdE8avrVibwzXdpvVhZlOARlGAfs21SvfQYW4yK5Du1PAt9sa4cnrifk8Do8PU6w8AB7NO9vQrgE/SofNLa1xkyemNaacbrZgplPAqF4urvMkEpvbi5lOAZyLYM/7JxFLVq1eh0fap3gOtZ82oS5UI8EHQ6EPDqsHomv472/BLSJd5EAcPtgxuH/hZ59vx5NP/Rn7v9qPlpZmvPzSa1gwf+GAdj+/+06UlJRi1UO/BwDc+4tfoTCvBL9+4N+x4tcPYeyYsWF/w+X2wO3w4dD2RsDb32zfZ7dGPK7hn1nGkDg8UnmqNJX6Z3A8D/OMGUjzSGp4h0BNDgTmGTPA8bFfZjU9x+Gi1gHeBYDA4ragpud4XH1WGnkOvJI/oIcX4ON4RDoHNT3HYXX5nbQ5L8Cpb5x0jCav9AB06uJf55qe47C6LSCiP9qZd6pu3KHIMErvxH2u2MzG9J426dX9CKYJ0R3u2ErkUfqcXvl8ggaEOgDI9FdYcXtFufJPLDhV/vwGAKMg9Y0QxDxWei9kGAVoY4UhBwSJEUTF2u12XHDBJDzx+JqwbXw+HzZ+sBHzr/2u/Fl2djZu/clt4Hkehw4fDHuskjCNXRRMvWoUsrKykv67v/yqFm1eL357RRnOK8lO+u9HArmqHAc3r8WDppkAgHsatyGruABjlj0GTojtMvOKXqx6exlOZFwJL4pgLNwHQ86X4MChNe0w3pz3JgRePZcwuaocJzatwV79LHh0evxb2y6U55qHnAM6ztP5Rtgd08EZ2pFRtkWV4yRXlUO/9TnsNE0HT4D7Tm2Bqaw0pnWm424ua4bVMRVE54W55BMIaY2qG/eZZLdacf/hemTrOay5tjLq45u+asLOw/WorsjEtBiOTxb/svZgp82C2eMzMO2yypjP8/HRVuz8qhbnlqSperxnsuxALXodHjw0PR8TimN79m/b7MLOU16cc26Wqsf+sz01sLt9+MMlRRiZlz70AWfQ8nUzdh48iemjwl/TTqcT9adOIi1TD5PJAEIIxGEq6cXrOHAeHZqcbggcQXn24D6Qi7+/AIu/LwW0/fAnN8NoFmA+45jt27fDYNDjsssv7ldMwMe7YDabUVN7FObsG8P3ySnCkKbD+MvKYDL1d32wWCwRj02dT02VohN46JJcCkcUCdrtbogcUJCVlvTfjxjBgNF33wnDdhecghE9BjPG3/MLCKbYHYbfP/EBGuyn4fVlQOQA6Hsg8tLb72n7KWw+/YG6ImQFA4rv+QWyt1rQZs5FjyEN0yKYA3mcZBJEDtAJfeodp2DA+J/dBnEXIHI8bIIBo2JcZzpuwung82UCHECMnfDxXvWN+wxK8swQOaDb6YGHkKijHXtdXogcMCLTqN57GkBupgkiB3Q5PXH1s8nqgsgBZblmVY/3TIpHpKHb6UFrnxvnxdjvbqcHIgfkqnyts9MN6PM40Ov2xdTP1j5pjYtywu9TOoEHx3Hyn+gjw+aKMO3aShgEHgRSWTFCEFVKHzqGYN555x0sWLAA/BnWi4cffhh9fX04dOjQoNWj6DlDyRrRrIl6rzIGAMlvwedXE6sx3UkwWfPnI88rRUxaRo5F1nXXxXwur+jF2gNrwYED8UpvypwQ8DHgwKkyQjZr/nzkipKp0lo2esg56D9O6S2ZE2zy92ocZ96C+cjySHnnbKPGxbTO/cbtyQbAA5wHnE6KKlbjuIPJNAqyaS2WyFgtJKIGAiX8OuMsE9jYLV0vZSO0kcOOUuoPGGnyV1SIhUBUrDrT2lCy0+JLSK21dDaAVDqO9wtaSqQ8efvtt7FwYX+/u7179+KZZ57B/PnzcfAgM8UyEChZlJ2mV33hbE4QUFSQg0Yr4FlwQ8wmWADY37YfjX2NIIQD8Wb4zx9QRRMQNPQ1YH/bfkwvnh5335WCEwQUVxTiaDfguXr+kHNAxwkAxOcfpy4g2KlxnJwgID/LBIsDEG/6YUzrHDxu0TMCAMDru2WnbTWOOxiO41CUZcTJTjtaLS6MitJ0RfOFqX2zz1OomkyDX7ArH2GOu0/JpCTHL9j1xC7Y0Vrfai8JGW/1CfqCE02qE17HDZt5mtdJ2jG9jofL64PHJ8IYhx/kkSNH0NTUhCuvvFL+TBRF3HXXXVi2bBmqq6vx4x//GB6PB3p9Yu97JtipnHa/YJefoe6HAqWkshT4phl948+P6zxVBVVYPXs12q1uPHSUB8cRPDr7twjWcBt0BlQVVMXZY+UpHjcK+PI0bGMmDNmWjtPtc+O1zzls7wCuGD0D370oIMyocZwFxXmoreuCc9K0mI4PHveOY8C/TgETCgvwi0sflduocdzBFGaZ/IJd9Bo7LeQ2AwJWgnjrPzf4BaOyHI1p7Pz9be6JPZedXGFE5WtNBbvuGNe6uTf6knGS2XF4Qy30Og4ur1QzNh42bNiAq666qp9v3FNPPYWOjg488sgjOHXqFDweD44ePYpJkybF2+1BYYKdyunwm0BocXm1Q2u5tsVRHB2QNvV5lfNw4HQPgM9RnJWGReOvHOowVVCY6a8XG8Ec0HECwMadewG0YGb5+VgwdnQiuxg39HqMdcMPHnfNiWMAjuPCslFYMDaxDzwlKc6KPUmxmssEBpNH1znO+7mxW3LRKNecKVbqbzymWHmtVa+xo2XFYtXYSdeIFsqJBWMQeMAVvyn27bffxs9+9jP5/42NjXj44Yfx8ssvIz09HePHj4fRaMTBgweZYHe20+GvU5ifqRHBzl9qqT2O4ujBUBNIqYbe9OlatUdZY5L6MeVpQIhXyvcK0K6ZjlYmiEWwk02x6alvinV6fPILqtYEO6p9ao6xrJgoBkrHqd1Hmq51LPViRZHI94GWfOwAyDVi3UOkeenr68Px44E0THV1dThw4AByc3NhMpmwZ88ebNiwQf7+l7/8Ja699lrMny8lWxcEAeeee25S/OyYYKdyOm1+wU7lDwVKNNqqSGjSoAmnwC+YdUQp9FDtV54G1jqgsYt/nQOCnXbWGAiqJRrDS4zWgifsbh8cbh/SDNH7INH1zTAKcdebTTbBplhRJFFFTQKA1emVg9/UWhOYQp87sbysddhc8IoEPBd4/mkFo9933T2Exm7Pnj24/PLL5f8vX74cAHDrrbfisssuw4wZM5Cfnw8AePfdd/HRRx/hyJEj/c4xadIkJtgxgA6rRk2xCmnsGjWosSvwC7fRFoinWpE8DfhT0j5GK7yGokGjZrpCv2DXEosp1qYNv6sMowCDjofbJ6LT5kK5IXqtamPQy9lgqR7USFGWCRwH//jd8r0dKbTOt9mgk5MAq5U8+YU0+mc39UEsyDRC0Kk7yO9MItXYzZkzJ2zZsYULF/aLhv3ud7+L7u7uAe3Wr18fR08jR1srcBZCbzKtmWKjFWrCIadJyNGOej9YkxNp/UGfSAJO1hrQ2OWlx74JBOP2irJgpDVTLPWxa4tSsHN7Rdj8lRzU7mPHcZwsxMdqjtWq4A5I/ldUA9Ucg5+d/PzWwIt54GUt+nu6UYOWFQrV2Hl8YkQVKEJx6aWXYsmSJUp2Ky6YYKdytPRgAAKm2G67Z8g3oEigTsta0thRraXbK0bsiNxtd4PKgGrf7IFAlHa8PnYtvU6IRHq4aiXymxLwsYtcgAcC5muB5+SyVWomNw4THaDdHHaUEv+zpymGyFjqIx2tpm84iCcgKrDG2no5A/rnshvKHBuO+++/HxUVFUp2Ky6YYKdyAlGx2tj0csx6GPyqbSW0dvRhqiXBzijoZH+Vlgidrqk2JMesl00DakapaMlgbY4WzXSAVPfV4og8kTJ1r8jLMETtszUcxJvyRKs+lBRqLWiMIZedltJV0WdWj90TdYSoljV2HMfJOWJjFezUhvp3kLMYQkjQg0H9b3yAdJMUxxlJRnG4fbLAoyXBDgg2x0Y2B1QzqwUzLBDYqGxuH+zu2KtDNGj4Td+k18nrFc2m32HT1j2dH6cQH9j0tbfGQMBFgL6ERIOc1UADa51jNoC+Z0Sby65B41pZQ4R+dlqBCXYqps/llS80LTwYKKUKZGsHAmbYDKOALA2YrIKhwm2kjvVUgM1P18Y6ZxgFmA20pFbsWruTnVKVjVG52tz0y2QzXRSCnX+z10JaGyCgyYnVn1LLPnYAUOG/Nk93RS/Y0RdzLZhidTwnv6hEGxRFhfdyjb2AU+TIWCbYMRINvbnSDbqY0gwMF1S7FovpIphADjuT5sx0smAXodaS+i9pRWPHcZwcPBDpGENBBbvK/OhKcqmF0hjMdFpzr6Da57Yo8zICUg47epxWtTkjZcEuBlOsxrIa0KCoaNMY0QTUWl1jAxPsGMlCaxGxlFi0GKGgDrkl2dp7WEQr9FD/pVyNbPZA9ObmUNR1SBvC6HytauykfkelsaNaHI1s9oVxJGJu6LaDEEnDq4X8jKGggt2pLntUQTJA0Fpr5BkeS+Jxq9MDi1Nyx9Cijx0A5mPHSB5a8s8IpjSOKLJg6v2mj1F52tv0i6PMcUarVGhlsweiNzefCSEE9dQUm6dtjV1DDIKdVu5rWWMXg8n9ZEfgHtaa1p0i5d+TgmSiNVG2a+wZnh9DLjuqrc4x65Fu1JbLDCXYxy5a4V2NMMFOxdANk6ZV0AqlCmnsTnVKm8JIDfpf0XqJkWo5aC60Qg2tdbTm5jNpt7pgd/vAc0CFBoMngIDfWCwaOy0kogbi08zKpnaNCu6ApM2hNWNPReFnRwiR17pQaxq7KIInArlGtamtAwC9X2MnEgJvjLns1AQT7FQMdUqnSX+1QjzpAYLR8qYQrcaO+iFpaa3j9bE72Rnwy6GmEK0h+5N2RxM8oS2/KyqU2Nw+9Lmii4Cu79Su1j0YKsBHExlrdXnh0ljwWywR0FpOdULhOS6lImO1+TQ9S6BvyMUaK6pMfeKsTi8szsgS9J6JZKbT7qZA16zH7oHT4xuyPc35pyXtbFEcJbUA4GSHdgV3Ct3M2qwuuLxDrzMQVP9ZI5t9ulFApt/EFq3WTssvZ8HIfnadkQt21JVGS8Fv1A+yPYpAGa0noKbQl0tXCgh22jSInyVQTQjVjGiFdKOAHLMePXYPmnucyCqOvvh1l82NPpcXHBdIN6AlskwC0vQ6ODw+tFqcg/qQ+UQi++5oSmMXpbn5TOpSYNPPTTfApOfh9Iho6R18nQFpreXUNpnaMMUCkouAtd2LVosTYwsyIj5Oyy9nwQQHUESK7F+nETMs0L8cYqQ0JEljJ7rd6PvoIxB3eDMxZzAg44orwBuiv7eMeh36XN6wL2iPPvooHnzwwQGf//nPf8a9996rKh9SJtipmFbZx047mz2lNDsNPXYPmnocmFCcGfXx1ExXnGWCSa+Nt91gaKLmug4bmofY8DttLvhEAo7TTgoMIKhWqlXqvy7KKgr1Gk91AkjrXJqThtp2Gxp7HEMKdl02N0QCcByQq4HScZSiLBNOtNuiCqBwe0XZdKnV4BjKSL9gejoKUyzVZGvpxTyWgKhkVRZx7D+Axvv+fch2I9etQ3r1jKjPT3PZuTyhNXb33HMP7rjjDvn/K1euxObNm/H9738fx9v74PESjMwzI0MFASTMFKtiWjUaPAEEfI9iydYOAKe6aLSkdt/06QN9qOLhdLPMSzdA0EA5MUp+hpSp3ieSmKoS1LZLa6zVVCeUsij87KjJPdesrbWOJYCisccBkQAmPa+Z4IFwVMSQy45aXEo05EpDn1ldNndELiQAcCpJke3maRdCX14uvRWFguOgr6iAedqFMZ3fNIQpNjMzE8XFxSguLsbatWuxefNmbNu2DeXl5Vh66w8x87yR+MmSm2P6baXRzpPlLMPq9MDmlm4srfnYAQGBrD4Kn5Rg5DQJudp906dvsENt+O0aDJwAAEHHy/m5oi0f5/WJsmA3vjB6ja6aKIsivY+82edoa60DuewiF+DlVDa56ZqoiTsY1BTb1OuI2JeS3hPFGsrDmWPWy5qrSLSzvQ4Puu2SH3WiX8I5QUDBPcuAcOlICEHBPcvACbFpzIyCZBlye0WIg6Q8WblyJV588UVs27YNlZWVEAnBkjvuwn/9+Wmo5TJngp1KoW/GmSYBZsPwq3ajpdJ/k1Pn6Wip69C+mY7WmBzqLZ9qcbSU6oQSqKMZXQR0fZcdbp+INL1O09F0QHTaaXmzz9LWmOlLRzQau1TxrwMkbXqmSQAhkb+salFjF1zrOxJzLA0mKcg0JmWfypo/P7TWzq+ty7ruupjPLeg48BwHAhI2MnbVqlVYv369LNQBgMcnYvqsS5GRkakaPzsm2KmUll7pbUmL/nVAQCA7GaPG7ttWKwBgfGHkjtpqoyJX2ryH8ssJpLXRnmBXMSKyMZ5JTWsfAGBcYYbmtTmydjoCx3oqGGlpsweA0uzI3AqCOdEurfFoDb+cUTiOwxh/0MiJtr6IjmnW6FoXRehCAgRHPSdHeA+rtYtTWwdIa2wcxBy7atUqrFu3rp9QBwAef1s1uVaopyeMfrRq0PE2GBrpeKrTDl+UCR+9PhG1fo3dOUXaNdNRv5yhtFmyxk5jplgg9gLpNSkguFOob1F9BNrpgHlOW2sdi2aWCu/jNXwPBzO2QFpnKrAORUuvNksilkQR7T4clWMGaO0U0NZRjP5AvTPN7f/1X/+Fp59+Gq+88gpMJhNaWlrQ0tICl8sFt0/a3wQVvaAywU6ltGg4IhaQzFMGHQ+3T4y6AsXpbgfcXhEmPa/p3EjBVQkGE25bNLrZAwHBLpo0EABQ05Y6m/5o/6bWanHB7h48ga9WUxjRa7nN6orYqf54e0ArmwrQNC8n2ocW4D0+UU46rrX7OhD0NbRgRy0yydLYASG0dgpo6yihImMJIXj88cfR3t6OWbNmoaSkRP77+uuvZbOtXqcewU57zltnCTSbd6nGnKyDcw2VGXjUOTgcfvdDZOUE2gyVa4iaYccWZESdQkMN0DkwudwQOB5eEfj2/72D0qClDJ6DBrkkjzbWOniNc3sBQIf60+3o3bBBbjPYGhNC8E1TO4DU0Nhlm/Vy3sb6TjvOLckK27ZZ1uJoY60pOWY90g062Nw+NPU4ZLNkOHrtHjkoKPUEu6E1du1WFwiRNnua9FcrRJOfcrhqPWfNn4/2p/4CT0ODYto6IBAZG/zywnEcent7wx5DrRVqMsUywU6l0M1eazU0g3MNFcy8A3XF5+Hrf72FkSd39Gs3WK6hd49+CYCH2Rz+ZlIzwXNQOPcBNGUU4OsnnwU6a/u1o3NQ32UBwKHGuhuXY8Ew9Dg6gscnpI0A5j2IJrsPp+//LXQIaCbDrfGG4++irsMHQK9pU3swlXnpOGDvwckO26CCHfWn1JoWh+M4lI8w41irFQ3dQwt2x9ull7PSbJMq8nopwbhCvym2rQ+EkEEd5akAX5hp0pwPaSwau2QHyFCtXdMDKxTT1gGQc6Y6veKQa0xxe0X8bMliHD96CHabDeXl5Xj99dcxa9YsRfoUC+oRMRn9oBF2iU76qDTBuYbK+iStTFNGfqDBELmGvKIXn5z4FgBw0rETXjG62pRqIHgOiuxdAIDW9NxAg6A56LY74HBLD4//q/ubJsYbPL58Rw90og9eXkBXml+gGWSNvaIXa3b9CyB6cLwbxdnRVyVRI4Eo8PAmaavTI9da1ZpgBwTXSx3atYL6141NEW0dAIzMTYeO52Bz+4ZM+0Ij4WkAlZaINJrf5vLKWtnhSEuVtXAhKl9/DVkLlHsZNgi8FBlLSMSlxdw+Ec+9/BZONTTDbrejoaFhWIU6gGnsosLnFeFLQh05USRo6nKAJ0BZlikpv6kcPHLvXobm/3gQ5X2d4AlwOrMYIheoHpF79zKI4IEQ43q/diPsfVngCWAnx/H+8Y2YP2Z+MgegAIE5KLF14ysCtJjzQs7Bq19/CJ7wgM6GFtspjYw3MD6OA4pt3WjOyEdTegHynNKGHm6N36/diNZOA3gC8IYmbKrdpIHxDk1lrhk8AU629YW9X0932MATIDtNDyPPa+y+BsqzTeAJ0NBpG7Lvx1us4AkwPj9Dc+MMhw5A5Yg01HXYUdNiQcEgJtb6dmmtR+WYNTf+Mv86d1ldsNjcSA+jcf222QKeSDWPMwy6iMbp82vC6F+8mC64AAAUOZd8Tj0Ph9sHh9sn+9yFQyQEXp8IDoBex8fdDzovoWSNaK4jJthFwf4t9cgwJ950ZHN5cWEfD47j0bSzFa0qyY0TKYQ/H92TbkSeh8dMpwCzeSxOjpoHgIMuKwt93HngNp4ccJxIRGw58hVm9F4EgIOhezy2vnUAhRPPBc9pS7lM56BSyMNMpwBuxBScHKVD8ByQ92tx4MBJzHSeA07gYWi8WjPjpePzWayY5RLQJAhoLbsCmRmNYddYJCI+PHoA07ougc8pQMcZNTPeochtcWKmUwA53Iu9aSdDtjne3oeZTgFFBgP2hrj+1U5xoxsznQIcX3Vjr+/koG3tB7ow0ymgrNmtybGGY5ZLjyKngMNbG2D8NryvnfVQJ2Y6BYxs9Why/HN8Rjg9PmzfcAIFGaHTMB1utmCmU0BFWhTXs+CDodAHh9UD0aXOez5d5MCLHFx9Htg9gwtqXpEgXeTAcYCrz4PwVWwjw+X2wO3w4dD2RsDbv5Rmn90a8XnUObNnOb1OKZN3plEPncaEOgDgeB7mGTOQ45IefHbBBDevB0BgnjEDHB/6sqvpOQ6LnQDgwPFugHfC4ragpud48jqvEHQOslySc7HFQE0VgTmo6TkOu0v0t3cCIJoZLx0fQJDt9o/RmI7B1rim5zisbguIVzLZcoJVM+MdihyzZFKmWfhD0ev/LjtNm+bnLH+/ex3hx0hp75O2uLwwQoFWoUJOh3VwU2yvQxp/lkbXOjtN0vn0DnI9d9noGmsrOGQoBP+zy+uLQAMpSm10PA817dRMYxcFU68ahays8I7RStH0VRN2fnMSMyozMe3ayoT/XiIgV5WjdtMa1IoXoM2ci0XWQzjf5MGYZY+FdHT1il6sensZ6nMq4HReCF36cZjLt4ADh9a0w3hz3psQeG1druSqcri3rcOfTBcgTcfjrlObYSgrw5hlj8HHA6veXoa67Elwe8dBP+IITEXaGi9d42Nt3dhZUga3zoabfYdCrjFd36bSZlht1YDOC3PZBxBMrZoZ72BYnR7c93UdAC/+OLsM2eaBG/qGDX3YedqLqVNzMe2qyqT3MV7SWyx4+NvTyOKc+NM1o8I6lrdbndj62RFwacCz3xunyco54eg8ZMKTzW2wmDxYMciz+d6va9Fq8uI3cyswuTwnaf1TivW93dj5jQ1zxqRj2mWVIds8u74DO01eXDOrGNOqR0Z0XqfTifpTJ5GWqYfJpFKB0O1Di9sNFwjKsgfvo93qgs1JkG3iYR6ibSTwThGGNB3GX1YGk6m/H67FYon4PKlzxyUBncBDN4TNXQkaeh0QOaAsLz0pv5cQBAOK7vkFRr75LVrSc1GfUYhrli6CEOZmfv/EB2iwn4bHNR0iBwhpDRB5KeT8tP0UNp/+AAvGqj9itB+CAVN+ugTcDh9sBhO6jOmouucXEEwGbDzxDhrsp+H1XAaRA2Do0t546Rr/8RmIHHAqswBF/vGdCV1f0TcCIkkDOC+Q1gIf59POeAchJ8OIkhFpaOxxoKajD9Vj8ga0qe+W7utR+RmavK/HFmUCPNDj8qLL6QmbUPtIWx9ETkrom2lW6eYdIxdU5EDkgGNtffBBcrY/E6fHh2arC+CAygJtrvWognTpnu61h+3/tx3SOk8oyYx4jDqBB8dx8p8aMeml2H6PKMIrEugHSWPi8oogkBIbKzEeOi+hZI1oriPtXXFnAbQ4+pgCbZfiyZo/H2OJZI49VTo+bK4hr+jF2gNrwYGDz1EGAOBNjfL3HDj89cBfNRExeiZ5C+ajzCWlbWkafQGyrruu33hFdwEAgDe0y8doabxZ8+djTKbkC9JmHgHdlVcPaNNvfZ0VAADe1AKOkwRZLY13MCYUS/63x1pD+8LQJM4jNVo71aTXyQmpjw9SVutwk6RZOL80Oyn9SiblI9KQaRLg8RHUtIVeZ1pmK9MkyCZ6rUGjXMPVxbW7vXLUbCokGQ9Gx3MwCdIzzeEePBk3jZwdKsgi2airN37Wrl2LyspKmEwmVFdXY/fu3WHbejwePPLIIxg7dixMJhOqqqqwadOmuM453NCM7WM1LthxgoAp35kGAKgbfUHYXEP72/ajsa8Rok8P0VUCANClnZa/JyBo6GvA/rb9ie+0wnCCgHFlOQCArqsXgROEwHgJILolzQ5v7JCP0dJ4OUHA2F/ciRFOaTM/0TUw9xUdLwGBzz4KAKBLq5e/19J4B0MW7FoGbvgen4hGf5qQZOf8UpJx/vx1gwl2h5qkF5nzSxPvtpJsOI7Def48hVSAPZNvaSm1wgzVaqWGYnRBIGdfKOg1np9hQK7GEjBHgtkgCXa2ISrJqFWwU50p9tVXX8Xy5cvxzDPPoLq6GmvWrMG8efNw7NgxFBYWDmj/0EMP4aWXXsLf/vY3TJw4ER988AGuv/56fPHFF5g6dWpM5xxOCCHyzTR2iCSgWuDi668E/rQNx+w8nB6fnAAymKqCKqyevRpf1bvx12955GUS/O7yFf3aGHQGVBVUJavbijJx8nh8tO0EGgoloYaOt6XHjVVHeeh4gj/M+RWCNf5aGm/WwoWYULcVO1tcONJsQVVFTr/v6XjdPjf++AaHBgA/mjoL08YGcj1pabzhmDiIYFfXYZMi6Aw6FGmwJjBlXGEGth5tG1Sw+6aRCnapp7EDpHHtquvCoSYLbgzxPa2DrOXk27TvTb1O9Do8AwJ+DvrX+IKy1Fxjs1GHLjtgH0Rj5/GJ8IpUsBu4rw0nqhPsnnjiCdx55524/fbbAQDPPPMM3nvvPTz//PNYsWLFgPYvvvgiHnzwQVznN/MtXboUH374If7nf/4HL730UkznHE5aLE7Y3D7oeC7pZVoSQfkIM/IzjOjoc+FgYy8uqswd0MagM2Be5Tx8c+wYgOOYPb4cC8ZOSXpfEwV9SB7zv8nT8X76bTuA3ajMy8Di8XOGr4NxwnEcpk4sx86WE/iqoQc/mNHfkZqOt8/lxb1dHwAA7qqeq7ni6EMRrLE7M2v9Ub+wd05xpuYqEQRDEw7TBMRn0mZx4nSXAxwHTK5IzU2/yj+uPfVdIb+nJRG1bKLMTtOjNNuEpl4nvm21YvoZz+2vGyTBblKqCnb+gB+H2weREPAhNK/UTGsUdKq7p1WlP3S73di7dy/mzp0rf8bzPObOnYsdO3aEPMblcg2IHklLS8Nnn30W1zktFku/v2RB34RH5ZpDOuZqDY7jcOHIHADA/lM9g7bdfVJ6UM4IIfxpGfpWe6ipt18IPV3rocozaYGqcmmMX50OXwZu/6luiAQoy0lLOaEOkDTsRoGH1eVFbUf/QvHHWqRnCNXqaRVqhjzU1BsyGeue+m4AwMTiLGSZtOlfNhQzRkvPp8NNFlidA9OBUKH3nCJt39f0ReVoCA001cqmqmBnFHjoeA4iIf3qxgbj8H+eZlCXtg5QmWDX0dEBn8+HoqKifp8XFRWhpaUl5DHz5s3DE088gZqaGoiiiC1btuCNN95Ac3NzzOd87LHHkJ2dLf9VVFQoMLrIONgobQCD1ZvUGlNHjgAQ/g0XkNJF7PNvCjNDRBRqmTH56cg0CnB6RNn/BgAO+n2RzkuBtaYpHY61WsM6HH9WI/kRVo9OLcGdotfxmOwXcOm1TDnWIq37BA1rcQBpszcIPCxOb8jyaXtOSuO+aNSIZHctaZRkp6EiNw0iAfad8bJqdXpQ5w+emFis7ft6gr//9KWEYnd7UeN/KZ1UnpqCHcdxstbO5grtZ0efc2kh3IuGG1UJdrHw5JNPYvz48Zg4cSIMBgOWLVuG22+/HXyYJLiR8Nvf/ha9vb3y3+nTp4c+SCG+aewBkFo3zMwx0kb+xYnOsEkft9d0wCsSjClIR2W+9k3QwfA8J5ulvmrokT8/mEJvvSXZJuRnGOETiew8fybbjkmRv7MnFCSza0nlQv9LzL5TAcGOECKv9USNC/F6HY8L/EERX53uGfA9fXm7qDJ1BTsAmFEpvXzuruvs9/k3Db0gfq10Qaa2kzOfL69z//t5z8lu+ESCspw0FGcNn78oIQQHOw4qWk4smEx/KTWrUxLsHn300X6pWkYXZKCqYgSef/YvCfn9eFCVYJefnw+dTofW1tZ+n7e2tqK4uDjkMQUFBXjrrbdgs9lQX1+Po0ePIiMjA2PGjIn5nEajEVlZWf3+kgX1XZicAps9ZXJ5DnLMelidXhwIsRkAwNYjbQCAKyeqK5hFKar8Gq29fk2O3e2VTbGpIMRzHIfp/s388+OdA75v6nHgWKsVPAd8Z3zqCnZUO703SGPX2ONAi8UJgefk60DL0OCYM+/lzj6XbKJLNa37mVT7X1apFpqy3z8nU/zuJ1qGCueHmnrRF6S12lEr3d8zx+QNa9Tvu7XvYsl7S/Bu7bsJOX+Gya+xc/vgEwnuueceNDc3o7m5GfWnG3DDD29FaXkFfnDTTQn5/XhQlWBnMBgwbdo0bN26Vf5MFEVs3boVs2bNGuRIwGQyoaysDF6vF//3f/+HRYsWxX3OZNPY40BDtwM8B1yQAps9RcdzuMy/mVOtTTAurw8fHpEE7ysmFg34PhWYNVba6D75th2EEOyu64JIgNJsE4qG8a1XSegab68ZuMZ0fasqcjAiBdMjUKZXjgDHSSkvmnqk9CbUPHl+aZYq/XGihWold9b2F+C3HWsHIdI4U+WaDsecCQXgOOCrhl609AZS/NA5oXOkZUqy01A+wm9yDnpR+eKENEb6TBsOaG5MAAnLgWkUeBh0PAghsLm8yMzMRHFxMYqLi/G/T63Fjk8/wj/f3AieA+bMmYPzzjsPkydPxuuvv654X6JFVYIdACxfvhx/+9vfsG7dOhw5cgRLly6FzWaTI1pvueUW/Pa3v5Xb79q1C2+88QZqa2uxfft2XHPNNRBFEffff3/E51QLUpSk9Nafao7Hl/vNb+9/0zxAdb71SBt6HR6UZJtkx+RUY8boXKTpdWi3unCw0YJPv5Xe9L9zTupory4bnw9A0lqcWU/0rf1Swun5k0qS3q9kkpdhxFS/Ruujo5IWertfq3NmZKFWuXRcPnhOcqqnwisAbD1KX85SU+seTGGmSRbeNh+WfLXtbi921Uqm6Nkpcl/T5zF9WWvqceCr0z3guMD9PhxsrNuIxj7pmdLQ14CNdRsV/w2O45BpGlgfeeXKlXj15X/i/3vtXUwcPxaCIGDNmjU4fPgwNm/ejPvuuw82my3caZOC6gS7m2++GatXr8bKlSsxZcoUHDhwAJs2bZKDH06dOiUHRgBS7bmHHnoI5513Hq6//nqUlZXhs88+Q05OTsTnVAOEEGw40AQAmJMiD4Vgrj6/GGl6HWo7bAMcjl/efQoA8L0Ly6BTWdi4UhgFHS6fKK3rP3fV452v/Ws9IXU2wYpcM8YXZsAnEmw6GLhHa9v7sO9UD3gOWDildBh7mByuPFd6rrzzVRPcXlHWVl51nnqeN/EwIt2AKWcIr712Dz70u1NcfV5oF5dU49oLpHG+svs0CCHYdqwdbp+I8hFpmk8uT7naf82+/00LCCF4/xvpvr5o1Ihh08oGV7IBElu5hlYO6XV44BMJVq1ahfXr1+Pvr72DsoqRyDQJKCkpwZQpUwAAxcXFyM/PR1dX+EDBZKA6wQ4Ali1bhvr6erhcLuzatQvV1dXyd9u2bcMLL7wg/3/27Nk4fPgwnE4nOjo6sH79epSWDtw8BjvncOMTCSb9bjN21HaC54AbppUPd5cUJ8Mo4NpJ0oPwhS9Oyp8fON2D7TUd0PEcbr4oskLSWuXHM6UExa98eRrtVhfyM4wpp9343oXStfvangb5s79trwUAXD6hMGx90VTi+qnSC8quui7857uH0evwoCDTGDKHo1a5hgo1X54CIQSv7z0Nt1fExOJMXFCm7QCRSPn+tHKY9DwON1vwaU0H1vmfawurSjVbceJM5kwoRLpBh8YeBzYfbpWf3YumlA1bn6i2jkCy/NDKNYnQ2pkNOhgEHiIhWPHgQ1i3bh02bNyM4vKR0Ot4uUIFZe/evfD5fEnNpBEKVQp2Zxv1nTbZOXXpnLEozUm9HF8A8NNLRwOQNBn7T3XD4xOxasMhAMCiKaWaraEZKbPG5GH+5IAp8sH5E1MiV2EwN1xYBr2Ow976bnzybTuONFvw//ZKQt7SOWOHuXfJoTQnDQurpJfLF3dKpdPuuGR0Smmjvz+tAgaBx8FGC9Z9cRJPbzsBALj14sqUEWqGIsdswBJ/Mu5bn9+NXXVd0Os4/Mj/ApcKmPQ6eTx3vbgXDd0O5GcY8P1hUj6cqa2jJEprx3Ec8jOMeO7J1Xj+b8/hn//6F/q8PDraWuGxdsHtdsttu7q6cMstt+C5555TtA+xoLrKE2cjI3PN2PLv34HbJ6ZETrNwnF+ajcVTSvHWgSbcuX4PKvPS8dXpHmSaBPxm3oTh7l7C4TgOT948BQurSlGYaZQjKFOJwiwTfjKzEs9/Xod7/rUPBoGHx0dw9XlFKaWxGoqHv3seDjdZcKzVisvG58svNalCbroBd1wyGs98cgK/e+cwAClH33Bt+MPFr66egM+Pd8j5KX8zbwLKUuzF/O454/DhkVbUttug4zk89r3JIUtDJoNg37pggrV2C8YuUPQ3R6Tpse7Zp9BnteDSSy7p993u3bsxffp0uFwuLF68GCtWrMDFF1+s6O/HAkcSlQQmhbBYLMjOzkZvb29SU5+kIhanBzc+vQPH/GV3DDoez/5kGi5PMZPk2Uyfy4sfPLdDTrY9tiAdr941C/kZ2s7rFS2iSNDe50JhpjEltVhOjw+/fv0rvPt1MyYWZ+KZH09LuRyUkdDn8uKDgy0ozUkb1kjRRGJxevDJsXZMKM6Mqwau0+lEXV0dRo8ePaBi1FB4RS++++Z30dTXJJthg+HAoSyjDO9c/w4EXlmdlc3lRV2HDSIh4CD5E+eYpeh+Qgh++MMfYsKECfjd734X1+8MNj/RyCFMsIsAJtgpi93txatfnka33YOFVaUYV6jt0juMgTjcPrzzVRN8hGBBVSkyjMw4kKo4PT4YBT4lhVeGssQj2H3Z8iXu+OCOIds9P+95TC+eHmsXw+L2iuhzeZFm0PWrNvHZZ5/hO9/5DiZPnix/9uKLL2LSpElR/4ZSgh172jKSjtkg4PZLUss0xehPmkGHm6YPrwMxIzkMl1mOcXZRVVCF1bNXw+1zh21j0BlQVVCVkN83CDxyhYE5OC+99FKIYuiKSsMFE+wYDAaDwWCoGoPOgHmV84a7G5ogtULyGAwGg8FgMM5imGDHYDAYDAaDkSIwwY7BYDAYDAYjRWCCHYPBYDAYDEaKwAQ7BoPBYDAYSYNlWQuNUvPCBDsGg8FgMBgJR6/XAwDsdvsw90Sd0Hmh8xQrLN0Jg8FgMBiMhKPT6ZCTk4O2tjYAgNlsZomtIWnq7HY72trakJOTA50uvtyQTLBjMBgMBoORFIqLiwFAFu4YAXJycuT5iQcm2DEYDAaDwUgKHMehpKQEhYWF8Hg8w90d1aDX6+PW1FGYYMdgMBgMBiOp6HQ6xQQZRn9Y8ASDwWAwGAxGisAEOwaDwWAwGIwUgQl2DAaDwWAwGCkC87GLAJo00GKxDHNPGAwGg8FgnG1Q+SOSJMZMsIsAq9UKAKioqBjmnjAYDAaDwThbsVqtyM7OHrQNR1htjyERRRFNTU3IzMxMWDJFi8WCiooKnD59GllZWQn5DS3A5iEAmwsJNg8B2FxIsHkIwOYiQCrPBSEEVqsVpaWl4PnBveiYxi4CeJ5HeXl5Un4rKysr5S7IWGDzEIDNhQSbhwBsLiTYPARgcxEgVediKE0dhQVPMBgMBoPBYKQITLBjMBgMBoPBSBGYYKcSjEYjVq1aBaPRONxdGVbYPARgcyHB5iEAmwsJNg8B2FwEYHMhwYInGAwGg8FgMFIEprFjMBgMBoPBSBGYYMdgMBgMBoORIjDBjsFgMBgMBiNFYIJdElm7di0qKythMplQXV2N3bt3D9r+9ddfx8SJE2EymTBp0iS8//77Sepp4njssccwffp0ZGZmorCwEIsXL8axY8cGPeaFF14Ax3H9/kwmU5J6nBh+97vfDRjTxIkTBz0mFa8HAKisrBwwFxzH4e677w7ZPlWuh08//RQLFixAaWkpOI7DW2+91e97QghWrlyJkpISpKWlYe7cuaipqRnyvNE+Z9TAYHPh8XjwwAMPYNKkSUhPT0dpaSluueUWNDU1DXrOWO6x4Waoa+K2224bMKZrrrlmyPOm2jUBIOQzg+M4PP7442HPqcVrIhaYYJckXn31VSxfvhyrVq3Cvn37UFVVhXnz5qGtrS1k+y+++AJLlizBT3/6U+zfvx+LFy/G4sWLcfDgwST3XFk++eQT3H333di5cye2bNkCj8eDq6++GjabbdDjsrKy0NzcLP/V19cnqceJ4/zzz+83ps8++yxs21S9HgDgyy+/7DcPW7ZsAQDceOONYY9JhevBZrOhqqoKa9euDfn9n/70J/zv//4vnnnmGezatQvp6emYN28enE5n2HNG+5xRC4PNhd1ux759+/Dwww9j3759eOONN3Ds2DEsXLhwyPNGc4+pgaGuCQC45ppr+o3p5ZdfHvScqXhNAOg3B83NzXj++efBcRxuuOGGQc+rtWsiJggjKcyYMYPcfffd8v99Ph8pLS0ljz32WMj2N910E5k/f36/z6qrq8ldd92V0H4mm7a2NgKAfPLJJ2Hb/OMf/yDZ2dnJ61QSWLVqFamqqoq4/dlyPRBCyL333kvGjh1LRFEM+X0qXg8AyJtvvin/XxRFUlxcTB5//HH5s56eHmI0GsnLL78c9jzRPmfUyJlzEYrdu3cTAKS+vj5sm2jvMbURah5uvfVWsmjRoqjOc7ZcE4sWLSJXXHHFoG20fk1ECtPYJQG32429e/di7ty58mc8z2Pu3LnYsWNHyGN27NjRrz0AzJs3L2x7rdLb2wsAyM3NHbRdX18fRo0ahYqKCixatAiHDh1KRvcSSk1NDUpLSzFmzBj86Ec/wqlTp8K2PVuuB7fbjZdeegl33HHHoHWZU/F6CKaurg4tLS391jw7OxvV1dVh1zyW54xW6e3tBcdxyMnJGbRdNPeYVti2bRsKCwsxYcIELF26FJ2dnWHbni3XRGtrK9577z389Kc/HbJtKl4TZ8IEuyTQ0dEBn8+HoqKifp8XFRWhpaUl5DEtLS1RtdcioijivvvuwyWXXIILLrggbLsJEybg+eefx9tvv42XXnoJoiji4osvRkNDQxJ7qyzV1dV44YUXsGnTJjz99NOoq6vDZZddBqvVGrL92XA9AMBbb72Fnp4e3HbbbWHbpOL1cCZ0XaNZ81ieM1rE6XTigQcewJIlSwatBxrtPaYFrrnmGqxfvx5bt27FH//4R3zyySe49tpr4fP5QrY/W66JdevWITMzE9/73vcGbZeK10QohOHuAOPs5e6778bBgweH9HGYNWsWZs2aJf//4osvxrnnnotnn30W//mf/5nobiaEa6+9Vv735MmTUV1djVGjRuG1116L6K0zVfn73/+Oa6+9FqWlpWHbpOL1wIgMj8eDm266CYQQPP3004O2TcV77Ac/+IH870mTJmHy5MkYO3Ystm3bhiuvvHIYeza8PP/88/jRj340ZBBVKl4ToWAauySQn58PnU6H1tbWfp+3traiuLg45DHFxcVRtdcay5Ytw7vvvouPP/4Y5eXlUR2r1+sxdepUHD9+PEG9Sz45OTk455xzwo4p1a8HAKivr8eHH36If/u3f4vquFS8Hui6RrPmsTxntAQV6urr67Fly5ZBtXWhGOoe0yJjxoxBfn5+2DGl+jUBANu3b8exY8eifm4AqXlNAEywSwoGgwHTpk3D1q1b5c9EUcTWrVv7aR6CmTVrVr/2ALBly5aw7bUCIQTLli3Dm2++iY8++gijR4+O+hw+nw/ffPMNSkpKEtDD4aGvrw8nTpwIO6ZUvR6C+cc//oHCwkLMnz8/quNS8XoYPXo0iouL+625xWLBrl27wq55LM8ZrUCFupqaGnz44YfIy8uL+hxD3WNapKGhAZ2dnWHHlMrXBOXvf/87pk2bhqqqqqiPTcVrAgCLik0Wr7zyCjEajeSFF14ghw8fJj/72c9ITk4OaWlpIYQQ8pOf/ISsWLFCbv/5558TQRDI6tWryZEjR8iqVauIXq8n33zzzXANQRGWLl1KsrOzybZt20hzc7P8Z7fb5TZnzsXvf/978sEHH5ATJ06QvXv3kh/84AfEZDKRQ4cODccQFOFXv/oV2bZtG6mrqyOff/45mTt3LsnPzydtbW2EkLPneqD4fD4ycuRI8sADDwz4LlWvB6vVSvbv30/2799PAJAnnniC7N+/X470/O///m+Sk5ND3n77bfL111+TRYsWkdGjRxOHwyGf44orriBPPfWU/P+hnjNqZbC5cLvdZOHChaS8vJwcOHCg33PD5XLJ5zhzLoa6x9TIYPNgtVrJr3/9a7Jjxw5SV1dHPvzwQ3LhhReS8ePHE6fTKZ/jbLgmKL29vcRsNpOnn3465DlS4ZqIBSbYJZGnnnqKjBw5khgMBjJjxgyyc+dO+bvZs2eTW2+9tV/71157jZxzzjnEYDCQ888/n7z33ntJ7rHyAAj5949//ENuc+Zc3HffffK8FRUVkeuuu47s27cv+Z1XkJtvvpmUlJQQg8FAysrKyM0330yOHz8uf3+2XA+UDz74gAAgx44dG/Bdql4PH3/8cch7gY5VFEXy8MMPk6KiImI0GsmVV145YH5GjRpFVq1a1e+zwZ4zamWwuairqwv73Pj444/lc5w5F0PdY2pksHmw2+3k6quvJgUFBUSv15NRo0aRO++8c4CAdjZcE5Rnn32WpKWlkZ6enpDnSIVrIhY4QghJqEqQwWAwGAwGg5EUmI8dg8FgMBgMRorABDsGg8FgMBiMFIEJdgwGg8FgMBgpAhPsGAwGg8FgMFIEJtgxGAwGg8FgpAhMsGMwGAwGg8FIEZhgx2AwGAwGg5EiMMGOwWAwGAwGI0Vggh2DwWAwGAxGisAEOwaDwWAwGIwUgQl2DAaDkUJUVVWB47gBfy0tLcPdNQaDkQSYYMdgMBgKs3btWlRWVsJkMqG6uhq7d+9OyDGh2LJlC5qbm7F161aMGzcOmZmZWLlyJYqLi2M6H4PB0BZMsGMwGAwFefXVV7F8+XKsWrUK+/btQ1VVFebNm4e2tjZFjwlHYWEhNmzYgOuuuw4zZsxATU0Nfv/738czJAaDoSE4QggZ7k4wGAxGMti9ezfuv/9+7Nq1C6NGjcJLL72Effv24d1338WGDRsU+Y3q6mpMnz4df/nLXwAAoiiioqIC99xzD1asWKHYMeFYs2YNVqxYgeeeew633HJLfINhMBiag2nsGAzGWcHOnTsxe/ZszJ8/H19//TXOPfdcPPLII/jjH/84QKP16KOPIiMjY9C/U6dODfgNt9uNvXv3Yu7cufJnPM9j7ty52LFjR8h+xXJMOHbs2IHf/OY3ePXVV5lQx2CcpQjD3QEGg8FIBsuXL8eNN96I3/zmNwCAJUuWYMmSJVi0aBGmTp3ar+3Pf/5z3HTTTYOer7S0dMBnHR0d8Pl8KCoq6vd5UVERjh49GvI8sRwTjl/+8pdYunQpFi1aFNVxDAYjdWCCHYPBSHkaGhqwY8cOrF69Wv5MEAQQQkL6n+Xm5iI3NzeZXYybmpoa7NmzB2+88cZwd4XBYAwjzBTLYDBSniNHjgAALrzwQvmzY8eOYcaMGZg0adKA9rGaYvPz86HT6dDa2trv89bW1rBRqbEcE4odO3YgPz8fFRUVER/DYDBSDybYMRiMlKe3txc6nQ4cxwEAurq6sHr1apjN5pDtf/7zn+PAgQOD/oUyxRoMBkybNg1bt26VPxNFEVu3bsWsWbNC/lYsx4TC4/HA5XLB6XRGfAyDwUg9mCmWwWCkPFOmTIHP58Of/vQn3Hjjjbj33ntRWVmJw4cPo76+HqNGjerXPh5T7PLly3HrrbfioosuwowZM7BmzRrYbDbcfvvtcpu//OUvePPNN2VhLpJjhmLOnDlwOp24/fbb8atf/QoTJkxAZmZmTGNgMBjahWnsGAxGyjNu3Dg88sgjePLJJzF16lSUlpZi8+bNKCsrwzXXXKPob918881YvXo1Vq5ciSlTpuDAgQPYtGlTv+CIjo4OnDhxIqpjXnjhBVnjGIqxY8fi7bffRm1tLS677DJkZ2fjP/7jPxQdG4PBUD8sjx2DwWBogFWrVuGTTz7Btm3bImq/du1a/OEPf0BTU1NiO8ZgMFQFM8UyGAyGBti4caOcwHgoenp6sGfPHsyYMSPBvWIwGGqDCXYMBoOhAaKpHfvnP/8ZjY2NeOGFFxLXIQaDoUqYKZbBYDAYDAYjRWDBEwwGg8FgMBgpAhPsGAwGg8FgMFIEJtgxGAwGg8FgpAhMsGMwGAwGg8FIEZhgx2AwGAwGg5EiMMGOwWAwGAwGI0Vggh2DwWAwGAxGisAEOwaDwWAwGIwUgQl2DAaDwWAwGCkCE+wYDAaDwWAwUgQm2DEYDAaDwWCkCP8/efIMpi8NHkAAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnYAAAHWCAYAAAD6oMSKAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAD71ElEQVR4nOy9eZwcdZ3w/67q6u6ZnjPH5A65OMMRIBiCwnIsGAJPXH12UdFd0PV4EIILrKuL8ltYn+eRVVGXVfBYF4P4uLuuCuoSjoAIIkQhyYCQBDJJJufknKO7p6eP6qrfH9Xf6ppkju7pOjv1fr3ygpmp7vp+6ltV38/3c0q6ruuEhISEhISEhIQEHtnrAYSEhISEhISEhNhDqNiFhISEhISEhNQJoWIXEhISEhISElInhIpdSEhISEhISEidECp2ISEhISEhISF1QqjYhYSEhISEhITUCaFiFxISEhISEhJSJ4SKXUhISEhISEhInRAqdiEhISEhISEhdUKo2IWEhISEhISE1AmhYhcSEhISEhISUieEil1IyAnOj370IyRJGvHf1VdfPeJn1qxZgyRJdHd3uzvYKgnKOO+55x4kSeLIkSMVf+YrX/kKp59+Opqmmb+bP38+99xzT01jGek7vvOd73DSSSeRy+Vq+m63cOo6wMjXHcZ/joJ2DbPZLNFolPb29pqvZYi7hIpdiO8Ri/Orr75a9Wdfeukl7rnnHvr7++0fmAc4Ic8555zDI488wiOPPMKaNWtYunQpwJiKXYi3JJNJvvzlL/O5z30OWR7/Nf7UU08dp2y0traybNkyHnvssXE//5GPfIR8Ps93v/tdG0Y/Ok4+r7VeAxj7uo/3HLl1DQHS6TR33303V199NZMnT0aSJNasWTPq8Zqm0dHRwVe+8hXzd6qq8v3vf5958+bxxS9+kUOHDjk+7hB7CBW7kLrmpZde4h//8R/rSrGzW55zzjmHv/zLv+Syyy7ju9/9Lhs2bODiiy9mw4YN3HbbbSN+5q/+6q8YGhpi3rx5to3DCYIyzmp56KGHUFWV66+/vqLjX3vtNQD+5V/+hUceeYSHH36Yz33uc+zatYvrrruOrVu3jvn5hoYGbrzxRr7+9a+j63rN4x8NJ5/XWq8BjH3dx3uO3LqGAEeOHOGLX/wiW7ZsYcmSJeMe/4c//IEjR45w7bXXmr9rbm7mxhtv5LOf/Sy6rvP66687OeQQG1G8HkBISBAZHBykqanJ62HYxhtvvMG73/1ujh49yv3338+tt96KJEmjHh+JRIhEIi6OcGLYPU6/zPsPfvAD3vOe99DQ0FDR8a+//jrt7e3ceuutw34/depUbrrpJjo7Ozn99NPH/I73v//9fOUrX+G5557jiiuumPDYvcKOazDedR/vOXLrGs6cOZOenh5mzJjBq6++yjve8Y4xj1+7di3z5s3jzDPPPO5v4ndbtmzhyiuvdGS8IfYSWuxCAoeIR+rq6uIjH/kI7e3ttLW18dGPfpRMJjPsuL/7u78DYMGCBab7RcRb7du3j7/+679m+vTpxONxzjzzTB566KFRz7d582Y+9KEPMWnSJC6++GIAUqkUt912G/PnzycejzNt2jSuuuoqNm7caH6+0vPs27ePj33sY8yaNYt4PM6CBQv41Kc+RT6fH1eeSsYxGt3d3Vx55ZXkcjmef/55Pv3pT4+p1MHIsWuVzstYVHKtxHm2bt3K+9//flpbW5kyZQp/8zd/QzabHXecv/nNb7jgggtoaGhg0aJFfPe73zW/c6TzjDTvu3bt4uabb+a0006jsbGRKVOmcN111x0Xy1fNWAH6+/vHvXY7d+7k9ddfr2qRfe211zj//POP+/2BAwcAOOOMM8b9jqVLlzJ58mR+8YtfjHvsRO7H8Z7XWqn1Gox33St5jqq5hrUQj8eZMWNGxcc//vjjw6x1VsR9unnzZlvGFuI8ocUuJLC8//3vZ8GCBdx7771s3LiR73//+0ybNo0vf/nLAPzP//k/efvtt/n3f/93vvGNbzB16lQAOjo6OHjwIMuXL0eSJFavXk1HRwdPPPEEH/vYx0gmkyO6IK+77jpOOeUUvvSlL5mulJtuuomf/vSnrF69msWLF3P06FFefPFFtmzZwvnnn1/xefbv38+yZcvo7+/nk5/8JKeffjr79u3jpz/9KZlMhlgsNqY8n/zkJ8ccx2homsaHPvQhBgcHeeGFFzjvvPMcn5fRqHZO3v/+9zN//nzuvfde1q9fz7/8y7/Q19fHD3/4w1HPsWnTJq6++mpmzpzJP/7jP1IsFvniF79IR0fHqJ8Zad5feeUVXnrpJT74wQ8yZ84curu7+fa3v81ll13G5s2bSSQSExprJdfupZdeAhhzXq3k83neeustLr30UjM5o6+vj6eeeoovf/nLrF69uiJ3nTjn7373u3GPG++5GImx7u9aseMajHXdq3mOxruGhUKBgYGBSsRi8uTJFcVYjsWBAwfYtGkTX/ziF0f8+9/+7d8ChsUuJCDoISE+5wc/+IEO6K+88oqu67p+991364D+13/918OOe9/73qdPmTJl2O+++tWv6oC+c+fOYb//2Mc+ps+cOVM/cuTIsN9/8IMf1Nva2vRMJmP+Tpzv+uuvP25sbW1t+i233DLq2Cs9zw033KDLsmzKaEXTtHHlGW8co/Hwww/rgP7QQw9V9TkxJ9ZxVDMvI1HptRLnec973jPsuJtvvlkH9Ndee23Uca5atUpPJBL6vn37zGO2bdumK4qiH/s6HGverfeH4OWXX9YB/Yc//OFx3zHeWKu5dnfddZcO6KlU6rgxzJs3T7/77ruH/W7Tpk06cNy/aDSq//M//3NF3yH45Cc/qTc2No74NysTvR9Hu7+r5VgZqr0GI33HWNe9mudovGv43HPPjTjWkf5Vcp1eeeUVHdB/8IMfjPj3f/u3f9MbGxtHvKcfeeQRHdCnTZumT5s2bdxzhfiD0BUbElhuuummYT9fcsklHD16lGQyOebndF3nZz/7GatWrULXdY4cOWL+W7FiBQMDAyO6jI49H0B7ezu///3v2b9//4TPo2kajz32GKtWreKCCy447nvGc4uON46x+Na3vsXZZ5/NRz/60ao+NxYTmZeJzMktt9wy7GcRO7V27doRz1EsFnnmmWd473vfy6xZs8zfn3zyyaxcubJieQAaGxvN/y8UChw9epSTTz6Z9vb2Ee+dSsdaybU7evQoiqLQ3Nw86pitiKD3hx9+mHXr1rFu3Tp+9KMfce655/K5z32Ol19+uaLvAZg0aRJDQ0PjutYnej86hR3XYKzrXs1zNN41XLJkiTnG8f5V424djbVr13L55ZcPu6fByKz93Oc+x8qVK7nhhhs4dOgQvb29NZ8vxHlCV2xIYDnppJOG/Txp0iTAcLG0traO+rnDhw/T39/P9773Pb73ve+NeMxIqf0LFiw47ndf+cpXuPHGG5k7dy5Lly7lmmuu4YYbbmDhwoUVn+fw4cMkk0nOOuusUcc8HmONYzSOHDnCq6++yr333jvh847EROZlInNyyimnDPt50aJFyLI8akzWoUOHGBoa4uSTTz7ubyP9TjDSvA8NDXHvvffygx/8gH379g3LchzJjVbpWCd6T4/Fa6+9hqIoXH/99USjUfP3l112GXPmzOFb3/oWF110UUXfJeQcb7MxkfvRSey8BsdS7XM03jWcNGmSa0kKhUKBdevWjTj2L33pSxw5coT777+fF198ETDi7EScaYh/CRW7kMAyWrajPk4pAVFY9C//8i+58cYbRzzmnHPOOe53x+5owYiJuuSSS3j00Ud5+umn+epXv8qXv/xlfv7zn5txNuOdZ7zxVsJY4xjNGrVlyxZ0Xbclrs7KROZlonNipRLL5kQYad5vvfVWfvCDH3Dbbbdx0UUX0dbWhiRJfPCDHzyucO1IjDbWSq7dlClTUFWVVCpFS0vLuOd6/fXXWbRo0TCFBmD27NkkEgn27t077ncI+vr6SCQSI14TKxO5H53Ejmsw2nWv9jka7xrm8/mKLWMdHR01ZX2/+OKLJJNJrrnmmmG/3759O1//+tf527/9W0455RT6+voAQ9ZQsfM/oWIXUteMtIB2dHTQ0tJCsVi0ZWc8c+ZMbr75Zm6++WYOHTrE+eefz//9v/+X559/vqLzaJpGa2srb7zxxrjnGkt5GW0coy2kg4OD436nW0xkTrZt2zbMmtbV1YWmacyfP3/E46dNm0ZDQwNdXV3H/W2k343FT3/6U2688Ua+9rWvmb/LZrOj1l+rdqxjIUpy7Ny5c1xlFwyl5p3vfOdxvz98+DCZTKYqd97OnTsryqCF6u9HcO5etOMajHbdq32OxruGL730EpdffnnF3zWRe0jw+OOPs3jx4uO+44477qCjo4MvfOELQDljOMyMDQZhjF1IXSNqjlkX3Egkwp//+Z/zs5/9bERl6vDhwxV9d7FYPM7tNm3aNGbNmkUul6v4PLIs8973vpdf/epXI3bXsFprRpJnvHGMhniZ//znPx9bUBeYyJw88MADw37+5je/CTCq4hCJRLjyyit57LHHhsV+dXV18cQTT1Q93mMtkN/85jcpFosjHl/tWMdCuAwr6cRy4MABDh06NKIiITJt//zP/7zic2/cuHFEBclKJfdjJpNh69atx7VQG+n+Huv4SrDrGox23at9jsa7hm7G2K1du/a4MidPPfUUv/zlL7nvvvvM+WhpaWHu3LlhZmxACC12IXWNaOvzhS98gQ9+8INEo1FWrVrFP/3TP/Hcc89x4YUX8olPfILFixfT29vLxo0beeaZZypyhaRSKebMmcNf/MVfsGTJEpqbm3nmmWd45ZVXTEtOpef50pe+xNNPP82ll17KJz/5Sc444wx6enr4r//6L1588UXa29tHleeSSy7htNNOG3McI3H66aezYsUKvvOd73Dw4EHe/e53M3/+fK644gpisVgtl31CVDsnO3fu5D3veQ9XX301L7/8Mj/60Y/40Ic+NGbZinvuuYenn36ad73rXXzqU5+iWCzyrW99i7POOovOzs6Kx/o//sf/4JFHHqGtrY3Fixfz8ssv88wzzzBlypQRj5/IWEdj4cKFnHXWWTzzzDP89V//9ZjHim4Lhw4d4kc/+hFgxIQ9/fTTPPHEE3zwgx/kuuuuq+i8GzZsoLe3lz/7sz8b87hKnos//OEPXH755dx9993D+pCO9ry+8sorIx5fCXZdg9GuezXPUSXX0K4Yu29961v09/ebm5hf/epXpsv51ltvpbe3ly1btvDtb3/b/EyhUOC2227j8ssv5wMf+MCw71u8eHGo2AUF1/NwQ0KqZLRyJ4cPHx7xuGNLAPzv//2/9dmzZ+uyLA/7+8GDB/VbbrlFnzt3rh6NRvUZM2bof/qnf6p/73vfG/b50c6Xy+X0v/u7v9OXLFmit7S06E1NTfqSJUv0Bx98cNhxlZ5n165d+g033KB3dHTo8XhcX7hwoX7LLbfouVxuTHneeuutisYxEqlUSv/MZz6jL1q0SI/FYjqgr1y5ctzPjVXupNJ5GYlKrpU4z+bNm/W/+Iu/0FtaWvRJkybpq1ev1oeGhsY997PPPqufd955eiwW0xctWqR///vf1//2b/9Wb2hoGPbZ0eTRdV3v6+vTP/rRj+pTp07Vm5ub9RUrVuhbt27V582bp994441Vj7Xaa/f1r39db25uPq5ExbElOr7yla8cVyKjpaVFf9e73qX/27/927BSOqN9h+Bzn/ucftJJJ434GSuVPBeipMdI5xnpeR3r+JGwyjCRazDadRjtulf6HFV6De1g3rx5Y5ZJ+da3vqW3tbXphUJhmHyKouhvvPHGcd93xx136JIkjVjuJcRfhIpdSEiIyd///d/rgN7b2+v1UEZlLIVrovzZn/2ZfvLJJ9v2fQInxqrrut7f369PnjxZ//73vz/s92PVoKuUkb4jm83qM2bMGLXmm99w6jqMdt2PZaTnyG/XcOXKlfp1113n9TBCHCCMsQsJCTHp6OigsbHxuM4J9cTQ0NCwn7dt28batWu57LLLvBnQBGhra+Ozn/0sX/3qVyvKwq2VH/zgB0Sj0RFr+p1IVHrdR3qO/HYNL7vsMm6//XavhxHiAKFiFxISAhgB/ffccw833HAD8Xjc6+E4xsKFC7nzzjv513/9V+666y6WL19OLBbjs5/9rNdDq4rPfe5zbN26teaWUpVw0003sXv37rq+LyplvOs+2nPkt2v42c9+dsK1+0L8TZg8ERISAsAPf/hDPvShD/H1r3/d66E4ytVXX82///u/c+DAAeLxOBdddBFf+tKXjisiHBIyEU6U5yjEv0i6bkN11JCQkJCQkJCQEM8JXbEhISEhISEhIXVCqNiFhISEhISEhNQJYYxdBWiaxv79+2lpafFF+6WQkJCQkJCQEwdd10mlUsyaNWvchKlQsauA/fv3M3fuXK+HERISEhISEnICs2fPHubMmTPmMaFiVwEtLS2AcUFbW1s9Hk1ISEhISEjIiUQymWTu3LmmPjIWoWJXAcL92traGip2ISEhISEhIZ5QSThYmDwREhISEhISElInhIpdSEhISEhISEidECp2ISEhISEhISF1QqjYhYSEhISEhITUCaFiFxISEhISEhJSJ4SKXUhISEhISEhInRAqdiEhISEhISEhdUKo2IWEhISEhISE1AmhYhcSEhISEhISUieEil1ISEhISEhISJ0QKnYhISEhISEhIXVCqNiFhISEhISEhNQJoWIXEhISEhISElInhIpdSEhIXaLrOkfTOXRd93ooIQ4xlC/y0Is72bw/6fVQQkJ8Q6jYhYSE1CVfeOwNlv6fZ/inJ7d6PZQQh7j3iS188b8388HvvcxApuD1cEJCfEGo2IWccORVjQee6+JH63ehaaE1px7ZeWSQH/9+NwDfe2EH/Zm8xyMKsRu1qPGzDXsBSGZVntly0OMRhTiBpul89amtfPzhV+gZGPJ6OIEgVOxOcAZz6gmn3HzruS6++tRb3PXYG/y0tDCE1Be/3XbY/H9dhxe7jng4mhAnePtgmsF80fz5d9vDOa5HHv9jDw88t51nthzi/z6+xevhBIJQsTuBefz1Hpb+n3Vcdt9vOJTMej0cV9A0nR//fpf58/+z/H9I/fD7nb3Dfv7j3gGPRhLiFK/v7R/285aelDcDCXGUX7623/z/p948QCavejiaYBAqdicoeVXj7l++Sbagsbs3w7ee6/J6SK6w5UCSI+myW+71fQN1H5uTLRT579f3s/1w2uuhuMaWHiOYfuVZMwDYeiBc9OuNHUcGAbjyjOkAdB1KUShqXg4pxGZ0XWfDrj7z50JRp3NPv3cDCgihYneC8vzbhzmSzpk/P/56D8UTwCW7fodhybn8tA7mT0mg67Bxd984nwouuq5z40N/YPWPN/E//uVF3j5Y/wpOoaix+2gGgGvPmQlwQsgNkMwWUE8Q5WZPrzHH71w0hUQsQqGos6s07yH1wd6+IXoH80QjEu9ebCjwG3fV7/vaLkLF7gTld6WYo+uXzaWlQeHoYP6EKBmwtWTJOWdOO+edNAmAzT31K/dzbx0y3ZJDhSLf+nX9W2b39GZQNZ3GaITlC6cA0DOQJacWx/lksLnvqbc4556nufr+39I7WP/JIrtLit1JkxPMnZQAYG9fqNjVE2JDdvK0FvN9/fbBE8fzMFFCxe4E5eXtRwH4k1M6OHduOwCv7+v3bkAu8fYh46Vw6vQWTp7WDEDXofp9UTy2yYhPuXDBZACefKP+Y1R2HDZcdAumNjGlKUYiFgFgf3/9xpG+vrffDKfoOpTmn5952+MROY+w2J00JcHcyY3G7/rqP2vygee6uPBLz/DZn75W99ZZobzPn5JgUUcTwAkVUjJRQsXuBCRbKLLtkLETOu+kSSyZ0w7Uf4C5pul0lXaAp81oZlGHodjV64tCLWr85q1DAPzditOY3d5Ivqgdl1hQb+wsxV4t6GhCkiTmTDIW/Xq25ojSLlOb4wD816t7yRbq10I5kCmQzBoblLmTEswRFrve+p1jgBfePsxXn3qLg8kcP3l1Lw/9bqfXQ3IUq1V2UWkjvuPw4AlXyaFaQsXuBKTrUBpNh/ZElOmtcc6a3QrAm3Xuiu1JZhnMF4lGJOZNaeLkaaUd4KF0XXYn2HogRTKr0tKgcN5Jk7j45KlA2Vpbr/QMGJa5Oe2GQmcu+nVqzdE0nXWbjRpu//LBc5nR2sBQocjLO+p3nveX6plNborRGIswd7Ixx3vqWHkH+P6LhiIXV4yl+3sv7Kxrq52IlZ07OcFJkxMossRQociBE6SKw0QJFbsTEJEhePqMFiRJMi1X3UcG61LBEQjXzez2RqIR2VwMBvNF+uowM/aP+wwL7Dlz2ojIEkvnGTEqb+yrb8vswdJLf0ZbA2DMN8C+OlXs3j6U4uhgnsZohAvmT+by06cBhnWnXhGJXx0lC+Ws0lwfGKjfBT+ZLfBSKTb68U9fzOSmGEfSOTMhrB4RFrt5UxJEIzLTW415DgsVj02o2J2AvHXAsMydPsOw1M2dnECSIJVTOVrHQdf7+42XweySay6uREzXlfhbPSHqfJ1TcrUvnmXM9+aeZF0r8OKlP6O0CExvNeb4cCo36meCjLDAvmPBZGKKzLIFhgL/Wh2XhRBzObUlBsC00hwfqtM5Bnhx2xFUTWdRRxMnT2thxZlGKZ+nNx/weGTOoOu6aWUXVnexSavneFk7CBW7ExCRLHDKdMNS1xCNMKvNeGC6S/FJ9Yiw2AhZAWa1G4t/fSp2hmVuyZw2AE6e1owiS/RnCqa7sh4RVhthsetoKSl26fpc9IVl9vyT2oGyIv/m/mTduumOtdhNazHm+nAqV7ebFlHm452LjJCKS081/vuHOo2ZHcwXGSrFiU4rPcMz20OLXSUoXg8gxH2EeXtua4zkk0+i5/PM1WX2IfHmut9xyvTyi1GKxWi+4grkWMyr4drGvpLyNqulLHdHRgYkdrz4CgPb60fuYlHj7YOGZfa0qY2mvPPiMtuHJDb+Yh1Nk8rHB11eQVHTTauNsNQJxe5Qqj6VWdFx4YyZhkV2wZQmWuIKqZzK2wfTpqW2nhBFxoXFXcxxTtVIZlXaGqOejc0pzI1aqYrBBfONTPetB1L0Z/K0J4L97B7LkdJznIhFaIobqsrMttBiVwmhYneCYTVvd+zvZt9ttwMwecmfw4KL2Pr4s+zf+tSwz5z08MM0XbjM9bHaTef+3YBEz4GX2fdPXwWg+ez3wKI/oevp59n/5uPDjg+y3I/88XEKRRlF1pnS/ZY5z9OX3cj2WWfzxn/+kkU7fjfsM0GWV3A0nUPVdEDjD4ef5b3tq+hoLltz6o28qtFVynBfXFLsZFnijJmt/KG7l22HUvWp2JmuWEOha4hGaGlQSGVVDqeydafYFTWdN/YPt8BPbY6zsKOJHYcH2bS734ytrBeEhV0o7VD2sIQWu7EJXbEnGIdTOXKqhizBoouXEp0zBySJqUP9ABxpbCsfLElE584lsfR8bwZrI6qmsuOo4cpYr7+EPHc2SBIdQ8bL8lBje/nggMutair/tvGXAMixXhrPX2LO86xBI/i6p2lq+QMBl9fKvn4jlEBSUnz39QdRNdVcGI6k83VXJmH74TSFok5LXDHLugAsNGt+1WdohVj0hcUOrJbZ+lPgdx0dJJMv0hCVWVhKdgM4a5bxvt5yoP4qGoiNWIdljoXFrp5DSewgtNhVQVHVKKrBjlnZdSSNrMPstkYiEYXJt6ym5/NfYOpQClmHo43taFLEPH7yLavRkCHgcq/d8QRqtglZh77cTjo/filn3fMTJpfk7mtoqxu51+54giP9EWQdiBzkie51XFya55npXmQdepo66kZeK0++/RKyLiNHUuxP9rC26wnePW8lsg56UedIMssUy0IRdLb1GPfvqR1NaEUdMBTXhZONe337wVTg31kjcSSZRdZhSiJqyje9KUb3oUEO9WfrTubtB4x5XjilCTTdbP942rRmZB227EvWncyHB4w57kjETNmmJqLIOvQmc3Un73hUI2+o2FXBpnW7aE60eD2Mmth6IMXyrMKcnMKGJ7rR5TPpO/s6mlSF5VmFtvg8uuetACQira2kpcVIT3R7Peya0HSNdZtfZ/nQBQDEDy3jpaREy9nX0SDkjs6uC7k1XeOZrZ1c0HsBxaxCRG7j2cc66Tj1AwycfR3tapTlWYXWxgV1Ia8VTdfYuXEvy7MLkbUWovvezbOPdTLt9DO4XIszlC/y6hPdw6w8QWdPdy/LswpnpGU2WOav9UiG5VkFZWtq2O/rhdn7VSblFQY39bKhy7BKnt4HUlah5+WDbNhfX9n9Xbv6WJ5VODUTGTafU49mWZ5V4M2Bupvn/u1HWZ5VmH9INWVLZgsszypESs+y5O0QXSWdqbzfdeiKPcFIDhn12lpLMSiSLJNYtoxEwTBtDyoNpSN1EsuWIcnBv0W29XeRypXcM5KGLqkk80kOLj2JBtVYAIYiIvA42HJv6+8ilU+iF43yAFJkkGQ+SVdyB4lly2jJG4kz6WgjOhJBl9fKtv4uhvKlbgtSHtBJ5pNs6++iqdRWbDBXX90Y+kv1F9sbhwfOTyoF0vdl8tRbkqimw1DB6Doh5hUwW8cN1WHHjb6M8Z6adEyChHBT9mUKpdjS+mGw1PowES/bnxIx4/+Lmk7+BLPYVUNosauC866aR2trsAORH30sxfp9Ku84dzJL/3Q+APpVc9j89Lf4QsNyAFbvf4H26VNYuPpeJCXYt4iqqdz9i9Xs6YiQyVyIFO2jec46JCQONr/J3c8prG9YBkjctudZErNmBFZuIWvP7B5SuTPRZZXGGS8QbermYONmfn7zf7Hzyfv5fGwZmhzh44fWM2tKc2DltSJk39l2DvniAqKT36JhWmmeGzfTNvcL/H5nhvef3c7SJbO8Hq5tfG3vAV7pVbnuXTNYem5ZLrWosbpzO0VN58sXz2Baa8MY3xIsegfzvPy7LQA8tGoh0YixKflDg8r6Q0eYOzvO0pXzPRyh/XxtzwFeaVC57uKZw+ZZ13Vue30n6VyBf3jHVBZNC7ZHycr3Dh9h/VGVay/oYOmyuebvb9rQRTqn8sXl01hgiTesd5LJyuMog/02d5mIIhNRgm3ZOJTOo0kwY1JjWRYlxrxbPknT84OkYk0cjTdz2q03ozQEP31+7fan2JvZQ1E7A00CWUmjycaOfk9mDzv/+i+QXi1SlCMkow0sCLDcQlZdgqLaDhIQ76Uoq+zJ7GZdz7P8ya2fYtKzSQ4nJtEXb+K8AMtrRciuasvRJNCVlGWedxOXetEkib5sIfDPsJVdfUNoEsyb1jRMrogiM62tgX39Q/Skc8wsdVmpB9KFIpoEzXGFBos1p70ljiZBb53NMcDOvgyaBAunNx8n29ypCd7cn2R3f5ZTZ7WN8g3B43DGWKumtTcMk3lyS4xkXqUvp3Jync3zWFRzT/vqqrzwwgusWrWKWbNmIUkSjz322JjH9/T08KEPfYhTTz0VWZa57bbbjjtmzZo1SJI07F9DQ/3sXqvlYKmW17SW4XFGrddey1TVcNP1n7SI1muucX1sdqNqKg90PoCEhKYaOztJSZt/l5B4OPIybaqROj8YYLmtsurFBOhRQENSjKxfCYkHOx8ksXIFUzXjHuibE1x5rQyTXTWyQSWlnA0qIbEz/QZAXbWOy1p6Zs4bQXGr11Zq/SW35LElTSY3ldzPddY9J6cWzUxfa+azYN4UY+539dZXn1zRBUnMq0AkPx2pw+xnu/CVYjc4OMiSJUt44IEHKjo+l8vR0dHBXXfdxZIlS0Y9rrW1lZ6eHvPfrl277Bpy4DiUFMVbhyu3kqIwfeYUAIor/yzwrjmATYc2sS+9Dx0dvWgodnKkrNjp6OxN76O5zZBV+/MPBFbuYbIW2gFDiZVKVitD1r109v6ROSdNByB75crAymtl+Dwbip0cKSt2OjoZzeibKpSCekD0Pm6JK8ctflC/XVX6S3HC7Ynhip34ua+O5hjg4IDxzo4r8ojzPG+Kcc/vOlpfpW0GSpuwScfM89Rm4xocqTMF3k589VZfuXIlK1eurPj4+fPnc//99wPw0EMPjXqcJEnMmDGj5vEFnaKmm614jrXYAUxfMAc69zN4ymK3h+YISzqWcN+l95Ev5vnpSxLPH4bLFlzAe96x1DwmFonxiNrG7m1HyZx5noejrQ2rrK91w/e74aRJLXzm4i+Zx8QiMZZ0LGHuGQn4XTf9c0/2bLx2YpX97j0SvcCnzv8rFkwvH/PCmwr/9ZJGbx0tBnv6Sh1kJieQpOPzA2cJi12dKXYiAWxUi10dWWUB9peK8c5qbxxxnueXLHbdR+vHYlcoaqRyRvLEsR01Qovd+PhKsXOKdDrNvHnz0DSN888/ny996UuceeaZox6fy+XI5co3TTVBi37maDqHpoMsMWItL1EG4midLH6xSIwV81cA8OTvNwI9XDTnTFYtWjDsuKdaOoFym6IgYpX1yIGdwGbOnDGTVYuWHnes6KF6MFkfRT6tsn8u/yRQ5D2nXsH8qU3mMYWBvfwXr5lZpPWAKNIqLHPHMnuSaL9UX4qdmQl8jCVHZIz2Z4xC1LJcH8UwxPyNNs/CYre7jix2A0Pl57S1YbiaUl6nQsVuNHzlinWC0047jYceeohf/OIX/OhHP0LTNN75zneyd+/eUT9z77330tbWZv6bO3fuqMcGCRGnMbU5TmSEl554YI7UYbP0o+nhLYisdNSZ3OaC33Z8PA7AjDqt3p4tFMmUyp1Mbh69/Ee9cKA0f8eGVQjKFrv6mmeh2LUdU+JFKHqabtQ7qxfEczpzlOf5pFJ85d6+obrprCLmuKVBQYkMV1OEa7aeNml2U/eK3UUXXcQNN9zAueeey6WXXsrPf/5zOjo6+O53vzvqZ+68804GBgbMf3v27HFxxM4hLDTTWkcu0GrGLgTYcjUaZtPwEWJU6i3oWrjeZraPoti11pfFTiAszdGIREt8+C5/UpOw5tTPYnDAXPBHVuzmmMkT9eOiA+gfMub5WItdXInQXJr3enLH7usvu2JHYlpLHFkC1RJqE3QGhkau2wflebda9UKGU/eK3bFEo1HOO+88urq6Rj0mHo/T2to67F89ICx201tGXgiENetonbwcrAiZRnJBmy6cOnlR9IiFYJQFXyh2Bway6HVUvbY3Xc6iOzYWSezy6ynGTmTEjmaxE7XrklmVbB0V7R0YJcYOyot+Pc3zeM+zEpGZVnqn14sVfjR3O5SLcdfTJs1uTjjFrlgs8sc//pGZM2d6PRTXGddi11RfLkmBpunmYjCp6fgXRVudZdOJBumjFaWd2mK8GHOqZrou64H+MXf5xu+GCsW6UXIOjOOia21QiJVqXx2uo0DzAbPbxvHP8uSmcpxdvXCgVMlgxiiKHcDMdqHY1Uc8ZdndPvr7WjzvIcfjK8UunU7T2dlJZ2cnADt37qSzs5Pdu3cDhov0hhtuGPYZcXw6nebw4cN0dnayefNm8+9f/OIXefrpp9mxYwcbN27kL//yL9m1axcf//jHXZPLLwiL3bRRLXbGS/FoOl83sRoAqZyKEGekF0U56Dr4O0Bd181FvGOUnqiJmEJD1Hj0j9aR233gmHZ5VlobFDOutB7mGcoWuxltI8+zJElm9vuhOlLsRit3YvzOeJbryWInNtpj9TgW7vj9dRJPWZ7jETZpjWGM3Xj4Kiv21Vdf5fLLLzd/vuOOOwC48cYbWbNmDT09PaaSJzjvvHKJig0bNvDjH/+YefPm0d3dDUBfXx+f+MQnOHDgAJMmTWLp0qW89NJLLF5cHyU9qsFc8EdIIACYUrLYqZpOMlsY8aEKImKH3xiNEFcix/293QzGDf5ikM6pZAtGD0WhqI/ElKY4+/qHODKY46Qp9dGVYCwXnSRJTEpEOZLO0zuYH9P6EQQGcyqprFEOYjRXLBjP+t6+ofqy2A2NnDwBMLnOAus1TTeV1JFKVAlmmglR9WKxK8VRjuhuN+Y9lVVRi9pxyRUhPlPsLrvssjFjftasWXPc78aLEfrGN77BN77xjVqHVheI5IApIyQQAMQUmdYGhWRW5Ug6Xz+K3Rg7fOvvB4YKgS+TIJJEmuOK2TB7JKY2x9jXP1SfFruG0eY5xpF0vi4UeGGta44rtIwiL5SttodT9WHJgbHddO11lv3cl8lT1HQk6fgODFaExe5EiLGzlj9JZtUxr8uJSqjqnkD0jtKixcqkOoxREbEYIy0EUA7G1XRMK0hQGc8qKxBJJPWUKJMcMuZutHmeVEfZdOVSJ2PPs4inrReLna7rZsbkiIt+ae7rpdyJiJedlIiNaZmaWWcljPrHsL4rEZmWknJXT+uUnYSK3QnEaL33rJR3vPXxYoSxd/hgWCqbYoaLNug7/cNmrcKxd7HCalsvxahhbFcslC159aDYHTTj68Z2KXc0G3+vlxi7TL5IoWh4acay5gglP+gcSZXKNI3zPIv74EC9KHaZ0ROhoPyM10slA7sJFbsTBLWomQvamIpdY/3EmwnGCrYW1IsLR7jcKrfYBVteK+VWUyO7oOvJmiMC6kdLkBHUm8VOvMNiEZnG6PHxsmLBrwflHSpLnIDhRdbroYRRxeEzdWSAsJNQsTtBEBY4SRo500hQj1W9xYLfPkKwtcBMoAj4gnC4wgVfWADqqS3PWFmxUF+LvlDIK13w68ViJ95LrY3REfum1pPyDpUrdtYSRulc8K2VY8XYgaWWXVjyZERCxe4Eoc+SZTRSOzFBvViurAjrY9sYFjtrn8kgU2mMnbDa1pXFLjueK7Z+3HSHxyi4baXDLHdSHy668hyPYpUtuduTdaC8Q3mex1PsEjHFDCeph85B5jt7tE1aHRog7CRU7E4QxAI+aZwMonqxXFkZL8YO6udFcaRCS86UOuuPCxXE2NWRNUc8z1PGib0S3WR6B/N14aITyU2jZQKXrbLBV96hHGM33kYNynMddLe7pumkSlbHUTPcw1p2YxIqdicIwgI3WqkTQb1YrqxUEmM3yew+EewXRcVZsU311xe4UsWuLlyxg5W53CeXnudCsbxYBpl0rtwcfiRaS5a8elDewWqxG7+kR0edbNYyhSJiDzKaAl9PtUedIFTsThBE9uNoWUaC9jqxXFkZb8GH+lFoq3XFDgzVhyVH03RL8sTYWbH14KYTlpzxLHaNsYiZZNBXBxnQ6ZLFrjk+smIn5j6vanXROu6IyHKvxGJXJ4pdqqSUR2TJ7JBzLOazHPDyVE4RKnYnCL0Vum7qsdxJubfk6LK31YFpX9d105IzXuyVUOALRb0u+sUO5stt48ZLngj6YmCd5/Fc7lBW4uuhzVZyHMWuKaYgQojrQYEXcyb6eI9FR524YsvudmXEBBnjb9HSscGfYycIFbsTBOGKHa9K96Q6NHH3j1HQVDCpDpJGUjnVrPE1eRzLbGM0QqxU8LQe4inNMhiKTMMIZTCg7KYLuis2mbXMcwVV98UxQb63BSLjczQXnSxL5t+CPs9gSXob490lqDeL3Wjuduvfgr5Jc4pQsTtBqNgVK9LIA2y5OpZKkifa66ArQf+gMfaGqExjbGTlRiBJkiVhJPgLfiXudtNiF+A5hvLC3RJXRlVirUyqowxo0xU7xqLfVidJMkP5IjnV6Ps8XtIbWC12wZ5noay1xEd/loVilw4VuxEJFbsTBLNP7Hiu2CbjYRoqFOsiRiVbKL8cxyp3Ug+Lfq+wylbY41dkltVDkc9KFDvhos0FPP7KrGFXQdwVwGQzMSjYCz5YrDmjuGLBkkAR8MxYMV/RiGSWMhkLkWBxOPAWu7IrdjRMV2wu+O8uJwgVuxOESi12LXHFrHNXD1Y7seDLEjTHxloMgh9/JRaCSnb3UF+lbcQi3jrGYtAcUxAhO0G25oj+vuNluAsmN4mSJ8GVWVB2xY5vsQuy9R3Kz3NbY2zUWDMrIq62N+BFx8uu2DE2aaX5D3pvb6cIFbsTBNNiN04QriRJ5RpBdVDV2/qSkMcozGzNmAxqlmhfhcq7oK1RZMYGewEExs2IBSP+qjzPwV0QjpjFiStV7EoWuzpInkhV4IotZ0wG+74WlvRJFcTXWY/rD7gCL+Z4rE1aOXlCDez72klCxe4EQNd1M7tqUtP4LwlhyekL+AsCIJ0zXG6jZdEJhPtG1YKbJVqe4yotdnVkmR1LsYP6SKCotAi1wIyxqwPFTljsxnqehWIX9BCDPlOxq+x5FscZSVSaY+NymnRFrljjb0VNZyjAYRVOMfZqF1IXDOaL5EsP+mhZdFo+T/rXv0bP52kakgGJg7/9HQNvlo+RYjGar7gCOVbZi8YPCItdU/z4GBWrzLoOiiSj6hL7frmW6aU1M0gym67YMXb4Vpkb9kuAzMHXNzOQLE90kGQWCEVtLPcNGIrfHoYCbc3pNa3vFVrs6iDjW1BJ/JWIpQ3yHEN1GbFghJPIEmi68dlpLQ1ODs8xKnHFJmIRIrJEUdNJZVUSY4TZnIiEV+MEwCwFEZHNYqXHMrSpk3233Q5A9KKPw/TT2f3//ov9e14ddtxJDz9M04XLnB2wjTy/az0gk9dTx/3NKjNA08p7GIg3s/0r36CYOmD+Pigyd/Z0ARKHc93AWSMeY5VZPvVPYfFKDrz0B/Y/+NNhxwVFZsEfD20DJA5muxlNdqiPIsXlBb9SV2xJsasji10l8VdBtspCOVu9UotdRJZoa4zSlynQnykEWLEbX3mXJInmuMLAUIFUtsD01mDK6hShK/YEQCxirY3RUYNwE0vPJzpnDkgSTYUhADJRy8MiSUTnziWx9HzHx2sXqqby+PZnATic3YOqDY+rssoM0FySOy3kDpDMqqby+sEuADYeeeE4WQVWmVtK8qZiifIBAZJZoGoqnQe3ALDpyMujyg71odgJhaWSsAqwFCiuA4vdeJ0nwJrhHtw4Sii7YtsrnGcoK4FBLkadHKcfsCCsZTc6ocWuCoqqRlENXuxCXzqHrENbQ2SM8ctMvmU1PZ//As0F4/h0NIEmlS18k29ZjYYMAbkGa3c8Qf/gELIOBS3J2q4nuHbhtZYjyjIjGYqdIXeTKXdQZF674wmy2QiyDqnCgRFkFZRlbspnj5MXgiOzYO2OJxjKaoYs+SNjyA5tcQVZh+RgIZDPMkC/eJ5jSkUytFpkzuVUlEgw9/PZQhFV1ZCBRkUeVfaWmCFvKpMP7ByD5b0di1Ysx+TGKN069KVygZU9nckj69AUHWu9Kt/XA4PBnudKqUbGULGrgk3rdtGcaPF6GFWz63Ca5VmFGUmZDU90j3qcLp9J39nXMSs2g+VZhXjbmXTPUwCJSGsraWkx0hif9xOarvHM1k7e0X8OalYhwjSefayTaaefgSyVFzYhczGZ4iytjSlZhcHpy+lunB8YmYWsy5KL0VWF6NHFI8oqEDLHijGWZxUmRWfRPW8FQZ7nZQOL0PIKSu9pY8o+bW+W5VmF7Ot9bBjqdn/ANjB7v0pLViG1qZcNOzLjHl/UdZZnjVf9+sd3jhqO4Xcy+aIpx1u/3sdoSe65I4Mszyp07MmN+b7zO4lthhwN21JsyHRX9JnT+3RiWYX9Lx9kw+6sswN0iOn78qVntJcN+0Yv3XJmP7RnFfb97gAbugbdG6BHpDPHhxONRjC3biFVIQr0xpWxp1uSZRLLlhErGi6AvCz0fp3EsmVIcnBul239XaTySXS9JINUJJlPsq2/a9hxQmbQiRUNk34+EiVIMgtZ0UquCzk/oqyC8jwb7pq8LFwewZFZcPw8q2PKHlcMpSanBjeTLlsaeyVdJwAikkSs9OxnC8G1bORL77GYIo+q1EH5PZcPcGYoYGZ7VjrP1mODXIA7X+F6Jf6eOwGsddUSWuyq4Lyr5tHa2ur1MKrmj7/rZv32fUxZ1MTSlfPHPFa/ag6vfPRZ1jcsQO47xAd3P0109mwWrr4XSQnG7aJqKnf/YjU9s3sYOhinoM0hNnkrDR3PcrBxM4+ueBRFLsuiXzWHHU/+M49nmljfMYVFmR2cUnwrEDILWffP6iGVuhhQaZr1LJFockRZBfpVc9B+/RDrGy6gQSlyW8DnOZ0/HS3XROP09USbdo4q+5b1Euv3HaR9RnTcZ8GP5FWNF17cAgp8c+W8ihMotr/Rzb7+PJ+5sIMlc9qdHaRDvLl/gPUbu5jR2jDm3DUfSLL+jW6mNMp8M4BzLLhz6y525lRu/ZOZLF0wpaLPPCNlWd/by5nzGwN5fwPctLGLfl3lHy6fwynTR/eQ/Xt6gPWpAS49rYWll8x3b4AekUwmKz42GG9wnxBRZCLj7CL8SDKvoknQmoiOP34lxqw//RO0LkhFG5A1lem33ozSEJzSF2u3P8XezB6QoajH0CTQIlmKssqezG6e3vMUqxatKn9AiTH91ptJPPxbNAkGo/HAyCxk1YmhScbjrEdTo8sqUGIs+thfor0CmWgcFZ05AZFZMGyetTi6BLoyNKbsbU3G/ZDMFwP5LKeHCmiSke8zqTk+ZtFtK82JKNrAEKmAyg2QLhTRJEg0KmPK0NYcR5NgIKcGVlaA3tJcT2ltqFiO9mbj/u7LBlN2XddJ5oz1qq05NqYMLYkommTcF0GUtVqqkbH+r0aIWc+pdZzirYLpF70DgIzSQHTuXFqvucaxsdmNqqk80PkAEqUFTzMK0kmyEashIfFg54PHZU62XnstrSXrR6Z9aiBktsqqF5uMX0p5JNmY79FkFcxcVZYxP29RIGQWHDvPulbKZB5vnkUf0YDWOOs320yN3UnlWNpKcvcHODO2ksK1UM6YzRe1wLrcNU03s5/bK3xvQzkrNqilbbIFDVUzOklUmhUbthU7nlCxOwEQaf/jVeUXtJbajqWjjXTcujowrjmATYc2sS+9Dx3j5aALxS5iLPg6OnvTe9l0aNOwz0mKwsxLlgOQP3VxIGS2yioUOylSDqYfTVaBEovSFDGuU/wjHwuEzIJhsuuAZixokmwEjI8me0vAy51U241A0F5qHxdUuaGyrhPH/j2oi34yW6Ck31TsbgeLYhdQBV4UJ5YlaIqNHVvYUiet45wgOG/ykAkjdn6t4+yABMKyNzRlGq2rrnZsXE6wpGMJ9116H/lSYsDXfiHRPQh/deZ1nDP/OgBikRhLOpYc99lpy5bCzk6G2qe6OuaJYpV18x74djfMbmvjcxd/yTxmNFkFrc2NDA5k0d95iQsjtg+r7HkV/narsUe95113IrzJI8neaukxGUSsFrtqEMcHuWhvJYVrwSjU2xSLMJgvks6qFbde8xOizV9TLGImvlTCpIC3CUxa6hSOVnNVIO6DdECfZScJFbsTgLIrtrLpFotfuhC85sqxSIwV81eYP/8LzwNpLp93Ee9cNLbCFrRWRFZZi8l9QCfzJk1l1aLlFX9Ha0OUnoGs2VM3KFhlP5zKAc8A8Oen/Y8xXZRWV6yu6+MuHn6jv8rG8AJxbwdZsavUYgeGNWcwXwysAl9p7+NjmRTwYtSVtBMTtAR8k+YkoSv2BCBZpcVO7ITUOmiwLBaDpgoWA2GpDIpiZ2WiC4FZvT3AC/6gZcEfL+5MPAOFoh7I0h99VbaZEtSXxW78e7xZxF/lgimvkLXSuGiBmOdUVkXXg7cxr9Qqaz0mqHPsJKFidwIgHpZKF33RYBmC35anKsXOjL8Knsy1KnZB3vWW53j8el/D7u0AKvD9Yp6rtNgJBSGoLjqAdGkBr8xiF+z72vSyVLgZF4jji5rOYD54m3JToa1A7taAz7GThIrdCcCApVdsJUiSZHkxBnch0HXdtOZUsgO0uuk0LVi73WrnWFAPAcjVKO9Bv7erbQwvaK8ri9348yyUv6DGX5X7e1cXLdUQlYmVWsYFca7FM9lc0RyXQoYCOsdOEip2dY5a1MyFr7WCh0XQWgcLfragmZll1VjsdB3S+WC9LKpNkBGIhSPIu15Tea9gjqF8jQYCaJntGyyVwKg2xq4OFLt0tvIYu3KSTDDlTVYRa2ZFkqTyBjWAc52uYiMuLPTiMyFlQsWuzrHe9NVYc8ovh+A+NNbYi0QFbXkaohGzTU3QXorJCbtigx+AXI3FDoJdy65/yLDYVVMCA8r3RdDuayupXBUxdsJiF9BFX7x3q9mMC1oDPNfJCVhlc6pGIeDt4+wmVOzqHLFDT8QiRCOVT3dLPPgWu8FSpmdTLFJxMdfySzFYC0LNyRMBnudqFTvz3g7gwjfhrNg6sNiJzUclbrqgx9ilqiwqb6VskQ7eXFeTFWt93gcDqsA7RajY1Tnlnd/EXHTJgL4YwZItWZULOpiKzsQVu2C7rGACrtgAu5+FYicKDleKuC8G88XAWjeqSZ4oZ8UGb46h/N6t9r0N1uz+4MleTRxlNCKbHpagWmadIlTs6hyhoFS74LcGvEI/VG/JgfJLMWi73YmWR6iHzDJRg69iV2yA40fLrtiJZcVC8O5tQTpbuXsy6CEG4r1biYJzLEF2u1djsYOykj8YsDqcThMqdnXORLOr6iJbsopga0FQFdqJWuyC3okByvNcsSs2oGVtcmrRrL1XrQIfkcvZwEFU7HRdLxcorkSxiwc38xmq7+9tpTXA85yqQnmH8jMfWuyGEyp2dc5EsyXFyzPIsQuDpczWpljlil1bAN0Y1sznidexC94iIKimpA0EN3nCqnxXs1kRBDnOzgiQN1Lcq6ljF9RSGBMNoQHrOyx481yNKxbKil2Q1yknCBW7OmeiO7+WgNeBAqra4QuCWCrAqoRWm0VXtswGeJ5NBX78zGcIrpXSdM/FFbPIcjUEWbETcyVJlW3UmgMeYlBtG0grQQ0ngYm4YsOSJyMRKnZ1jtj5VWvJKZu4gxu7MFhFb0lBEOOvxILfFIugVJH5DMMtdkFsQQTVu2KDWg4iOcE4SkGQY6/MTVps/LZxUFYMgrrgV9OB4ViC3EGnmjp2EPyyNk4RKnZ1TtkVW93OT+x40wHuw1de8Cuz5EAwd7sTja+D8gu0UNTJqcHMlqzWFRvUEi9la0b1VhwoL4JBtGJV05EAyrIGbY5heGhFTckTAZS9XMeusndZ6IodmVCxq3Mm6ooVJu4gZxtVmy0JwUyemGg7MTDcWsIAEsSFACZQoDiwrtjaLHZBzhStNhGqtaFsyQmaJdpqfaq28wQEM5wEjOSgfGlzWek8N4eK3YiEil2dk5zgom/24QvwA1NtfTMIZvJELRY7WZYCbcmBGjpPBGzhm2hjeEFLgK3wqSrjZcVxum7U7gsSQoFvjEaIKdUv0UF1uU8kOageQoacIFTs6pyJZsXWQx8+M6i+qjp2wVv0aymNANbyH8GR2Uq1sZRBjKMEyyZtgq7YIHdjSFfpomuMRswEk6AlgNWSOAHW+ztYcqcsVtlKk4PKil2wnmWnCRW7OqcccF1ltqSw2AXs5WCl2qB6CLYrdiIWOwj2gg/lcIFqFbtsQTNdP0GgdgU+uPNsxhdWOMeSZLVEB+dZhtots+L+SOdU1AB1GZlIDGk9hAw5ga8UuxdeeIFVq1Yxa9YsJEniscceG/P4np4ePvShD3HqqaciyzK33XbbiMf913/9F6effjoNDQ2cffbZrF271v7B+5RkjRa7oUKRohasGBXBRLJiTzRXLAQ35gxKcTmlxatSBd7qzgvSol9LY3gIeIzdBJ5lU5ENmNdBzPNEk2Rah93fwZG92hp2UB8hQ07gK8VucHCQJUuW8MADD1R0fC6Xo6Ojg7vuuoslS5aMeMxLL73E9ddfz8c+9jE2bdrEe9/7Xt773vfyxhtv2Dl03zLRlmLWxS+oD81EFoMg7naTtSp2jcG0bMDwnXqldewismRafoKkwNdqsQuqBQvKyll1i34wLZS1zrMSkc1nIUjZ/dXWsIOyASJMnhjOxLYEDrFy5UpWrlxZ8fHz58/n/vvvB+Chhx4a8Zj777+fq6++mr/7u78D4H//7//NunXr+Na3vsV3vvOd2gftY2ppQRRXIkQjEoWizmBOnbDS4CWDE4ixazlmtzupqbpm615QqyUnqAsglF/ojdHqavi1NkZJ5dRAudxrqW0GQXfFTqDYeEMww0km6mWx0toYZTBfDFQc6cQsdmFW7Ej4ymLnBC+//DJXXnnlsN+tWLGCl19+edTP5HI5ksnksH9BRCz4klRdZqgg6MUfJ9IrNmrZ7QblpWi6YqtsDC8Icr/F1ATiKCGYtexqaQxvfC64bquJPMvl7hPBmWOYeFy0lXJmbHDmOjWBOQ7yu8tJ6l6xO3DgANOnTx/2u+nTp3PgwIFRP3PvvffS1tZm/ps7d67Tw3SEpCXguJJq7ccS9Idm0KxjV3mBYghekeJaY+yC3BdYWGWbq53jAMab1eqiaw2oogPVdySwHhu099dEXJLHIu7voLzDwGqxq1zuoBsfnMJXrli/cOedd3LHHXeYPyeTyUAqdxMpXKvl86R//Wv0fJ5ETgYkDv7mtwy0l4+RYjGar7gCOeZfN2Ve1cyg+kp2gFa5mwqG3D2/foF57eVj/Cr3RFw3VnmVPRIg07dtOwO/7DKP8au8VtKiI0GVFrtAlrWpoTE8DO+fqus6klT9Zs8rqi13AtbuE8Fa9GudZwjmZi1lZgNPxBUbZsVaqXvFbsaMGRw8eHDY7w4ePMiMGTNG/Uw8Hicejzs9NMeZyII/tKmTfbfdDkD04pth6kL2rvkR+/f/cdhxJz38ME0XLrNvsDZjfaH9Zt9TvPeUVWMeb5W7oST3rjX/j5P2vz7sOD/KfXhwEJDYeOR3XDB/bDkFVnnVhRfDOe/l8IbX2P/d/zfsOD/Ka+X53X8AZLL6QFWfawlgLbta65sJmVXNaB/XEK3OyuklyQko8C1BjbGrcZ4hmC3VJhJjZ7YUywdvs+Ikde+Kveiii3j22WeH/W7dunVcdNFFHo3IPcROtRoXXWLp+UTnzAFJolHNAZBRGsoHSBLRuXNJLD3f1rHaTf9Q1vgfqcB3X38QVRv75W6Vu6kwBEA62lg+wKdy59UCmZxRjuYn29aMK6fAKm+iNM9DAZtnVVN5csdzABzIdFcsO5StAkGJQSoUNTKlDgoTteQ0xSJIAW0fl66y8wRYk0WCJWs5lnLiFrsguqFTuerlFgqsrmM+HyE+s9il02m6usquoJ07d9LZ2cnkyZM56aSTuPPOO9m3bx8//OEPzWM6OzvNzx4+fJjOzk5isRiLFy8G4G/+5m+49NJL+drXvsa1117Lf/zHf/Dqq6/yve99r+rxFVWNYoAKmg6k88g6tMUjVYxbZvItq+n5/BdoUnPIOgwpjWhSeXc/+ZbVaMjg42vx5LbnkXUZSc6xP9nD2q4nuHbhtWN8oix3SyGLrMNgNOF7uR/d+iSybuzPDmV2VSCnoCxvg1pA1iGrNPheXitrdzzBwKAxV3ltoArZoTWuIOuQyuQD8UwPDBrPMkBCkSc85taYQiqrMpDOM6XRvy72Y8lkVWQdmquQvTkaMZ7joUIg5liQyRaqlvVYmmOG7OlMcGRPZwy5m5TK16uoZCgxmg6pwTwNVWTGB41q5tFXit2rr77K5Zdfbv4s4txuvPFG1qxZQ09PD7t37x72mfPOO8/8/w0bNvDjH/+YefPm0d3dDcA73/lOfvzjH3PXXXfx+c9/nlNOOYXHHnuMs846q+rxbVq3i+ZEywQk84Zkdy/LswpzD6hseKK74s/p8pn0nX0d85SZFLIK0qRz6NaaAYlIaytpaTFSFd/nNpqu8fprXSzPLkaKxIjtezfPPtbJtNPPQJZGf/CF3CcpM1meVYi0n033vEb8Krema/z2jc0sz54Lkka854qK5BQIeSPFGMuzCpOUGXTPW4Ff5bWi6RrPbO3kHX1no2YVIsysSvbErkGWZxWUt1JsULqdH3CN9A8VWJ5ViEZkXnt69/gfGIWLslGSWdjy6730tTaM/wEfoAOL+0DTFfa+dJD++NHKPtiTZHlWoXXnUFXvP6856YBKS1ZhYONRNuzITOg7WnZmWJ5VkLck2SB12ztAh5i6J8fyrELhjT42HKzcynpJIUZO1ehct5vJieBsVqolnUlVfKyvFLvLLrsMXR+9y8GaNWuO+91Yxwuuu+46rrvuulqGFkhyJQ0/XmUjaUmWSSxbRvT1PQAUZHGb6CSWLUOS/b0r2tbfRaZguBeRioBOMp9kW38Xp006ddTPmXJ37gQgHxEuAX/Kva2/i1TekFOSVCqVU2DK++KrABRkYa3zp7xWDNmT6Hop411Sq5JdPBO5QjCsGWKc1T7LxxJTDF9skFqpqUUdrfSej1Uhf0wx7ue8GiwXXb5oyBqtwfokrlM+IEXWoTxPYt4qJabI5FSNQoDuaafxlWLnd867ah6tra1eD6NiHn0szfoDKsvPmcTSy+dX9Vn9qjms++T/YX3DbCbl9vC+3U8TnT2bhavvRVL8e9uomsrdv1jN7ilTGMqdTaTxAInZ65CQONi4mUdXPIoijz5+/ao5vPSx/4/1DfOIqwe4zqdyCzn3dMTIDC1Fih2luQo5BfpVc8j+5hHWN5xPm5Tnb3wqrxUhe8/sHoYOJCjos4lN2UzD1Ocrlv3wGwdYv3M/xSkyS1fOd2fgNfDS9iOsf30Hp0yP1zTe+/b08OquDH+5ZDJLzxo9gcxPHE5lWf/yViQJHr5mQcWlmwo7jrL+rd0sbIvx1QDMseCv//A2GanI//3TOZw0pWlC37F74z7W7+ohOk0JxP0N8OnXdnCoqPL3l83izFltFX/urrd303Uoy83vmMrShVMdHKG3VFNP159vbp8SUWQiNe6Y3SSZU9EkaE1Eqx+3EmPaRReg7YJMNIasqUy/9WaUBn+butduf4q9mT2oTEeTQIrk0GRjJ7gns5un9zzFqkVjZI4qMWZd9i607ZCKNvhWbiFnUT8dTQI5kq1OToESY+4NH0DbCOlo3LfyWhGyI0NRj6FJoCtZirJasextTcbnBvJqIJ7pdL6IJkFLY6ym8TY1RtEkSBeKgZAbIKNqhuwNCtEK28ZBeY6TueDIqmk66UIRJGhpmvhctzQZ85wMyP0NMFBar9qb4lWNOdFgyDqk6oGRdSJUI1v9XoWQmguaTjn3bACGlDjRuXNpveYa28bmBKqm8kDnA0hIoBnlaqRI1vy7hMSDneNnyE6/cCkA6VijL+W2yqlrRpyUJFcvp2DmyncDUIhEkebO8528VobNMaCX5hm55JKuUPag1bGr9VkWiIzDVJCyJUUZjAl2FwlSZqgouA3V12a0YsoekFIvhaLGUMHYmFbbWSVsK3Y8oWJXx9TaHL4lYSyaGaWBjltX+9Y1J9h0aBP70vvQ0dGLJcWutOAD6OjsTe9l06FNY35Pa5OhLA1GG30p93A5S4pdpHo5Bc2Jcs3GxE03+05eK1bZgbICX5rnSmUv17ELxmJQaz9gQRBLgEyk1AmUF/xMvkhRGz8W2w+IQrsRWaopnrIlHqz2cValrNp5Fp2FgrRZcRr/vsFDamYinSesiBdj8bTFtK66cpyjvWdJxxLuu/Q+8sU8j/1e4tkjcPHcZfzP5e8wj4lFYizpWDLm9whFeKhjJq2rrnZ0zBPBKufTnfCrg3DBzDP58MVfMo+pRE6BEpGJlwKQpcv/1KFR24NVdoAvH5LYm4GPnn09i+deD1Qme6vFmlPUdCITaLnnJna0mYLh3SeCwkR6iMJwBSGdVSfcS9lNhCJm1Byc+D0ZtHkW42yIylUnjTSXlNjQYlcmVOzqGLOZdI0tiDJyNBAVvWORGCvmrwDg5df/COzmnGmnsmrR+FmSVkw3nYov5bbKuXnbVmA7Z3QsYNWiMyf8nc1xhZyaZ9DnRT6tsgPcx3NAhj+d/y4umD+54u+xKkhBWPTtaAwP5XdBUFx0MHGlNq5EiCkyeVUjlSv4fo7BYp2swQ0Lw93QmqZPqFe4myRr2LiIPtGhYlcmdMXWKbqu1+yKbYoFL0ZFMDiBpuECYeHMqxrZgr8VHbstOUF7OQ5O0E0XU2QaosbrLwhdGCbSHnAkTFdszv8yCybqioXhltkgIO7nphoVO6tiaI3b8ysTaScmENcqKHPsBqFiV6cMFYqopbiSifeWDFYArpVaXpDNMQU5IK2XUll7Yq+EEh8U141AjFeMvxqEkjQQgAQKu5InxIIfpHlOTzB5AoInb9omxS6uyEQjxkssCLKXFbvq7++mMHniOELFrk4Ri5UiSzROsNm3eCkOFYITfCyo5QUpy1I5uN7ni366hp2ulXJmmb8tlFbUomYW4Z6I60ooSUFY+JITjDM7lqAljUD5WZ7IPd4csM3poE2uWEkqv8OCYMkyPQ81KO9Benc5TajY1SlmFl3jxOPjrEpREF4OVsqxKhNTaoWVc8DnTeLLgeUnnivW+iKfiAIvrJx+t8qCEwp8cOY5WcM9LrJDg5IxWfY0TOy9ZaVsrQzA/V2D8i6e/aDMsRuEil2dIharicbXgRGHFCtlKAVNsROL/kQVHnHd/L7ol4OOa3TFBvDlKOLEYopcVaspQVCsslDbwmcliIpdLTF2zQEr75IuvbdqdcVCsNzQtcTYBfGedppQsatTBjIi2LrWBd/YOWYC9tCka9z5tgZk0bdvwQ9eZllZeZ+Y7K2NwXFLli3QtVlmxfMQpI1augY3nfjMieaKhWAVaK4tKzZU7I4lVOzqFLuCrROloHS/l8E4llpfkEFR7GoJOrYSxJdjumSxm/gcB8eaIxSTiVitrFjnWdeDETdbizWnJWD13OxKnoBgyV5bVmxk2HeEhIpd3ZKssTixwKzeHqAFv6jpZPK1uTTaAmDN0XXdNotdEF2xtbqtTIudz+Moc2qRfHHiSSJWxLXSdMwWTn6nFmWnOUBWK7DXYtccIGvlRItQWz8ThLIubhEqdnVKrcWJBYkAum7s6LcYhF6i1lZJJ2LsVXkRnJi7vSUgyRPWJJFaF/xELILIpQrKM11b/FVwMp+h/O5qitWePBGkvsDCaj6R9SqIiV9OEyp2dUq5nZg99c0yAXLFigdcqaHfYhBqnImFOVJDSRtBEGtBpWssASLm2O+uWCFnIhapufWZJEnmMx2U8hC1WKWD1hvX1uSJAMleS9a3uFaFok5ODcY97TShYlen2FWpXsQvBMnMbS1OPNFSL6L9kJ+tOSlLRmytrc+ClEEnqDUeKSiuWJH9a8dib3xPcBJlhocbTKDcSeiKDZQrdkIFii3FyYMgqxuEil2dYke5E7BY7AKyu4fa4jUE5eQJ/74o7Cpaa/2OICrwtSZP+Fl5h9o6L4xEkFowWYuj1xJ/FQRZwb6WYhCsdmqpGso2RWSJRExsVoKzTjlJqNjVKQM2JU8EMsauxjIYYC1Q7N9F366MWLC6YoPzYqy1YXq5C4N/5xhqq+M2EkGKpxRKrSRhLt7VYMaZBcSSY+dcNwcwK3aicgdps+IGoWJXp5idJ2zqIZoJkCWn1hp2EIwCxXZ1I4AT0xXb1hgMmWtVYI9FPNNBWARTFtknEm4QtPvaXldsMJInNE0nna/tXdYSKnbDCBW7OsU2V6zpoguOJccOd0YQ6tiVM8lsdMUG6MVoZ61CP9d0syO0wEqQrLO1uqHLMXb+fY6tDDrQeSLt480pQDqvIh6/icaEBzH5y0lCxa5Osc0VGwtOoLXADguHtSuBXxd9Oxd8Yd20xjT5nVrdVsJNp+n+3rgM2u6KDc4zXUvihPE545plCxqFUi1Av5JXtXK9wljtcx2UAsVCeY9GJl7FIIgdVZwkVOzqEE0rZ5LVnhUbnN29wA7FTlg6i5ru20U/VUMbnmOxKg1BeTnW6optiMpEI4Z7z8+WWVO5OQGTJ8Q9XmvsFfg/Y9KqaNcSRiIISkawNVZ4otn9wu3sd1ndIlTs6pBUzmLarrGOnbDYBSnGzg5XbFyRiUWMx8Ovi34qV1tcipW4EjGVnCBYcsCaJDOxRVCSJEstO//KXGtg+bEEye1eq1U6GpHNGo9+X/TF+OKKjBKpfWk2uwbl/W2FryUjVhAkK7QbhIpdHSIUkYaoTFypbefXHOAYu1osdpIk+T4z1s6sWAhenErZMjtx+VuDkCRjg5xWynGz/p9nO7JEmwNS1kbMh12xlMOs8EHYuNQgd5Cs0G4QKnZ1yIBNxYkBErFgLfZQtmTVGoBcLmDrzwWhVjfVsYhsSb9n0QnsyH4224r5dI7B2mGjdvccWBdB/2/WhOy1JAiZGZM+Vm7A3hp2YFjhhdch5ePkkaQdFruGYMyxW4SKXR0iHpRaEyegvGhmArLYg33B5mbWpE9fFikbFj0rYsc8FBDrrB2W2dYA1LKzv45dcNxWdsTLBiXWzM52YoJyH1X/PtN2eB5EskkQrNBuECp2dYioYVdrqROwWOwCsthD7bFXAqEY+9UVW0sPzZEIUjHqoqab/YvtKETt6xg7h1yxQZjncneVGhb9gGSHljcq9lhmIRjZona8x4JkhXaDULGrQ8p9Yu2tb+bXsh/HYrroaiwZ0OpzN53dMXblYGv/LgIC68683usVijpk9tex8/882xJjJ4oU+1zeWrO8R6IpAKE0dvQ1L7ti/fscu4l9d1CIb6jVFavl86R//Wv0fB5VBYigajpHfvErYqWtgBSL0XzFFcixmD2DtpFaYq+ssjcelACZw6+9wUDvH81j/CK7mOemCbRaEljljR6VAYkjr2xiYM9G8xi/yGtFLFQRGWKRiZVIAEuMnY+tOcICbZdlNkhZsWKhrqXUi9j4+D3+yu4YOwhGr1w7QofK93RosYNQsatLxA5ooq7YoU2d7LvtdgCKkgx/9hUAdvx//0hrIWMed9LDD9N04bIaR2s/RwZTgETnkfW86+RVVX3WKru0eCWc+qfs/82L7P/jL4cd5wfZB4ZygMQrh15g8azq5BQMk/f8D8JJF3Dgl4+zv+v5Ycf5QV4rYpEuSoM8vvNxVi2amPzlcif+3ek711LM/4ugHW66clsx/84xWFyxNhQnFjQHIL7QjvaXQQovcIPQFVuHJM2g+okpdoml5xOdMwckiYiuEVfzAAwpceMASSI6dy6JpefbMl47UTWVZNYY78+6foyqVfegW2VvKmQBGIw2lg/wieyD+Txq0bBU/b+3vl+1nAKrvA3HzjP4Rt5jGcjmAJDkPA92Pjhh+cuZz/5cEKzFxk/oOnY1yN4aAOUGnEmeCILb3U6Lnd/n2C1Ci10VFFWNourvtjQAA4N5ZB1aYpEJjldm8i2r6fn8F0CChJqnEImRiTaiZZMATL5lNRoy+Ox6PL79CVCjyMDhzF7Wdj3BtQuvreIbyrI357PIOmSiCTSp7O70g+yPbXkKWTf2ZQcGd09ATkFZ3kbVuG+ySoPv5D2W53a8jKzLyFKO/cmeCcvfEosg65DK5H35bKeyBeRSaGtjRLZljA0RCVmHXL5IPl8kIk/cle00g0Mqsg4JZeKyN0WNOU5nCr6cY0F6yHj+mqP2zDNAs2LIPuhj2ZOl9ao1pkx4jImIjKzDUFb1rZy1Uo1coWJXBZvW7aI50eL1MMalqWuQ5VmF6FspNqS7J/QdunwmfWdfRzGZ4h35OGld4fCsS9GzSSKtraSlxUhPTOy7nULTNZ7Z/DrLsxcAED9wMc8+1sm0089Alio3TgvZG/UEy7MK0+In0T1vBSD5QnZN13jpjS0szy4BqUh8/1UTklMg5O2IdrA8q9DSdCrd81T8Iu+xaLrG9k27WJ49BanYTGzfuycsf/6w8axM3Z1lg49kFKRyKsuzChFZ4o1n9mCHCqZqOsuzxqv/94/vnHB/Tjc45ajG3ILC4d8fZsMbAxP6DmVfiuVZhcT2QV/OsSD+dprlWYWGrkE2FLpt+c6pe7Iszyrk3+hnQ9ae77SbWfvzNGQVBjt72bBraELfkcwWWJ5VUPK6r+e4FtKZVMXH+veJDpkwOdUw6cejEw+ql2SZxLJlgI5ScnOpsgLoJJYtQ5L9d+ts6+8ilRcxgDq6VCSZT7Ktv6uq7xGyx4uGiyAvi/2PP2Tf1t9FOldyRUoqoE9IToGQV8xzQRb3jT/kPZZt/V1kCobbWJKK1CJ/PGrIlvPpLj9fGlc0Itui1AFEZAm51JNTNJ33Izpl+WM1KJ/is3mfzrHAlNWGdmIC8V1+lj2nGibpWjYYsYjxzlI1nWJAqjc4SWixq4LzrppHa2ur18MYl/9v2262ZVU+dfEMli6aOuHv0a+aw44n/5ldxYVsaWjk8v7XOSXSz8LV9yIp/rp1VE3l7l+sZu/0HIOD7wQ5S8ucp5GQONi4mUdXPIoiVz5m/ao5pF74MesbljBFz3HL7qeJzp7tuexCzj0dDWSy5yPHjtA0e92E5RToV81h00fWsb5hEVr/YT7sE3mPRci/a/I8soXTUFp201iD/M0Hkqx/o5upCZl/WTnfuYFPkE17+li/aTtzJkVZauP43tzQxcCQyj3vnM6iaf70Qgzli7z04hYAvrNy/oRjz9JvH2L9tr2cOQlbr6Hd3L//IOtTKte9o4Ol586y5Ts3/VZjfc8hps+J+1b2G9a/RV7SuPfKucyZnJjQd6hFjY/8/i0AvnnZbNoT/sngt4tkMlnxsf55YweAiCIT8bHbQjCQLaJJ0N4Ur228Sozpt95M/LHtaBLkIhGm33ozSoP/Hpq1259ib2YPRX0WmgRSJIcmG5bLPZndPL3nqeoyJ5UY8z/8F2ibIBlLIGuqL2QXcqosRpMAJVubnAIlxvSrLkPbBkNKzDfyHospv74ITQI9Upv8bc1xNAn6sypyREKS/BVvliloaBIkGhRb3z2JBoW+bIFMUfftOy0zlDeeZQlaEtEJz01rIoYmQTJf9K2sAOmC8d5uTkRtG2dzIoomGd/tR9mzhSLZogYSTGqd+HoVUWSiUZmcqpFRNab4UNZaqeba1J/0IWaWkR2dJ1qvvZZEqXhdfuoMWq+5pubvtBtVU3mg8wEkJHStAQBJzpl/l5AmlDk555p3A5BTYugnzfdcdqucFIWcWfPvE5VTMPVCIzZxSIkRnTvXc3mPZZj8Wilzt8Z5FhmT+aLmS3fsoM3dRQRNAWgrZm0OX4vCHZQ6dnb0Pj4Wv2dAi7VKkmov8yKekbCtWKjY1R2Foma2WhLtkmpBUhQmnboIgMifXOYrt5xg06FN7EvvQ0cfccHX0dmb3sumQ5uq+t6WpgZkjHiN2Cc/5bnsVjnLCmxZsZuonIKmRuPaDUXidNy62nN5j2W4/MZYpRrnuSmmIJJC/dgvNmVzDTtBEOp+CUWsluLEEKSWYrW3yDsWv3eeEDVXW+IKco3Z2UEo7eIW/npzh9SMtTWSXa2m2hctgMO7UBedasv32c2SjiXcd+l95It5Xu2Ch/fCyZPncOvFXzKPiUViLOlYUtX3yrJEa2OM/qEC2sWX2Tzq6rHK+eRGePwgLJt9DtdffLZ5zETkFAhLQWHGLFpXrbBlzHZilf+Hz0m80gcrF13OlUsuN4+pVn5ZlmhpiDIwVCA5pOK3cLO0WcfNnmdZ4HdLDliLE9cmu5DVsMoWiSv2WcTsxJHOE0Kp9ek8D4i+5ona72+hxPpdgXeDULGrM5KWXa5d9amazB6i/qxUH4vEWDHfUESSR3YBbzCvfQarFl1Q83e3J6L0DxUY8MHLwirnH9/aAuzgzI6FrFq02JbvN+dZ81+sGQyX/1e/exU4yDtmncOqRfNq+t6WBsVQ7HxosbO764TA75YcsKc4MQy/dumsSrzZf4qdruumC9HOufa7Am8WJ7Zh4yLuk7CtWOiKrTvMhso2xNcJRC/SIDSHT2ftfTm2lbKrBjL+WvRFeyS7rLJQXuwz+SK6z0sG2LkIikXFau32C3a01BqJsivWv4ugXUptRJbMd5hfrTlDhSJa6ZFzpvOEP+fZXK/sUOx8rsS6SajY1RkDImbBxoUgEYBFQDBos4VDJKD0+2zRNy2zts5zuRaUn+ubgb0KvIhF9eOin7J5oyJoDkTyhPHM2dFKze89U63jStRQf/RYzCSZvOrLzVqtfc2tCCXWr25nNwkVuzrDjr57xyIWgUwAHhi7+y22C8Uuk7fl++zCDCy30WJnXVD8usMXpG2MRzItdieSK/YESp6A8nPiR+Udys9bUyxScxKBFXHf6Lo/Q2nMvuY2JPqFFrsyvlLsXnjhBVatWsWsWbOQJInHHnts3M/85je/4fzzzycej3PyySezZs2aYX+/5557kCRp2L/TTz/dGQF8gGhmbscOSJAQ8TgBcMWWLXb27HrbGv3ppjOtGTYu+EpEpqHUicHvL0c7MwhbTFes/2ROOzDPEIwMQjvd0OL6pXyovIPlvWWzy70xGjGzvv2oxNvrivW/FdotfKXYDQ4OsmTJEh544IGKjt+5cyfXXnstl19+OZ2dndx22218/OMf56mnnhp23JlnnklPT4/578UXX3Ri+L5gwMYHRSDM+X7c8R2LnZYcMJInwH+uWGF5aLU79soSZ+dn0jYuhGVXrL/mGCwKrM3zbFo3fLxZK5d6qf1d1hIQV6yd8XUAkiT52jo7YKMrVtwnoSvWZ1mxK1euZOXKlRUf/53vfIcFCxbwta99DYAzzjiDF198kW984xusWFEu16AoCjNmzLB9vH6k7Iq1vxaSH18Mx2K360q8cAZ8qtjZ6YoFI87u6KC/51rTyhmEdhRz9bMr1vk6dv5V4NM2ZcWC/xU7u2ODrTTHFVJZ1ZeWLDtDh4JQdNstfGWxq5aXX36ZK6+8ctjvVqxYwcsvvzzsd9u2bWPWrFksXLiQD3/4w+zevXvM783lciSTyWH/goKdwagCswyGjxcBgWPJEz7LinUsW9K02Pn35ZgpFBFx4C02WnN86YrN2ZdAYEW4rdI+VGYFZua3Dc9y2RXrvzkGi8Wuxu4LI+Fni5145sIYO3sJtGJ34MABpk+fPux306dPJ5lMMjQ0BMCFF17ImjVrePLJJ/n2t7/Nzp07ueSSS0ilUqN+77333ktbW5v5b+7cuY7KYSdmMKqdQfWxcmaV37HfFVsqd+Iji11R0211RVrxe3kEKL+4ZQkzJrAWhLXAjxY7OxMIrPi9NiXYu3kJTPKEAxY7Pz/Tdra/DEqHETcItGJXCStXruS6667jnHPOYcWKFaxdu5b+/n5+8pOfjPqZO++8k4GBAfPfnj17XBxxbQw4UcfOsgj4MWXeit2KnR9dsdadt90Wu0QAahba1UNU0OrTRV/XnVfg/WjFEdhVoBjK1hxhAfUbdid9WWnxsex2xoQ3BSBu1C18FWNXLTNmzODgwYPDfnfw4EFaW1tpbGwc8TPt7e2ceuqpdHV1jfq98XiceDxu61jdopxlZH+Ry6Kmk1M1Gmyss2Q3djdNN5MnfFTuRCzGMUW2vT1SEDoS2NVqSiDcQH7LfM6pGoWisZGyv45dcObZnsxnf1tznEqeML6z5Hb3o8XORkNEs48tk24TaIvdRRddxLPPPjvsd+vWreOiiy4a9TPpdJrt27czc+ZMp4fnCXaatgWNw+qb+fPFKLDbpWG12GmaP6yVqaz9yrugvOv178vR7jhKvyZPWK1pdsde+dk9J7DXFVuyWvlUsXMyecKvpW10XTdDh+zJivW38u4mvlLs0uk0nZ2ddHZ2AkY5k87OTjPZ4c477+SGG24wj7/pppvYsWMHn/3sZ9m6dSsPPvggP/nJT7j99tvNYz7zmc/w/PPP093dzUsvvcT73vc+IpEI119/vauyuYUTLcUismQqd36OycmpRbNjQrNNC6F44Wg6pH1i4neqGwFYStv4bBGwIuS3IyMWrC3F/CWztbuGnUVrodwmMF/UyKv+6zKi67rlPq//UhjlLG9nsmLBf4rdYL5IsbRZDluK2YuvXLGvvvoql19+ufnzHXfcAcCNN97ImjVr6OnpGZbRumDBAh5//HFuv/127r//fubMmcP3v//9YaVO9u7dy/XXX8/Ro0fp6Ojg4osvZv369XR0dLgnmEvoum7JMrK3DEZTPMJQoejrmByr9cGuRb8hGiGuyORUjYFMwdaklIniRJ9YQbkYtX8V+HLcmb2u2KFCkUJRIxrxx3637J6zP/TBqkBk8ioxJWb7OWohW9DMRd+WAsW+d8U6lzzR7NN4SmGEiEYkW5KgxLUbKhgKY8TmzVCQ8JVid9lll40ZnH9sVwnxmU2bNo36mf/4j/+wY2iBIKdqpsXKTlcsGA/NkXTe10H1YqfWEJVRbFyc2xNRDiZzDAwV8EN+dMqBPrECYcnx867XjKO0aRG0Wj5TWZXJTf5QcpxqJwYQjcjEFJm8qpHOqWb2t19IlQL9Jamc0FML5Tp2/nK3C5xMnjATZXym1Jo17BqitiRBWTdA6Zxq+xoYJPyxNQ2xBbEDkqXyAm0XpiUnADE5di+E7Y3+KnniqGIXgBg7u+dZicjm8+KnBIpygV5nFig/B5unbc58bvGpciNwMnnCr11GBjL2xoPHlQixSDBaIjpNqNjVEdZSJ3a8DK00BaAMxqBDL0e/FSm2M/boWIIVY2ffPPuxll3aZsvksQhLmN9cdGC/7FZXrB9LNjn17rJ+p9+yYkXiRIutpbn873Fwg1CxqyOcyIgVJHz6crAiAqPtziBsM/vF+qPkSTnGzv5FoBxj598XoxPdGPxYy86pdmIC8b1+3KzZ2U4MyvGoaqlkk99wtqWYP5UdJ0pzmQq8z2R1m1CxqyPMxAkHXDfi5eDHRUBgvhxtVnj8VqRYWDOcKXciFgH/KvBibHZasvxYy85u5eZY/FoGAyzWHJveZYloBOHE8JPyLjCTJxxoKSYs+36bZycMEUGow+kGoWJXR5RdsQ5acny94DsVY1dS7HzminUiK7YpABY7OzsSCFp8WMvOtEw6ZLHzq4sO7I85k2XJUufMP3MscLaOnbFZ85tC60SXpLDkiUGo2NUR1iwjuwlCtqRTJQP8ZrETC5MTlhyzfZwPF3uBUHhsjbHzYTkM0zLpkMXOry46cKYId7m1lr/kVYsaQwXx7rI/K9avyRNOeJj8XtbGLULFro4QbiQnY+z89nKwUs6ks/flWG4r5g/FLulgVqwIqPfzPDvjihVFiv0xx+BsIWrwdzylE/U4m33afcKage5k8oTfFHhHXLE+ldVtQsWujnDCtC1oDoAlRyxQdi+ErT6z2KUddMVaXRl+zB4Ea4FiO12xpRg7Hy36TlgmrfjZbZV0IEGo7G73l7zi+iuyRFyxf0kWz0mhqJNT/fP+diJ0SHQc8ptV1m18VaA4pDbKpm17plXL50n/+tfo+TxSjwTI9O/cxcAvu81jpFiM5iuuQI55X+A0XVoM7AhAtsoe7QOI0HvgCAO//KV5jFeym1mxNlkmrbIa7/0Img6HHvsVDaVT+Gmehfx2FK4VlNuK+UN5B3t7pY6EnxNlUg6Elfi1A4O11IndZapg+PtwMFckrtjv7p0I5axYB6yyPryn3SRU7OoIu03bQ5s62Xeb0Xc3f9I74PwP0PvmW+z/t38bdtxJDz9M04XLbDlnLbx9dDcgsSv9FnBqTd81TPb2uXDZ39B7pJ/9n/2/w47zQvajmQwg8erh33H+vFU1f59V1iISvPerAOy4+4u05wfN4/wyz8lsDpD4w8EXOHNW7fKDtY6dfxb9tMOu2CafKjrgrCvWb8kTTnYYgXKv76FCkbSPOqsMOBA6FLpiDUJXbB1hJk/Y9KAklp5PdM4ckCQSag6AIWtPSUkiOncuiaXn23K+WlA1lS1HugF4+eBvULXaHmyr7C2FDADpaGP5AI9kLxQLZHKGi/Qn2x6uWU4YLmsEnbhq1OvLKnHjAB/Nc7aQJ68aVo0fv/2QLfKDxWLno0Xf6Tp2fi4NkXQgeaLVrzF2OecSJwR+VOKFYidimO1AxFf7SU4vCC12VVBUNYo+LG4pSA7mkXVoiUZsGqfM5FtW0/P5LxBXVWQdckocTSq/gCbfshoNGTy+Lmt3PEE+D7IOydwh1nY9wbULr63hG8uyNxVyJdkbyMtRFN2Q1QvZf/H2k8i6sR87lNltg5xglRUJmgtZCpEYmWijOdd+mefHtj5lyn9w0C75oSkqI+uQyuR984xnhoxnLhGVHRlTQokg65DJqr6RWZDOFGx+l0Fz1JA3NVTwlbypkqzNNsp6LC0xmV4dUkP+ub+Tg4bcrVHFtjE1KQqyDoM+m2M7qEaeULGrgk3rdtGcaPF6GKMyp0elJauQ3NTLhh0ZW75Tl8+k7+zr0AoRlmcVWqVpdM9bAUhEWltJS4uRnui25VwTRdM1ntnaybLkGeiqQvToWTz7WCfTTj8DWZq4UVrIriZTLM8aj0rXgmtpKBY8kV3TNX7z5pssz54H6MT3X2aLnFCWtZhMcUG+gRQKh2ddCpMGfDXPL76xmeXZc0HSiO//U9vkTyazxv19oMgGj+UUnNars7CocODlQww19tn+/YVDaZZnFTr2ZH0js2DOgQLNWYXkpqO2vcvadg4Zz/HmATbo3bZ8px0c7EmyPKswr1d3bB6WpGRmZhW6f9uDtDnpyDmqQdV0lqQkQGH3Swc4ZFPSSPGA8a6e1D3ku3u6VtKZVMXHhq7YOkK0ymmwMbNKkmUSy5ahlFxeBVlY63QSy5Yhyd7fQtv6u0jlk6CLSH+VZD7Jtv6umr5XyC6hEysaboN8JIpXsm/r7yKVy5YGVwRJt0VOKMsKOopuuIZUKYL/5tmQX5JUwD75RTaiX7IGNR0KReN5jkacufbRksx5H1o2cgVjTHYG+sejYo79Ja/T8wwQK313wSeyi+dMkiBuo9ziOc4X/SGnV4QWuyo476p5tLa2ej2MEdE0nRd+twUtAl9/90l0tDbY9t36VXMoPvcD1je8g8ZCgTt2P0109mwWrr4XSfH2FlI1lbt/sZqe2T2kMkvRizESM36L0nCQg42beXTFoyjyxMeoXzWHHU/+M2+zhAMNU/jzoxs4JVF0XXYh555pETJD70CK9tE8ex0Ski1yQlnW7uICtjQ0cnn/65wS6ffVPO/pUMgMXYAU7bVV/iPpHJ/auB1Jgu+tmIcs25+dWA3JbIH1v9sCwPevne9IJqO0u4/1m3cxpyXKN1bOt/37J4qu6/z2pa2oEZ37rjqJ6W32vMv2de5nfXcP8lSZpT6S95Xnt7O+u4eZi5ocG9f3Dh9h/VCKVWe2s/Qdcx05RzV0HUyx/g/bmJSIcsE18+374l29rN+6m3ktUe7z0RzbQTJZuaU1VOyqIKLIRByoM2QHmWwBFUCC9pa4veNUYpz0kQ+jbYBMNAZakem33ozS4H121drtT7E3swdkKOpxkEBXhijKKnsyu3l6z1OsWlRD5qQSY/qtN9O0tgdNmkJaiTP91o+4LruQs6ifjCaBHMmiycau1xY5wZS18bEuNAmGIlHfzXORU0vy52yVv705hlbS5TJFjbaY/TUCq2FI1dAkw9KScKBeIUBrwpA5XSj66r2Wyavkdb30LovZNjYxx/051V/yqkU0CVoSUcfGlWiMokkwqPpjrpMFZ2Rua4qjSZDM+UNOO6lGnvqS/ARGlGmIKTINUft39zOuXQGALslo8xbQes01tp+jWlRN5YHOB5CQ0HUJ9JICIhsZvBISD3Y+WHPmZOu119IqG6b9zIw5rss+TE7NsF5Ictb8u11ygiFrouSyKnRM9988a0amrhTJmX+3Q/64EjHdOH6oZedEEeZjafJpBqEodaKUynTYRbm7iL/kdTMr1i81C0UXn7aEvZvGlrClGBAqdnWDE8UerSQa48gYZTYaP/G/PHfNAWw6tIl96X3o6KCVXxBSSbHT0dmb3sumQ5tqOo+kKExZaLgv9Cuucl12q5xCsSNSVuzskhMMWdtPOxkA+eJLfTfPQrETyjvYJ79Y+P2wKKTNorXOLfaijEpe1cw4Lz9g7TphZ8HetlKHA790kBGkLQWKnUIoPH5pH9efMUoqtdvcJUnImS9qZAv+UGK9wPu3dogtONGexYokSTTFo6RyKtKfXO7IOaplSccS7rv0PvLFPH1p+Ie3QZZ0vnTJFxHrQSwSY0nHkprP1XHyfDi6m9zC2gofTwSrnL/+IzzaA+dNP50bL/6SeYxdcgK0n7wADu+iuMh9WUfCLflbGxQOp3K+qGVXLk7snEs4MawjgUq7zdaTiZKyuR6noKy4F9A03fM4SsGgw/UKoVyz0C/WWSdq2IEhpySBrhsbNCe8V0EgVOzqBKctdgCJeIRUTmWo4I/dfSwSY8V8w0W87WAKeIHWxhjvOfndtp+rzewX6/6L0Spn1463gW2c3jGPVYvOduR8Zg9Rn+zurfJv32nIf+pU++Vv8VFbsfJi79zCFFNkYhGZfFFjMF+kPeHYqaqi3BrRZsWu9H2aDum86ui7shpMi50NrRBHw3S7+8AaDRbFzmblXZYlmuMKqaxKKlugoyVu6/cHhdAVWyc40Z7lWPxYvVzg9MtR7Cy9duOkXLDkiHnO+CQex4pQeFocsG74yRXrdNcJQblfrPcyC6yuWDtpiJbjKAcy3ivvgkEXXLHNPmu1ZcbYObBeCYXdD8+xV4SKXZ0gkiecVOz89nKwIoKCnVoIyxY7bxeEdM6ZRc9KIlZa7H1isbPiZF9N0XLKV65Yh61KftysiXeZExa1ck9g7+dY4PS7C8pJOH6Z5/4hZ5InIEyggFCxqxucjrEDS2/JvP8sOULhcSrYvK3ReAGJoF+vSJmLnpNum5LFzofzbFosHZC/7Ir1fkFwwxVrfL//NmtJB99lftmgWXEjUabJZ+EVTiVPgFWx888cu01VT86CBQsmlKV022238elPf7rqz4VUTtIVV6z/3DaCtNj1OmThEK7Yfr+4Yp1U7HwWaG3FSbeVnxZ9Jy2TVkzrrI/muuyKtf9ZbvNhyROhbDlqsfNZuROnkiegfN+cyBa7qu6kNWvWTOgk8+fPn9DnQirHjeSJJh/u7gVOWzjKC4LHip0ZY+ZskgwYhWL9RtrBGLuy8u6tVRasMXbuuGL9suCD1SrtRPxVyd3uA+Vd4EaMndis+UXZETF2zih2/gmp8Iqq7qRLL73UqXGE1Ii4icPkCWeTJ/ozBXRdt7W+VjWkHAostyKuoR+TJ5y0WE6yzLHXDLrgngP/ZUDDieWKzalFCkWjPuiJlDxRTvZzLsYu6RMl1gvCGLs6oRxj56BiFxOWHP8t+E4X+RQLgqrpnsrviis27t/kCSfdVn6Jo4Ry8oSTCjz4c7OWNGWv/+QJq6VUvF+dQLwvhgpFipru2Hkqoajpjhoiyq5Yf8yxF1St2B09epTPfOYz3Hzzzbz++uvm7/fu3Us6nbZ1cCGVc6KXO3G6yGdjNEIsYjwufR4u/GkH3VQCM0nGhxa7cuFeJ12x3i8IKRfcc+A/Sw5YChQ7oNT6zWInrntDVEaJOGdnsVp+vd6wpbIF9JJu6Yxi5y+3sxdUfSd9/OMf53vf+x7r16/nkksu4fe//z3nnnsu8+bNY8qUKdx+++1OjDNkHJwq6mnFj4uAwOnempIk0eZxLbtCUWOo1CbH0XInFoudrnu7u7ei67qjltlJCWGx837Rd6MbAViTJ/yjxCcd9D74JVZW4FaSTFyJEI0Y4SNev7/F89UUixCrorF9pYQWuwkodi+88AI/+9nP2LhxI/fddx/ve9/7aG9v59FHH+Xee+9lzZo1PPLII06MNWQM3LTY+WkREDhpyRF4HYNlrRrvRqC1rkPWJ11GAHKqZsYjObHol+Mo82geu6vMJBGXXLFeL/ZWkg66ocXG128WO6cts9ZzeN19ot/MiHWmhV1raLGrvqVYX18fZ59ttPK58cYbuemmm3j00Ue58MILAZg0aRIPPvggf/VXf2XvSENGJa+WLTlO1rHzY2kEgXAvOLkQtpdisLxyxYoXVWM0QtRBt01jNGL2WxzMqzQ6GPtTDcLKIkvOxCOJTZGmG65QJzdJ4yEWX9dcsT6Kpyy7Yp2LsfOLYudGOzFBc1yhP1PwPJRGxLA69XyFrtgJJk/IsvGxWCxGIpGgo6PD/Null17Ktm3b7BldSEVYA4GdCDgW+HEREJgLoYMvyHaPLXYpF7pOgNFvMRH1nxKftFhlnchKbohGaCzJ7XXLKbdcdOW4WX9Y4XNq0bQSO2GVFRtfv2RMutF1QuCXWnZO1rCD0BULE1TsfvzjH9PZ2YmqHv9wNDU10dfXV/PAQipHWDJa4goR2bkyHH502whSDsfYgTUGy1uLnZMyChI+WQSsmJYcBy1pfqhlVyhq5FRDuXGyXiGULZ9+eaatVhZnMp/9ZrFztmOOFb8kvzkdNhRa7Cbgir3kkku4++67SafTxGIx8vk8d999NxdffDHnn38+U6dOdWKcIWPgRqkT8M+ObyTcCDb33GLnYBmIY2mKRTiMv4oUuyF/eyJGz0CWPg8tdlYly+kF32+bNXOOHdqktjb4LXnCeJe6GWPn9Vw7WZwYws4TMAHF7vnnnwdg27ZtbNiwgY0bN7Jx40buvPNO+vv7TTdtiHsIt4LTMUF+jrFzI3lCBPt6teiL3b2TfWIF5d6S/lHiky4UZxa9K72sZScWJKdLYID/eog6mRELmJntOVUjWyjSEPU2ftSt7GfjHIasXlvshGLnRHFiKL8f8kV/zLEXTPhuOuWUUzjllFP44Ac/aP5ux44dbNiwgU2bNtkyuJDKGHCwUrsVa4ydl90XjkXTdFMBcdJNac2a9IKUS0VrwVrLzh8LPlhbTTnobm/yvvuEW/F11nP4xQrvtPLeHFOQJSNBJjlU8HzRdzMrttknrlgR5uCUxa45ppjJX6ms6vkce4Gtd9PChQtZuHAh1113nZ1fGzIOSRdKnUD55aOVymD4JVvSam1wpdyJR26clAtWSYFZy85Xip3z/ZDL3Se8d8W6Mc9NPrHiCMrWHGfmWJYlWhqiDAwVSGYLTGttcOQ8leJ0xxwrfnHFisSkdgfnuDmmkMqppLIFOlrijpzHz1R1Ny1YsGBCVprbbruNT3/601V/LqQyTIudw7FXjZadTzrnnzIY4uWoyBJxBwpeCtp8Uu7ElRi70iLgp/Zxogi3o67YkvLuZXcRNxKBBMIym1c1CkXN0TI6leBGPc62RkOx80MCRVmJd/5d6heLndNZsWC8IwzFzh8bFrep6s2xZs2aCZ1k/vz5E/pcSGU42XfPiixLNMUiDOaLDOZU3+yEBi0LoZPuYeGm86oURsqFGDOBmS3pk9grsMrv3H0+yePuIuBO6R6B1VKUyRVpS/hDsXNy0TdLngx5f2+7mTzhF8Wu34Vkv5aGKAxkQ8WuEi699FKnxhFSA04HHFtpiiuGYuerBd+dhdAsdzJU8CTG0FVXrI9j7NwoQu1l8oS45m4o8DFFJhaRyRc10nnVTC7wigGHuxKAv0qeuJo80eCPZ9rMinUoeQKsJU+8n2MvCFNY6wA33BcCvwVbg3vtl8T1LWq6JwVOhZxOu9yhHHvlp3kW19yNOnZeljtxM3kCrHPtvRLvdFcC8FdbMbFBdqvzBHhrsdN1nQGHkycgrGUXKnZ1gHApOJ0VC/4Mqndr1+t1ZwJXXbFmjJ1/5tmVciclS5GXi37KpXZiAmGd9dpFB84nT4D39SituJk8YSp2Hio7mXzR7PfsrGJXqlcYWuxCgoqbFrsmHy0CAjcXQi+D693sPFEud+Ifi507BYq9T54YdDF5AsoLfsYHc+1GjF27GVLh3RwL3HS7i3lOefjuFvF1sYg8LBnPbk50i507b44QR0k6XAZCy+dJ//rX6Pk88X4ZkDjyhw0M7HrVPEaKxWi+4grkmHNxE6PhtOvKKn9rQaYHiX2/foH5k8rHuCG/0zF2VjmlQxIgM7BnPwO/3Gse4+U8mxZLF7qLDAwV0DQd2cEWfaNh3s8uuOfAXyVP3NikTvKRxW7wBOs8ITwdbYmoozHKJ3r3CV8pdi+88AJf/epX2bBhAz09PTz66KO8973vHfMzv/nNb7jjjjt48803mTt3LnfddRcf+chHhh3zwAMP8NWvfpUDBw6wZMkSvvnNb7Js2TLnBHEZp1+GQ5s62Xfb7QBIF3wY5pxHz2O/Yv/23w477qSHH6bpQvev64aeNwCZ3vx+4Hzbv98qf8O7/hd0nEL3I//Bgr3DC3E7LX9vJgNIbDj8IuedtMr277fKmZt1Niy7kb6unexf8+Cw47yaZ1P+Iy9y/jz75YdyQLcobupFMoGb5U7AHwu+wLTYORhY3+5x2SKBruvlGDsXyp0IK5aXrlg3YighTJ7wlSt2cHCQJUuW8MADD1R0/M6dO7n22mu5/PLL6ezs5LbbbuPjH/84Tz31lHnMf/7nf3LHHXdw9913s3HjRpYsWcKKFSs4dOiQU2K4iq7rjmfFJpaeT3TOHJAkGtUcAEOKpdSJJBGdO5fEUvuVqvFQNZWXSgrWW/2voWr2v7Ss8rfkMwAkY4nyAS7IXygWGMobsSn/8fYax+VsLJTmOeqPeS4UC2Ryhvz/6ZD8YGSJilIvXi38bmZKgsXt7oN4Sqf7iFq/22uLXSZfRDduaXe7jOSLaJru+PlGQiQlTXJ4w9QaumL9w8qVK1m5cmXFx3/nO99hwYIFfO1rXwPgjDPO4MUXX+Qb3/gGK1asAODrX/86n/jEJ/joRz9qfubxxx/noYce4u///u+rGl9R1SiqWlWfcZpUtgCaoaE3RyMOjU9m8i2r6fn8F0ioeWQdhiINaFJ5lzn5ltVoyODy9Vm74wkGhwrIOmTUo6zteoJrF15r81nK8rflh5B1SEebXJX/0a1PIuvGPuxQZrfjcjYWjWuajcR9Mc/uyG8wuTHGUG6I3nSOue2NjpxjLAYzxrVvUpx6nofTFI0Y93RG9fT9llOL5PJF5NKYnBpLW4OCrMPAYM5TeVODxrtUkiAmSY6PpVGRkUv6XDKTd6XQ+bH0pnLIOkxuiDoqb3PUmOP0UN53a/ZEqUYOXyl21fLyyy9z5ZVXDvvdihUruO222wDI5/Ns2LCBO++80/y7LMtceeWVvPzyy6N+by6XI5fLmT8nk0kANq3bRXOixUYJaieZVVmeVYjIEm8+s8ex8+jymfSdfR3TYh0szyo0t5xG9zwNkIi0tpKWFiM90e3Y+UdC0zWe2drJsr6TKeYUlL6FPPtYJ9NOPwNZstcYLeSfHZvO8qxCtO0suucpuCG/pmu88OabLM+eB+jE91/uuJzZnMbyrEIDk+metwKv57ksv+ao/ADnD8rMzSps+80+1Cn9tn//eMzcn2d5VmHwtV427Mk6fr7pe7Mszyrk/9jHhky34+cbjcG88S6TJNj23D6cCsHqHTSub8MhjQ0u38tW+jLGOOKKzMYnd7lyznfloxQ1nQ1P7nI0VnU0Bnb2sjyrMO+Q6ui1zx0ZZHlWoWNPztM5tpN0JlXxsb5yxVbLgQMHmD59+rDfTZ8+nWQyydDQEEeOHKFYLI54zIEDB0b93nvvvZe2tjbz39y5cx0Zvx3kCkbwbVxxNkZDkmUSy5ahaMb5CrJ4Kegkli1Dkt2/lbb1d5HKJ9H1kuySSjKfZFt/l+3nEvLHioYrIR8Ru13n5d/W30UqV1rgZRUk3XE5o0WfzXNpoyU5LD9AY9SQMVfwZqefL5WDiLnU3ku0Ect7bNnIlq53XIk4ptQBZlP4nFrEI48kUL7ebrZxi3k810Ol9arBwYxYwGwtmasTa121BNpi5xR33nknd9xxh/lzMplk7ty5nHfVPFpbWz0c2fH8fudR1r+2g4UdMZaunO/oufSr5rDxI8+wvmEh9B3kQ7ufJjp7NgtX34ukuHsrqZrK3b9YTc/sHgaLJ1HMTKJh2gZirW9wsHEzj654FEW2d0z6VXP4441Psb5hIYVkryvyCzn3dChkht6BFO2lefY6JCRH5exc923WN1wEwN/teYaGWTM9nec9HVEyQxe4Iv/D/X2sz6S46rQWlr5zvq3fXQk3beyiX1e5+/LZnDzdeQ/BK78psv7AYWbPjTv+DhmLV3f1sn7TduZNiTo6jryq8bE/vA3A/ZfOYlKT+xneAC/vOML613eyaJp7171rczd7enPccWEH582dNP4HbObf0wOsP6Ry6bmTWXrJfMfO03owxfo3upnUIPFND+9pOxGew0oItGI3Y8YMDh48OOx3Bw8epLW1lcbGRiKRCJFIZMRjZsyYMer3xuNx4vHj+6BGFJmIg03mJ0IqX0SToCURc35sSozpV16K1gUZJYasqUy/9WaUBvdfjGu3P8XezB6QoajH0CTQlSGKssqezG6e3vMUqxbZnDmpxJhz9RVob8FArNEV+YWcRU5Bk0CO5NBkY9frpJzzb/oY2u+NH7NyhHkez3OR0wz5lazj8rc3G/dTf051/XnXdZ1UXkWToLXZhWcaaGpU0CQYVIuevt9SOeNd1toUd3QcjYpMokEhnVNJFYpM9UjmIVVHkyDREHXtujfGjbkeUjVP5rp3qIAmwaQWZ+d4UkvcfIbliOR6+0cnqOZ6+UtLqZKLLrqIZ599dtjv1q1bx0UXGZaGWCzG0qVLhx2jaRrPPvuseUzQcbM4McDU5RcAMKQ0EJ07l9ZrrnHlvFZUTeWBzgeQMB5WXSsp4bLhrpSQeLDzQUcyJ2f9iXHfpKIJx+W3yqlrDQBIkXLMlZNyTll1LdHS9xbmLvB8nvViSX7ZefmttezcJqdqZmV+91qK+aMYdb+L7zI/FKJO55yvy3gsXpc8EeVOJjvYCxiGt3/0Q31Gt/GVYpdOp+ns7KSzsxMwypl0dnaye/duwHCR3nDDDebxN910Ezt27OCzn/0sW7du5cEHH+QnP/kJt99+u3nMHXfcwb/+67/y8MMPs2XLFj71qU8xODhoZskGHbPUiUsZTk2lGlAZJU7Hratdd80BbDq0iX3pfeiUAmTMRd+Iw9LR2Zvey6ZDm0b7igkzqcU4VyqWcFx+q5xCscGi2Dgpp6QoZtmPhhtu9HyeR1JsnZLfyzpn1kXIjf6hYO3/7O0CWK5h555i1++pYieKEztfw07gdfeJ3tL1ntTk7Bw3RCPEShYuP/QEdhtfuWJfffVVLr/8cvNnEed24403smbNGnp6ekwlD2DBggU8/vjj3H777dx///3MmTOH73//+2apE4APfOADHD58mH/4h3/gwIEDnHvuuTz55JPHJVQElaTLFjvxYlBnzKJ11YpxjnaGJR1LuO/S+8gXjZfEHW9LFIC/W/ZpppZCIGORGEs6lth+btGOKB1L0HRt5aV5JoJVzmdfh8cOwPkzzuCGi79kHuOUnADNLQn6+4aQLrrYke8fD6v8T3fCrw7A0pln8pcOy+9lnTOhXDXFIq51vWjyQXN4gIGM883hBZNEWzEPa9kNutgnVuB1Mer+QVHHzvmwjrbGKIdTOQaGCsxxP5zQU3yl2F122WXo+uhpSmvWrBnxM5s2jb1jX716NatXr651eL4kWTKptza67LbRvItbiEVirJhvKJVqUePW4hMAvPfUFY4HQlutCcmsymQHz2eVc9v2t4AuzuiYz6pFZzl2TivWgqZeYJV/87atwHYWdyxg1aIzHT2v2UvUw37A7i72hsXI6wLFbrpixTn6PFTshDv0RHHF5lXNtBS6rdidaPjKFRtSPW7H2JWr1BfHVMLdwhoX5MZiqERk80Xspqsu6XCf2JHwS+wVlFsDuRFyMCnh3aKfdrmdGJTnOePxPLv5LpvkofIuSHtgsWv20DrbP2Rca1lyrkuSFXEfJUPFLiRouB5jV9rdFzXdFzWC0iUrQ0yRzZgKp2lvct9VJ17EblaL99ptYyU5JOR3fhEUVti+QfcXfXGt3bTiiM2a167Ycjsx5605k3zQVswLV2xz3JDbi7nuGywr7hEXwgxEW7HQYhcSOLyy2IE/Fnwv3BkiuN7N3b6wWLmh2AiafeKiA3ctdkKxS+VUcqq7ViwvrTg5VUMterdZc/Nd1pbwLkFGUN6sue9290SxMxMn3CmbJO6jULELCRxJseC5pNjJskSilC3pBxedKBngpuvKi+B6EXvl6iLgE0sOlF3Rbsjf2lC2KLht0Ul56HIHb59pMyvWleQJ7xd9U4l3KfsZvI2xExZwN+LrIFTsQgKM2xY7gISPFnyzZICLL8dJHuz2vdnd+8cVa97nLiz6siyZC3+vy+7YQQ9i7GKKTDRiKLJpD62zwgLuRrkTL57hY/HSFetFuRMRsxoqds4TKnYBR8QeuanYCRddxgcuOrHzPHEsdm7G2PnHMuv2BkYsPm4rdmbyhMsN2ssJFN4805qmu+yKLSXIDHpvsfPCFevFZs10xbqwOYOyF2tgyPt1ym1CxS7A5FXNbKrsVvIE+KfuFVgsHG7G2ImMuiH3Y+y8cNH5YZ7dVuxEnN0Jo9h5bIVP51W0UpK9G2ElQnH30pozaBYo9sAV60nyRKnrRBhj5zihYhdgRHydJHkTe+UHS07KC8XOgxpYXsTY+aUjQbZQJF/KwHZbsXPbVZf2oI4dWOfam2daLPpNsQgNUec7MYhnOJ1TzXvLbcqbNTc7T5Tk9iDGrtcsQB0qdk4TKnYBRtywzXHFtSr14J+CpmB5Obqo8Ih2OAMuKXZ5VTNLy7jqivVJLKVweUdkyTUFXmTuHU17Y7FzU4EHSHiYLQlly6hbi35rYxRRX91Ny7tA13Wz8LdQttzAy6xY8RxPdridmCCsYxcSSLxInAB/BdULS5abruh2lwOvhfIKXhUo9kcP0bbGqGvdTqZ4ZbHzyBUrzudV3Gx50XdHsYvIUtmi40Etu5yqUSz5nt3sFdtSUiJzqua6pdJt5b3NB5nPXhEqdgHG7eLEAr+46KB8Ddy0cAg3jlvJE9YSGG4U9hR47Z4TeLGB8Tp5wm1XbDm8wluLnVs1zsCbkApByuIKdTOj36pEuj3XIuvZixg7P3RJcpNQsQswXlnsxILvRcr8sZQtdu6XO3GrQLFZq9Bl95yXbhsr4j53q1YjwJRmjxQ7DwpugzVRxqMYO7Hou5QxCd72BDZLncQirobRKBGZxqg3z7WpvLs0x2JdLGq6Z/2uvSJU7AKMabFrdNlt42GRy2NJ5dxf9EW5k8F80RV3hihp46aMYLHYeRxLeSJZ7LyoYweWLiMnksXOw7ZiXllmred0U7FTi5pZZNytOnaN0YhZn/FEc8eGil2AETerWw+KQATwp3yg2LnZQ1TQ2hBFdjHwOuliOy0rfomxc7NwrcCrrNiURwt+wuPSNuUaZ+69yyYL5d0Di13aIwUevCl50m9RrNzaoEmSt3GUXhIqdgFG7DTdqMZvpcVH9c3c7CEqkC2B127s9r2yzArlolDUPSsJAWX53bTYWevYuRWfo+u6qUS77Yr1OnlCFAp202LnVa1C8Kb+pkCc002Piyhn09YYRYm4p3a0nqAlT0LFLsD0exRjJ3Z81mxNr/CiIwNYMmNdWBQ8s9jFvAu0tuKlK7ZQ1F3bwAwVimaRXveTJ7ztMtJrxti5qNg1e1PSBrzpEyvwIna23E7M3XfYiVrLLlTsAoywFrU3uuuKbTYVO28tdrqum0qP23W/zPgcF14YXsXYKRGZuGK8Iry0znqh2DXGImaQuVsWHWFBkSRIxNwrgQHedxkxG8S7VOMMLK7YwZxr5xR46Yo1ixS7ONdexFDCiVvLLlTsAszAkKgL5E1Qvdeu2JyqUSgaJg63lZ5yyRM3LXbeuW28TKDwyjLttqvO2kXFrXp9Aq/jKT2JsTtBXbEtHiS/9XswvxBa7EICSNli57Yr1h/JE2IXJkvD3YZuUC554maMnbvzDN4v+GCx2Lm8gXE7gSKd9W6xN+fZg7IQuq6brjq3apxBuaTNUQ8Uu7TZJ9bd95b1nK5a7ELFzlVCxS7A9Hu04Fmzqrws/JjMemfhENfcjeKmSQ+6awi8rm8G3tVrdLutmFftxMDbcifJrGp2YXDT+zC5KQ64Eyd7LGUl3v1n2gtXbH8YY+cqoWIXUHRdN29Wt1q0CIRFoajpZAveZUuaGbEeWLLcLFLsVVYseF/fDLzJigX324qlzHjRE8syKxSr5rhCXHHPgiWsg4P5ItmCuxuXsivWfYudF67YI2kjjlEkrLiFWb0gVOxCgkC2UO715/aCl4hFzDpuXmbGJj3KiIXyztMVV6xHWbHgfVC9dQPjusXODK535x4v388euGJj3s2z6aZzMXECjJhVUcD2RGkdB5YYaRfjZsX1nVqykrqFUN696C7iJe7fVSG2IArjKrLkSnyZls+T/vWv0fPGeZtkmVRRoueJp4k3GsdIsRjNV1yBHHNnV1bulevObWy9BtEjEiBzZE8PA7/8pXmME9fA7SLMVjljQs4NnQzs32Qe49ZcZ/LFcoKMywpPua2YO1mTKR/E2OVUDbWouVprzMyIddnzIEkSkxIxDqVy9A7mmdXe6Nq50x4mTzR5UMdOKHZuxlCCdx1kvCZU7AKKmTiRiLoSXza0qZN9t91u/tz47s+TSkxm5ze+Rax/j/n7kx5+mKYLlzk+HoDf7dkAyGS0o66cz3oNih2nwLv+F0f29LD/h18fdpzd16A3MwRIvHr4t5w9Z5Vt3zsaVjmlc6+D+Rdy4PGn2P/2s8OOc2Ouy7ExKr/e+yTvOdl5+QVuW+y8dcVaahbmi7Q1uqfY9Xqk2IGhaBxK5VxPoPBFgWIXrbMiTnWKy67YSU3uJbn5idAVG1DMrhMuuacSS88nOmeOUWQLSBSyAGSiDcYBkkR07lwSS893ZTyqpvJs90sA7E6/hao5/5KyXoOWfAaAVKypfIAD12CokCevGtf839/+N9flbFQNa9WQYnGhuDjXvYPGfSZFhvj2aw+6Ir9gcpNIkHE3K9aLsjZxpdxX0+04u34PMmIF5ZIn7tay89IV63aMna7rHC1d3ykuu2JFyExosQsZlaKqUfSwtZKV/nQOWYdJDVGXxiQz+ZbV9Hz+CyBBk2qcf1BpRJOM3f7kW1ajIYML41m74wlSmQKyDtliL2u7nuDahdc6fNbyNWguyZ+OJihKEYTN1O5r8OiWp5B1Y/91YHC363I2FvPIOgwpDeY8g3tz/XTXi8i6jCwPsT/Z45L8Bu0NUWQd+tI5V54xcT+3RCOevGdaYgr9mQKpwTzFZvcW4F7X32VlJjcac3xkwJ05FmSyKrIOiajsusyNioysG2Nw49yDOZV8XkMG2hsUV+VtjSvIOuTyRQaHCjRE3U9WsYtqrluo2FXBpnW7aE60eD0MAHr2D7A8q7CwV2fDE92unFOXz6Tv7OsoJlMs1ifRllXITruQ7vhcIq2tpKXFSC6MRdM1ntnayTt6z6CYVYgMzOXZxzqZdvoZyJKzRmhxDbLpDMuzCqCwff41KLpm+zXQdI3fvbGF5dklIKnE91/pupyTlSkszyq0N51M97wVgOTaXGu6xtubdrE8ewpSsYnYvne7Jj9A/2Ce5VmFhoNFV56xhq40y7MKsW1pNmSdP9+xLMsoJLM6W5/bx0Bbg2vnLW7pZ3lWYfKuIdfeZYKTDhRYnlVIbzrKhpR7JZNOOaIxp6Bw+PeH2fDGgGvnBcN6tTyr0HBUc+V6DwwZ11iRJbb8ei9uFqbSgXfmomi6zvrHd7reg9lO0plUxceGrtiAIsqMxKPuTaEkyySWLQN0oiWXWEGOADqJZcuQZHfGsq2/i1Q+ia4Zuy9JUknmk2zr73L83OIaRDUVWTfmIBeJ4cQ12NbfRTpnuDAkSQV0T+QEKMjihejeXG/r7yJTMNx0klTATfkBc3efLRTRXKjXKLLcY4o3r+WoYiy5haK7FqShUlFkL6wpjVHjvh5yudxJvnSNYy4mqQjE/ZVXNdyoQiqubSKmuKrUAUhYnmMPim97RXDVVw8476p5tLa2ej0MAJ57Osf6PSqnndHK0pXzXTuvftUcdjz5zzyeaWJ9x1QWZnZwSvEtFq6+F0lx/nZSNZW7f7Gantk9DOrTKUodxDs6ibdv4GDjZh5d8SiK7Ow4xDV4i6UcbWjjg0df4ZRmydZrIOTc09FIJns+cvwwTbPXISG5KuebNzzB+oZTyKaOcsPup4nOnu3KXAv5uyctIFc4FaW1m8ZZ7spf1HQ+9srb6Dp8/ZJZdLQ46568t3s/rw2q3Lh8OksXT3f0XCPxT7v207knww3nTXH1/Pft6eHVlMqHL5rO0rNmuHZegK2/l1m//yAt0xTX3qM5tcjvXtwCwLeunud6GZ90TuXjr2wD4LtXznVcoX5u60HWv76Ts2YlXF2rBLvf3k3XoSyfWjqFpYumun5+u0gmkxUfGyp2VRBRZCIe7aaPpT+roknQ3hR3d0xKjOm33kzih79FkyBT+llpcCfwee32p9ib2QMyaFoDmgS6kqEoq+zJ7ObpPU+xapHDmZMlmZufPMThRBtJpYHpt37M1msg5FT1s9AkkCJZNNnYcbop58yVV6K9BYNKDFlTXZtrIX9RW1ya40HX5Y8A7U0xjg7m6c8VmDHJ2XIYybzxTLc2xTx5zzQ1Ro1nWi26ev6jQwU0CSa3uPwuA6a2xtEkYwxunTubM+YZoDURJeKy1a5FjqLLoOuQUTWaHFYse0tr1SQP5hegvTmOdniQgZzqm/V7IlQz9uBKeYIzUKpj52YLHkHrtdfSnDCsF9n2KbRec40r51U1lQc6H0AqGfR1zYgDkuQh479IPNjpTuZk67XX0i4Z5xmceZKt18Aqp14sKRORIfPvbsrZ8c4LASMrNjp3ritzPVz+BABSZND8u5vym/1EXWgrlvKwQDEYhcfBu6xYtwsUgzUr1r2sSZGN2hiNuFovUCDLEs0uFqT2qtSJQGTGetE6zitCxS6gWOvYuY2kKEx/l7Hgq6ef6YoLFmDToU3sS+9DL0WG6MWSYhcxSmLo6OxN72XToU2jfoddSIpCx4I5ABT/9N22XoNhcmrDZQR35RQK/JASp+PW1a7MtVV+vWiUk5EiGfPvbsovyjOIlkhO4rViV+4h6l4sUlHTzc4TbpfCMM5ZUtzdVOw8LHUicLOFXK9Z6sQrxU60BjxxatmFrtiA4lWbJUHHBedB9+vkprgXi7OkYwn3XXof+aLxEv7sdokh4I533Mz0duOYWCTGko4lroxn2inz4ehuhhacauv3WuX871cknjoE75pzHn/xznPNY9yS0+xI0D6Z1lUrHT8fDJf//l9JdKXgQ2e+h/MXvcc8xi35p7YIxc7ZhV8tamaQuRcFio3zCiuOewtgXyaPrhvlMd1uEA/lArYDQwUKRY2oCxa0ciFq75bf5gYFkuXNhJOULXbuK+5QnmO36lH6gVCxCyhuFyg+luYGsbt3z20Ti8RYMX8FAJqm8+nCWgD+7NR3Ox7YPhKTSxYGu18YVjlfeeMNYBdLpp/CqkWn2XqeSjCr1BfcyJ8zsMr/L9rzQJqrFl7EOz0IfBZWBqctdtbnyItuBFBWNNxY7AVi0Z+UiHnilpyUiCFJRrxZXybPtBbny7x4bZkFd7tPHPWonZggdMWGBAZhsWv3oA0PlKvji92n26TzKqIChVcvyPILw7lrYPbD9UiBF9dW042+rW4jlGav7nOxYTjqsGInFvu4IntW7sQbxc5bN11ElmhvdLc7gVCmvFTs3LTOius61bMYuxPPFRsqdgGkUNTMl0O7ZxY79xtJWxkoPaQNUdmzauJuBF4nzTZT3sxzIhYhIhvJKm5aZ8FoRdTnYbspsMRgOeyKTXrYJ1YgYuzc3KwdLil2Uz1y04HlOXYhQQYsrti4d3PdZCZPOL9ZE8r7ZA9iKMGq2IUWuxAfU26M7p0lR5jy3dzdW/E6xhDceWGULXbe7O4lSbLMtbs73mRWpagZZlkvkoSgHBfkuCvWwz6xAmHFSXrgivUqYxLKSRtuJVAk/eCKdcnjYvSJFckxHlnsTsAYu1CxCyAivq61QTGtKW4jLAvpvIqmuRd/JTCzghu9WxAmu/DCEJYcryx24M2CD+WYmEQs4plVVriPnE6e8EPcldvN4QGzObwfLHZuLfxirps9nGvxPnF6Yz6YL5IrdVTxvtxJ6IoN8TFex9dBeRHQdci43I4HfGKxEwvCYAHdoZZTyaGSJcdDOb2yzoqFdpKH9/lUi8XOqTkGSJVinbxc7MVmLeViVqxpsfPImgMw2SXlXZDygdvd3KwNOTvXwr3dEJVJxLy5t4Xins6pZtu+eidU7AKIKE7spVITV2SiEcNa6EUCRb+4Bh656AAmlxSOfFFj0KHEAj9Y7Mq7e3fn2VTsPChcKxBWhpzq3ByDxWLnYdyVF8kTRzwuhQHDlXc3ELGqfnC7Oz3XR80adt7Nb2tDFOHY6j9B3LGhYhdAvCxOLLDGXnmRQOEHi11jLEJD1HiEnEilLxQ1MxPVqxg78GbBB+gtuU68tNglYorZkeFIyrmF30+u2FRWddQ6aUUoU17G2HUIi52D82vFD3MtPABOb9b8EEMpy5K5TpwombGhYhdAvK5hJ2j2KPYKylmxXmUFC4TVzonMWKsi5VVtM/Am9grKu2uvMmIFwqIjrA9OUF7svbTYGecuarpZLNlp/BBj19HirsXOD67YVpfe3b0eJ04IJnnQOs5LQsUugPQPeW+xg7LbyO0yGOAPix1YXhgOmPhF/EtzXPGkeKugxSNXrHgJe2mxg7K1wckYLHFtvYyxa4pFTJeVW0q8sOh4VePMOLeh2B12TbHzgcXOpWf6yKC3pU4ETm7A/Uio2AWQAVG01cOMUPC2lp0f3NFgKXniwAtDKK9exuKAh1mxPkieAHf6xaZ8UO7EGl7hxlxn8qoZauCLGLuUy1mxnlrhjfemSM5yil4fKO5Q3pz1Omh19xO+VOweeOAB5s+fT0NDAxdeeCF/+MMfRj22UCjwxS9+kUWLFtHQ0MCSJUt48sknhx1zzz33IEnSsH+nn36602I4xoBPLHZlc777cQsDHndkEDhp4heW2TaPFZtmj2LsRHmCyR4mTwB0tDhfpNgP/UON87tnnRXXM67INMW8KWcDZVfsUKHIoAveBz+4YltcqmPX63E7MUG5HmVosfOE//zP/+SOO+7g7rvvZuPGjSxZsoQVK1Zw6NChEY+/6667+O53v8s3v/lNNm/ezE033cT73vc+Nm3aNOy4M888k56eHvPfiy++6IY4jtDvE6VGnN/plPmR6PdByReAyaJGkgOuWFOB93iePXPFetxOTOCGxa7cZsrruXZPiT9i6TohSd7U4wRoiis0luokHnY4gULXdV9kxYp392C+iFp0rgTIEZ8odm7EyfoJ3yl2X//61/nEJz7BRz/6URYvXsx3vvMdEokEDz300IjHP/LII3z+85/nmmuuYeHChXzqU5/immuu4Wtf+9qw4xRFYcaMGea/qVPdbyhuF/0+SRwQcRoDHih2SZ/F2DmRbSVc7l7L2OqZxc4vi4IbFjvv3XPgrmLnh/g6wdQWEUfp7MI/mC+imT2uvbfYgbMx0iLTWFhFvcIsNO6Su91rfKXY5fN5NmzYwJVXXmn+TpZlrrzySl5++eURP5PL5WhoaBj2u8bGxuMsctu2bWPWrFksXLiQD3/4w+zevdt+AVzCDwWKoaxweKHY9Ztxhh5nxTY5F2PnlzhCc7F3sXAtlJVlz2PsXAiu90NAvXF+kRDlgitW1DjzML5O0OFSLTth9VZkySyV5AXRiGxaKZ2MsxPPjNeKXbltXGixc50jR45QLBaZPn36sN9Pnz6dAwcOjPiZFStW8PWvf51t27ahaRrr1q3j5z//OT09PeYxF154IWvWrOHJJ5/k29/+Njt37uSSSy4hlUqN+J25XI5kMjnsn58wlRqPF3yh2LkdVF+wFAT2+hpMcjDbysz89VyxKy32Ls6zruu+KFAM5cDrow4u+kkfxF0Z53fTFeuPUhhgyYx12BVrbSfmpfsZrElRzijxRU03n5kOj5X3KS5Y3f2ErxS7iXD//fdzyimncPrppxOLxVi9ejUf/ehHkeWyaCtXruS6667jnHPOYcWKFaxdu5b+/n5+8pOfjPid9957L21tbea/uXPnuiXOuGia7pvYq1aPLHbW83m9EDrZZ7LfJ+5mLwoUJ7MqxZLPymuLXUezs03i/RJ3BbiaFVsuTuy9xW5qi7DK1n9PYIHTz3XvYB5NB0nyQziFu7UKvcZXit3UqVOJRCIcPHhw2O8PHjzIjBkzRvxMR0cHjz32GIODg+zatYutW7fS3NzMwoULRz1Pe3s7p556Kl1dXSP+/c4772RgYMD8t2fPnokLZTPJbMGM0ThRXbHCRdnaoBCRvd31li129l+Dciylx1mxHvSKFS/glrhCQ9S7jEkoKx79mQIFBwLNB/NFdB/EXVnP72ZWrB9i7Nx2xXrZOk5gJr85NNem4t4U87QOJ5TvsWRWJae639vcbXyl2MViMZYuXcqzzz5r/k7TNJ599lkuuuiiMT/b0NDA7NmzUVWVn/3sZ/zZn/3ZqMem02m2b9/OzJkzR/x7PB6ntbV12D+/IOKOmuMKMcXb6TOD6j2y2HntooSym7Avk7e9DVPSJ2VtxGKfL2pk3epI4INWRIL2xqi5gXCmw4gxzxGP467A5eQJH3SdEJgWO5dcsf6w2Akl3pm5FtfSD/Pb2hBFcfAZ9hu+UuwA7rjjDv71X/+Vhx9+mC1btvCpT32KwcFBPvrRjwJwww03cOedd5rH//73v+fnP/85O3bs4Le//S1XX301mqbx2c9+1jzmM5/5DM8//zzd3d289NJLvO997yMSiXD99de7Ll+tiJvS68UeyoqV+65YfxRohrLFrqjptruv+of8kRVrzdR0y2rnJzedLEumK8mJhd+62Hsdd9XqYtFxkaHotZsO3LTY+aOsDVjqkDr0/j7sk4xYGP4Mnwhxdt5vG47hAx/4AIcPH+Yf/uEfOHDgAOeeey5PPvmkmVCxe/fuYfFz2WyWu+66ix07dtDc3Mw111zDI488Qnt7u3nM3r17uf766zl69CgdHR1cfPHFrF+/no6ODrfFqxm/9M+E4a5YXdddW5T80k4MoCEaIRGLkMkX6RvM2zomv/QEjshGR4J0TiWVLbjyoj5q1jjz/j4Hw510OJVzJM4uaXYY8f5+Nq04LmTFiozJaa3eL/wdLpU7EdZZr2MpwQWLnU8SJwRTm+McSuVOiDg77++uEVi9ejWrV68e8W+/+c1vhv186aWXsnnz5jG/7z/+4z/sGprnlC123i94YiFSS03DEzF3bidT4fGB1RIMq10mP0RvJs98mmz7Xr90GAHDmmQodm5Z7IQr1h+LQkdLnK0HUmZdLjsRMU5eK/DgXjxlXtXMd5kfFn5rVqyTm1SRJONlT2BBa6OzWbF+stiBOz2f/YLvXLEhY9Nv1vbyfhFIxCJm3IKb7lg/WeygbD3ttzEzNlsoklONQH0/yCligpwsZmrF2pXAD4iSHE7s9svt8bxf7N2KsRPXUZElz7OeoXyfZQvlUkpO4KcYu1aHE2WO+KSGncDsPnECWOxCxS5g+KUxOhhNw73IjPVL5w1BuV+sfddAyCjcoF5TtuS4M89+ypiE8uLkhGInCsT6Q4F3Jyv2kMWaI3uc2Q5GW7FEqV+tE1ZZgV/qFRpjEDF29Z88AeXNmVNli/yE9ytGSFV4rdhp+TzpX/8aPW+Mo6kocxSJnmd+w8xS8rAUi9F8xRXIMWfG2FvKpvMyztB6HZp7JUBm/x82MbBvo3lMLddBKMrNce8WPauMjUkZkDj48qsM7Chn/zo119ZSCX6gw8GsyQFfxdi5U8dOXMdpPrHmgKGA7O7NcDidY/5U+0IqrPjSYudQPKXfXLFTHdyc+Q3v766QqugrWYUme1SNf2hTJ/tuu938ufFPPg2TT6L7+w8z40A51vGkhx+m6cJljozh7SP7AYldg28Co9crdBLrdYie/R5Y9CfsXfcc+zc/Mey4iV4H4dZNFQ/w3zv+m1WLVtU+6Cqxyhi54MMw5zz2PfYr9m//7bDjnJjrXX29gMTbyQ1cyyxbv3siTGsx2hYeciLGzkehBWKxz6saObVIXHGmhuChVBaAjpaGcY50j44WQ7Fz0mKX8qHFzvHkCZ8odlNOoKzY0BUbMHoz3iZPJJaeT3TOHKOcONBcyACQjjYaB0gS0blzSSw935Hzq5rKzr7DAPxm33+jau62MxNYr0NbbhCAZMyyy6/xOvRmjIWPyBAPdj7oiZxWGZsKxngyimUhdmiuVU013SW/6v6xZ3NsRSxOTih25Rg77xf7pnhZkXOy5MmhpH8yYgVmo3gHLToiRtUXFjtRoNiBMJq8qpnhJH5IjoETq/uE93dXgCiqGkXV/srz1TAwmEPWoS2ueDQWmcm3rKbn818ACZoLWWQd0tEmNMlYFCbfshoNGRwY39odT6DmYsg69OX2srbrCa5deK3t5xmf8nVoyRvXIBlrNq8B1HYdXuzeiKzLRKQs+5M9HslZlrFJNe67wWijbTKOxi/efgLUODJwJNvt4RyXmdoYRdbhaDJn+3OXHMwj69AS8+qZLiMBzVGjfM9AOk+7Q5alQwPGMzOtKea5zIKpCeO9cngg69iYBocKyDo0KbLncjcpsvFMD6m2j+XwwBCybiTHNEcjI35/sVikoBbA3rruo9Ie1ZjTHCGmqQymM+6ctFIkiCpRIpHRLeTVzFGo2FXBpnW7aE60eDqGuT1FpuQVkhuPsmFb2pMx6PKZ9J19HcVkivmR6RSyCtLkJXRrLURaW0lLi5Ge6Lb9vJqu8cyWTi4cvAB0mdjhpTz7WCfTTj8DWXLf+CyuQ7OeYHlWYVrDPLrnrQCkmq6DpmscevUAy7MnIeuTie57t2dyChk7olNZnlVoaT6N7nkqtco4Gpqu8dwbm1mePRfQiPdc4ukcC7KFIsuzCmR1fv/4TjMb3A7auodYnlWQtgywobfbtu+dKO/MRUnnJN58di9HHLKoRbYmWZ5VaN6RYUOu25FzVMv0vTmWZxVyr/exodDtyDkWHtKYWVA4+soRNmxOOnKOSklmVZZnFSJ5nVef6MbOaN6Dyawxv3GFTU/tOuavOlJzFqW5iORm4oyuc+/l0wDY9tZ2985bIbqmo6Yj6OkGGGE20plUxd8VKnYBQgezpVOjh/0zJVkmsWwZqWeeIVZyk+VlBdBJLFuGJDuzAG/r7yKZHwS99P1ynmR+iG39XZw26VRHzjkW4jrEXzISJnIR4R6v7Tps6+8y51mSVUAnmU96IqeQMfbq24CYZ3Bqrrf1d5HK5UvnLoDknexW4tEIEVmiqOlk8qqtiQ6irE3c4xaBgpgiQw7yDvbUHCy5JJtcqn1ZCU2lzO/BnDNy6/hrrsUYippOUdNt3ayIkjFW175Aas4Sa9fomDqNeKzRtcL2Ojq96XKBf6+7vFjRdZ1cfojDRw6TJ4uebqzp+/zzVAWA866a52nf2FS2wEsvbgHge9cuoDHmnXKnXzWHHU/+Mxv6s6yfNZeEeoAPFt9k4ep7kRT7bytVU7n7F6vZN32IdPoSkAo0z34SWZI42LiZR1c8iiK7fzvrV81h6PlHWN9wLq1SgdW7nyY6e/aEr4OQc0frBRS0ucSmbCY+9ddIeCenftUcNt+wlvUNJ5NJ9/FXNco4GkL23VNbGMqejxw/QNPsdZ7KbqX7jW729Q9xxwVTOW/uJNu+92/f6GZfQeVvL53F/9/emYdJUd6J/1PVx/TcwzD3AcMlKHKJgngEDxQVEfeXqMGsV67ViNGQi0SFaDaySVxD1hBNdkO8NkbdxCPeiGI0gkQOFRAcroG576t7+qz6/dFd1T0wZx8zVc37eZ55Huiuqn6Pqnq/7/ecHcfrRst/VNWy65iLG+eMZe5phQn5je98epg6r5/vX1TKzLKchPzGcOna38DWw7V0Zincd3lF/K8f8f7+7yUTcIzi5hxAUVRu/nA/qgoPnV9Mflb8AlkO/vMYW/cd5cIJY5gbMZaBQIADByspKChm7Nixcfu9odLg7ySgqKSNSR/18T+RLOypVhpTGpl8TvkJZtnOzqFreIVgNwwsVhnLKO60Oj0BFAkcNpmM0U5QbLVTeMe3yPjt8ygSdNkcFN7xLayOxAR1vHrwDapdxwgopSgSSFYXqiVAADjmOsqbx94YlchRrHYm3XgdynboTEkDJRDTOOj9VM9DkUC1OlHk4O531PpptVN+xSUo+4LzLCv+hMx1eI7nBufY1j36fY9gbFYKxzp6aHH54voeaHf7UCTIyUgZ1feLRkaaPfhMe/0JaY+iqDR0e1AkKBqTaog+AxTmpKFIUN/lTUibun3B97fdKpNugEAZC5DusNLp9tPtVyiKY59berwoUvCZiRxLn9+LJEmkp6ePisbMapHxKwH8ysiVwBwO2rgoagC7tfc9Mpx70hhPlGBIaDnscg2QnBgga8kSsrPSAHBl5JB1xRUJ+R2/4mf9rvVISKiB4O9JFqf+vYQ0apGjAOVLLwdAkWQ8FZOiHofe/Qyq4iVLj/79aPazeOE5AHTZ07CVl8d9riP7rvgzAJCsYR/S0Z5jCOdci2dkbEBR6fIYJ0ExkPCk420ub2hhNU7yWoCi7KDGqsXpwReIf2CD0SrmQDjtSrzLig2Ww260hCrN3OwLjFDExjCJ17gIwc5EjHaqk+ORrFbKrrwMgJ7CkoSYYAF2Nu6kprsGFRU1kB767bBgp6JS3V3NzsadCfn9wUhx2MmwBF8Ullu+EfU49O5nSLCTw9Fbo9nP7IzgotdtSyX/jhVxn+vefQ8JdpawYDfacwyJSVIcWeHBCAmKAbK1GqIJEuw0wTg3zY7NYpwlKDfNjlWWUNUEl44zQKoTjUTlstNz2BlIcAf0+82fAMHdSBjnDhMMipa0dswoJSfui+KLvwCf/YNua2zOngMxK38WDy58EG/Ayzufwl9rYVbRZG457wH9GLvFzqz8WQlrw2CMzU6nu9WFZ965UV8jsp/3VUs0u+G2M25iQoSb02j1Uyvf5rKlknbFZXG/fmTfH39H4qNWWDLlfC6eeb5+zGjPsZakuCmUXDceaOWcUm2WYNCCAchJDdU+TrBgZ5TEtRqyLFGQmUJth5uGTg/F2fF9pxmpdJxGonLZhTV2xklADWC1BDVifsWYGrt4IQQ7E6FVnTBCnViNkagVa7fYWVyxGID9B/YDB5hRUMHSSacn7DeHy9gMO1WtLlpjqEMY2c+7fW8Afq6YfCGTCzLi1MroiUye2+UJkBvnigSRff/Tpq1ACxdOOIOlk0rj+juxkAiNXTg5sXFexYl+po1WaiqSgixHSLCLn/CuYaQKIxo5CZrrcJ1Y46xVENbYJcLUbiSMsUUUDInRrhPbF5pZuMcX0FN0JJJWXWtpnDEAGKtnNY+9XE2k31XOaAfJhLBZZNJDUdiJFOIBGvRyU8Za+BPhY6f5NhlpsU+0YKeVEyswmDYHoDCUt68xAYKdEX3sEjXXRhXebTH42G3evJmKiooROy8WhGBnItoMKNRkOaxYQg+LVkImkbSFNGJGKQ6voe1M41GHsLPHhxp67xhpEdCE+EQLdk2hclOFcUy/EA+08leJ0NgZaZ6zEi3YGbCcmIZ2zzV0Js7HzkhzrW0cNTefeNDl9ul57LSAFKNg1XzslPho7BYuXIgkSfpfbm4uV199NU1NTXG5frQIwc5EhE2xxnkxSJKkaxBjMUMOFa2GqJGEWwhH97U4Y18QNAE+02E1lHO5tuDHcxE4HpfXr2srCwy22480xSpx8tHp1B3qjfNMj5Qp1mjzC2HBrv4k0dglYrOmCcWZDitpBkpADWCzhDV2qhrbM6yqKjt37uTBBx+krq6Ompoann76aTZt2sTatWvj0dyoMdaoCwbEiKZYgNx0G83dHr19iUTT2Bkl5YuGpkGMRzSdntbGYMKrFi2ZSI2dps1Js1vISDHW60kT3v2KSpvLq5vfY8GIi312AovDA7r/mjFNsZrGLgE+dm7Nn9J4cx1Pa4s2dkPRuKuqSs8IuPBoKIqquwz5Awq2GHyFKysr6erq4oILLqCoqAiAkpISJk+ejMs1urVojfXmFAxIq0G1Vdqub0QEO4OlfNGIp49dqwGDZCAcLZmoBR96LwpGSyBqs8jkpttpdXpp6vbERbAz4mKvmec6enyoavwTudZ1BOe4OMeIgp3mY5fAdCcGnOt4RkCHn+HBn48eX4DTVr8Rt98eDjvuXRRTENj27dux2+3MmDEDAI/HwxNPPMGBAwfYsGFDvJoZFUKwMxHarspIplgIa8/aEmyKDSiqLtzmZRpL6Bmr+9jFQWPnNKrGLv67++NpMKjTtUZBZgqtTi+NnR6mFcV+PSMu9to8+wIqLm9Ar6EaDxRF1Rf+YoP5X0GExi6OKW00jKyd7Yirxs6YPrLHE2tk7I4dO/D5fOTm5gLgcrkoKCjgzTffZM6cOfFoYtQIwc4kqKpqWFOspkHUNE2JotXpRVFBlmBsurEW/rCPXRw0drpW0jgLAEB2WmJ9ryAcjWjURSE/M4V99V1xC6DQcpsZKWltmt2CVZbwKyodPb64CnbNTg9+RUWWjJe8FqAwZB5ud/lw+wJxrSdqRMFO08LH18du6M9wqs3C3vsXx+23h8LhZidOjx+bHJv/8o4dO1i+fDn33XcfAE1NTaxatYpbb72VnTt3Isd4/VgwzttEMCA9vgAef3CHYTRTrKZBTLQpVltMc9PteiSuUdB87NpdPnwBJaagB6P6EY5EzkItlUihQTV2+XFOeWLExV6SJLJTbbQ4vXT0+CjJiV+i3oaOsEbWaqDAII2sVCspVhmPX6Gpy0N5blrcrm3IPHa6KTZ+725dsBvCMyxJ0ogHWGQ5bAQUFX+MwRM7duzggQceYPLkyQBMnjyZlStXcvXVV1NdXc24cePi0dyoMN6TJegTLY2G3RrOJ2YUNJNhogU7LTDBSPUlNcak2dFkzVhN0kZMawMRptgR0NgZMRUGxD9JsREFO0icEF/XEax9XBTnqg7xQpKkhARQqKpqTLN7SLBz+5S45SHVxs1oqU409OoTMdSLPXToEO3t7SeYXA8ePIjVaiUnJyeWJsaM0NiZBM3El5duN5xT+UilOzFq0ksIliPKTU+hudtDU7eHghhMiZpJ26g+donU2BndP0eL5GyMkw9Wu0GF+ETlstPSiBQbdH4h6PR/tNUV11x2bp+iJ8U1khCfYbciS6CowbmOh+m5Qc9TaMw5tsqxV5/Yvn07kiRRUFBAfX09TqeTv//979x///3cdtttZGVlxau5USEEO5PQGsqPlmuwEi0Qrl2b6ATFzQYtLK2Rl2GnudsTc5Jio/pSamabhEbFGrTqhEZBnDV2baFnJsdAiz30joyNJ1pErFG1OZCYXHbaOFpkyVAWF1kOmt3bXD46enwxb6gURdU3PUbdnNnioLHbsWMHqqoyadIkAMaMGcOUKVNYt24dN954Y1zaGQtCsDMJWhoNowUNwMhr7PIMuujrkbExJik+maNijVp1QiOeptiAourpToyWvidRuezqO4wbEauh3XvxLCsWaXI3msUlJ81Om8sXl+e6zeXVNZNGTEAN8akXu3bt2lFPQjwQwsfOJGhC01gDauxy9cCBkfKxM94YQFjojlVj16onKDaYFicBEXSRRFadMKpgF0+NXUdE6TjDRUAnSIgP+9gZc34hnH8tERo7I5lhNcJzHfv7WxuzvAy7oarmRBIW7GKvPmFUjDnyghPQ8qMZrUYqhLUNTm8gbg64faFpLY1qpsuLQ5Jif0DRFwGjmWK1BSAYoR3/eTZy1QkN7d7r8vhxef0xXUsvHZdirNJxkDh/Sk1jV2RQwR3CgR2a2TgeGDFwQiOeQVF6HWADVhXRsFkkJEBFxR+n0oBGw1hvE0G/aFqgeGS7jzdZDquefiShZrou40bFQnySFEdqcYy2u890WNGsSInQ2mkLqVG1dQAZKVbSQj5SsTrXaxqSHINpZiExgp2qquGqEwaNigUoCWkTNe1iPNAFOwPlK9SIp++s0SNiIRj5rKXa8fmHbo6tqKjgrrvuGvbvRXteLAjBziS0GNTvCoIPypgRKCumB08YVmMXe71YbfyyU22Gy/Mly5JerD6emeo1tIXUyP5XkiTp2qb6GDU6bQYtHQeJiYrt6PHpuTiNms4GoDiUt6++w40SJ41Ou0HrP0M4cCcem/L6YZQTG02i8bMTgp0g7mgO+Ub1L9OTFCcogMIfUHTfM8Nq7DQfuxjGwKipTjRy0xMXKKNpc+KZEDcR6M71MaY8MWrdYwgv9vEU7LT5HZtuj2tFh3hTmJmCLAV9sGLZpEWi1/k24Fxnh9oUjyTFRk9XpKFFxnpjiIw1MkKwMwmt3dqOz5hCjZaHKx4ltfqi1elFVYPpAoz4coRIU2z0YxBOdWI88xwkVrCrbQ9q7EoMrLGDsJkpVo1d2JfSeHOdiKjYehOkOgGwWmRdMKmNk59dm8u42tl4auyMXhJQwx6HyFgjIwQ7E6CqKs1aVKxBNTl5cfAvG4hGA5cT0wgHT3iijrYyaqoTDT21TQJM7rr/lUk0drFGTRo1XyGEKxLEs8pInQkCJzQ0d4C69vj42WnP9Zgk96dMZlOsmRCCnQlwegN4Q74pRkx3AvGJCB2IcNJL474wtLnx+BWc3uiiRlsNvNhDeGPRmoB51jR2Rvaxg/A9GGvJKU2LY7QgGQjffx09vrj5mdWbINWJhuYOUBMvwc7Az3U8k1GbxhRrDSoHfMIUKxgtNC1Yqs0y4gWTh4pWDSJeGfmPpz5UPNzIu/00ezhiMlrNpdE1dlrlk0Ro7DTBrtTgGrt4BU+0G9jsrgkgkUmUY6XWBMmJNTTBLl4pT9qMHDyRFh9TrC+g6L7ghhfshMZOMNroVScMqq2DcDWIeDkbH4+22zf6C2NsjJGxWvCEER3qAXITVGXE6fHT6Q7mhTO8KTZbKxIfa4WRkN+VARd7u1UmM5RLMF5zXdMWEtzHGHt+IcIUG6eUJ+Hn2nhCfHZqfDIaNHV5UNVgYEKuQd9fGpGCnZKESYqNqf4R9KLVoP51itdL99tvo3q9pLUCWKivbqDjpZf0YyS7nYyLLkK2x9b2egPnR4och1yfzDEkjrz9PpPHho8Z6ji0hXa8RtLiRPYvtVECZBqP1NDx0jH9mFjnWdPWZTqshk1OrKFp7Bo6g+kw5Ch9Po0cFQtBgbPL46fV6WVifuzXq9E1smmxXyzBhE2xsWvsVFU1dLoTrU1dbj9ev4LdGp2+py5i8x3tMzFSWGUJSZJQVRV/QMFuNW6UdjQY+w0qACKqThgszUfPzl3U3PUdANSccrjgThob26n9wc96HTfu8cdJnz8vpt/6pO4YIFHv2QdMiela8SZyHDLm3QglMznw7EucdvgfvY4byjgcbG0EJA51fwyMS1CLh0dk/wKF02DB12k8UkPtY+t6HRfLPD+/bzMgk5GauATX8SI/MwVJAr+i0uL0Rp1Xsd1l3KhYCC74R1tdcdHYBRQ1bGo3gcauRKs+EQcfuy6PX69wYEgfu1QbsgSKGtxsRGsVqQ0JwSUGTj6tIUkSNouE16/iC6gY1MMpaoQp1gS0GFRjlzb3DGxlZSBJ5Hi6AWhLyURXbEsStvJy0uaeEdPv+BU/h1pbAXiv7iX8SmylnOJN5DjkujsBaHVkhg8Y4jj4FT81HV0AvHnsL4bpZ2T/sj1OADrt6eEDYpxnv+Lnr5+9E7yuUmWYfveHzSLrwUKxBFAY2aEewpqceCQdb+xy41dUrLJEoUETjEdSnBMUbpq6PXrgWrS0h8ywqTaLIfP3yREppGJJ1aQnGM8xnlWlL5LZzy7J5NTEEvArBGJ8yKOhpdODrEJumm1Ufr9/ZHJvX0Hdj+8m2+tCVkGRrXTZ08nwBRe83NtXoCBDDO1+9dBr+N1pyCq0eg/z6oHXWDJxSbw6EQfC45Dr7kJWoc2RgyKFX+JDGYdXDr6G4k1FVqHFXWWgfob7l+VzI6vQZc8gIFnQDC6xzPOrh16jvQtkFfw0GKjf/VOckUJLp4e6VhenFmYOfsJx9HgD+HwKMpBptxjsuQ4yxmFDVqG50xNz+441O5FVKMlyIKkYsr+R5KRYcVhkvH6FulYXZbnRm4+bu4LPzNhUo72/w4xNs9HW7aW5002gICOqa9S29iCrUJzp6LefAb+Cqqr632hik4M1Y72hNiWKVatWsW7dOr74xS/yv//7vwMeq41LX7LGcO4dIdgNg50bq8hIG/5LPGb2dnC220rO4R62v3Zk5H9/AFR5Om0zriHQ2cUXXOCVrRyquIIsrwtLVhbd0mlIMbRZURU27v2Es11nApDSeBabXthFwbRTkSXjKJy1cciTMjnbbSUrfTJHxi8GpCGNg6IqvLX3E87u0fo531D91Prn6XZxttsKWDlYcQVWVYlpnhVV4a19uzirZQYBtxVrV5Gh+t0fM7skMtxWqt6vZ/uR4Zvrutx+znZbkSWJ/e/UYESPpJJaL2e7rbg/bmW7KzZN0776Ls52WylzWw33DuuPi5QU2t0+tr9eRUMM5uPDzU7OdlspsFkM2/fZXTJ5bitH3qvDUdkd1TWUPe2c7bYy9ugA65Q1gL0gQE+XD8Uzus93ih/SFYmAy49LGfwJfP8f7/Hrh3/Fzo93Ul9fx9NPPcvSJVedcNytt3+D4uIS1txzHwB3fuu7FIwt5ns//A6rvncPkyZO6vc3PF4f3p4Ae96rAX/vZ67b1TXkvhn3zSnQ6fEFc6Kl2o2nxpdkmbR58wAVhz/oC9hjsQMqafPmIcmx3WKV7QfocofMA5IfZD+d3k4q2w/E1vA4o41DakhT6bJq5qahjUNl+wG6PFo/AyAFDNVPrX9WxY9FDe4cPdbY57my/QBd3k5UJWS+kd2G6nd/aAEeTk90ZmPtmXbYLIYU6gDdbNjjjV3L1BVKmZLpMI8uQYsK7vLE5vfpNvD7W0Nrm3ZfRkNXKKo9I8WYPqPHI0vBJ2+oeRpdLhennz6Dh365rt9jAoEAr73xGksuv1L/LDs7m5tuuBlZltmzd3dMbR4q5nnKDMCcS8aTlZU14r+7uvIYnzv9fPP8YuZOiUN4WpxRLynj0OvrqPFNYE/WBM7v/IwpcgsTV6xFskZ/i/kVP2teXMGxPAeunnnI9kbSSzciIdGQupfnFz+PVTbOLaxeUkbPu0+y1TGLLCnA7UffxFZaOug4hPtpw+Wah2RrIcOA/dTmeT9n0OzI4dqWj5iSTtTzrPW7rrSOLs90VNlPatF72NKPGKrfffGhw8/W5hbKSmzMvbxi2Oe/V9nE1o8PMbXIEdX5I8Ghjyxsra7HkS/H3MbnX+hma7WfM2fnMndRbNcaKZ5xdrJ1ZxfnTkhn7gUVUV/n4/cPs/VgDWMnpRt2rl/ydbO1o50zJ6ZFPT8rdh2i2eFn1aIyppdk93mM2+2m6ugRUjNtOBx2VFVFGaUkwQG7RL3Xi09WKcke3M/16i8t5eovLQXg+huuIyXNStpx57333nvY7TbOv/AcJCm8ZQvIHtLS0qg8tI+07Gv6/Q3ZrWBPtTDl/FIcjt6+ip2dnUPumzHfmgbFYpWxRBkKHguNTi+KBEVjUkfl9wfFaqfwjm+R8397UCToSEmj8NbrsDpicwp/9eAbVLuO4Q+cgSKBZOtAkYM7ymOuo7x57A2WTloajx7EB6udaTddh/IRtDsyCKgqZXd8a9Bx0PupTEeRQLZ1G7OfoXnOeK2BxrQcOq2pFN5xS9TzrPVblSQCvjEgAY4mArLfWP3ug8IxqSgS1Hd7o3om29w+FAnGZjqM+UwDY7McKBK0uP0xt7Gm040iQdnYdMP293hKcoNzXNftjqnNHR4/ihRM7m3Uvudmhua6xxdVGz3+AI1ODwwyxxarjCRJ+p8SUNnxelWszY+K0y8pRyVcfSJSEBsKWh8i+dvf/sbSpUuRj7Ng3HvvvXR3d7Nnz54Bf0e7Zl+yxnDmxZB32fr166moqMDhcDB//ny2bdvW77E+n4/777+fSZMm4XA4mDVrFq+//npM1zQSXr+ipxsoyDRutFHWkiXkWoMPSGd+CVlXXBHT9fyKn/W71iMhofiDWlLJFt6xSEj8dtdvDRdBWb7sCmyhNnVNmDroOET2Uw0EnZZlS9jHxWj9zFqyhDFSsC3O4vKo57lXv/1ZBPeYfiRrcI6N1u/j0XPZRVmZoMUEScdzQ3VN2+KQ7qSmzQWYI9WJhpbLrrottpQnrQbPVwgRpQKjnOuGUGWgFKts2PQ9x2OzyEiAoqp6OppYefHFF7nqqt5+d9u3b+fRRx9lyZIl7N59kppin3nmGVauXMmjjz7K/PnzWbduHYsXL2b//v0UFBSccPw999zDU089xX//938zbdo03njjDf7lX/6FDz74gDlz5kR1TSOhVTCwyhI5BqwpqSFZrZSdOQOOgWvWmTGZYAF2Nu6kprsGANWXA4Bsbde/V1Gp7q5mZ+NOzio6K6bfiieyzUZ+qoVaDyhfuWnQcejVT39QsJOsYcHOaP2UrFYKJpZDC/gvvCTqeY7st+LNDV7b1o4kBV+wRuv38WiJsuujTHeiV5NJN27qj9xQ22LNY6eqakRyYvMIduNCkbDHWl0xXUcTjI0s8GipbVqinOvaUKqTkpzUYWm+ZIs0auZp2SJhs8h4Awpev6KnP4mWzz77jNraWi6++GL9M0VR+Ld/+zdWrFjB/Pnz+dd//Vd8Ph82W2LvBcMJdg899BDf+MY3uOWWWwB49NFHeeWVV9iwYQOrVq064fgnn3ySu+++mytCmoPbbruNt956i//8z//kqaeeiuqaRqIxVHs1PzPF8Nm8x8+bDcc+pS2nMOZrzcqfxYMLH8Qb8PLb1yQ+a4cvTb+QBVMv1I+xW+zMyp8V82/Fm8KCMdQea8c5a3CBJLKfz/5D4r1muHjCPJacGT7XaP0snDoRPjiCa/zkqK8R2e+tn8P/HoWpBWO5/bwH9GOM1u9ItCSuHT0+3L7AsPOThZOOG1eLo5WF6vb48fgDpESZnb/V6cXtCwZgmCXHGUD5mKBgV93Wg6qqwzbVaWib8zwD5++LVWOn57AbZmWgoNlx9NY1mzUk2AUU0gc/fEBeeuklLrnkkl6+cQ8//DDNzc3cf//9HD16FJ/Px759+5gxY0aMvzYwhhLsvF4v27dv50c/+pH+mSzLLFq0iC1btvR5jsfjOcHJMDU1lffffz/qaxqJxpBGoMDALwWNolDG8ViLo0NwUV9csRiAX3k2A06uPGUB50zKi/naiUZb9DWhfCAi+/nqlu1APQvKT2fppIoEtjA2tEoLTTEkM43sd+XB/cABzigbz9JJiX3hxYssh5VUm4UeX4D6DjcVecNbFjTNSJ6BBbtMhxWLLBFQVNpdPgqzohPsNFNmQWZK1MLhaFCc40CWwONXaOryUBBlRQZNO5tnsMpBkeRmxCbYaVUnik1QdSKSFIuME2JOQg1BM+w3v/lN/f81NTXce++9PP3006SnpzNlyhRSUlLYvXt3wgU7Q/nYNTc3EwgEKCzsrfEpLCykvr6+z3MWL17MQw89RGVlJYqisHHjRv76179SV1cX9TU9Hg+dnZ29/kaLpm5NY2f8nW68C2dDMBRdWxjKY0gSOpIUZEVXlUDf2Rt4AYAIwW4IgutQOKbN7xhzzC8ENQ2xmGM1jV2ugU2x8apIoJlhy0zkXwdBHyxNUDkagzm2OcLqYlQiq4wEovA3q9NNscZfpyKxhQIShiLYdXd3s2vXLnbt2gXA4cOH2bVrF0ePHqWxsZGPPvqIK68Mpzn59re/zeWXX86SJcFk61arlVNPPXVE/OwMJdhFw69//WumTJnCtGnTsNvtrFixgltuueWEqJThsHbtWrKzs/W/8vLyOLZ4eDR2Gv+loKEtdJ1uf9T5vY6nOVTSR5bC1zc6usauc3iCjxkc6iGsPR6KRnIoaItmea65Fv7CkAAfjYa62SRzrQdQxFBWTPNRKzOR4K6h+9m1RSfYuX0BukLvQiNv2DQBXlWhPYq5rjOrxk4T7IZQVuyjjz5izpw5uu/+ypUrmTNnDqtXr+Zvf/sb8+bNIy8vaFF6+eWXefvtt/n1r3/d6xozZsw4+QS7vLw8LBYLDQ0NvT5vaGigqKioz3Py8/N54YUXcDqdVFVVsW/fPjIyMpg4cWLU1/zRj35ER0eH/nfs2LE49C46tMXTDKbYTIdNT9warVP58WjanOLs1JidW0cKTQhvGKbg02Q6jV2c5ji08I8ziUZWQ4uarBlmoXhVVWlxhubawBo7CGtyNG1yNBxpCc7v+LHmml8IbzaOtUZnhdDGzW6RyTJwcmZbRPuiMcfWhjY3ZvKhhHC92KFo7C644IJe5dC0v8cee+yEaNgrr7yStra2E2SMJ554ghdffDG+negDQ62UdruduXPnsmnTJv0zRVHYtGkTCxYsGPBch8NBaWkpfr+fv/zlLyxbtizqa6akpJCVldXrb7TQFk/NvGd0dPNUHPzsAKpNmCYhrLEb+hi4fQE9c3u+wQU7Le1Oi9OLP8YC2m5fQN+8mMkUC1AWpWDn8gb0YAKja+w0F5BYzO5HW50AjB8bq3v6yKPdk9FGxmrjlpdhjzr4YqQYG3rvRBMZq5tiTaaxs4c0dr6AghJDvdjzzjuP5cuXx6tZMWO4LcTKlSu56aabOPPMM5k3bx7r1q3D6XTqEa033ngjpaWlrF27FoAPP/yQmpoaZs+eTU1NDT/5yU9QFIUf/OAHQ76mkdFeDEZf7DWKsx0caOymLm6Cnfn8rwqj8LHTXqY2i0RWquEey17kptt1p/oWp1cXZKNBE9wzU6zkGDgdRF9om42aYeY500zuDptMmoHLTEHYUhCLYFdlao1dsM3R+tjpgRMmsLiMTbdzuNk5bH9Kp8dPuytYds1sPnZWWUKWJBRVxedXSBlmdLtGpLxhBAy3glx33XU0NTWxevVq6uvrmT17Nq+//roe/HD06NFe/nNut5t77rmHQ4cOkZGRwRVXXMGTTz5JTk7OkK9pZHRTbAyL50iiJW6tj1MAhbbwm8nxujgr2NY219BTYWjavfyMFMPv7C2yxNh0O41dHho7PTEJdtqCWZabZvh+H09pTnDRH67Grjlkhh2bbvy5jtWf0utXqA2Nz3iTmdohLNhFm6TYLAFRELYKNQ7TxUIbm5w0G5kOc23OJEnCbpVx+wJ4A9ELdkbDcIIdwIoVK1ixYkWf323evLnX/xcuXMjevXtjuqZRURRV3ymbwccOIiNj46uxM5Ngl5VqJd1uwekNUNvew8T8jEHPaQgFWhSaJECkICuFxi4PTd1uoO+6kENB0+aMM1ngBIS1EzXDzHPW0m38VCcasUZAV7e5UFRItVlMEQB2PJqPXV1HD16/opvuhkpzhCnW6GguFg3DDPoKB8eY7xmGoP+j2xfA41fIHO3GxAlD+dgJetPm8uqlTsyw44P45rKD8MJvllQnENwFao71Wn6nwdDMtoUmSGsD4UVguJG/x3O4Oeh/NSFvcOHXaGhz3OML0BYyRQ2FsN+V8Z9pfZ6jDJSpag2bYY2uneyL/IwUHDYZRUXXPA6Hk0Fjp0UMm8ldJpIUW1AM8sQhl51REIKdgdEiS8em24e9Uxwt4qmx8/gDuil2Yr65HK/Dgt3QFgNdsDNJkEy8Up4cagoKdmabXwCHzaIv2MPxs9Pn2gTa2fwY57kqJLibLeJZQ5KkcABFFClPzJCcWKMgykAZM1pVItGSZnt8gVFuSfwwh7RwkqLnBjKRQ2pRHJMUH2sNmnHS7RbTBI9oDDcVhtlMsfFKUnyoKVgXd5IJBTuICKAYhjZH04iYQTurCfDtLh8e//AXvkiNnVmJJYCiyQTlxDSiCfqCsCnWTFaVSFKGkaTYLAjBzsCE6++ZZyekLXRtLh9d7qGbp/pC0+ZMyE83nRmnNCSMD1tjZ4LFHiI1dtFrZnu8AT3/lRlNsRBdyhPNTcEM2tmcNBs2S/DZa46i+sRRPSLWnII7hIVSzS1kOIRNsebxsRuudtaMmQsiiUxSrERRdcOICMHOwGiLXolJtDgAWQ4bY0JpK6JN6qlxpMX8/le1Q9RcaoKd2aprxOJLqfnX5aTZ9ES4ZiOalCe6dtYEke6SJOna8mi0s8mgsZsYqgOsbTSHQ0Po+SgywVxHq509ZsLMBZFYZAmLHNy8eGLMy2kUhGBnYOpCWoDiHHM9MONizP2kEXasN99uvzRneAt+vcl87KKtuhDJoeagGXaiCedXQ5/n9qHf67op1gSLPUB+FAm3AQKKqr8Dxuead461jeXh0P06VLrcPpzeoIBkhg1bTpoNe6gSw1CDojpcPj2xuhlLxkFw86L52XmTxM9OCHYGRi/TYoKXQiTh3E+xCXa6Y70JF/6wxs49qHrf5fXrL0ez5CvUdufN3V7cUb4MDzeZVyOrUTpMAdcXUHSTplmE+GgDZWrawilCzFQ55ngmhPw/j7a6hlVpRdNmZzmspNkNmVmsF5IkDTtYRtPW5WXYSTV4su2B0MyxyRIZa/y77SRGL9MiNHYxt2mkKcp2IElBh9wWp3fAHF7a7jjNbiEzxRyPZHaqjTS7BdcwcvUdz6Fm80bEagzXFKuZM20WSS+8bnSiDZQ50NQFBDdmmqnLjBRnOXDYZNw+heq2HiqG+D6q0zfm5nl/F2alUNPeM+Q60OEE8onX1ileL91vv43q7d/XU7LbybjoImT78J6toQh2DzzwAHffffcJn//qV7/iWyu+3cukO9qYYxU5CVEUVd/xmU1jFw/Brtvj13eNQ32RGgmbRaYw00F9p5va9p4BBbuwGdZhmiARSZIozUmlsrGb2nZ3dIJdUxKYYiOChbo9fjIGEcw1X8qCTAeyQRaBwYg2UOZgY1BwnxTFvWEkZFmiYmw6++q7ONzsHPL7SHt/m8EMqzHcJMWaH/VI+Nf17NxFzV3fGfS4cY8/Tvr8ecO6tn0Igt0dd9zBV7/6Vf3/q1ev5s033+RLX/oSVS1OenwBJuSlG6L6hjDFGpRmpwdfQEWSzOOLoxEPwe5AY3DRz89MITt19B+UaNArEwxipjNTlGQkw83VF4mqqhwMmWInFZh34c9yhAM/qloGd67XBTsTzXW0uSm1Z9jM86uhaZUPNg3dz07bsJlpY669g+qH6E+pBbhVjEDUc9rcM7CVlUF/m19JwlZeTtrcM4Z9bT2XnT+AqvbtOpOZmUlRURFFRUWsX7+eN998k82bN1NWVsatNy/nvNMruPH6Lw/7txOBEOwMipbDriAzBZvFXNOk+9i19kQdPr6/vhOAaUXmLfKiCbhHBlnwNcHPbM7HmmBXHYVgV93WQ7fHj80imdLUHokW8XmkefCNjC7EmyStDUTUxB1mvVRNCJqcDIKdHkAx9MjYug5zBcnA8F0LRtJdRrJayb9jBfQjeKGq5N+xAsk6fENkilVGQiKgqHq1p/5YvXo1Tz75JJs3b6aiogK/onD9V2/l33/1CLJBLC7mkhhOIjQtiNn86yC4Q7XKEt6AQkOUec721wcXhVMKzSvYaSabqkEWfM1PpdRkc62ZX6LR2H3eEPS/mpSfYbqNy/FMCGkrBhPgISzEmymYoCQiJ2N/2ozjUVWVAyZPPh2JJrgMR7Cr1/OQmkiw04T4IT7TumA3QnOctWRJ31q7kLYu64ororquLEu6OXagYLA1a9bwxBNP6EIdgM+vcNaC88jKzOpXmTjSmPuNmsRoZkwzluKxWmR90R/OizASbeGfambBLrTgHx5kwTdrSR7d1DxMTQ7AvvrQ/JpYI6uhJd89MoR73YxzrW0und4AnT3+IZ3T6vTS7vIhSWFtl5nRBJdhCXYhPzUz+dhp9+VQMhr0eAO6VnLCCCWg7ldrF4O2TsNh0wS7vv3s1qxZw+OPP95LqINwxQojbVCN0xJBL6pMLNhB2GH6YOPwcj9p7A8JdqeYeOHXNXZDFuzMNdfD3d1Hsj8k2JlZI6tRkTf0ygRmnGuHzcLYkB9h9RDz9Wn+daU5qaZOg6GhBfjUdbhxeYcm3GoaOzMJdpomubHLM2iSYk1DnZNmY8wIJhg/QWsXo7ZOw2EL3qd9aez+/d//nUceeYQ///nPOBwO6uvrqa+vx+Px4A2lwLFaDKKuQwh2hkUrxWNWwW5yYVCwOxCFYNfq9OqpFU4pNO9uvyLke9XQ6el3MVAUVdd4mUmLA1CeGzbF+oaZsV3TyJrZh1JDN9MNwRRbbdIs/eFAmaG5VmiBMcngXweQk2bXhVst2ncgutw+2lzBkopmcrEYm27HYZNR1bCfd3+MVjqqE7R2cdDWQaTGrrdgp6oqv/zlL2lqamLBggUUFxfrf5988klYYycbR5wS6U4MSlVr8KExU43FyDxDpY0SIPPZ3iN0SIf0Y4aSZ0gLnBiXm2aKxJ7Ho42D5PWSbZXp8Evs+curnBIxldo4NPYE8AYUZMk8O3utfw6PF4cs41bgs/97mfER69dA8+z1BzjQmHym2KYuz4ApT7o9/vBibzLBrjQnlU9rOobsT6k9w1OSRLCDoHZ5y6EW9tV3MqMse8BjtTQguel2Q6S/GCpaGqODTU5q2gfO2TeaeUazliyh6eHf4Kuujou2DsChR8YqqKqqp56SJImOjo5+z9PSNhlJY2e+VfMkwBdQ9J2xmWosRuYZysophwvu5EB9J7WP/7TXcYPlGfrL7i2ATHZmdP55o03kOBR94dt05I5j138/RUbtp72OG/f44zwbaABkstNVQ/loDERk/0ou/A6HskvZ+dvHsDV81uu4/ub5jztfxa/IOGyqqbQZ/ZGdGkx50ur0UtXiZHpJ34u+pq3LTrWRZaLFHoaf2mZvXVCwO7U4K2FtGmmmFWuCXdegx2oVGcpNaHEpHZPGwSbnoH52umA3CsoHTWtX+8NVcdHWQTCXnSxJKKqK16+QYhuaC4EvoPDN5VdzYN8eXE4nZWVlPPfccyxYsCDmNkWLOVaSk4yath4CiorDJuvJQc1AZJ6hsu5GAFpTs+myhRbvIeQZ8it+NlbuA6DW+xF+ZWj+LEYichxKnE0A1KbnhQ8IjYN9zkye/vQtADxSrWn6Gtm/0u5mAGoyTuxfX/PsV/w8tiPYZymlnoCaHLUZNbP7QIXiq0NaHM2EbSa0QJmhpLZRVZV9dUHh57SSJBLsQtrl/UMR7EzsI102xJQnmqZqpCJijyfrqquoeO5ZspYujcv1gjVjQ+bYQfwLNVRVxetX+f3TL1Bb14DL5aK6unpUhToQGrthEfArBEagltzhpm5kFcaPSUUJqEB0ueBGHpnc21dQ9+O7SQ34KXC205yWw9GsIk5tPQpA7u0rUJChn3F89dBrODvHIKvQI+3n1QOvsWTikpHsRBwIj0NZdzOyCscyi1Ck8A4w9/YVvHZkI20dVmQVAnKNifoa7l9pqH81GQUn9K+veX710Gu0tqUjq6BYD5uozwNzSn4Gu6ra+byuk8D0oj6PqWpyIqtQluUYkfdIPCnLTg3ex03OQdte3erC6fbjsMhUjEkzXV/7Y0p+BrIKn9d1Ddqno83BuS7PNt9cl2Y5kFWoau5/rhVF5UB9cJ2aPDZ9yH0MhMyc2l+sOE4/HSAu14JgAIXbF6DHGyDLMfg1g5UqVGRJwipLMbdDG5e+ZI3h3EdCsBsGOzdWkZGWeJ+g/UfbONttZUqPje2vHUn478UTVZ5O24xrCHR2cb5bok62UlN2CamZNViysuiWTkPqp0+KqrBx7yfM65gLSNjbJrPphV0UTDsVWTKXclkbhzLFwdluKylZp3Fk/GJAwpKVRSfTeOuFZzizeRaKx4q1K99UfdX7J2WE+jedI+N70PrX1zwrqsJb+3ZxVvMsFJ8Va/dYU/V5ICY0BjjbbaX9o2a2+/r2H23a18jZbitTW1XzPddOL2e7rdiPuvnotSMM5E10oKmbs91W8jNT+OTNoyPWxkTjCygs8FhR3QHee/EgaQNE+/p3t3O220reUbfp5npMUw9nu63In3X22/aOHh+nd4BFttG2vZntUsvQLm4NYC8I0NPlQ/EY75l3+FXSFQm/049L7b8mrYbbHyBdkbBaZHo6Bz9+MDxeH96eAHveqwF/7/ur2zW4pljDeCMroKU7eIPkZpijSHgkkiyTNm8eoDLGHbwR2xyZgEravHlIA0QOVbYfoLNHBSQk2QOym05vJ5XtB0ak7fFEG4ccT3AMOuzpKEho43Cg8xBd3k7UQNCMIVmcpuqr1r9MT9D02GnTTE79z3Nl+wE6PV0o/uDmSLJ2mqrPA5EXelZbnP2/3NtC341kaoh4kZ1qQ5KCObsGS/fRHIpoz88wjxvJULBZZL28YUv3wLVUO3uCQTJmLIeYmxa8P1udvn5tRc3aGpVux2KUrLxxQPNz9gfUIdnJAoHgUVaD1X0WGrthMOeS8WRlJd5nZO2RWj52+Ln+C6XMndG3WcfIqJeUcej1dRytrWdrSRmtDh/XB/YwccXafp1c/YqfNS+uoCp7PG73HCwZlaSVbURCoiF1L88vfh6rbK7bVb2kjAOvr+N+6xx6rA6+0raDSVl2xn3rp6x95UvUltTT1X0uWP2kl72Bxd5mqr6ql5SRtvER7nPMBYeVb9a+S05hXp/zrM1vdV4AZ/dCkJ1kjHsRWcJUfe6Pim4P399bhaT6+fnFZX1Gc9/x8SGaHH6+d+k4ZpXljHwjY+RH+6o41trDHTPHMHfC2H6P+8NTLWx1+LloQSFzz60YuQaOAH9oaWHrZ41cXJHG1f30zR9QeGvLfrwOhf+4ooJSE+UshKBm8tsfH8Kv+HngnEKKsk/0Cd32zgG27vezbHoBcy+vGPK13W43VUePkJppw+Ew3gZHUVWqe7yoKBSnW/VqFP3R2hrA6VPJSLeSlhl7f2S3gj3VwpTzS3E4emdJ6OzsHPJ1zPsmHQUsVhnLIBMdK6qq8nlTN4oEU0syE/57CcFqp/COb3HK/b9EkeBgVjG5t38L6wAP8qsH36DadQyv52wUCayp1Shy0IH1mOsobx57g6WT4uMkO2JY7RTf8S3KX6lmX24FRzIKOeeO5Wys20S16xhKYAwKNpD9qCktBCTFXH212pnyra+RuynkS5mRz9Q7butznrX59XnnokhgSa1BtfgJYOL5jaAgJ5XczBSauz0cbHExuzyn1/cdPT4auj0gweQicz7X4/MzqGrroaqthwVT+m//x7WdKBKcXp5tyn4OxKll2byxr5E99Z399u1Imwu3opCWYqFsbDqywbQ5g2GxypTlpXGoycnh1h5K+4h63aevUVnDmmOLVUaSJP3PaFgkiRS7TI83QI8vMGhkrNsfQAVSbJa49Ecbl75kjeGMc3I9dUlATXsPTm8Am0UaMIeQ0clasoRxY1JJ9/Xgs9homHtev8f6FT/rd61HQkLpKQfA4qjWv5eQ+O2u35omajSSrCVLmBQImmOPlE8j7bJLw331BLWxsr0ZSQo6xpqtr1lLljDJ2wpAVcX0PvNJRc5vIDS/cpLMbyRa1OS+uhN31gdDEYSFWSmmS3WiMXEI9VLrOnqo73RjkSVmDpLrzYzMCgnsu46193tMZUNwricXZJhOqNPQKwc19Z1gPplKAh5PWkiY6/EOHBmrqmooeAI9mtYoGKs1Aj6tDiZCnFyQaZq8Zn0hWa0U3LGCye3BBXx3ff8VKHY27qSmu4aAPw3FWwCAJa1K/15Fpbq7mp2NOxPb6AQgWa2cdfZpAFSeMpddrZ9S012DikrAXQqA7KjRjzdbXyWrlZnTKwCoOXNhn6Z2bX5VVAKuCQBY0o7o35utz/1xemlQkOlr0ddSZEwpMO9CqCWi7W+xB9h5tB0ICrlmTC4+GLNDJvRDzU46Qsmmj0dLvm3mqhuaYKdViImk0+3T74EZpcknvKeG7ltXH6XFIvH6FRQ1GBFrNMEu+Z48k7MztCjMGZczqu2IB1lXXcW8jvf5eG8n26vauO6scX0eNyt/Fg8ufJBtB7z8oRKKx6j8eOG9vY6xW+zMyp81Es2OO+ctuxAe+ju7XRZOHTODBxc+iDfg5dHXJfYAV582h4Wnz9GPN1tfZy+cC3/ayQHbmD6/1+a3pdvLjz8LvgDXXPivZES4kJitz31xRuiZ3XG07YTvPglt2E438UKoaWc+q+s/Om9nqO/J8P7qizHpdsaPTaOqxcWu6nYWnpJ/wjGfhzR2ZhbitfyDu2tP1D5/cqwDVQ3mY8xLsgAZQI92dnkDKIrar9a1JyT4OeJkho0nQrAzGNqL8YxxfS+SZkKSJM6dP5X/3vtPthzqPxzebrGzuGIxH366FzjMxVPHs3TSjJFraIKZlJ+hVybYX9/D4orFqKrKfW2bAA/LZ5/L3PG5o93MqNEqLexr6MLrV05wONbm9/Xd9cB2TinMYPn0haPQ0sQyJ/TMVjZ20+n29TK57q4JCnZmNk9qi31New9tTm+f0b2axm5OufnfX/0xuzwnKNgd7U+w07Sz5tXYzQrdp5/Vdp7wTOvCe5LOcYpVxmqR8QcUXN4AGY6+xSRXyFSbOkDam9HCWPrDkxynx8/Hx4ILwNzxyfHQnFmRi0WWONbaM2iJmm1HgsLfWRXmFXL6QpIkfT4/OBCs1FDZ2E1zt4cUq9xvCSqzMH5sGrnpdrx+hU9r+q+p+OHh4PzOm5Bc86uRn5lCeW4qqgq7QgIOgMcfYF+odqqZTVdZDpteSWFvH36ETo+fj6vbATizIjneX32hBcb0pZl1ef1UNgY1dmbWzo7LTSM71YY3oJxgjtX6fXyAULIgSRIZIXNs9wCpfTQfvNQhlh4bSYRgZyDeP9CMN6AwfmyaXqLI7GSkWPXF7MNDrf0e19TlYXdNcLFYMLH/VApmZdGpQd/B1/fUA/BeZVDAO6siF4cBXwzDQZIkzgot5NsO9z/H734eLK92dhLOr8ZZIc3rBwfDGupdR9vxBVTyMux6uSazMj2ktdtTe6IAv+1IK76AStmYVFOW0hoq2v277XArnuNKT+2p7SSgqBRmpVCU7ejrdFMgSeHgl0ifUa9f4cPQM56sGzSAdEfwnex09y3YKaqqm2IHSlQ9WgjBzkC8sDPoRH/RtALD2exjYcGk4Ivw75VN/R7z99Cif3ppFgVZ5n0h9sclpxUhS8EX/8Gmbl76uBaAC6cVjHLL4oOmZf3nkb4Fu6oWJ4eanFhlifOnnGi+ShYWTg327e19DfpnmhB/zqQ80z/XmhZqZ4RGUuP9UD/Pn2L+fg7EtKJM8jJS6PEF2FHV3us7TVNrxjyFx6NbGQ42659tr2rD5Q2Ql2HntOLRrQOsqiq7m3fHrZxYJBkRARQBJRj5+sADD4TTkcgyM8pymFU+hkd+819x//1YEYKdAWh3ebnj6Z28tjuozbnurPJRblF8uTgkvLz9WeMJO1yNd/Y3AnDh1OQQdI4nN92u9+2G//mQj4+1Y5Ulls0uGeWWxYf5oYS1/zzcii9wYk3Dt/cF5/fMijGmzMY/VBaeko9Flvi8oZuqlmBakM2fB/t+3pS80WxaXDh7YlCA33qoBUXpvaBqm7NzJ5u/nwMhSRLnTQ7e7+8f6L1Z1TY2s5MgeETzH3yvshl/6JnWNiznT8kf9VQuLx96meWvLOflQy/H/dp2q0yK1YKqqnSFtHZ33HEHdXV11NXV8ennh/ni9TdRWj6Oa665Ju6/HytCsDMAigp/C2lwvjS3jGlFo7sTijdnjBtDQWYKXR4/Hxw4MYiixxtg8/7gC/KCJBXsAL598RRkCWo73EBQgE+WqLLTSrIYm26ny+Pv0+SubVounlY40k0bUXLS7JwT0lA/ve0Ynzd0sbumE6ss6RscMzOzLIc0u4U2l0/PZQbBgIHKxm7sFjmpNbIaXwgJPa/vrtc1Rl6/opvgz59s/jGYWZbDmDQbXW4/Hx5uxR9QeHFXcJ1aPH10KyJpuTGBhOTAlCSJrNSg1q4jVB4uMzOToqIiioqKePTRR9jy97d56bU3UVWVCy64gNNOO42ZM2fy3HPPxbUt0SAEOwOQkWLl+4un8usvz+Y//l/yRINqyLKkvwhe2FVzwvcbP2ug2+OnbEwqc5LUIReCyU0funY2Uwsz+Zc5pfz4ilNHu0lxwyJLXDo9KLS9vqeu13fHWl1sO9yKJMGVs4pHo3kjyg1njwfgqa1VfP//PgGC7hVjk0CIt1lk3bdK07IDvBzamH7hlLyk1shqXHJaISlWmYNNTt03+KMjrXR7/ORl2HVfRDNjkSWumBF8Xp/YcoTX99TT2OUhJ83GRaO8SXnt8GvUdAfXkurual47/Frcf0O7j7vcft0cC3D3Pffy/LNP8z/PvszpUydjtVpZt24de/fu5c033+Suu+7C6ew/ifdIIAQ7A2C3ytx+4WSWzS7FauKkxANxzZllALz6aR1NXb0LaD/30TEA/mVO6air9xPN1XNKeeM7X+BX180mPSW5sg1pwvurn9bjjkju+cw/g/N73uQ8ivuoO5lsXHxqIXPG5dDt8fPxsXZkKaitTRYuPz20SdtZg6qqeP0KT4fmeOms5HAtGIxMh41LTgtuZJ7+51EA/m9HMBn7olMLk+Y9dtM5FQC8saeBO/+8C4Cbz6kYtIZqIomsZAOJq1yTarOQYrWgqCptoWTUa9as4cknn+B/nn2ZKZMmYrdaKC4uZvbs2QAUFRWRl5dHa2v/QWQjQXJKEQLDMbMshznjcvAFVP7n/UP657trOnivshlZgmvPTC7fwpON8ybnUZqTSqvTy4shzWyn28fjW44AcP28vhNUJxsWWeI315/BuZPHMi43jYeunW3q1BfHc9npxaRYZSobu3mvspmntx2lqctDYVYKl5+e/BpZjX8NaWaf++gYb+1t4OWPg5rqa5LoPXZKYSY3h4S7gKIypSCDb5w/cVTbpGnrVIImcK1yTby1dpIkMTYjmKuxpdvD6tWrefzxx/nj/71Cafk4ctJO1Exv376dQCBAefno3gNCsBOMGCsunAzAH98/wucNXQQUlfv/thcI7vTLkzhFwsmA1SLri8BDGz+n3eXlZy9/Rpfbz5SCjFH3yxlJSnNS+d+vn83ff3AhV88pHe3mxJXsVBtfmR8Uam7/0w5+9upnQPD5Hk1Nzkhz9sSxLDwlH19A5etPfIQ3oHDe5Dy9AkmysPrK0/j1l2dz9xWn8tytC0bV0nC8tk4jUVq7MWl2rLLMw//5C377yKM8uuEJJIuNtuZGPJ2teDxh61Nrays33ngjv//97+PahmhILluQwNBcNK2AC6bms3l/E//6Px8yIS+dbUdaSbNb+N6lU0e7eYI4cMOC8fxp21EONzs5e+0m3L6gb8p9y6YnjXlKAHdePIV3P2/kYFPQl+jCqflcHxL2Tib+89pZ3LRhG3tqO5mUn86D18xKulQvsiyxbLYxNieRvnWRRGrtlk5aGrffs8gSRdkpPP67/6K7q4vLL+5dMWfbtm2cddZZeDwerr76alatWsU555wTt9+PFklNRBKYJKOzs5Ps7Gw6OjrIyjK/U+xo0ur0cu3vtnAglJ3dKks8vHwOl884eUw4yc7++i5u2rCN+k43FllizdLTuHFBxWg3SxBnOlw+/rqzmiyHjatml2BLUv/gwVAUldqOHoqzU7GIzcuAuN1uDh8+zIQJE3A4hpev1K/4ufL5K6ntrtXNsJFISJRmlPK3f/kbVjm+OqvGLjcNnR5QVcZmpFCc7dAFeFVVuf7665k6dSo/+clPYvqdgcZnOHKIEOyGgBDs4ovT4+cvO6pp6vJw5cwSvbi4IHno8QbYdaydiry0kyJgQiAQDE4sgt0/6//JV9/46qDHbVi8gbOKzoq2if0SUFRUVKxy7w3M+++/zxe+8AVmzpypf/bkk08yY8bwM1zES7ATpljBiJOeYhUanCQn1W7RK44IBAJBrMzKn8WDCx/EG/D2e4zdYmdW/qyE/H5QG3uiRva8885DUU5Myj6aCMFOIBAIBAKBobFb7CyuWDzazTAFJ6dThEAgEAgEAkESIgQ7gUAgEAgEgiRBCHYCgUAgEAgESYIhBbv169dTUVGBw+Fg/vz5bNu2bcDj161bx9SpU0lNTaW8vJzvfOc7uN1u/fuf/OQnSJLU62/atGmJ7oZAIBAIBALBiGK44IlnnnmGlStX8uijjzJ//nzWrVvH4sWL2b9/PwUFJxYe/tOf/sSqVavYsGED55xzDp9//jk333wzkiTx0EMP6cdNnz6dt956S/+/1Wq4rgsEAoFAkPSILGt9E69xMZzG7qGHHuIb3/gGt9xyC6eddhqPPvooaWlpbNiwoc/jP/jgA84991yuv/56KioquPTSS1m+fPkJWj6r1UpRUZH+l5eXNxLdEQgEAoFAANhswfqqLpdrlFtiTLRx0cYpWgyltvJ6vWzfvp0f/ehH+meyLLNo0SK2bNnS5znnnHMOTz31FNu2bWPevHkcOnSIV199lRtuuKHXcZWVlZSUlOBwOFiwYAFr165l3LiToyi5QCAQCASjjcViIScnh8bGRgDS0tKSrgRbNKiqisvlorGxkZycHCwWS0zXM5Rg19zcTCAQoLCwsNfnhYWF7Nu3r89zrr/+epqbmznvvPNQVRW/38+tt97Kj3/8Y/2Y+fPn89hjjzF16lTq6uq47777OP/889m9ezeZmSdWPfB4PL2K+3Z2dsaphwKBQCAQnLwUFRUB6MKdIExOTo4+PrFgKMEuGjZv3swDDzzAb3/7W+bPn8+BAwe48847+elPf8q9994LwOWXX64fP3PmTObPn8/48eN59tln+drXvnbCNdeuXct99903Yn0QCAQCgeBkQJIkiouLKSgowOfzjXZzDIPNZotZU6dhKMEuLy8Pi8VCQ0NDr88bGhr6lWLvvfdebrjhBr7+9a8DMGPGDJxOJ9/85je5++67keUT3QhzcnI45ZRTOHDgQJ/X/NGPfsTKlSv1/3d2dlJeXh5ttwQCgUAgEERgsVjiJsgIemOo4Am73c7cuXPZtGmT/pmiKGzatIkFCxb0eY7L5TpBeNNulv4iTLq7uzl48CDFxcV9fp+SkkJWVlavP4FAIBAIBAKjYyiNHcDKlSu56aabOPPMM5k3bx7r1q3D6XRyyy23AHDjjTdSWlrK2rVrAVi6dCkPPfQQc+bM0U2x9957L0uXLtUFvO9973ssXbqU8ePHU1tby5o1a7BYLCxfvnzU+ikQCAQCgUAQbwwn2F133XU0NTWxevVq6uvrmT17Nq+//roeUHH06NFeGrp77rkHSZK45557qKmpIT8/n6VLl/Kzn/1MP6a6uprly5fT0tJCfn4+5513Hlu3biU/P3/E+ycQCAQCgUCQKCRVZAoclI6ODnJycjh27JgwywoEAoFAIBhRNF//9vZ2srOzBzzWcBo7I9LV1QUgAigEAoFAIBCMGl1dXYMKdkJjNwQURaG2tpbMzMyEJVPUpPGTXSsoxiGMGIsgYhzCiLEIIsYhjBiLMMk8Fqqq0tXVRUlJSZ/ZPiIRGrshIMsyZWVlI/JbIgo3iBiHMGIsgohxCCPGIogYhzBiLMIk61gMpqnTMFS6E4FAIBAIBAJB9AjBTiAQCAQCgSBJEIKdQUhJSWHNmjWkpKSMdlNGFTEOYcRYBBHjEEaMRRAxDmHEWIQRYxFEBE8IBAKBQCAQJAlCYycQCAQCgUCQJAjBTiAQCAQCgSBJEIKdQCAQCAQCQZIgBLsRZP369VRUVOBwOJg/fz7btm0b8PjnnnuOadOm4XA4mDFjBq+++uoItTRxrF27lrPOOovMzEwKCgq4+uqr2b9//4DnPPbYY0iS1OvP4XCMUIsTw09+8pMT+jRt2rQBz0nG+wGgoqLihLGQJInbb7+9z+OT5X74+9//ztKlSykpKUGSJF544YVe36uqyurVqykuLiY1NZVFixZRWVk56HWH+54xAgONhc/n44c//CEzZswgPT2dkpISbrzxRmprawe8ZjTP2Ggz2D1x8803n9Cnyy67bNDrJts9AfT5zpAkiV/+8pf9XtOM90Q0CMFuhHjmmWdYuXIla9asYceOHcyaNYvFixfT2NjY5/EffPABy5cv52tf+xo7d+7k6quv5uqrr2b37t0j3PL48u6773L77bezdetWNm7ciM/n49JLL8XpdA54XlZWFnV1dfpfVVXVCLU4cUyfPr1Xn95///1+j03W+wHgn//8Z69x2LhxIwDXXHNNv+ckw/3gdDqZNWsW69ev7/P7X/ziF/zXf/0Xjz76KB9++CHp6eksXrwYt9vd7zWH+54xCgONhcvlYseOHdx7773s2LGDv/71r+zfv5+rrrpq0OsO5xkzAoPdEwCXXXZZrz49/fTTA14zGe8JoNcY1NXVsWHDBiRJ4otf/OKA1zXbPREVqmBEmDdvnnr77bfr/w8EAmpJSYm6du3aPo+/9tpr1SVLlvT6bP78+eq//du/JbSdI01jY6MKqO+++26/x/zxj39Us7OzR65RI8CaNWvUWbNmDfn4k+V+UFVVvfPOO9VJkyapiqL0+X0y3g+A+vzzz+v/VxRFLSoqUn/5y1/qn7W3t6spKSnq008/3e91hvueMSLHj0VfbNu2TQXUqqqqfo8Z7jNmNPoah5tuukldtmzZsK5zstwTy5YtUy+66KIBjzH7PTFUhMZuBPB6vWzfvp1Fixbpn8myzKJFi9iyZUuf52zZsqXX8QCLFy/u93iz0tHRAUBubu6Ax3V3dzN+/HjKy8tZtmwZe/bsGYnmJZTKykpKSkqYOHEiX/nKVzh69Gi/x54s94PX6+Wpp57iq1/96oB1mZPxfojk8OHD1NfX95rz7Oxs5s+f3++cR/OeMSsdHR1IkkROTs6Axw3nGTMLmzdvpqCggKlTp3LbbbfR0tLS77Enyz3R0NDAK6+8wte+9rVBj03Ge+J4hGA3AjQ3NxMIBCgsLOz1eWFhIfX19X2eU19fP6zjzYiiKNx1112ce+65nH766f0eN3XqVDZs2MCLL77IU089haIonHPOOVRXV49ga+PL/Pnzeeyxx3j99dd55JFHOHz4MOeffz5dXV19Hn8y3A8AL7zwAu3t7dx88839HpOM98PxaPM6nDmP5j1jRtxuNz/84Q9Zvnz5gPVAh/uMmYHLLruMJ554gk2bNvHzn/+cd999l8svv5xAINDn8SfLPfH444+TmZnJ//t//2/A45LxnugL62g3QHDycvvtt7N79+5BfRwWLFjAggUL9P+fc845nHrqqfzud7/jpz/9aaKbmRAuv/xy/d8zZ85k/vz5jB8/nmeffXZIu85k5Q9/+AOXX345JSUl/R6TjPeDYGj4fD6uvfZaVFXlkUceGfDYZHzGvvzlL+v/njFjBjNnzmTSpEls3ryZiy++eBRbNrps2LCBr3zlK4MGUSXjPdEXQmM3AuTl5WGxWGhoaOj1eUNDA0VFRX2eU1RUNKzjzcaKFSt4+eWXeeeddygrKxvWuTabjTlz5nDgwIEEtW7kycnJ4ZRTTum3T8l+PwBUVVXx1ltv8fWvf31Y5yXj/aDN63DmPJr3jJnQhLqqqio2btw4oLauLwZ7xszIxIkTycvL67dPyX5PALz33nvs379/2O8NSM57AoRgNyLY7Xbmzp3Lpk2b9M8URWHTpk29NA+RLFiwoNfxABs3buz3eLOgqiorVqzg+eef5+2332bChAnDvkYgEODTTz+luLg4AS0cHbq7uzl48GC/fUrW+yGSP/7xjxQUFLBkyZJhnZeM98OECRMoKirqNeednZ18+OGH/c55NO8Zs6AJdZWVlbz11luMHTt22NcY7BkzI9XV1bS0tPTbp2S+JzT+8Ic/MHfuXGbNmjXsc5PxngBEVOxI8ec//1lNSUlRH3vsMXXv3r3qN7/5TTUnJ0etr69XVVVVb7jhBnXVqlX68f/4xz9Uq9WqPvjgg+pnn32mrlmzRrXZbOqnn346Wl2IC7fddpuanZ2tbt68Wa2rq9P/XC6XfszxY3Hfffepb7zxhnrw4EF1+/bt6pe//GXV4XCoe/bsGY0uxIXvfve76ubNm9XDhw+r//jHP9RFixapeXl5amNjo6qqJ8/9oBEIBNRx48apP/zhD0/4Llnvh66uLnXnzp3qzp07VUB96KGH1J07d+qRnv/xH/+h5uTkqC+++KL6ySefqMuWLVMnTJig9vT06Ne46KKL1Icfflj//2DvGaMy0Fh4vV71qquuUsvKytRdu3b1em94PB79GsePxWDPmBEZaBy6urrU733ve+qWLVvUw4cPq2+99ZZ6xhlnqFOmTFHdbrd+jZPhntDo6OhQ09LS1EceeaTPayTDPRENQrAbQR5++GF13Lhxqt1uV+fNm6du3bpV/27hwoXqTTfd1Ov4Z599Vj3llFNUu92uTp8+XX3llVdGuMXxB+jz749//KN+zPFjcdddd+njVlhYqF5xxRXqjh07Rr7xceS6665Ti4uLVbvdrpaWlqrXXXedeuDAAf37k+V+0HjjjTdUQN2/f/8J3yXr/fDOO+/0+SxofVUURb333nvVwsJCNSUlRb344otPGJ/x48era9as6fXZQO8ZozLQWBw+fLjf98Y777yjX+P4sRjsGTMiA42Dy+VSL730UjU/P1+12Wzq+PHj1W984xsnCGgnwz2h8bvf/U5NTU1V29vb+7xGMtwT0SCpqqomVCUoEAgEAoFAIBgRhI+dQCAQCAQCQZIgBDuBQCAQCASCJEEIdgKBQCAQCARJghDsBAKBQCAQCJIEIdgJBAKBQCAQJAlCsBMIBAKBQCBIEoRgJxAIBAKBQJAkCMFOIBAIBAKBIEkQgp1AIBAIBAJBkiAEO4FAIBAIBIIkQQh2AoFAkETMmjULSZJO+Kuvrx/tpgkEghFACHYCgUAQZ9avX09FRQUOh4P58+ezbdu2hJzTFxs3bqSuro5NmzYxefJkMjMzWb16NUVFRVFdTyAQmAsh2AkEAkEceeaZZ1i5ciVr1qxhx44dzJo1i8WLF9PY2BjXc/qjoKCAl156iSuuuIJ58+ZRWVnJfffdF0uXBAKBiZBUVVVHuxECgUAwEmzbto0f/OAHfPjhh4wfP56nnnqKHTt28PLLL/PSSy/F5Tfmz5/PWWedxW9+8xsAFEWhvLycO+64g1WrVsXtnP5Yt24dq1at4ve//z033nhjbJ0RCASmQ2jsBALBScHWrVtZuHAhS5Ys4ZNPPuHUU0/l/vvv5+c///kJGq0HHniAjIyMAf+OHj16wm94vV62b9/OokWL9M9kWWbRokVs2bKlz3ZFc05/bNmyhe9///s888wzQqgTCE5SrKPdAIFAIBgJVq5cyTXXXMP3v/99AJYvX87y5ctZtmwZc+bM6XXsrbfeyrXXXjvg9UpKSk74rLm5mUAgQGFhYa/PCwsL2bdvX5/Xieac/vj2t7/NbbfdxrJly4Z1nkAgSB6EYCcQCJKe6upqtmzZwoMPPqh/ZrVaUVW1T/+z3NxccnNzR7KJMVNZWclHH33EX//619FuikAgGEWEKVYgECQ9n332GQBnnHGG/tn+/fuZN28eM2bMOOH4aE2xeXl5WCwWGhoaen3e0NDQb1RqNOf0xZYtW8jLy6O8vHzI5wgEguRDCHYCgSDp6ejowGKxIEkSAK2trTz44IOkpaX1efytt97Krl27BvzryxRrt9uZO3cumzZt0j9TFIVNmzaxYMGCPn8rmnP6wufz4fF4cLvdQz5HIBAkH8IUKxAIkp7Zs2cTCAT4xS9+wTXXXMOdd95JRUUFe/fupaqqivHjx/c6PhZT7MqVK7nppps488wzmTdvHuvWrcPpdHLLLbfox/zmN7/h+eef14W5oZwzGBdccAFut5tbbrmF7373u0ydOpXMzMyo+iAQCMyL0NgJBIKkZ/Lkydx///38+te/Zs6cOZSUlPDmm29SWlrKZZddFtffuu6663jwwQdZvXo1s2fPZteuXbz++uu9giOam5s5ePDgsM557LHHdI1jX0yaNIkXX3yRQ4cOcf7555Odnc2Pf/zjuPZNIBAYH5HHTiAQCEzAmjVrePfdd9m8efOQjl+/fj0/+9nPqK2tTWzDBAKBoRCmWIFAIDABr732mp7AeDDa29v56KOPmDdvXoJbJRAIjIYQ7AQCgcAEDKd27K9+9Stqamp47LHHEtcggUBgSIQpViAQCAQCgSBJEMETAoFAIBAIBEmCEOwEAoFAIBAIkgQh2AkEAoFAIBAkCUKwEwgEAoFAIEgShGAnEAgEAoFAkCQIwU4gEAgEAoEgSRCCnUAgEAgEAkGSIAQ7gUAgEAgEgiRBCHYCgUAgEAgESYIQ7AQCgUAgEAiSBCHYCQQCgUAgECQJ/x9srdHWI4AgFQAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plot_wells(\n", + " eq0,\n", + " grid,\n", + " theta,\n", + " Y_B=Y_B,\n", + " num_transit=num_transit,\n", + " # Here we see some wells are ignored if num_well is too low.\n", + " num_well=1 * num_transit,\n", + ");" + ] + }, + { + "cell_type": "markdown", + "id": "913fb794-b3c0-4bfc-bf7c-7b6b7141250c", + "metadata": {}, + "source": [ + "## Calculating effective ripple for Precise QH" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "066b90da-9212-4834-bb81-0488d69a5c3d", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnYAAAHWCAYAAAD6oMSKAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAABj+ElEQVR4nO3dfVyT9f4/8NfGYANkQ0Q2hqioGHiLgiDepOkK0yzKEm9K82faqehkVJZl2im/hzI9xyxPnOx0rJOm0klP3lEImpmEgph34E3iPeNGZEOUu+36/YGbTRFFgWsbr+fjsQd57X1t7+3SfHl9rs/1kQiCIICIiIiIHJ5U7AaIiIiIqGkw2BERERE5CQY7IiIiIifBYEdERETkJBjsiIiIiJwEgx0RERGRk2CwIyIiInISDHZEREREToLBjoiIiMhJMNgRETWzp59+Gp07dxa7DSJqBRjsiMjprFixAhKJxPpQKBTo3r074uPjUVhYKHZ7LUYQBPznP//BvffeC29vb3h4eKB3795YsGABLl++fEP98OHD0atXr3pf6+TJk5BIJFi0aFFzt01Ed0EmdgNERM3l3XffRVBQECorK7Fz5058+umn2Lx5Mw4ePAgPD48W62P58uUwm80t9n4AYDKZMGnSJKxduxZDhw7FO++8Aw8PD/z888+YP38+1q5di61bt8LPz69F+yKi5sVgR0RO68EHH0RERAQA4JlnnkG7du3wt7/9Df/73/8wceLEevepqKiAp6dnk/bh6urapK93OxYuXIi1a9fi1VdfxYcffmjdPnPmTIwfPx6xsbGYNm0aNm3a1OK9EVHz4VAsEbUaI0aMAADk5+cDqLv2rU2bNvj9998xevRoeHl5YfLkyQAAs9mMJUuWoGfPnlAoFFCr1Xj22Wdx8eLFG153y5YtGDZsGLy8vKBUKjFgwACsWrXK+nx919itXr0a4eHh1n169+6Njz76yKamrKwMs2bNQmBgIORyObp164YPPvjglmf/rly5gg8//BDdu3dHYmLiDc+PHTsWU6dOxebNm7F79+5bf3FE5DAY7Iio1fj9998BAO3atbNuq62tRUxMDPz8/LBo0SKMGzcOAPDss8/itddew+DBg/HRRx9h2rRpWLlyJWJiYlBTU2Pdf8WKFRgzZgxKS0sxZ84cvP/++wgLC0NKSspN+0hNTcXEiRPRtm1bfPDBB3j//fcxfPhw/PLLL9aay5cvY9iwYfj6668xZcoULF26FIMHD8acOXOQkJDQ4OfcuXMnLl68iEmTJkEmq39gZsqUKQCADRs22Gw3mUwoKSm54VFfoCUi+8OhWCJyWgaDASUlJaisrMQvv/yCd999F+7u7njooYesNVVVVXjiiSdszmzt3LkTn3/+OVauXIlJkyZZt993330YNWoUkpOTMWnSJBgMBvz5z39GZGQktm/fDoVCYa0VBOGmfW3atAlKpRI//PADXFxc6q3529/+ht9//x05OTkIDg4GUBc2tVotPvzwQ7zyyisIDAysd9/Dhw8DAPr27XvTHizPWWot8vLy0L59+5vuR0T2jcGOiJyWTqez+XWnTp2wcuVKBAQE2Gx/7rnnbH6dnJwMlUqF+++/HyUlJdbt4eHhaNOmDbZt24ZJkyYhNTUV5eXleOONN2xCHQBIJJKb9uXt7Y2KigqkpqZi1KhR9dYkJydj6NChaNu2rU0POp0O77//Pnbs2GEdNr5eeXk5AMDLy+umPVies9RadO7cGcuXL7+hvrCwEE8++eRNX4+I7AODHRE5rWXLlqF79+6QyWRQq9W45557IJXaXoEik8nQoUMHm23Hjh2DwWC46YzRoqIiANeGdm92i5Cbef7557F27Vo8+OCDCAgIwAMPPIDx48fbhLxjx45h//79Nz17ZumhPjcLbX9kee76z+jp6XlDIAbqbndCRPaPwY6InFZkZKR1VuzNyOXyG8Ke2WyGn58fVq5cWe8+dztU6efnh3379uGHH37Ali1bsGXLFvz73//GlClT8OWXX1p7uP/++zF79ux6X6N79+43ff0ePXoAAPbv34/Y2Nh6a/bv3w8A6NKly118EiKyNwx2RETX6dq1K7Zu3YrBgwfD3d29wToAOHjwILp169ao93Bzc8PYsWMxduxYmM1mPP/88/jnP/+Jt99+G926dUPXrl1x6dKles+e3crgwYPh7e2NVatW4a233qr3Or6vvvoKAPDEE080+vWJyH5xViwR0XXGjx8Pk8mE995774bnamtrUVZWBgB44IEH4OXlhcTERFRWVtrUNTR54sKFCza/lkql6NOnD4C6yRyWHjIyMvDDDz/csH9ZWRlqa2tv+voeHh6YPXs2jhw5grfeeuuG5zdt2oQVK1Zg7Nix6N27901fh4gcD8/YERFdZ9iwYXj22WeRmJiIffv24YEHHoCrqyuOHTuG5ORkfPTRR3j88cehVCrx97//Hc888wwGDBiASZMmoW3btvjtt99w+fJl67Dq9Z555hmUlpZixIgR6NChA06dOoWPP/4YYWFhCA0NBQC89tpr+P777/HQQw/h6aefRnh4OCoqKnDgwAF8++23OHnyJHx9fW/6GWbPno19+/bhgw8+QEZGBsaNGwd3d3fs3LkTX3/9NXr27IkVK1Y0x9dHRCJisCMiqkdSUhLCw8Pxz3/+E2+++SZkMhk6d+6MJ598EoMHD7bWTZ8+HX5+fnj//ffx3nvvwdXVFSEhIXj55Zdv+tpPPvkkPvvsM/zjH/9AWVkZNBoN4uLi8M4771iv9/Pw8MBPP/2Ev/71r0hOTsZXX30FpVKJ7t274y9/+QtUKlWD/bu4uGD16tUYPXo0li9fjrlz51onTOh0OmzatAlubm5N8E0RkT2RCA2NFxARkdOoqanB2LFjkZaWhg0bNtz0VitE5LgY7IiIWpGKigoMHz4ceXl5+Omnn9C/f3+xWyKiJsRgR0REROQkOCuWiIiIyEkw2BERERE5CQY7IiIiIifBYEdERETkJHgfu2ZkNptx/vx5eHl5QSKRiN0OEREROSBBEFBeXg6tVnvD2tbXY7BrRufPn0dgYKDYbRAREZETOHPmDDp06NBgDYNdM/Ly8gJQdyCUSqXI3RAREZEjMhqNCAwMtOaKhjDYNSPL8KtSqWSwIyIiortyO5d1cfIEERERkZNgsCMiIiJyEgx2RERERE6CwY6IiIjISTDYERERETkJBjsiIiIiJ8FgR0REROQkGOyIiIiInASDHREREZGTYLAjIiIichJcUoyIiIjoDpnMAnbnl6KovBJ+XgpEBvnARXrrpb+aC4MdERER0R1IOViAv2w4jAJDpXWbv0qB+WN7YFQvf1F64lAsERERUSOlHCzAc1/vtQl1AKA3VOK5r/ci5WCBKH0x2BERERE1gsks4C8bDkOo5znLtr9sOAyTub6K5sVgR0RERNQIu/NLbzhT90cCgAJDJXbnl7ZcU1cx2BERERE1QlH5zUPdndQ1JdGD3bJly9C5c2coFApERUVh9+7dDdYnJycjJCQECoUCvXv3xubNm22eFwQB8+bNg7+/P9zd3aHT6XDs2DGbmtLSUkyePBlKpRLe3t6YPn06Ll26ZFPzww8/YODAgfDy8kL79u0xbtw4nDx5skk+MxERETkuPy9Fk9Y1JVGD3Zo1a5CQkID58+dj79696Nu3L2JiYlBUVFRv/a5duzBx4kRMnz4dOTk5iI2NRWxsLA4ePGitWbhwIZYuXYqkpCRkZmbC09MTMTExqKy8lponT56MQ4cOITU1FRs3bsSOHTswc+ZM6/P5+fl45JFHMGLECOzbtw8//PADSkpK8NhjjzXfl0FEREQOITLIB/6qm4c2Cepmx0YG+bRcU5b3FgSh5a/suyoqKgoDBgzAJ598AgAwm80IDAzEiy++iDfeeOOG+ri4OFRUVGDjxo3WbQMHDkRYWBiSkpIgCAK0Wi1eeeUVvPrqqwAAg8EAtVqNFStWYMKECcjNzUWPHj2wZ88eREREAABSUlIwevRonD17FlqtFt9++y0mTpyIqqoqSKV12XfDhg145JFHUFVVBVdX19v6fEajESqVCgaDAUql8q6+KyIiIrIfKQcL8Kev996w3XIHu0+f7N9ktzxpTJ4Q7YxddXU1srOzodPprjUjlUKn0yEjI6PefTIyMmzqASAmJsZan5+fD71eb1OjUqkQFRVlrcnIyIC3t7c11AGATqeDVCpFZmYmACA8PBxSqRT//ve/YTKZYDAY8J///Ac6ne62Qx0RERE5r25+berdrlEpmjTUNZZoNyguKSmByWSCWq222a5Wq5GXl1fvPnq9vt56vV5vfd6yraEaPz8/m+dlMhl8fHysNUFBQfjxxx8xfvx4PPvsszCZTIiOjr7her7rVVVVoaqqyvpro9HYYD0RERE5pjV7zgAAdKF+mD6ki92sPCH65Al7pNfrMWPGDEydOhV79uzBTz/9BDc3Nzz++ONoaOQ6MTERKpXK+ggMDGzBromIiKglVNea8d3ecwCACQM6IrprOzwSFoDoru1EDXWAiMHO19cXLi4uKCwstNleWFgIjUZT7z4ajabBesvPW9VcPzmjtrYWpaWl1pply5ZBpVJh4cKF6NevH+699158/fXXSEtLsw7X1mfOnDkwGAzWx5kzZ271NRAREZGDSc8rxIWKavh5yTH8nvZit2NDtGDn5uaG8PBwpKWlWbeZzWakpaUhOjq63n2io6Nt6gEgNTXVWh8UFASNRmNTYzQakZmZaa2Jjo5GWVkZsrOzrTXp6ekwm82IiooCAFy+fNk6acLCxcXF2uPNyOVyKJVKmwcRERE5F8sw7LjwDpC52Nfgp6jdJCQkYPny5fjyyy+Rm5uL5557DhUVFZg2bRoAYMqUKZgzZ461/qWXXkJKSgoWL16MvLw8vPPOO8jKykJ8fDwAQCKRYNasWViwYAG+//57HDhwAFOmTIFWq0VsbCwAIDQ0FKNGjcKMGTOwe/du/PLLL4iPj8eECROg1WoBAGPGjMGePXvw7rvv4tixY9i7dy+mTZuGTp06oV+/fi37JREREZHdKDBcwU9HiwEA4yPs75Ir0SZPAHW3LykuLsa8efOg1+sRFhaGlJQU6+SH06dP25w5GzRoEFatWoW5c+fizTffRHBwMNavX49evXpZa2bPno2KigrMnDkTZWVlGDJkCFJSUqBQXLvfzMqVKxEfH4+RI0dCKpVi3LhxWLp0qfX5ESNGYNWqVVi4cCEWLlwIDw8PREdHIyUlBe7u7i3wzRAREZE9+jbrLMwCEBXkgyBfT7HbuYGo97FzdryPHRERkfMwmwUMW7QNZ0qv4G/j++Kx/h1a5H0d4j52RERERI7k1xMXcKb0CrzkMjwo0n3qboXBjoiIiOg2rMmqmzTxcJgW7m4uIndTPwY7IiIiolswXK7BloN1CxnEDbC/SRMWDHZEREREt7B+3zlU15oR6q9E7wCV2O3cFIMdERER0S1Y7l0XF9EBEom4q0s0hMGOiIiIqAEHzxlwuMAIN5kUsf0CxG6nQQx2RERERA2wnK2L6amBt4ebyN00jMGOiIiI6CYqa0xYv+8cACDODleauB6DHREREdFNbDlYgPLKWnRo645BXduJ3c4tMdgRERER3YRlGHZ8RCCkUvudNGHBYEdERERUj1MXKvDriVJIJMDj4S2zfNjdYrAjIiIiqsfaqytN3BvcHlpvd5G7uT0MdkRERETXqTWZkZx1FoB9rzRxPQY7IiIiouv8dLQYReVV8PF0gy5ULXY7t43BjoiIiOg6lkkTj/ULgJvMceKS43RKRERE1AKKy6uQnlcEwLGGYQEGOyIiIiIb3+09i1qzgH4dvRGs9hK7nUZhsCMiIiK6ShAE6zCsI6w0cT0GOyIiIqKrsk5dxImSCni4ueChvlqx22k0BjsiIiKiqyxn6x7q4482cpnI3TQegx0RERERgPLKGmzaXwDA8SZNWDDYEREREQHYuL8AV2pM6NreE/07thW7nTvCYEdEREQEYLVl0sSAQEgkEpG7uTMMdkRERNTqHdGX47czZZBJJXisfwex27ljDHZERETU6lkmTehC1fBtIxe5mzvHYEdEREStWlWtCetyzgJw3EkTFgx2RERE1KptPVyEi5droFEqcG/39mK3c1cY7IiIiKhVW73nNADg8fAOcJE65qQJCwY7IiIiarXOXryMncdLAADjHXAJsesx2BEREVGr9W32WQgCMKhrO3Rs5yF2O3eNwY6IiIhaJbNZQHKWc0yasGCwIyIiolbpl99LcK7sCpQKGWJ6asRup0kw2BEREVGrZFlpIrZfABSuLiJ30zQY7IiIiKjVuVhRjdRDhQCcZxgWYLAjIiKiVmhdzjlUm8zoFaBET61K7HaaDIMdERERtSqCIGBtVt0wbJwT3OLkj+wi2C1btgydO3eGQqFAVFQUdu/e3WB9cnIyQkJCoFAo0Lt3b2zevNnmeUEQMG/ePPj7+8Pd3R06nQ7Hjh2zqSktLcXkyZOhVCrh7e2N6dOn49KlS9bn33nnHUgkkhsenp6eTffBiYiIqMXtP2tAnr4ccpkUD4cFiN1OkxI92K1ZswYJCQmYP38+9u7di759+yImJgZFRUX11u/atQsTJ07E9OnTkZOTg9jYWMTGxuLgwYPWmoULF2Lp0qVISkpCZmYmPD09ERMTg8rKSmvN5MmTcejQIaSmpmLjxo3YsWMHZs6caX3+1VdfRUFBgc2jR48eeOKJJ5rvyyAiIqJmZ5k08WAvDVTuriJ308QEkUVGRgovvPCC9dcmk0nQarVCYmJivfXjx48XxowZY7MtKipKePbZZwVBEASz2SxoNBrhww8/tD5fVlYmyOVy4ZtvvhEEQRAOHz4sABD27NljrdmyZYsgkUiEc+fO1fu++/btEwAIO3bsuO3PZjAYBACCwWC47X2IiIio+VRU1Qg956UInV7fKOw6XiJ2O7elMXlC1DN21dXVyM7Ohk6ns26TSqXQ6XTIyMiod5+MjAybegCIiYmx1ufn50Ov19vUqFQqREVFWWsyMjLg7e2NiIgIa41Op4NUKkVmZma97/v555+je/fuGDp06J19WCIiIhLd5gN6XKqqRad2HhjYxUfsdpqcqMGupKQEJpMJarXaZrtarYZer693H71e32C95eetavz8/Gyel8lk8PHxqfd9KysrsXLlSkyfPr3Bz1NVVQWj0WjzICIiIvux9uow7PiIQEgkEpG7aXqiX2PnCNatW4fy8nJMnTq1wbrExESoVCrrIzDQuWbaEBERObITxZew+2QppBJgXP8OYrfTLEQNdr6+vnBxcUFhYaHN9sLCQmg09S/todFoGqy3/LxVzfWTM2pra1FaWlrv+37++ed46KGHbjgLeL05c+bAYDBYH2fOnGmwnoiIiFrOmqu3OBl+jx80KoXI3TQPUYOdm5sbwsPDkZaWZt1mNpuRlpaG6OjoeveJjo62qQeA1NRUa31QUBA0Go1NjdFoRGZmprUmOjoaZWVlyM7Ottakp6fDbDYjKirK5rXz8/Oxbdu2Ww7DAoBcLodSqbR5EBERkfhqTGb8N/scAOdaaeJ6MrEbSEhIwNSpUxEREYHIyEgsWbIEFRUVmDZtGgBgypQpCAgIQGJiIgDgpZdewrBhw7B48WKMGTMGq1evRlZWFj777DMAgEQiwaxZs7BgwQIEBwcjKCgIb7/9NrRaLWJjYwEAoaGhGDVqFGbMmIGkpCTU1NQgPj4eEyZMgFartenviy++gL+/Px588MGW+1KIiIioSW3LK0LJpSr4tpFjRIjfrXdwUKIHu7i4OBQXF2PevHnQ6/UICwtDSkqKddjz9OnTkEqvnVgcNGgQVq1ahblz5+LNN99EcHAw1q9fj169ellrZs+ejYqKCsycORNlZWUYMmQIUlJSoFBcO+26cuVKxMfHY+TIkZBKpRg3bhyWLl1q05vZbMaKFSvw9NNPw8XFORYHJiIiao0sK02M6x8AVxfnnWIgEQRBELsJZ2U0GqFSqWAwGDgsS0REJJJCYyUGvZ8Ok1nA1oRh6ObXRuyWGqUxecJ5IysRERERgG+zz8JkFhDRqa3DhbrGYrAjIiIipyUIApKvDsM686QJCwY7IiIiclqZ+aU4eeEy2shlGNPHX+x2mh2DHRERETkty0oTY/v6w8NN9DmjzY7BjoiIiJyS4UoNNh8sAFC3hFhrwGBHRERETun7386jssaM7uo2CAv0FrudFsFgR0RERE7JMgwbN6AjJBKJyN20DAY7IiIicjqHzxtx4JwBri4SPNovQOx2WgyDHRERETkdy0oTD/TQwMfTTeRuWg6DHRERETmVyhoT1uWcAwCMbwX3rvsjBjsiIiJyKj8c0sNwpQZalQJDuvmK3U6LYrAjIiIip2IZhn0iIhAu0tYxacKCwY6IiIicxpnSy/jl+AVIJMATER3EbqfFMdgRERGR07CsCzukmy86tPUQuZuWx2BHRERETsFkFpCcfRZA61lp4noMdkREROQUdhwrRoGhEt4ernigp1rsdkTBYEdEREROwbLSxKP9AiCXuYjcjTgY7IiIiMjhXbhUha25hQCAuFZ277o/YrAjIiIih7cu5xxqTAL6dlAhRKMUux3RMNgRERGRQxMEAWuuDsO2tpUmrsdgR0RERA5t7+kyHCu6BIWrFGP7asVuR1QMdkREROTQLJMmxvTWQqlwFbkbcTHYERERkcOqqKrFxv3nAbTuSRMWDHZERETksDbtL0BFtQldfD0xoHNbsdsRHYMdEREROaw1V5cQeyIiEBKJRORuxMdgR0RERA7peFE5sk9dhItUgnHhAWK3YxcY7IiIiMghWW5xMiLED35eCpG7sQ8MdkRERORwqmvN+G7vOQBAXAQnTVgw2BEREZHDSc8rxIWKavh5yTH8nvZit2M3GOyIiIjI4ViGYceFd4DMhXHGgt8EEREROZQCwxX8dLQYADCew7A2GOyIiIjIoXybdRZmAYgK8kGQr6fY7dgVBjsiIiJyGGazgLXZdcOwXGniRgx2RERE5DB+PXEBZ0qvwEsuw4O9/MVux+4w2BEREZHDsKw08XCYFu5uLiJ3Y38Y7IiIiMghGC7XYMtBPQAOw94Mgx0RERE5hPX7zqG61oxQfyV6B6jEbscuiR7sli1bhs6dO0OhUCAqKgq7d+9usD45ORkhISFQKBTo3bs3Nm/ebPO8IAiYN28e/P394e7uDp1Oh2PHjtnUlJaWYvLkyVAqlfD29sb06dNx6dKlG15n0aJF6N69O+RyOQICAvB///d/TfOhiYiIqNEs966Li+gAiUQicjf2SdRgt2bNGiQkJGD+/PnYu3cv+vbti5iYGBQVFdVbv2vXLkycOBHTp09HTk4OYmNjERsbi4MHD1prFi5ciKVLlyIpKQmZmZnw9PRETEwMKisrrTWTJ0/GoUOHkJqaio0bN2LHjh2YOXOmzXu99NJL+Pzzz7Fo0SLk5eXh+++/R2RkZPN8EURERNSgg+cMOFxghJtMith+AWK3Y78EEUVGRgovvPCC9dcmk0nQarVCYmJivfXjx48XxowZY7MtKipKePbZZwVBEASz2SxoNBrhww8/tD5fVlYmyOVy4ZtvvhEEQRAOHz4sABD27NljrdmyZYsgkUiEc+fOWWtkMpmQl5d3V5/PYDAIAASDwXBXr0NERNTazV13QOj0+kYhftVesVtpcY3JE6KdsauurkZ2djZ0Op11m1QqhU6nQ0ZGRr37ZGRk2NQDQExMjLU+Pz8fer3epkalUiEqKspak5GRAW9vb0RERFhrdDodpFIpMjMzAQAbNmxAly5dsHHjRgQFBaFz58545plnUFpa2uBnqqqqgtFotHkQERHR3amsMWH9vnMAgDiuNNEg0YJdSUkJTCYT1Gq1zXa1Wg29Xl/vPnq9vsF6y89b1fj5+dk8L5PJ4OPjY605ceIETp06heTkZHz11VdYsWIFsrOz8fjjjzf4mRITE6FSqayPwED+5iMiIrpbWw4WoLyyFh3aumNQ13Zit2PXRJ88YY/MZjOqqqrw1VdfYejQoRg+fDj+9a9/Ydu2bThy5MhN95szZw4MBoP1cebMmRbsmoiIyDlZJk2MjwiEVMpJEw0RLdj5+vrCxcUFhYWFNtsLCwuh0Wjq3Uej0TRYb/l5q5rrJ2fU1taitLTUWuPv7w+ZTIbu3btba0JDQwEAp0+fvulnksvlUCqVNg8iIiK6c6cuVODXE6WQSIDHwzuI3Y7dEy3Yubm5ITw8HGlpadZtZrMZaWlpiI6Ornef6Ohom3oASE1NtdYHBQVBo9HY1BiNRmRmZlproqOjUVZWhuzsbGtNeno6zGYzoqKiAACDBw9GbW0tfv/9d2vN0aNHAQCdOnW6m49NREREjbD26koT9wa3h9bbXeRu7J9MzDdPSEjA1KlTERERgcjISCxZsgQVFRWYNm0aAGDKlCkICAhAYmIigLpbkAwbNgyLFy/GmDFjsHr1amRlZeGzzz4DAEgkEsyaNQsLFixAcHAwgoKC8Pbbb0Or1SI2NhZA3Zm3UaNGYcaMGUhKSkJNTQ3i4+MxYcIEaLVaAHWTKfr374//9//+H5YsWQKz2YwXXngB999/v81ZPCIiImo+tSYzkrPOAuBKE7dL1GAXFxeH4uJizJs3D3q9HmFhYUhJSbFOfjh9+jSk0msnFQcNGoRVq1Zh7ty5ePPNNxEcHIz169ejV69e1prZs2ejoqICM2fORFlZGYYMGYKUlBQoFAprzcqVKxEfH4+RI0dCKpVi3LhxWLp0qfV5qVSKDRs24MUXX8S9994LT09PPPjgg1i8eHELfCtEREQEAD8dLUZReRV8PN2gC1XfegeCRBAEQewmnJXRaIRKpYLBYOD1dkRERI0086ss/Hi4EM8MCcLch3qI3Y5oGpMnOCuWiIiI7E5xeRXS8+omO3IY9vYx2BEREZHd+W7vWdSaBfTr6I1gtZfY7TgMBjsiIiKyK4IgWO9dx5UmGofBjoiIiOxK1qmLOFFSAQ83FzzUVyt2Ow6FwY6IiIjsiuVs3UN9/NFGLuoNPBwOgx0RERHZjfLKGmzaXwCAkybuBIMdERER2Y2N+wtwpcaEru090b9jW7HbcTgMdkRERGQ3VlsmTQwIhEQiEbkbx8NgR0RERHbhiL4cv50pg0wqwWP9O4jdjkNisCMiIiK7YJk0oQtVw7eNXORuHBODHREREYmuqtaEdTlnAXDSxN1gsCMiIiLRbT1chIuXa6BRKnBv9/Zit+OwGOyIiIhIdKv3nAYAPB7eAS5STpq4Uwx2REREJKqzFy9j5/ESAMB4LiF2VxjsiIiISFTfZp+FIACDurZDx3YeYrfj0BjsiIiISDRms4DkLE6aaCoMdkRERCSaX34vwbmyK1AqZIjpqRG7HYfHYEdERESisaw0EdsvAApXF5G7cXwMdkRERCSKixXVSD1UCIDDsE2FwY6IiIhEsS7nHKpNZvQKUKKnViV2O06BwY6IiIhanCAIWJtVNwwbx1ucNBkGOyIiImpx+88akKcvh1wmxcNhAWK34zQY7IiIiKjFWSZNPNhLA5W7q8jdOA8GOyIiImpRl6trseG38wCAuAEdRe7GuTDYERERUYvafECPS1W16NTOAwO7+IjdjlNhsCMiIqIWtfbqMOz4iEBIJBKRu3EuDHZERETUYk4UX8Luk6WQSoBx/TuI3Y7TYbAjIiKiFrPm6i1Oht/jB41KIXI3zofBjoiIiFpEjcmM/2afA8CVJpoLgx0RERG1iG15RSi5VAXfNnKMCPETux2nxGBHRERELcKy0sS4/gFwdWEEaQ78VomIiKjZFRorse1IMQDgCS4h1mwY7IiIiKjZfZt9FiazgIhObdHNr43Y7TgtBjsiIiJqVoIgIPnqMCwnTTQvBjsiIiJqVpn5pTh54TLayGUY08df7HacGoMdERERNSvLShNj+/rDw00mcjfOzS6C3bJly9C5c2coFApERUVh9+7dDdYnJycjJCQECoUCvXv3xubNm22eFwQB8+bNg7+/P9zd3aHT6XDs2DGbmtLSUkyePBlKpRLe3t6YPn06Ll26ZH3+5MmTkEgkNzx+/fXXpvvgRERETs5wpQabDhQAqFtCjJqX6MFuzZo1SEhIwPz587F371707dsXMTExKCoqqrd+165dmDhxIqZPn46cnBzExsYiNjYWBw8etNYsXLgQS5cuRVJSEjIzM+Hp6YmYmBhUVlZaayZPnoxDhw4hNTUVGzduxI4dOzBz5swb3m/r1q0oKCiwPsLDw5v+SyAiInJS3/92HlW1ZnRXt0FYoLfY7Tg/QWSRkZHCCy+8YP21yWQStFqtkJiYWG/9+PHjhTFjxthsi4qKEp599llBEATBbDYLGo1G+PDDD63Pl5WVCXK5XPjmm28EQRCEw4cPCwCEPXv2WGu2bNkiSCQS4dy5c4IgCEJ+fr4AQMjJybnjz2YwGAQAgsFguOPXICIicmQPLf1Z6PT6RuHzn0+I3YrDakyeEPWMXXV1NbKzs6HT6azbpFIpdDodMjIy6t0nIyPDph4AYmJirPX5+fnQ6/U2NSqVClFRUdaajIwMeHt7IyIiwlqj0+kglUqRmZlp89oPP/ww/Pz8MGTIEHz//fcNfp6qqioYjUabBxERUWt1+LwRB84Z4OoiwaP9AsRup1UQNdiVlJTAZDJBrVbbbFer1dDr9fXuo9frG6y3/LxVjZ+f7VImMpkMPj4+1po2bdpg8eLFSE5OxqZNmzBkyBDExsY2GO4SExOhUqmsj8BAXktAREStl2WliQd6aODj6SZyN60Dp6bchK+vLxISEqy/HjBgAM6fP48PP/wQDz/8cL37zJkzx2Yfo9HIcEdERK1SZY0J63LOAQDG8951LUbUM3a+vr5wcXFBYWGhzfbCwkJoNJp699FoNA3WW37equb6yRm1tbUoLS296fsCQFRUFI4fP37T5+VyOZRKpc2DiIioNfrhkB6GKzXQqhQY0s1X7HZaDVGDnZubG8LDw5GWlmbdZjabkZaWhujo6Hr3iY6OtqkHgNTUVGt9UFAQNBqNTY3RaERmZqa1Jjo6GmVlZcjOzrbWpKenw2w2Iyoq6qb97tu3D/7+vLEiERHRrViGYZ+ICISLVCJyN62H6EOxCQkJmDp1KiIiIhAZGYklS5agoqIC06ZNAwBMmTIFAQEBSExMBAC89NJLGDZsGBYvXowxY8Zg9erVyMrKwmeffQYAkEgkmDVrFhYsWIDg4GAEBQXh7bffhlarRWxsLAAgNDQUo0aNwowZM5CUlISamhrEx8djwoQJ0Gq1AIAvv/wSbm5u6NevHwDgu+++wxdffIHPP/+8hb8hIiIix3Km9DJ+OX4BEgnwREQHsdtpVUQPdnFxcSguLsa8efOg1+sRFhaGlJQU6+SH06dPQyq9dmJx0KBBWLVqFebOnYs333wTwcHBWL9+PXr16mWtmT17NioqKjBz5kyUlZVhyJAhSElJgUKhsNasXLkS8fHxGDlyJKRSKcaNG4elS5fa9Pbee+/h1KlTkMlkCAkJwZo1a/D444838zdCRETk2Czrwg7p5osObT1E7qZ1kQiCIIjdhLMyGo1QqVQwGAy83o6IiFoFk1nAkA/SUWCoxMcT+2FsX63YLTm8xuQJ0VeeICIiIuex41gxCgyV8PZwxQM91bfegZoUgx0RERE1mbV76oZhH+0XALnMReRuWh8GOyIiImoSFy5VYWtu3e3G4njvOlEw2BEREVGTWJdzDjUmAX07qBCi4bXlYmCwIyIiorsmCAJWXx2G5UoT4mGwIyIioru293QZjhddgsJVypmwImKwIyIiortmmTQxprcWSoWryN20Xgx2REREdFcqqmqxcf95AJw0ITYGOyIiIrorm/YXoKLahC6+nhjQua3Y7bRqDHZERER0V1bvOQ0AeCIiEBKJRORuWjcGOyIiIrpjx4vKsfd0GVykEowLDxC7nVaPwY6IiIju2JqrkyZGhPjBz0shcjfEYEdERER3pLrWjO/2ngMAxEVw0oQ9YLAjIiKiO5KeV4gLFdXw85Jj+D3txW6HwGBHREREd8iy0sS48A6QuTBS2AMeBSIiImq0AsMV7DhaDAAYz2FYu8FgR0RERI32bdZZmAUgKsgHQb6eYrdDVzHYERERUaOYzQLWZtcNw3KlCfvS6GCn0+mwZcuWG7abzeYmaYiIiIjs268nLuBM6RV4yWV4sJe/2O3QHzQ62GVlZaFz584AgFOnTlm3f/7553jqqaearDEiIiKyT5ZJEw+HaeHu5iJyN/RHjQ521dXV8PLyAgD07t0bJ06cAAAMGjQIaWlpTdsdERER2RXD5RqkHNID4DCsPZI1dofg4GDs3r0bXl5eqKiogMFgAAB4eXmhtLS0yRskIiIi+7F+3zlU15oR6q9E7wCV2O3QdRp9xu7FF1/EjBkzMGLECPTp0wf/+te/AAA///wz1Gp1kzdIRERE9sOyhFhcRAdIJBKRu6HrNfqM3TPPPAMfHx8cPXoUM2bMwIQJE9ClSxcUFBQgPj6+OXokIiIiO3DwnAGHC4xwk0kR2y9A7HaoHo0OdgDw2GOPWf97y5YtWLduHaqrqzFhwoQma4yIiIjsy+o9pwEAMT018PZwE7kbqs8dBTubF5DJ8MQTTzRFL0RERGSnKmtM+N++8wCAOK40Ybd4g2IiIiK6pS0HC1BeWYsObd0xqGs7sduhm2CwIyIioluyTJoYHxEIqZSTJuwVgx0RERE16GRJBX49UQqJBHg8vIPY7VADGOyIiIioQWuz6s7W3RvcHlpvd5G7oYYw2BEREdFN1ZrM+Db7LACuNOEIGOyIiIjopn46Woyi8ir4eLpBF8qFCOwdgx0RERHdlGXSxGP9AuAmY2ywdzxCREREVK+i8kqk5xUB4DCso2CwIyIionp9t/ccas0C+nX0RrDaS+x26DYw2BEREdENBEHA2qvDsFxpwnHYRbBbtmwZOnfuDIVCgaioKOzevbvB+uTkZISEhEChUKB3797YvHmzzfOCIGDevHnw9/eHu7s7dDodjh07ZlNTWlqKyZMnQ6lUwtvbG9OnT8elS5fqfb/jx4/Dy8sL3t7ed/U5iYiIHEXWqYs4UVIBDzcXPNRXK3Y7dJtED3Zr1qxBQkIC5s+fj71796Jv376IiYlBUVFRvfW7du3CxIkTMX36dOTk5CA2NhaxsbE4ePCgtWbhwoVYunQpkpKSkJmZCU9PT8TExKCystJaM3nyZBw6dAipqanYuHEjduzYgZkzZ97wfjU1NZg4cSKGDh3a9B+eiIjITlkmTTzUxx9t5He9tDy1EIkgCIKYDURFRWHAgAH45JNPAABmsxmBgYF48cUX8cYbb9xQHxcXh4qKCmzcuNG6beDAgQgLC0NSUhIEQYBWq8Urr7yCV199FQBgMBigVquxYsUKTJgwAbm5uejRowf27NmDiIgIAEBKSgpGjx6Ns2fPQqu99i+T119/HefPn8fIkSMxa9YslJWV3fZnMxqNUKlUMBgMUCqVd/L1EBERtbjyyhpE/l8artSY8N/nohHeyUfsllq1xuQJUc/YVVdXIzs7GzqdzrpNKpVCp9MhIyOj3n0yMjJs6gEgJibGWp+fnw+9Xm9To1KpEBUVZa3JyMiAt7e3NdQBgE6ng1QqRWZmpnVbeno6kpOTsWzZstv6PFVVVTAajTYPIiIiR7PhtwJcqTGha3tP9O/YVux2qBFEDXYlJSUwmUxQq21veKhWq6HX6+vdR6/XN1hv+XmrGj8/P5vnZTIZfHx8rDUXLlzA008/jRUrVtz22bbExESoVCrrIzCQF5sSEZHjWXN1CbG4AYGQSCQid0ONIfo1dvZqxowZmDRpEu69997b3mfOnDkwGAzWx5kzZ5qxQyIioqZ3RF+O386UQSaV4LH+HcRuhxpJ1GDn6+sLFxcXFBYW2mwvLCyERqOpdx+NRtNgveXnrWqun5xRW1uL0tJSa016ejoWLVoEmUwGmUyG6dOnw2AwQCaT4Ysvvqi3N7lcDqVSafMgIiJyJJZJE7pQNXzbyEXuhhpL1GDn5uaG8PBwpKWlWbeZzWakpaUhOjq63n2io6Nt6gEgNTXVWh8UFASNRmNTYzQakZmZaa2Jjo5GWVkZsrOzrTXp6ekwm82IiooCUHcd3r59+6yPd999F15eXti3bx8effTRpvkCiIiI7EhVrQnrcs4C4EoTjkr0+csJCQmYOnUqIiIiEBkZiSVLlqCiogLTpk0DAEyZMgUBAQFITEwEALz00ksYNmwYFi9ejDFjxmD16tXIysrCZ599BgCQSCSYNWsWFixYgODgYAQFBeHtt9+GVqtFbGwsACA0NBSjRo3CjBkzkJSUhJqaGsTHx2PChAnWGbGhoaE2fWZlZUEqlaJXr14t9M0QERG1rNTDhbh4uQYapQL3dm8vdjt0B0QPdnFxcSguLsa8efOg1+sRFhaGlJQU6+SH06dPQyq9dmJx0KBBWLVqFebOnYs333wTwcHBWL9+vU3gmj17NioqKjBz5kyUlZVhyJAhSElJgUKhsNasXLkS8fHxGDlyJKRSKcaNG4elS5e23AcnIiKyM5Zh2MfDO8BFykkTjkj0+9g5M97HjoiIHMXZi5cxdOE2CAKw47X70LGdh9gt0VUOcx87IiIisg/fZp+FIACDurZjqHNgDHZEREStnMksIDmLkyacAYMdERFRK/fL8RKcK7sCpUKGmJ71326MHAODHRERUStnWWkitl8AFK4uIndDd4PBjoiIqBW7WFGN1EN1N/XnMKzjY7AjIiJqxdblnEO1yYxeAUr01KrEbofuEoMdERFRKyUIgvXedXERPFvnDBjsiIiIWqnfzhpwpLAccpkUD4cFiN0ONQEGOyIiolbKcrbuwV4aqNxdRe6GmgKDHRERUSt0uboWG347DwCIG9BR5G6oqTDYERERtUKbD+hxqaoWndp5YGAXH7HboSbCYEdERNQKrb06DDs+IhASiUTkbqipMNgRERG1Mr8XX8Luk6WQSoBx/TuI3Q41IQY7IiKiVmbt1ZUmht/jB41KIXI31JQY7IiIiFqRGpMZ/80+B4ArTTgjBjsiIqJWZFteEUouVcG3jRwjQvzEboeaGIMdERFRK2IZhh3XPwCuLowBzoZHlIiIqJUoNFYiPa8IAPAElxBzSgx2RERErcS32WdhFoCITm3Rza+N2O1QM2CwIyIiagUEQUDy1WFYTppwXgx2RERErUBmfilOXriMNnIZxvTxF7sdaiYMdkRERK2AZaWJsX394eEmE7kbai4MdkRERE7OcKUGmw4UAKhbQoycF4MdERGRk/v+t/OoqjWju7oNwgK9xW6HmhGDHRERkZOzDMPGDegIiUQicjfUnBjsiIiInNjh80YcOGeAq4sEj/YLELsdamYMdkRERE7MstLEAz008PF0E7kbam4MdkRERE6qssaEdTnnAADjee+6VoHBjoiIyEn9cEgPw5UaaFUKDOnmK3Y71AIY7IiIiJyUZRj2iYhAuEg5aaI1YLAjIiJyQmdKL+OX4xcgkQBPRHQQux1qIQx2RERETsiyLuyQbr7o0NZD5G6opTDYERERORmTWUBy9lkAXGmitWGwIyIicjI7jhWjwFAJbw9XPNBTLXY71IIY7IiIiJyMZaWJR/sFQC5zEbkbakkMdkRERE7kwqUqbM0tBADE8d51rY5dBLtly5ahc+fOUCgUiIqKwu7duxusT05ORkhICBQKBXr37o3NmzfbPC8IAubNmwd/f3+4u7tDp9Ph2LFjNjWlpaWYPHkylEolvL29MX36dFy6dMn6/JEjR3DfffdBrVZDoVCgS5cumDt3LmpqaprugxMRETWxdTnnUGMS0LeDCiEapdjtUAsTPditWbMGCQkJmD9/Pvbu3Yu+ffsiJiYGRUVF9dbv2rULEydOxPTp05GTk4PY2FjExsbi4MGD1pqFCxdi6dKlSEpKQmZmJjw9PRETE4PKykprzeTJk3Ho0CGkpqZi48aN2LFjB2bOnGl93tXVFVOmTMGPP/6II0eOYMmSJVi+fDnmz5/ffF8GERHRXRAEAauvDsNypYnWSSIIgiBmA1FRURgwYAA++eQTAIDZbEZgYCBefPFFvPHGGzfUx8XFoaKiAhs3brRuGzhwIMLCwpCUlARBEKDVavHKK6/g1VdfBQAYDAao1WqsWLECEyZMQG5uLnr06IE9e/YgIiICAJCSkoLRo0fj7Nmz0Gq19faakJCAPXv24Oeff76tz2Y0GqFSqWAwGKBU8l9NRETUvLJPXcS4T3dB4SrF7rd0UCpcxW6JmkBj8oSoZ+yqq6uRnZ0NnU5n3SaVSqHT6ZCRkVHvPhkZGTb1ABATE2Otz8/Ph16vt6lRqVSIioqy1mRkZMDb29sa6gBAp9NBKpUiMzOz3vc9fvw4UlJSMGzYsDv7sERERM3MMmliTG8tQ10rJWqwKykpgclkglptOxVbrVZDr9fXu49er2+w3vLzVjV+fn42z8tkMvj4+NzwvoMGDYJCoUBwcDCGDh2Kd99996afp6qqCkaj0eZBRETUEiqqarFx/3kAnDTRmol+jZ29W7NmDfbu3YtVq1Zh06ZNWLRo0U1rExMToVKprI/AQP7BIiKilrFpfwEqqk3o4uuJAZ3bit0OiUTUYOfr6wsXFxcUFhbabC8sLIRGo6l3H41G02C95eetaq6fnFFbW4vS0tIb3jcwMBA9evTAxIkT8f777+Odd96ByWSqt7c5c+bAYDBYH2fOnGno4xMRETWZ1XtOAwCeiAiERCIRuRsSi6jBzs3NDeHh4UhLS7NuM5vNSEtLQ3R0dL37REdH29QDQGpqqrU+KCgIGo3GpsZoNCIzM9NaEx0djbKyMmRnZ1tr0tPTYTabERUVddN+zWYzampqYDab631eLpdDqVTaPIiIiJrb8aJy7D1dBhepBOPCA8Ruh0QkE7uBhIQETJ06FREREYiMjMSSJUtQUVGBadOmAQCmTJmCgIAAJCYmAgBeeuklDBs2DIsXL8aYMWOwevVqZGVl4bPPPgMASCQSzJo1CwsWLEBwcDCCgoLw9ttvQ6vVIjY2FgAQGhqKUaNGYcaMGUhKSkJNTQ3i4+MxYcIE64zYlStXwtXVFb1794ZcLkdWVhbmzJmDuLg4uLryglQiIrIfa65OmhgR4gc/L4XI3ZCYRA92cXFxKC4uxrx586DX6xEWFoaUlBTr5IfTp09DKr12YnHQoEFYtWoV5s6dizfffBPBwcFYv349evXqZa2ZPXs2KioqMHPmTJSVlWHIkCFISUmBQnHtN/vKlSsRHx+PkSNHQiqVYty4cVi6dKn1eZlMhg8++ABHjx6FIAjo1KkT4uPj8fLLL7fAt0JERHR7qmvN+G7vOQBAXASv7W7tRL+PnTPjfeyIiKi5pRwswJ++3gs/Lzl2vTECMhfOi3Q2DnMfOyIiIro7lpUmxoV3YKgjBjsiIiJHVWC4gh1HiwEA4zkMS2CwIyIicljfZp2FWQCignwQ5OspdjtkBxjsiIiIHJDZLGBtdt0wLFeaIAsGOyIiIgf064kLOFN6BV5yGR7s5S92O2QnGOyIiIgckGXSxMNhWri7uYjcDdkL0e9jR3fGZBawO78UReWV8PNSIDLIBy5SLiFDRNQaGC7XIOWQHgCHYckWg50DSjlYgL9sOIwCQ6V1m79Kgflje2AUT8cTETm99fvOobrWjFB/JXoHqMRuh+wIh2IdTMrBAjz39V6bUAcAekMlnvt6L1IOFojUGRERtRTLEmJxER0gkXC0hq5hsHMgJrOAv2w4jPqWCrFs+8uGwzCZuZgIEZGzOnjOgMMFRrjJpIjtFyB2O2RnGOwcyO780hvO1P2RAKDAUInd+aUt1xQREbWo1XtOAwBiemrg7eEmcjdkbxjsHEhR+c1D3Z3UERGRY6msMeF/+84DAOK40gTVg8HOgfh5KW6rztONc2KIiJzRloMFKK+sRYe27hjUtZ3Y7ZAdYrBzIJFBPvBXKXCry2QT1u7Dv3bmo7rW3CJ9ERFRy7BMmhgfEQgpb3FF9WCwcyAuUgnmj+0BADeEO8uv/VUKGCtr8d7Gw9D97Sds2l8AQeBkCiIiR3eypAK/niiFRAI8Ht5B7HbITjHYOZhRvfzx6ZP9oVHZDstqVAokPdkfP8++D+8/1hvtveQ4XXoZL6zai8c+3YWsk5xQQUTkyNZm1Z2tuze4PbTe7iJ3Q/ZKIvB0TrMxGo1QqVQwGAxQKpVN+tq3WnmioqoWy38+gc92nMDlahMAYFRPDV5/MARBvp5N2gsRETWvWpMZg95PR1F5Ff4xuT9G9+bN6FuTxuQJBrtm1JzB7nYVGSvx961HsWbPGZgFQCaV4MmBnfDnkcHw8eQ0eSIiR5CWW4jpX2bBx9MNv84ZCTcZB9xak8bkCf7OcHJ+SgUSH+uDLS/di+H3tEetWcCKXScxbOE2JP30OyprTGK3SEREt2CZNPFYvwCGOmoQf3e0EvdovLBiWiS+nh6FHv5KlFfV4v0teRi5+CeszzkHM1erICKyS0XllUjPKwIAxA3gveuoYQx2rcyQYF9sfHEIFj/RF/4qBc6VXcGsNfvw8LKd2PV7idjtERHRdb7bew61ZgH9OnojWO0ldjtk5xjsWiGpVIJx4R2w7dXheC3mHrSRy3DwnBGTlmdi+oo9OF5ULnaLREQEQBAErL06DMuVJuh2MNi1YgpXF7xwXzdsf204pkR3gotUgrS8IsQs+RlvrjuA4vIqsVskImrVsk5dxImSCni4ueChvlqx2yEHwGBH8G0jx7uP9MKPL9+L+3uoYTILWJV5GsM/3IaP047hSjUnWBARicEyaeKhPv5oI+dykXRrDHZk1bV9GyyfEoE1MweibwcVKqpNWJx6FMMXbcParDMwcYIFEVGLKa+swab9BQA4aYJuH4Md3SCqSzuse34wlk7shw5t3VForMLsb/djzNKfseNosdjtERG1Cht+K8CVGhO6tvdE/45txW6HHASDHdVLKpXg4b5apL0yDG+NDoVSIUOevhxTvtiNKV/sRm6BUewWiYic2pqrS4jFDQiERHL9CuFE9WOwowbJZS6YcW8X/PTafZg+JAiuLhLsOFqM0Ut/xuxvf4PeUCl2i0RETueIvhy/nSmDTCrBY/07iN0OORAGO7otbT3d8PZDPbA1YRjG9PGHIABrs85i+KJt+NuPR3CpqlbsFomInIZl0oQuVA3fNnKRuyFHwmBHjdKpnSeWTeqP/z43COGd2qKyxoyl6ccx/MPtWJl5CrUms9gtEhE5tKpaE9blnAXASRPUeAx2dEfCO7XFt3+KRtKT/dG5nQdKLlXhrXUHMeqjn5GWWwhB4AxaIqI7kXq4EBcv10CjVODe7u3FboccDIMd3TGJRIJRvfzx48vDMH9sD7T1cMXxokuY/mUWJi3PxMFzBrFbJCJyOJZh2MfDO8BFykkT1DgMdnTX3GRSTBschO2v3Ydnh3WBm0yKjBMX8NDHO/Hymn04V3ZF7BaJiBzC2YuXsfN43brd47mEGN0BBjtqMip3V8x5MBTprwxDbFjd0jfrcs7hvkXb8f6WPBgra0TukIjIvn2bfRaCAAzq2g4d23mI3Q45IAY7anId2npgyYR++D5+MAZ28UF1rRlJP/2OYQu3YcUv+aiu5QQLIqLrmcwCkrM4aYLuDoMdNZs+HbzxzYyB+HxKBLq298TFyzV4Z8NhPPD3n5BysIATLIiI/uCX4yU4V3YFSoUMMT01YrdDDsougt2yZcvQuXNnKBQKREVFYffu3Q3WJycnIyQkBAqFAr1798bmzZttnhcEAfPmzYO/vz/c3d2h0+lw7Ngxm5rS0lJMnjwZSqUS3t7emD59Oi5dumR9fvv27XjkkUfg7+8PT09PhIWFYeXKlU33oVsJiUQCXQ81fph1LxbE9oJvGzecvHAZf/p6L55IykDO6Ytit0hEZBcsK03E9guAwtVF5G7IUYke7NasWYOEhATMnz8fe/fuRd++fRETE4OioqJ663ft2oWJEydi+vTpyMnJQWxsLGJjY3Hw4EFrzcKFC7F06VIkJSUhMzMTnp6eiImJQWXltVUSJk+ejEOHDiE1NRUbN27Ejh07MHPmTJv36dOnD/773/9i//79mDZtGqZMmYKNGzc235fhxGQuUjw5sBO2v3YfXhzRDQpXKbJOXcSj/9iFF1btxekLl8VukYhINBcrqpF6qBAAh2Hp7kgEkcfDoqKiMGDAAHzyyScAALPZjMDAQLz44ot44403bqiPi4tDRUWFTcAaOHAgwsLCkJSUBEEQoNVq8corr+DVV18FABgMBqjVaqxYsQITJkxAbm4uevTogT179iAiIgIAkJKSgtGjR+Ps2bPQarX19jpmzBio1Wp88cUXt/XZjEYjVCoVDAYDlEplo74XZ6c3VGLxj0fw7d66C4VdXSSYEt0ZL47oBm8PN7HbIyJqUV/szMe7Gw+jV4ASG18cKnY7ZGcakydEPWNXXV2N7Oxs6HQ66zapVAqdToeMjIx698nIyLCpB4CYmBhrfX5+PvR6vU2NSqVCVFSUtSYjIwPe3t7WUAcAOp0OUqkUmZmZN+3XYDDAx8en8R+UbqBRKfDhE32x6cWhGBrsixqTgH/tzMe9C7dh+Y4TqKo1id0iEVGLEATBeu+6ON7ihO6SqMGupKQEJpMJarXaZrtarYZer693H71e32C95eetavz8/Gyel8lk8PHxuen7rl27Fnv27MG0adNu+nmqqqpgNBptHtSwHlol/jM9Cl/+v0iEaLxgrKzF/23Ohe5vP+H7385zggUROb3fzhpwpLAccpkUD4cFiN0OOTjRr7FzBNu2bcO0adOwfPly9OzZ86Z1iYmJUKlU1kdgIP/ldbuGdW+PTX8eioXj+kCtlONM6RX8+ZscxP5jF3bnl4rdHhFRs7GcrXuwlwYqd1eRuyFHJ2qw8/X1hYuLCwoLC222FxYWQqOpf6q3RqNpsN7y81Y110/OqK2tRWlp6Q3v+9NPP2Hs2LH4+9//jilTpjT4eebMmQODwWB9nDlzpsF6suUilWD8gEBse3U4Eu7vDg83F/x2pgzj/5mBmV9l4UTxpVu/CBGRA7lcXYsNv50HAMQN6ChyN+QMRA12bm5uCA8PR1pamnWb2WxGWloaoqOj690nOjraph4AUlNTrfVBQUHQaDQ2NUajEZmZmdaa6OholJWVITs721qTnp4Os9mMqKgo67bt27djzJgx+OCDD2xmzN6MXC6HUqm0eVDjebjJ8OeRwdj+2nBMiuoIqQT48XAhHvj7Dsz730FcuFQldotERE1i8wE9LlXVolM7Dwzswmu46e6JPhSbkJCA5cuX48svv0Rubi6ee+45VFRUWK9lmzJlCubMmWOtf+mll5CSkoLFixcjLy8P77zzDrKyshAfHw+g7r5ps2bNwoIFC/D999/jwIEDmDJlCrRaLWJjYwEAoaGhGDVqFGbMmIHdu3fjl19+QXx8PCZMmGCdEbtt2zaMGTMGf/7znzFu3Djo9Xro9XqUlnJYsKX4eSnw10d744dZ92JkiB9qzQK+yjiFYR9ux7Jtx1FZwwkWROTY1l4dhh0fEQiJRCJyN+QUBDvw8ccfCx07dhTc3NyEyMhI4ddff7U+N2zYMGHq1Kk29WvXrhW6d+8uuLm5CT179hQ2bdpk87zZbBbefvttQa1WC3K5XBg5cqRw5MgRm5oLFy4IEydOFNq0aSMolUph2rRpQnl5ufX5qVOnCgBueAwbNuy2P5fBYBAACAaD4fa/DLqpX44VC6M/2iF0en2j0On1jUL0X7cK32adEUwms9itERE12vGicqHT6xuFoDc2CgVlV8Ruh+xYY/KE6Pexc2a8j13TM5sF/O+3c/gw5QjOG+puON1Tq8Sbo0MxuJuvyN0REd2+xC25+OdPJzAixA9fPD1A7HbIjjnMfeyIGksqleDRfh2Q/upwvD4qBF5yGQ6dN2Ly55mY9u/dOFpYLnaLRES3VGMy47/Z5wBwpQlqWgx25JAUri54bnhXbH9tOJ4e1BkyqQTbjhRj1JIdmPPdfhQZK2/9IkREItmWV4SSS1XwbSPHiBC/W+9AdJsY7MihtWsjxzsP98SPL9+LUT01MAvAN7vPYPii7Viy9SguV9eK3SIR0Q3WZtVNmhjXPwCuLvyrmJoOfzeRU+jSvg2SngpH8p+iERbojcvVJizZegzDP9yONXtOw2TmpaREZB8KjZVIz6u7l+oTXEKMmhiDHTmVAZ19sO75QfhkUj8E+rijqLwKr//3AEZ/9DO2HyniEmVEJLpvs8/CLAARndqim18bsdshJ8NgR05HIpHgoT5abE0YhrljQqFyd8WRwnI8/e89eOpfu3HovEHsFomolRIEAclXh2E5aYKaA4MdOS25zAXPDO2CHa/dhxlDg+DmIsXO4yV46OOdeDX5NxQYrojdIhG1Mpn5pTh54TLayGUY08df7HbICTHYkdNTebjirTE9kPbKMIztq4Ug1A2F3LdoOxb9cATllTVit0hErYRlpYmxff3h4SYTuRtyRgx21GoE+njg44n9sP6FwYjs7IPKGjM+2XYcwz/cjv/8ego1JrPYLRKREzNcqcGmAwUA6pYQI2oODHbU6oQFemPNswPxz6fC0cXXExcqqvH2+oOIWbIDqYcLOcGCiJrF97+dR1WtGd3VbRAW6C12O+SkGOyoVZJIJIjpqcEPL9+Ldx/pCR9PN5worsCMr7IQ99mv+O1MmdgtEpGTsQzDxg3oCIlEInI35KwY7KhVc3WRYkp0Z2x/bTieG94VcpkUu/NL8ciyX/DS6hycKb0sdotE5AQOnzfiwDkDXF0keLRfgNjtkBNjsCMCoFS44vVRIUh/dTgeu/o/3f/tO4+Ri39C4uZcGK5wggURNZ7JLCDj9wt4f0suAOD+UDV8PN1E7oqcmUTgBUXNxmg0QqVSwWAwQKlUit0ONcLBcwb8dXMudv1+AQDg7eGKP48IxpMDO8FNxn8PEdGtpRwswF82HEaB4dra1W093JD4WC+M6sVbndDta0yeYLBrRgx2jk0QBGw/Uoy/bs7FsaJLAIBO7Tzw+qgQPNhLw2tkiOimUg4W4Lmv9+L6v2At/9f49Mn+DHd02xjs7ASDnXOoNZmRnH0Wi388ipJLVQCA/h298daYUIR38hG5OyKyNyazgCEfpNucqfsjCQCNSoGdr4+Ai5T/QKRba0ye4JgS0S3IXKSYGNkRP702HH8eGQx3VxfsPV2GcZ9m4PmV2ThZUiF2i0RkR3bnl9401AGAAKDAUInd+aUt1xS1Ggx2RLfJUy5Dwv3dsf214YiLCIRUAmw+oMf9f/8Jf9lwCBcrqsVukYhElF9Sgc9/PoF5/zt4W/VF5TcPf0R3ikOxzYhDsc4tT29E4uY8/HS0GADgpZAh/r5umDqoMxSuLiJ3R0TNrdZkRtapi0jLLURaXhFOFDfu7P03MwYiumu7ZuqOnAmvsbMTDHatw8/HivHXzXnILTACAAK83TF71D0Y20cLKa+fIXIqhss12H60CGm5Rdh+pAjGylrrc64uEkQFtcPwe9rjnz+dQMmlqhsmTwC8xo4aj8HOTjDYtR4ms4B1Oeew6Icj0Bvrhlf6dFDhzdGhGNiF/yIncmS/F19Cem4RtuYWIuvURZjM1/7abOvhivtC/DAyRI17u/vCS+EK4NqsWAA24Y6zYulOMNjZCQa71udKtQlf/JKPf2w7jopqEwBAF6rGGw+GoJtfG5G7I6LbUWMyY8/JUqTnFiEtrwj5102Q6q5ug5GhaowM8UO/jm1vetatvvvY+asUmD+2B0MdNQqDnZ1gsGu9isur8FHaUXyz+wxMZgEuUgkmRgZilq47fNvIxW6PiK5Tdrka248UIy2vCD/VM8Q6sEs7jAzxw8hQNQJ9PG77dU1mAbvzS1FUXgk/LwUig3w4/EqNxmBnJxjs6HjRJby/JQ9bcwsBAG3kMvxpWBdMH9IF7m6cYEEkFkEQ8HtxhXXiQ/Z1Q6ztPN2uDrH6YWj39mgjl4nYLbV2DHZ2gsGOLH49cQF/3ZyL/WcNAACNUoFXHuiOx/p34L/eiVpIjcmMPfml2JpbhPS8Qpy8cNnm+RCNF0aG+mFEiBphgd78s0l2g8HOTjDY0R+ZzQI27D+PhSlHcK7sCgAg1F+JN0eHYGhwe5G7I3JOFyuqsf1oEbbmFmHHkWKUV10bYnVzkWJg13bQhfrhvnv8GjXEStSSGOzsBIMd1aeyxoQvd53EJ9uOo/zqdTzDurfHnNEhCNFc+33Ca3OIGk8QBBwvuoS0vCKk5RYi+9RF/GGEFb5t3HDfPXXXyg0J9uUQKzkEBjs7wWBHDblYUY2l6cfwn4xTqDULkEqAJ8IDkfBAd+ScvsjZdES3qbrWjN35pdiaW4j0vCKcLr1xiFUXqsbIUD/07eDN+0uSw2GwsxMMdnQ7TpZUYOEPedh8QA+gbnio2mS+oY73vyK6prSiGtvyipCWV4gdR0tw6Y9DrDIpBnWtm8U6IlSNAG93ETslunsMdnaCwY4aI/tUKRZsPIycM4ab1vCO9dRaCYKAY0WXsDW3EGm5Rdh7+iIEmyFW+dUg54ch3XzhySFWciKNyRP8nU9kJ8I7+WD2qBBMXJ550xoBQIGhEul5hbi/h6blmiMSQVWtCbvzS5GWW3dm7kzpFZvne/groQutOyvXJ0DFIVYiMNgR2ZWi8qrbqpvxVTa0KgVC/ZXooVUi1L/u0cnHg3+5kUO7cKkK244UIy23EDuOFltXcAHqhlgHd22HkaFqjAjxg5ZDrEQ3YLAjsiN+Xorbrj1vqMR5QyXS8oqs2zzcXBCi8bIGvR5aJUI0XvBw4x91sk+CIOBIYXndWbncQuScKbMZYm3vJbeu+DC4Wzv+Xia6Bf4JIbIjkUE+8FcpoDdUor6LXy3X2G1+aSiOFV7C4fMG5BaUI1dvRJ6+HJerTdh7ugx7T5dd20cCdG7niR7+SoT6e1kDn0apgETCs3vU8qpqTfj1RGndqg+5Rdb7Olr01CoxMlQNXagfemk5xErUGJw80Yw4eYLuRMrBAjz39V4AsAl3t5oVW2syI7+kAocLjMgtKL/604jimwzvenu4IlTzx6FcLwT7ecFNJm3iT0QElFyqQvrVe8v9fKwEl/8wxCqXSTGkmy9GhPphZIgaGtXtn7kmag04K9ZOMNjRnUo5WNBk97ErLq9C7tWQl1tgxOECI34vrrBZF9PC1UWCru3bXD27dy30+Xi63fVnotZFEATk6cuRlluIrblF+O2s7RCrWinHiBA1Rob4YXA3X66dTNQAhwp2y5Ytw4cffgi9Xo++ffvi448/RmRk5E3rk5OT8fbbb+PkyZMIDg7GBx98gNGjR1ufFwQB8+fPx/Lly1FWVobBgwfj008/RXBwsLWmtLQUL774IjZs2ACpVIpx48bho48+Qps2bQAAlZWV+NOf/oTs7Gzk5ubioYcewvr16xv92Rjs6G4058oTlTUmHC+6hMPnjdYze7kFRhgra+utVyvl1rBnCXyd23nylitko7LGhIwTF5CeW4T0vBuHWHsHqDAy1A+6UDV6apW8FIDoNjnM7U7WrFmDhIQEJCUlISoqCkuWLEFMTAyOHDkCPz+/G+p37dqFiRMnIjExEQ899BBWrVqF2NhY7N27F7169QIALFy4EEuXLsWXX36JoKAgvP3224iJicHhw4ehUNSd3p88eTIKCgqQmpqKmpoaTJs2DTNnzsSqVasAACaTCe7u7vjzn/+M//73vy33hRD9gYtUguiu7ZrltRWuLugVoEKvAJV1myAIOFd2pe6avQIjDp83IldvxKkLl1ForEKhsRjbjhT/4TWkuEejRA9/L2voC/FXcommVqaovLLuRsG5Rdh53HaIVeFaN8RqmcWqVnKIlai5iXrGLioqCgMGDMAnn3wCADCbzQgMDMSLL76IN95444b6uLg4VFRUYOPGjdZtAwcORFhYGJKSkiAIArRaLV555RW8+uqrAACDwQC1Wo0VK1ZgwoQJyM3NRY8ePbBnzx5EREQAAFJSUjB69GicPXsWWq3W5j2ffvpplJWV8YwdtVqXqmqRZx3Grbt274jeiMqaG1fHAIBO7TwQqvnjUK4XArzdeXbGSQiCgMMFxqv3livCb2fKbJ7XKBUYEeoHXagfBnX1hcKVQ6xEd8shzthVV1cjOzsbc+bMsW6TSqXQ6XTIyMiod5+MjAwkJCTYbIuJibGGrvz8fOj1euh0OuvzKpUKUVFRyMjIwIQJE5CRkQFvb29rqAMAnU4HqVSKzMxMPProo034KYkcXxu5DBGdfRDR2ce6zWQWcPJCRd1ZPetQbjn0xkqcunAZpy5cRsohvbVeqZBdG8a9Gvi6+bXhX/oOorLGhIzfL1jXYv3jtZ8A0LeDqu56uVA/DrESiUy0YFdSUgKTyQS1Wm2zXa1WIy8vr9599Hp9vfV6vd76vGVbQzXXD/PKZDL4+PhYa+5UVVUVqqquzUA0Go139XpE9spFWjfJomv7Nhjb99pZ7tKK6muTNK5ev3e86BKMlbXIzC9FZn7pda/haXPtXqi/Eu295GJ8JLpOkbES6XlF2JpbhF+Ol+BKzbUhVndXFwwJ9q1bwivED34cYiWyG7wYpgklJibiL3/5i9htEInGx9MNg7v5YnA3X+u2qtq6iRqWa/csM3PLLtfgaOElHC28hPX7zlvr23vJrbdf6XH1DF+QrydkLrwNS3MSBAGHzhuty3ftP2u7ZrG/SoGRoXU3Co7u0o5nW4nslGjBztfXFy4uLigsLLTZXlhYCI2m/jUwNRpNg/WWn4WFhfD397epCQsLs9YUFRXZvEZtbS1KS0tv+r63a86cOTZDxUajEYGBgXf1mkSOTi5zQU+tCj21thM19MbKa5M0roa+/AsVKC6vQnF5MXYcLf7Da0hxj8br6rV7XuihVSHE3wtKhasYH8lpVNaY8MvxEqTlFSE9twh643VDrIHe0F1d9SHU34tDrEQOQLRg5+bmhvDwcKSlpSE2NhZA3eSJtLQ0xMfH17tPdHQ00tLSMGvWLOu21NRUREdHAwCCgoKg0WiQlpZmDXJGoxGZmZl47rnnrK9RVlaG7OxshIeHAwDS09NhNpsRFRV1V59JLpdDLucwEtGtSCQS+Kvc4a9yx4iQa5dOXK6uRZ7+D7NyC66tqLH/rOGGs0gd2rpbr9uz/Az04USNhhQaK5GWW4T0vELsPF5iMwnGw80FQ7r5QheqxvCQ9o1a4o6I7IOoQ7EJCQmYOnUqIiIiEBkZiSVLlqCiogLTpk0DAEyZMgUBAQFITEwEALz00ksYNmwYFi9ejDFjxmD16tXIysrCZ599BqDuL4tZs2ZhwYIFCA4Ott7uRKvVWsNjaGgoRo0ahRkzZiApKQk1NTWIj4/HhAkTbGbEHj58GNXV1SgtLUV5eTn27dsHANbASERNz8NNhv4d26J/x7bWbWazgNOll23ut3f4vBHnDZU4e/EKzl68gtTD187ke8llCLEsnXY18N2j8Wq1Q4eCIODgOaN14sOBc7bhWKtSYGRo3cSHgRxiJXJ4oga7uLg4FBcXY968edDr9QgLC0NKSop18sPp06chlV67rmbQoEFYtWoV5s6dizfffBPBwcFYv3699R52ADB79mxUVFRg5syZKCsrw5AhQ5CSkmK9hx0ArFy5EvHx8Rg5cqT1BsVLly616W306NE4deqU9df9+vUDUPc/SSJqOVKpBJ19PdHZ1xOje1+7xKLscrXN0mm5BUYcK7yE8qpa7Dl5EXtOXrz2GhKgS/s2N1y7195L7pRn965UW4ZY68JcofHapC6JBAgL9MbIq0OsIRoOsRI5E9FXnnBmvI8dUcuqMZnxe/El6+1XLMO5Fyqq661v5+lms1ZuqL8SXdu3gasDTtQoMFy5uhZr3SzWqtprQ6yebi4YGtweI0L9cN89fpx5TORgHGpJMWfGYEckPkEQUFxehUN/uN/e4fMG5JdUoJ7lcuHmIkWwus0N1+6pPOxroobZLODAOQPS8oqQlluIQ+dtb68U4O0O3dVZrFFdfCCXcYiVyFEx2NkJBjsi+3Wl2oSjhbZDubkF5bhUVf96uQHe7tazepbA19HHA9K7WC+3sesBX66uxc5jJXVn5vKKUFxuO8Tav2NbjAipW4u1u7oNh1iJnASDnZ1gsCNyLGazgLMXr1jDnuXn2YtX6q33dHPBPRqvPwznKhGi8YKH260vX045WIC/bDhss4qDv0qB+WN7YFSva9cSni+7Yj0rt+v3C6j+wxBrG7kM93b3xYgQNe67pz3ateEQK5EzYrCzEwx2RM7BcKXGul6uZcLGkcJym5BlIZEAQe08bdbKDfVXQqNUWM+gpRwswHNf78X1//O1nF+bPSoEl6trsTW3CLkFtkOsgT7uGHl1+a6ooHZwkzne9YBE1DgMdnaCwY7IedWazMgvqcBh65m9uvvv/XF49I/aerhab73y3d5zMFypua33kV4dYrXckiTYj0OsRK0Ng52dYLAjan2Ky6tslk7LLTDi9+IKmOqbqdGAgUE+GD8gEMPv8YOPp1szdUtEjqAxeYJrxRIRNaH2XnK092qPe7u3t26rrDHhWGHdbVg27j+PHcdKbvk6E6M64pGwgOZslYicEIMdEVEzU7i6oHcHFXp3UCHQx+O2gh2X8yKiO8GrbomIWlBkkA/8VQrc7Co5Cepmx0YG+bRkW0TkJBjsiIhakItUgvljewDADeHO8uv5Y3s0eD87IqKbYbAjImpho3r549Mn+0Ojsh1u1agU+PTJ/jb3sSMiagxeY0dEJIJRvfxxfw9No1aeICK6FQY7IiKRuEgliO7aTuw2iMiJcCiWiIiIyEkw2BERERE5CQY7IiIiIifBYEdERETkJBjsiIiIiJwEgx0RERGRk2CwIyIiInISDHZEREREToLBjoiIiMhJMNgREREROQkuKdaMBEEAABiNRpE7ISIiIkdlyRGWXNEQBrtmVF5eDgAIDAwUuRMiIiJydOXl5VCpVA3WSITbiX90R8xmM86fPw8vLy9IJJK7ei2j0YjAwECcOXMGSqWyiTqkxuJxEB+PgX3gcbAPPA72obmPgyAIKC8vh1arhVTa8FV0PGPXjKRSKTp06NCkr6lUKvmH1w7wOIiPx8A+8DjYBx4H+9Ccx+FWZ+osOHmCiIiIyEkw2BERERE5CQY7ByGXyzF//nzI5XKxW2nVeBzEx2NgH3gc7AOPg32wp+PAyRNEREREToJn7IiIiIicBIMdERERkZNgsCMiIiJyEgx2dmTZsmXo3LkzFAoFoqKisHv37gbrk5OTERISAoVCgd69e2Pz5s0t1Klza8xxWL58OYYOHYq2bduibdu20Ol0tzxudGuN/bNgsXr1akgkEsTGxjZvg61EY49DWVkZXnjhBfj7+0Mul6N79+78/1ITaOxxWLJkCe655x64u7sjMDAQL7/8MiorK1uoW+ezY8cOjB07FlqtFhKJBOvXr7/lPtu3b0f//v0hl8vRrVs3rFixotn7tBLILqxevVpwc3MTvvjiC+HQoUPCjBkzBG9vb6GwsLDe+l9++UVwcXERFi5cKBw+fFiYO3eu4OrqKhw4cKCFO3cujT0OkyZNEpYtWybk5OQIubm5wtNPPy2oVCrh7NmzLdy582jsMbDIz88XAgIChKFDhwqPPPJIyzTrxBp7HKqqqoSIiAhh9OjRws6dO4X8/Hxh+/btwr59+1q4c+fS2OOwcuVKQS6XCytXrhTy8/OFH374QfD39xdefvnlFu7ceWzevFl46623hO+++04AIKxbt67B+hMnTggeHh5CQkKCcPjwYeHjjz8WXFxchJSUlBbpl8HOTkRGRgovvPCC9dcmk0nQarVCYmJivfXjx48XxowZY7MtKipKePbZZ5u1T2fX2ONwvdraWsHLy0v48ssvm6tFp3cnx6C2tlYYNGiQ8PnnnwtTp05lsGsCjT0On376qdClSxehurq6pVpsFRp7HF544QVhxIgRNtsSEhKEwYMHN2ufrcXtBLvZs2cLPXv2tNkWFxcnxMTENGNn13Ao1g5UV1cjOzsbOp3Ouk0qlUKn0yEjI6PefTIyMmzqASAmJuam9XRrd3Icrnf58mXU1NTAx8enudp0and6DN599134+flh+vTpLdGm07uT4/D9998jOjoaL7zwAtRqNXr16oW//vWvMJlMLdW207mT4zBo0CBkZ2dbh2tPnDiBzZs3Y/To0S3SM4n/9zPXirUDJSUlMJlMUKvVNtvVajXy8vLq3Uev19dbr9frm61PZ3cnx+F6r7/+OrRa7Q1/qOn23Mkx2LlzJ/71r39h3759LdBh63Anx+HEiRNIT0/H5MmTsXnzZhw/fhzPP/88ampqMH/+/JZo2+ncyXGYNGkSSkpKMGTIEAiCgNraWvzpT3/Cm2++2RItE27+97PRaMSVK1fg7u7erO/PM3ZETeT999/H6tWrsW7dOigUCrHbaRXKy8vx1FNPYfny5fD19RW7nVbNbDbDz88Pn332GcLDwxEXF4e33noLSUlJYrfWqmzfvh1//etf8Y9//AN79+7Fd999h02bNuG9994TuzVqITxjZwd8fX3h4uKCwsJCm+2FhYXQaDT17qPRaBpVT7d2J8fBYtGiRXj//fexdetW9OnTpznbdGqNPQa///47Tp48ibFjx1q3mc1mAIBMJsORI0fQtWvX5m3aCd3JnwV/f3+4urrCxcXFui00NBR6vR7V1dVwc3Nr1p6d0Z0ch7fffhtPPfUUnnnmGQBA7969UVFRgZkzZ+Ktt96CVMrzOc3tZn8/K5XKZj9bB/CMnV1wc3NDeHg40tLSrNvMZjPS0tIQHR1d7z7R0dE29QCQmpp603q6tTs5DgCwcOFCvPfee0hJSUFERERLtOq0GnsMQkJCcODAAezbt8/6ePjhh3Hfffdh3759CAwMbMn2ncad/FkYPHgwjh8/bg3WAHD06FH4+/sz1N2hOzkOly9fviG8WcK2wBVEW4Tofz+3yBQNuqXVq1cLcrlcWLFihXD48GFh5syZgre3t6DX6wVBEISnnnpKeOONN6z1v/zyiyCTyYRFixYJubm5wvz583m7kybQ2OPw/vvvC25ubsK3334rFBQUWB/l5eVifQSH19hjcD3Oim0ajT0Op0+fFry8vIT4+HjhyJEjwsaNGwU/Pz9hwYIFYn0Ep9DY4zB//nzBy8tL+Oabb4QTJ04IP/74o9C1a1dh/PjxYn0Eh1deXi7k5OQIOTk5AgDhb3/7m5CTkyOcOnVKEARBeOONN4SnnnrKWm+53clrr70m5ObmCsuWLePtTlqrjz/+WOjYsaPg5uYmREZGCr/++qv1uWHDhglTp061qV+7dq3QvXt3wc3NTejZs6ewadOmFu7YOTXmOHTq1EkAcMNj/vz5Ld+4E2nsn4U/YrBrOo09Drt27RKioqIEuVwudOnSRfi///s/oba2toW7dj6NOQ41NTXCO++8I3Tt2lVQKBRCYGCg8PzzzwsXL15s+cadxLZt2+r9/7zle586daowbNiwG/YJCwsT3NzchC5dugj//ve/W6xfiSDw3CwRERGRM+A1dkREREROgsGOiIiIyEkw2BERERE5CQY7IiIiIifBYEdERETkJBjsiIiIiJwEgx0RERGRk2CwIyIiInISDHZEREREToLBjoiIiMhJMNgREYlk586diIyMhEKhgK+vLz766COxWyIiB8dgR0Qkgs2bN+PRRx/F888/j/379+PZZ5/Fyy+/jJMnT4rdGhE5MIkgCILYTRARtSaVlZUIDg7GBx98gEmTJgEATCYTvL29sWzZMkyZMkXkDonIUfGMHRFRC0tPT8eVK1cQFxdn3ebi4gKJRAK5XC5iZ0Tk6BjsiIha2LZt2xAWFgYXFxfrtuPHj6O8vBz9+vUTsTMicnQMdkRELSwnJwfV1dU22/7xj38gPDwc3bt3F6krInIGMrEbICJqbXJyciAIAr766itERUUhOTkZn376KXbt2iV2a0Tk4BjsiIha0OnTp1FaWoqNGzfijTfewNGjR9GnTx+kpKRwGJaI7hpnxRIRtaDvv/8e06ZNw4ULF8RuhYicEK+xIyJqQTk5Oejdu7fYbRCRk2KwIyJqQTk5OejTp4/YbRCRk+JQLBEREZGT4Bk7IiIiIifBYEdERETkJBjsiIiIiJwEgx0RERGRk2CwIyIiInISDHZEREREToLBjoiIiMhJMNgREREROQkGOyIiIiInwWBHRERE5CQY7IiIiIicxP8HYX0fXUimEV8AAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "num_transit = 20\n", + "num_well = 10 * num_transit\n", + "num_quad = 32\n", + "num_pitch = 45\n", + "data = eq0.compute(\n", + " \"effective ripple\",\n", + " grid=grid,\n", + " theta=theta,\n", + " Y_B=Y_B,\n", + " num_transit=num_transit,\n", + " num_well=num_well,\n", + " num_quad=num_quad,\n", + " num_pitch=num_pitch,\n", + " # Can also specify ``pitch_batch_size`` which determines the\n", + " # number of pitch values to compute simultaneously.\n", + " # Reduce this if insufficient memory. If insufficient memory is detected\n", + " # early then the code will exit and return ε = 0 everywhere. If not detected\n", + " # early then typical OOM errors will occur.\n", + ")\n", + "\n", + "eps = grid.compress(data[\"effective ripple\"])\n", + "fig, ax = plt.subplots()\n", + "ax.plot(rho, eps, marker=\"o\")\n", + "ax.set(xlabel=r\"$\\rho$\", ylabel=r\"$\\epsilon$\", title=\"Precise QH\")\n", + "plt.tight_layout()\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "id": "b6389a76-18ee-4fe8-89d5-a20ae80a2b24", + "metadata": {}, + "source": [ + "## Calculating effective ripple for Heliotron\n", + "\n", + "Let us do a high resolution computation so that we are certain the optimization is successful when we compare to the optimized result later." + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "36934653-6515-4c86-854e-062adbee9dec", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnYAAAHWCAYAAAD6oMSKAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAABM0UlEQVR4nO3deXxU9b3/8fdkkswQyAKEbBAJW9hjMEoEcammgnqptL0W6oJyFVtEq+ZaBRcQN9S2XlpFUYuC17ZSvXax0qiNolLR/AqhgkBYwiokZCGZJJBJMnN+f5AMDEkgCUnOLK/n4zEPycn3nHwOR+Tt93wXi2EYhgAAAOD3QswuAAAAAJ2DYAcAABAgCHYAAAABgmAHAAAQIAh2AAAAAYJgBwAAECAIdgAAAAGCYAcAABAgCHYAAAABgmAHAG1wyy23KCUlxeuYxWLRo48+ako9ANASgh2AgLJixQpZLBb961//avH7l112mcaMGdPNVXnbsmWLHn30Ue3Zs8fUOgAEnlCzCwAAf3Xs2DGFhrb/P6NbtmzRokWLdNlllzXrBQSAs0GPHQB0kN1u71Cwaw/DMHTs2LEu/RkAAgfBDkDQe/PNN5WRkaEePXqoT58+mjFjhvbv33/G81oaY5efn6+rrrpKUVFR6tWrl6644gp9+eWXnu+vWLFC1113nSTpO9/5jiwWiywWi9asWSNJSklJ0X/8x3/ogw8+0Pnnn68ePXro5ZdfliQVFhbquuuuU58+fRQREaELL7xQ77//vtfPX7NmjSwWi/74xz/qySef1IABA2S323XFFVdo586dZ/G7BMAf8CoWQECqrKxUaWlps+P19fVeXz/55JN65JFH9KMf/Ui33XabSkpK9Pzzz+uSSy5Rfn6+YmJi2vwzv/nmG1188cWKiorS/fffr7CwML388su67LLL9OmnnyozM1OXXHKJfvazn+k3v/mNHnzwQY0cOVKSPP+UpIKCAv34xz/WT37yE82ePVvDhw9XcXGxJk6cqKNHj+pnP/uZ+vbtq5UrV+p73/ue3nnnHX3/+9/3quXpp59WSEiI7rvvPlVWVurZZ5/VDTfcoK+++qodv4sA/I4BAAHk9ddfNySd9jN69GjDMAxjz549htVqNZ588kmva2zatMkIDQ31On7zzTcbAwcO9GonyVi4cKHn62nTphnh4eHGrl27PMcOHjxoREZGGpdcconn2Ntvv21IMj755JNm9Q8cONCQZOTk5Hgdv+eeewxJxueff+45VlVVZQwaNMhISUkxXC6XYRiG8cknnxiSjJEjRxpOp9PT9te//rUhydi0adMZfgcB+DNexQIISEuXLtVHH33U7JOWluZp8+6778rtdutHP/qRSktLPZ+EhAQNGzZMn3zySZt/nsvl0ocffqhp06Zp8ODBnuOJiYm6/vrrtXbtWjkcjjZda9CgQZo8ebLXsdWrV2v8+PGaNGmS51ivXr10++23a8+ePdqyZYtX+1mzZik8PNzz9cUXXyzp+OtcAIGLV7EAAtL48eN1/vnnNzveu3dvzyvaHTt2yDAMDRs2rMVrhIWFtfnnlZSU6OjRoxo+fHiz740cOVJut1v79+/X6NGjz3itQYMGNTu2d+9eZWZmtnjtpu+fvIzLOeec49Wud+/ekqQjR46c8ecD8F8EOwBBy+12y2Kx6O9//7usVmuz7/fq1cuEqqQePXqc9TVauh/p+CxbAIGLYAcgaA0ZMkSGYWjQoEFKTU09q2v169dPERERKigoaPa9bdu2KSQkRMnJyZKOz6Ztr4EDB7Z67abvAwBj7AAErR/84AeyWq1atGhRs54swzBUVlbW5mtZrVZdeeWV+stf/uK1o0RxcbF+//vfa9KkSYqKipIk9ezZU5JUUVHR5utfffXVysvL07p16zzHampq9MorryglJUWjRo1q87UABC567AAErSFDhuiJJ57Q/PnztWfPHk2bNk2RkZHavXu3/vSnP+n222/Xfffd1+brPfHEE/roo480adIk3XHHHQoNDdXLL78sp9OpZ5991tMuPT1dVqtVzzzzjCorK2Wz2XT55ZcrLi6u1WvPmzdPf/jDH3TVVVfpZz/7mfr06aOVK1dq9+7d+r//+z+FhPD/6QAIdgCC3Lx585Samqr/+Z//0aJFiyRJycnJuvLKK/W9732vXdcaPXq0Pv/8c82fP1+LFy+W2+1WZmam3nzzTa+JDwkJCVq2bJkWL16sW2+9VS6XS5988slpg118fLy++OILPfDAA3r++edVW1urtLQ0vffee7rmmms6dvMAAo7FYCQtAABAQKDvHgAAIEAQ7AAAAAIEwQ4AACBAEOwAAAACBMEOAAAgQBDsAAAAAgTr2LXA7Xbr4MGDioyM7NDWPwAAAJ3FMAxVVVUpKSnpjIuRE+xacPDgQc+ejgAAAL5g//79GjBgwGnbEOxaEBkZKen4b2DT3o4AAABmcDgcSk5O9uST0yHYtaDp9WtUVBTBDgAA+IS2DA9j8gQAAECAMD3YLV26VCkpKbLb7crMzFReXt5p2y9ZskTDhw9Xjx49lJycrHvvvVe1tbVndU0AAIBAYGqwW7VqlbKzs7Vw4UJt2LBB5557riZPnqzDhw+32P73v/+95s2bp4ULF2rr1q1avny5Vq1apQcffLDD1wQAAAgUFsMwDLN+eGZmpi644AK98MILko4vM5KcnKy77rpL8+bNa9b+zjvv1NatW5Wbm+s59t///d/66quvtHbt2g5dsyUOh0PR0dGqrKxkjB0AADBVe3KJaT12dXV1Wr9+vbKysk4UExKirKwsrVu3rsVzJk6cqPXr13terRYWFmr16tW6+uqrO3xNAACAQGHarNjS0lK5XC7Fx8d7HY+Pj9e2bdtaPOf6669XaWmpJk2aJMMw1NDQoJ/+9KeeV7EduaYkOZ1OOZ1Oz9cOh6OjtwUAAGAa0ydPtMeaNWv01FNP6cUXX9SGDRv07rvv6v3339fjjz9+VtddvHixoqOjPR8WJwYAAP7ItB672NhYWa1WFRcXex0vLi5WQkJCi+c88sgjuummm3TbbbdJksaOHauamhrdfvvteuihhzp0TUmaP3++srOzPV83LQQIAADgT0zrsQsPD1dGRobXRAi3263c3FxNmDChxXOOHj3abI80q9Uq6fg+ah25piTZbDbPYsQsSgwAAPyVqTtPZGdn6+abb9b555+v8ePHa8mSJaqpqdGsWbMkSTNnzlT//v21ePFiSdLUqVP13HPPady4ccrMzNTOnTv1yCOPaOrUqZ6Ad6ZrAgAABCpTg9306dNVUlKiBQsWqKioSOnp6crJyfFMfti3b59XD93DDz8si8Wihx9+WN9++6369eunqVOn6sknn2zzNQEAADqDy20ob3e5DlfVKi7SrvGD+sgacuZtv7qSqevY+SrWsQMAAKeTs/mQFr23RYcqT+x+lRht18KpozRlTGKn/iy/WMcOAADAH+VsPqQ5b27wCnWSVFRZqzlvblDO5kMmVUawAwAAaDOX29Ci97aopdedTccWvbdFLrc5L0QJdgAAAG2Ut7u8WU/dyQxJhyprlbe7vPuKOgnBDgAAoI0OV7Ue6jrSrrMR7AAAANooLtLeqe06G8EOAACgjcYP6qPEaLtaW9TEouOzY8cP6tOdZXkQ7AAAANrIGmLRwqmjWvxeU9hbOHWUaevZEewAAADaYcqYRD31gzHNjidE2/XSjed1+jp27WHqzhMAAAD+KKZHuCRpYJ8IZV+Z6jM7TxDsAAAA2il/f4UkadKwWF2b3t/cYk7Cq1gAAIB2yt93RJI07pzeJlfijWAHAADQDvUut74+UClJGndOjLnFnIJgBwAA0A7bDlXJ2eBWdI8wDerb0+xyvBDsAAAA2iF///HXsOnJMQoxebLEqQh2AAAA7ZC/r0KS772GlQh2AAAA7eKrEyckgh0AAECbldfUaU/ZUUlS+oAYc4tpAcEOAACgjTY2jq8b0q+noiPCTK6mOYIdAABAG50YX+d7r2Elgh0AAECb+fLECYlgBwAA0CYut6GNjVuJjUumxw4AAMBv7SqpVrWzQRHhVqXG9zK7nBYR7AAAANqgaZmTtAHRCrX6ZoTyzaoAAAB8jK9PnJAIdgAAAG3iCXbJMabWcToEOwAAgDOoqq3X9sNVkqR0H50RKxHsAAAAzujrA5UyDGlA7x6Ki7SbXU6rCHYAAABn4Mv7w56MYAcAAHAG/jC+TiLYAQAAnJZhGMpvWpjYh8fXSQQ7AACA09pXflTlNXUKt4ZoVFKU2eWcFsEOAADgNJpew47uHyVbqNXcYs6AYAcAAHAanokTPro/7MkIdgAAAKexobHH7ryBMabW0RYEOwAAgFYcq3Np6yGHJN9f6kQi2AEAALRq88FKNbgNxUXalBTtuwsTNyHYAQAAtOLEwsQxslgsJldzZj4R7JYuXaqUlBTZ7XZlZmYqLy+v1baXXXaZLBZLs88111zjaXPLLbc0+/6UKVO641YAAEAA8SxM7AevYSUp1OwCVq1apezsbC1btkyZmZlasmSJJk+erIKCAsXFxTVr/+6776qurs7zdVlZmc4991xdd911Xu2mTJmi119/3fO1zWbrupsAAAAByV92nGhieo/dc889p9mzZ2vWrFkaNWqUli1bpoiICL322msttu/Tp48SEhI8n48++kgRERHNgp3NZvNq17u3fyRtAADgGw5VHlORo1bWEIvGDog2u5w2MTXY1dXVaf369crKyvIcCwkJUVZWltatW9emayxfvlwzZsxQz549vY6vWbNGcXFxGj58uObMmaOysrJWr+F0OuVwOLw+AAAguDX11o1IiFREuOkvOdvE1GBXWloql8ul+Ph4r+Px8fEqKio64/l5eXnavHmzbrvtNq/jU6ZM0RtvvKHc3Fw988wz+vTTT3XVVVfJ5XK1eJ3FixcrOjra80lOTu74TQEAgIBw8sQJf+Ef8bMVy5cv19ixYzV+/Hiv4zNmzPD8euzYsUpLS9OQIUO0Zs0aXXHFFc2uM3/+fGVnZ3u+djgchDsAAILcifF1/jOcy9Qeu9jYWFmtVhUXF3sdLy4uVkJCwmnPramp0VtvvaVbb731jD9n8ODBio2N1c6dO1v8vs1mU1RUlNcHAAAEr7oGtzZ9WynJv3rsTA124eHhysjIUG5urueY2+1Wbm6uJkyYcNpz3377bTmdTt14441n/DkHDhxQWVmZEhMTz7pmAAAQ+LYVOeRscCu6R5gGxfY88wk+wvRZsdnZ2Xr11Ve1cuVKbd26VXPmzFFNTY1mzZolSZo5c6bmz5/f7Lzly5dr2rRp6tu3r9fx6upq/fznP9eXX36pPXv2KDc3V9dee62GDh2qyZMnd8s9AQAA/3Zi/Tr/WJi4ielj7KZPn66SkhItWLBARUVFSk9PV05OjmdCxb59+xQS4p0/CwoKtHbtWn344YfNrme1WvX1119r5cqVqqioUFJSkq688ko9/vjjrGUHAADaxDNxwo/G10mSxTAMw+wifI3D4VB0dLQqKysZbwcAQBC69BefaG/ZUb3xX+N1SWo/U2tpTy4x/VUsAACALymrdmpv2VFJ0rl+suNEE4IdAADASTbur5AkDY3rpegeYeYW004EOwAAgJP42/6wJyPYAQAAnCR/f9OOE/41cUIi2AEAAHi43Ib+vd//FiZuQrADAABotPNwtaqdDYoItyo1PtLsctqNYAcAANCoaf26cwfEyBriPwsTNyHYAQAANDp5xwl/RLADAABo5M8TJySCHQAAgCTJUVuvHYerJUnpfrjUiUSwAwAAkCR9vb9ShiEl9+mhfpH+ub88wQ4AAEAnJk6MS/bP17ASwQ4AAECSlN+4lZi/TpyQCHYAAAAyDONEj52fTpyQCHYAAADaU3ZUR47WKzw0RKMSo8wup8MIdgAAIOg19daN7R+t8FD/jUf+WzkAAEAn8SxM7KfLnDQh2AEAgKDn7wsTNyHYAQCAoHaszqWth6ok+feMWIlgBwAAgtymbyvlchuKj7IpMdpudjlnhWAHAACC2skLE1ssFpOrOTsEOwAAENQ8Eyf8/DWsRLADAABBzDAMbQiAhYmbEOwAAEDQOlRZq8NVTllDLBrbP9rscs4awQ4AAAStptewIxMj1SPcam4xnYBgBwAAgtbJEycCAcEOAAAErfz9FZICY+KERLADAABBqq7BrU3fVkoKjIkTEsEOAAAEqa2HHKprcCsmIkwpfSPMLqdTEOwAAEBQOjG+LsbvFyZuQrADAABB6cT4usB4DSsR7AAAQJAKpB0nmhDsAABA0Cmtdmpf+VFZLNK5yTFml9NpCHYAACDobGzsrRvar5ei7GHmFtOJCHYAACDo5O9v2h82xtxCOhnBDgAABJ0T4+sCZ+KE5CPBbunSpUpJSZHdbldmZqby8vJabXvZZZfJYrE0+1xzzTWeNoZhaMGCBUpMTFSPHj2UlZWlHTt2dMetAAAAH+dyG/p3gO040cT0YLdq1SplZ2dr4cKF2rBhg84991xNnjxZhw8fbrH9u+++q0OHDnk+mzdvltVq1XXXXedp8+yzz+o3v/mNli1bpq+++ko9e/bU5MmTVVtb2123BQAAfNSOw1WqqXOpZ7hVw+IizS6nU5ke7J577jnNnj1bs2bN0qhRo7Rs2TJFRETotddea7F9nz59lJCQ4Pl89NFHioiI8AQ7wzC0ZMkSPfzww7r22muVlpamN954QwcPHtSf//znbrwzAADgi5pew56bHCNrSGAsTNzE1GBXV1en9evXKysry3MsJCREWVlZWrduXZuusXz5cs2YMUM9e/aUJO3evVtFRUVe14yOjlZmZmabrwkAAAKXZ8eJAHsNK0mhZv7w0tJSuVwuxcfHex2Pj4/Xtm3bznh+Xl6eNm/erOXLl3uOFRUVea5x6jWbvncqp9Mpp9Pp+drhcLT5HgAAgH/xTJxIDqyJE5IPvIo9G8uXL9fYsWM1fvz4s7rO4sWLFR0d7fkkJyd3UoUAAMCXVB6r147D1ZKk9ADssTM12MXGxspqtaq4uNjreHFxsRISEk57bk1Njd566y3deuutXsebzmvPNefPn6/KykrPZ//+/e29FQAA4Ae+PlAhSTqnT4Rie9nMLaYLmBrswsPDlZGRodzcXM8xt9ut3NxcTZgw4bTnvv3223I6nbrxxhu9jg8aNEgJCQle13Q4HPrqq69avabNZlNUVJTXBwAABJ4NeyskBeb4OsnkMXaSlJ2drZtvvlnnn3++xo8fryVLlqimpkazZs2SJM2cOVP9+/fX4sWLvc5bvny5pk2bpr59+3odt1gsuueee/TEE09o2LBhGjRokB555BElJSVp2rRp3XVbAADABzXtOHFegC1M3MT0YDd9+nSVlJRowYIFKioqUnp6unJycjyTH/bt26eQEO+OxYKCAq1du1Yffvhhi9e8//77VVNTo9tvv10VFRWaNGmScnJyZLfbu/x+AACAbzIM46QdJ2JMraWrWAzDMMwuwtc4HA5FR0ersrKS17IAAASIwpJqXf6rT2ULDdGmRycrPNQ/5pC2J5f4xx0BAACcpabeurH9o/0m1LVXYN4VAADAKZrG1wXqa1iJYAcAAILEifF1gTlxQiLYAQCAIHC0rkHbiqok0WMHAADg1zYdqJTLbSghyq7E6B5ml9NlCHYAACDg5e+vkBTYvXUSwQ4AAASB/H2BP3FCItgBAIAAZxiGNgTBxAmJYAcAAALcwcpalVQ5FRpi0ZikaLPL6VIEOwAAENCaXsOOTIxSj3CrydV0LYIdAAAIaIG+P+zJCHYAACCgBcvECYlgBwAAApizwaXNBx2SpHHJgT1xQiLYAQCAALb1UJXqGtzqHRGmgX0jzC6nyxHsAABAwDrxGra3LBaLydV0PYIdAAAIWJ6JE8kxptbRXQh2AAAgYOXvP9FjFwwIdgAAICCVVDm1v/yYLBYpLTmwFyZuQrADAAABaeP+CknSsLheirKHmVtMNyHYAQCAgOSZOBEEy5w0IdgBAICAFEw7TjQh2AEAgIDjchv694EKScEzcUIi2AEAgAC0vbhKR+tc6mUL1dC4XmaX020IdgAAIOA0vYY9Nzla1pDAX5i4CcEOAAAEnGCcOCER7AAAQADa4NlKLMbcQroZwQ4AAASUyqP12lVSI0lKD5KtxJoQ7AAAQEDZ2DgbNqVvhPr2splbTDcj2AEAgIDiGV8XRMucNCHYAQCAgBKMCxM3IdgBAICA4XYbnj1ig21GrESwAwAAAWR3WY0qj9XLFhqiEYmRZpfT7Qh2AAAgYDS9hk0bEK0wa/DFnOC7YwAAELCCeeKERLADAAABxDNxIsjWr2tCsAMAAAHhaF2DthU5JNFjZ5qlS5cqJSVFdrtdmZmZysvLO237iooKzZ07V4mJibLZbEpNTdXq1as933/00UdlsVi8PiNGjOjq2wAAACb7+kCl3IaUGG1XQrTd7HJMEWrmD1+1apWys7O1bNkyZWZmasmSJZo8ebIKCgoUFxfXrH1dXZ2++93vKi4uTu+884769++vvXv3KiYmxqvd6NGj9Y9//MPzdWioqbcJAAC6QTCvX9fE1MTz3HPPafbs2Zo1a5YkadmyZXr//ff12muvad68ec3av/baayovL9cXX3yhsLAwSVJKSkqzdqGhoUpISOjS2gEAgG/xTJwIwvXrmpj2Kraurk7r169XVlbWiWJCQpSVlaV169a1eM5f//pXTZgwQXPnzlV8fLzGjBmjp556Si6Xy6vdjh07lJSUpMGDB+uGG27Qvn37uvReAACAuQzDUH7TwsT02HW/0tJSuVwuxcfHex2Pj4/Xtm3bWjynsLBQH3/8sW644QatXr1aO3fu1B133KH6+notXLhQkpSZmakVK1Zo+PDhOnTokBYtWqSLL75YmzdvVmRkywsVOp1OOZ1Oz9cOh6OT7hIAAHSHbyuOqaTKqdAQi8b0jza7HNP41eAzt9utuLg4vfLKK7JarcrIyNC3336rX/ziF55gd9VVV3nap6WlKTMzUwMHDtQf//hH3XrrrS1ed/HixVq0aFG33AMAAOh8TePrRiVFyR5mNbcYE5n2KjY2NlZWq1XFxcVex4uLi1sdH5eYmKjU1FRZrSce2MiRI1VUVKS6uroWz4mJiVFqaqp27tzZai3z589XZWWl57N///4O3BEAADBLsK9f18S0YBceHq6MjAzl5uZ6jrndbuXm5mrChAktnnPRRRdp586dcrvdnmPbt29XYmKiwsPDWzynurpau3btUmJiYqu12Gw2RUVFeX0AAID/yN8f3DtONDF1Hbvs7Gy9+uqrWrlypbZu3ao5c+aopqbGM0t25syZmj9/vqf9nDlzVF5errvvvlvbt2/X+++/r6eeekpz5871tLnvvvv06aefas+ePfriiy/0/e9/X1arVT/+8Y+7/f4AAEDXcza49M23TQsTx5hbjMlMHWM3ffp0lZSUaMGCBSoqKlJ6erpycnI8Eyr27dunkJAT2TM5OVkffPCB7r33XqWlpal///66++679cADD3jaHDhwQD/+8Y9VVlamfv36adKkSfryyy/Vr1+/br8/AADQ9bYcdKjO5VafnuE6p0+E2eWYymIYhmF2Eb7G4XAoOjpalZWVvJYFAMDHvbZ2tx772xZdMSJOy2+5wOxyOl17conpW4oBAACcDdavO4FgBwAA/Jpnx4kgnzghEewAAIAfO1xVqwNHjslikdIGBO/CxE0IdgAAwG9tbFy/LjUuUpH2MHOL8QEEOwAA4LcYX+eNYAcAAPzWifF1MeYW4iMIdgAAwC81uNz6+kClJCZONCHYAQAAv1RQXKWjdS5F2kI1tF8vs8vxCQQ7AADgl/IbJ06cmxyjkBCLucX4CIIdAADwS03B7jzG13kQ7AAAgF/K38/CxKci2AEAAL9TcbROhSU1kqT05Bhzi/EhBDsAAOB3NjauXzcotqd69ww3txgfQrADAAB+p2l83Th667wQ7AAAgN9hx4mWEewAAIBfcbsNbdzHxImWEOwAAIBfKSytkaO2QfawEA1PiDS7HJ9CsAMAAH6laX/YtP4xCrMSZU7G7wYAAPArjK9rHcEOAAD4Fc+MWIJdMwQ7AADgN2qcDSoockhi4kRLCHYAAMBvfH2gUm5DSoq2Kz7KbnY5PodgBwAA/Ab7w54ewQ4AAPgNxtedHsEOAAD4BcMwCHZnQLADAAB+4cCRYyqtdirMatHopGizy/FJBDsAAOAXmtavG5UYJXuY1dxifBTBDgAA+IV89oc9I4IdAADwC4yvOzOCHQAA8HnOBpe2HGxcmDiZHrvWEOwAAIDP++agQ3Uut/r2DFdynx5ml+OzCHYAAMDnnfwa1mKxmFuMDyPYAQAAn8fEibZpd7DLysrS3//+92bH3W53pxQEAABwKk+PXXKMqXX4unYHu3/9619KSUmRJO3du9dz/Le//a1uuummTisMAABAkg47avVtxTFZLFIawe602h3s6urqFBkZKUkaO3asCgsLJUkTJ05Ubm5u51YHAACCXtPCxMPjI9XLFmpuMT6u3b87w4YNU15eniIjI1VTU6PKykpJUmRkpMrLyzu9QAAAENw2eMbXxZhbiB9od4/dXXfdpdmzZ+vyyy9XWlqali9fLkn6/PPPFR8f3+4Cli5dqpSUFNntdmVmZiovL++07SsqKjR37lwlJibKZrMpNTVVq1evPqtrAgAA33VifB0TJ86k3T12t912m/r06aPt27dr9uzZmjFjhgYPHqxDhw7pzjvvbNe1Vq1apezsbC1btkyZmZlasmSJJk+erIKCAsXFxTVrX1dXp+9+97uKi4vTO++8o/79+2vv3r2KiYnp8DUBAIDvanC59fWBCkn02LWFxTAM42wu0NDQoD/96U+qq6vTjBkzZLW2fVPezMxMXXDBBXrhhRckHZ9Zm5ycrLvuukvz5s1r1n7ZsmX6xS9+oW3btiksLKxTrtkSh8Oh6OhoVVZWKioqqs33AwAAOtfmbyv1H8+vVaQ9VP9ecKVCQoJvDbv25JKzXscuNDRU1113nW644YZ2hbq6ujqtX79eWVlZJ4oJCVFWVpbWrVvX4jl//etfNWHCBM2dO1fx8fEaM2aMnnrqKblcrg5fU5KcTqccDofXBwAAmK9p4kR6ckxQhrr2Mm2B4tLSUrlcrmbj8uLj41VUVNTiOYWFhXrnnXfkcrm0evVqPfLII/rVr36lJ554osPXlKTFixcrOjra80lOTj7LuwMAAJ2BhYnbx692nnC73YqLi9Mrr7yijIwMTZ8+XQ899JCWLVt2VtedP3++KisrPZ/9+/d3UsUAAOBsbDxpKzGcmWmLwcTGxspqtaq4uNjreHFxsRISElo8JzExUWFhYV6vfEeOHKmioiLV1dV16JqSZLPZZLPZzuJuAABAZztSU6fC0hpJUvqAGHOL8ROm9diFh4crIyPDa1Fjt9ut3NxcTZgwocVzLrroIu3cudNr+7Lt27crMTFR4eHhHbomAADwTRsbZ8MOju2p3j3DzS3GT5j6KjY7O1uvvvqqVq5cqa1bt2rOnDmqqanRrFmzJEkzZ87U/PnzPe3nzJmj8vJy3X333dq+fbvef/99PfXUU5o7d26brwkAAPxD0/p16byGbTNT9+WYPn26SkpKtGDBAhUVFSk9PV05OTmeyQ/79u1TSMiJ7JmcnKwPPvhA9957r9LS0tS/f3/dfffdeuCBB9p8TQAA4B+YONF+Z72OXSBiHTsAAMzldhs697EPVVXboL/dNUlj+kebXZJpunUdOwAAgM5WWFqtqtoG2cNCNCIh0uxy/AbBDgAA+JwNjePr0gbEKNRKXGkrfqcAAIDPyWf9ug4h2AEAAJ/jmTiRzMSJ9iDYAQAAn1LtbND24ipJ9Ni1F8EOAAD4lK8PVMhtSP1jeig+ym52OX6FYAcAAHwKCxN3HMEOAAD4FM/EieQYU+vwRwQ7AADgMwzD0Mb97DjRUQQ7AADgMw4cOabS6jqFWS0ancTuT+1FsAMAAD5jQ+MyJ6OSomUPs5pcjf8h2AEAAJ/B+LqzQ7ADAAA+I39/hSTWr+sogh0AAPAJtfUubTlYKUk6j4kTHUKwAwAAPuGbgw7VuwzF9grXgN49zC7HLxHsAACAT2jaHzY9ubcsFovJ1fgngh0AAPAJjK87ewQ7AADgE/L3Ni1MHGNuIX6MYAcAAExXVFmrg5W1CrFIaQNizC7HbxHsAACA6Zq2EUuNj1QvW6jJ1fgvgh0AADBd08LE5w1kmZOzQbADAACmY8eJzkGwAwAApqp3ufX1txWSpHEsTHxWCHYAAMBUBUVVqq13K8oeqsGxPc0ux68R7AAAgKk8CxOf01shISxMfDYIdgAAwFSMr+s8BDsAAGAqdpzoPAQ7AABgmiM1ddpdWiNJSqfH7qwR7AAAgGk2NvbWDe7XUzER4eYWEwAIdgAAwDRNEyfGJbPMSWcg2AEAANMwvq5zEewAAIAp3G5DG5tmxBLsOgXBDgAAmGJXSbWqnA3qEWbV8PhIs8sJCAQ7AABgiqb169IGRCvUSiTpDPwuAgAAU+Tvb5w4wf6wnYZgBwAATJHP+LpO5xPBbunSpUpJSZHdbldmZqby8vJabbtixQpZLBavj91u92pzyy23NGszZcqUrr4NAADQRtXOBhUUV0liK7HOFGp2AatWrVJ2draWLVumzMxMLVmyRJMnT1ZBQYHi4uJaPCcqKkoFBQWery2W5hsGT5kyRa+//rrna5vN1vnFAwCADvl6f4UMQ+of00NxUfYzn4A2Mb3H7rnnntPs2bM1a9YsjRo1SsuWLVNERIRee+21Vs+xWCxKSEjwfOLj45u1sdlsXm169+b9PQAAvoL167qGqcGurq5O69evV1ZWludYSEiIsrKytG7dulbPq66u1sCBA5WcnKxrr71W33zzTbM2a9asUVxcnIYPH645c+aorKysS+4BAAC0n2fHCSZOdCpTg11paalcLlezHrf4+HgVFRW1eM7w4cP12muv6S9/+YvefPNNud1uTZw4UQcOHPC0mTJlit544w3l5ubqmWee0aeffqqrrrpKLperxWs6nU45HA6vDwAA6BqGYTBxoouYPsauvSZMmKAJEyZ4vp44caJGjhypl19+WY8//rgkacaMGZ7vjx07VmlpaRoyZIjWrFmjK664otk1Fy9erEWLFnV98QAAQPvLj6mspk7h1hCNTooyu5yAYmqPXWxsrKxWq4qLi72OFxcXKyEhoU3XCAsL07hx47Rz585W2wwePFixsbGttpk/f74qKys9n/3797f9JgAAQLs0rV83KilKtlCrydUEFlODXXh4uDIyMpSbm+s55na7lZub69Urdzoul0ubNm1SYmJiq20OHDigsrKyVtvYbDZFRUV5fQAAQNfgNWzXMX1WbHZ2tl599VWtXLlSW7du1Zw5c1RTU6NZs2ZJkmbOnKn58+d72j/22GP68MMPVVhYqA0bNujGG2/U3r17ddttt0k6PrHi5z//ub788kvt2bNHubm5uvbaazV06FBNnjzZlHsEAAAnMHGi65g+xm769OkqKSnRggULVFRUpPT0dOXk5HgmVOzbt08hISfy55EjRzR79mwVFRWpd+/eysjI0BdffKFRo0ZJkqxWq77++mutXLlSFRUVSkpK0pVXXqnHH3+ctewAADBZbb1L3xw8PkmRhYk7n8UwDMPsInyNw+FQdHS0KisreS0LAEAn+teecv3nsnWK7WXT/3voihY3GYC39uQS01/FAgCA4HHy+DpCXecj2AEAgG7TNCOWiRNdg2AHAAC6jafHLpmJE12BYAcAALrFocpjOlRZqxCLdG5ytNnlBCSCHQAA6BYbG3vrRiREKSLc9IU5AhLBDgAAdIv8/RWSGF/XlQh2AACgW7Awcdcj2AEAgC5X73Lr6wOVkuix60oEOwAA0OW2HaqSs8Gt6B5hGtS3p9nlBCyCHQAA6HJN69elJ8coJISFibsKwQ4AAHS5k3ecQNch2AEAgC7HxInuQbADAABdqrymTnvKjkqS0gfEmFtMgCPYAQCALrWxcXzdkH49FR0RZnI1gY1gBwAAutSJ8XW8hu1q7OcBAAC6hMttKG93uT78plgS+8N2B4IdAADodDmbD2nRe1t0qLLWc+zX/9ihfr1smjIm0cTKAhuvYgEAQKfK2XxIc97c4BXqJKmsuk5z3tygnM2HTKos8BHsAABAp3G5DS16b4uMFr7XdGzRe1vkcrfUAmeLYAcAADpN3u7yZj11JzMkHaqsVd7u8u4rKogQ7AAAQKfZdsjRpnaHq1oPf+g4Jk8AAICztr/8qJZ+slN//Nf+NrWPi7R3cUXBiWAHAAA67NuKY3rh4516Z/1+1buOj5sLDw1RXYO7xfYWSQnRdo0f1KcbqwweBDsAANBuByuOeXromgLdpKGxuidrmEqrnZrz5gZJ8ppEYWn858Kpo2QNsQidj2AHAADa7FDlMb34yS6t+n/7Vec63is3cUhf3ZOV6tUL99KN5zVbxy4h2q6FU0exjl0XItgBAIAzKnbU6sVPduoPeScC3YWD++ierFRdOLhvs/ZTxiTqu6MSlLe7XIerahUXefz1Kz11XYtgBwAAWnXYUasX1+zS7/P2ecbNjU/po3u+O0wTh8Se9lxriEUThjQPfeg6BDsAANDM4apaLVtTqN99tVfOxkB3QUpv3ZuVqglD+spioefNFxHsAACAR0mVUy9/uktvfrVXtfXHA13GwOOB7qKhBDpfR7ADAAAqrXbqlc8K9ca6PZ5AN+6cGN2blaqLh8US6PwEwQ4AgCBWXlOnlz/bpTe+2Ktj9S5J0rnJMbo3a5guTe1HoPMzBDsAAILQkZo6vfJ5oVZ+sUdH644HurQB0bo3K1WXDSfQ+SuCHQAAQaTiaJ1e/bxQK/65RzWNgW5M/yjdm5Wqy0fEEej8HMEOAIAgUHG0Tr/9fLdWfLFH1c4GSdLopCjdk5WqrJEEukBBsAMAIIBVHqvX8rW79fra3apqDHQjE6N0T9YwXTkqnkAXYAh2AAAEIEdtvV5bu1vL1+5WVe3xQDciIbIx0CUohB0gAhLBDgCAAFJVW6/X/7lHv/28UI7GQDc8PlJ3Zw3TlNEEukAXYnYBkrR06VKlpKTIbrcrMzNTeXl5rbZdsWKFLBaL18dut3u1MQxDCxYsUGJionr06KGsrCzt2LGjq28DAADTVNXW64WPd2jSM5/ouY+2y1HboGFxvfTC9eP097sv1tVjEwl1QcD0HrtVq1YpOztby5YtU2ZmppYsWaLJkyeroKBAcXFxLZ4TFRWlgoICz9enjg949tln9Zvf/EYrV67UoEGD9Mgjj2jy5MnasmVLsxAIAIA/q3Y2aOUXe/Tq54WqOFovSRrSr6fuzkrVNWMTZSXMBRWLYRiGmQVkZmbqggsu0AsvvCBJcrvdSk5O1l133aV58+Y1a79ixQrdc889qqioaPF6hmEoKSlJ//3f/6377rtPklRZWan4+HitWLFCM2bMOGNNDodD0dHRqqysVFRUVMdvDgCALlLjbNAb6/bqlc926UhjoBvcr6fuvmKY/iMtiUAXQNqTS0ztsaurq9P69es1f/58z7GQkBBlZWVp3bp1rZ5XXV2tgQMHyu1267zzztNTTz2l0aNHS5J2796toqIiZWVledpHR0crMzNT69atazHYOZ1OOZ1Oz9cOh6Mzbg8AgE53tK5B/7tur17+rFDlNXWSpEGxPfWzK4bqe+f2J9AFOVODXWlpqVwul+Lj472Ox8fHa9u2bS2eM3z4cL322mtKS0tTZWWlfvnLX2rixIn65ptvNGDAABUVFXmuceo1m753qsWLF2vRokWdcEcAAHSNY3Uu/e+Xe/Typ4Uqawx0KX0j9LMrhul75yYp1OoTw+ZhMtPH2LXXhAkTNGHCBM/XEydO1MiRI/Xyyy/r8ccf79A158+fr+zsbM/XDodDycnJZ10rAABn61idS7/7aq+WfbpLpdXHA93AvhG66/JhmpZOoIM3U4NdbGysrFariouLvY4XFxcrISGhTdcICwvTuHHjtHPnTknynFdcXKzExESva6anp7d4DZvNJpvN1oE7AADg7LjchvJ2l+twVa3iIu0aP6iPrCEW1da79Luv9mnZp7tUUnV8uFBynx666/Jh+v64/goj0KEFpga78PBwZWRkKDc3V9OmTZN0fPJEbm6u7rzzzjZdw+VyadOmTbr66qslSYMGDVJCQoJyc3M9Qc7hcOirr77SnDlzuuI2AADokJzNh7TovS06VFnrOZYQZdMlqf20pqBEhxsD3YDePXTX5UP1g/MGEOhwWqa/is3OztbNN9+s888/X+PHj9eSJUtUU1OjWbNmSZJmzpyp/v37a/HixZKkxx57TBdeeKGGDh2qiooK/eIXv9DevXt12223STq+9Mk999yjJ554QsOGDfMsd5KUlOQJjwAAmC1n8yHNeXODTl2aosjh1B//dUCS1D+mh+68fKh+eN4AhYcS6HBmpge76dOnq6SkRAsWLFBRUZHS09OVk5Pjmfywb98+hYSc+Jf5yJEjmj17toqKitS7d29lZGToiy++0KhRozxt7r//ftXU1Oj2229XRUWFJk2apJycHNawAwD4BJfb0KL3tjQLdSeL7hGmf2Rfqh7h1m6rC/7P9HXsfBHr2AEAutK6XWX68atfnrHdH2ZfqAlD+nZDRfBl7ckl9OsCANDNvtpd1qZ2h6tqz9wIOInpr2IBAAgWhSXVejanQDnftLyu6qniIhlChPYh2AEA0MVKqpz6Te4O/T5vn1xuQxZJ9nCrjtW5WmxvkZQQfXzpE6A9CHYAAHSRo3UN+u3nu/Xyp7tU0xjiskbG6YEpI7SrpFpz3twgSV6TKJo2BFs4dRTbg6HdCHYAAHSyBpdb76w/oOc+2u5Ziy5tQLTmXzXSMxliWHykXrrxvObr2EXbtXDqKE0Zk9jitYHTIdgBANBJDMPQx9sO6+m/b9OOw9WSju8Wcf/kEbpmbKJCTumBmzImUd8dldDizhNARxDsAADoBP/eX6GnVm/VV7vLJUkxEWH62eXDdMOF58gW2vpadNYQC0uaoNMQ7AAAOAv7yo7qFx8W6L1/H5QkhYeG6L8uGqQ5lw1RdI8wk6tDsCHYAQDQAUdq6vT8xzv1v1/uUb3LkMUi/WDcAGVfmar+MT3MLg9BimAHAEA71Na79Po/9+jFNTtVVdsgSbp4WKzmXTVCo5OiTa4OwY5gBwBAG7jchv6c/61+9WGBDjbOYh2ZGKX5V43QJan9TK4OOI5gBwDAGXy2vUSL/75NWw85JElJ0XbdN3m4pqX3bzbTFTATwQ4AgFZ8c7BST/99mz7fUSpJirSHau53huqWiSmyh7U+0xUwC8EOAIBTfFtxTL/6sEB/yv9WhiGFWS2aOSFFd35nqHr3DDe7PKBVBDsAABpVHqvXi2t26vV/7lFdg1uS9L1zk3TflcN1Tt8Ik6sDzoxgBwAIes4Gl978cp+e/3iHKo7WS5IyB/XRg1eP1LnJMeYWB7QDwQ4AELTcbkN/23RIv/hgm/aXH5MkDYvrpflXj9B3hsfJYmFiBPwLwQ4AEJTW7SrT4r9v1dcHKiVJcZE2/feVqfrheQMUag0xuTqgYwh2AICgsr24Ss/8fZtytx2WJPUMt+qnlw7RrRcPUkQ4fy3Cv/FvMAAgKBQ7avU/H23XH/+1X25DCg2x6PrMc/SzK4YptpfN7PKATkGwAwAEtKraer3yWaFe/bxQtfXHZ7pOGZ2g+6cM1+B+vUyuDuhcBDsAQECqd7n1Vt4+LfnHDpXV1EmSMgb21oNXj1DGwD4mVwd0DYIdAA+X21De7nIdrqpVXKRd4wf1kZXtkuBnDMPQB98U6ZmcAu0urZEkDYrtqQemjNDk0fHMdEVAI9gBkCTlbD6kRe9t0aHGzc0lKTHaroVTR2nKmEQTKwPabv3ecj35/lZt2FchSerbM1z3ZA3TjPHnKIyZrggCBDsAytl8SHPe3CDjlONFlbWa8+YGvXTjeYQ7+LTCkmo9m1OgnG+KJEk9wqyaffEg3X7pEPWy8Vcdggf/tgNBzuU2tOi9Lc1CnSQZkiySFr23Rd8dlcBrWZjidEMESqqc+k3uDv0+b59cbkMhFmn6Bcm6JytV8VF2kysHuh/BDghyebvLvV6/nsqQdKiyVut2lWrSsH7dVxig1ocIzLtqhPaWHdXLn+5STZ1LknTFiDg9cNUIpcZHmlUuYDqLYRgt/Y96UHM4HIqOjlZlZaWioqLMLgfoNI7aeu0ortaO4iptL67WjsNV+veBCjmONZzxXIukfpE2xUfZFR9lU1yUXfGRx38dH2VXXJRNcZF29e0ZrhB69tAJWhsicKq0AdGaf9VITRjSt1vqArpbe3IJPXZAAKp2NmhHcZV2FFdre3GVth8+HuZO1zN3Joakw1VOHa5yatO3rbcLDbGoX2RT8DslCDb+Oj7SrpiIsG6dnRjoM34D7f5ON0SgidUi/epH6freuUn8zwTQiGAH+LGjdQ3aebj6eO9bcZUKGsPctxXHWj0nPsqm1PhIDYuLVGp8Lw3u10t3/WGDDjucLf4lapGUEG3Xu3MmqrS6ToeralXscKrYUev162KHU2U1TjW4DR2qrD1jiAy3higu6qTgF3lS8DspDEbaQs86AAb6jF9fvb+6BrdqnA2qPuVT42xQde0pXzsbVO10qbq2XjVOl4ocZ/53yGVI8VF2Qh1wEl7FtoBXsfA1tfWuxgBX5Qlx2w9X6cCRY2rtT3C/SJtS43s1BrhIz6+jI8KatW165SXJK9w1/XXZ1lmx9S63SqudJ4Kf46TgV+Vs/LpWR47Wt/nee4RZvXv8Ir1f/TYFwZ6tzHxs7XVee+/NV3X2/bUWxqprG7yP1zaopq5BVY3Ha5wuVTm929Q1uDvtPlvz6xnpuja9f5f/HMBMvIoF/FRtvUu7SqpPvEJtHAe3r/xoqwGub89wDYvvpeHxkRoWH9nYG9dLvXuGt/nnThmTqJduPK9Zr09CO3t9wqwhSozuocToHqdt52xw6bDDqcNVtTp8UvA7HgabegBr5aht0LF6l/aUHdWesqOnvWYvW+jxHsCTwl5spE1LP9nZaTN+DcOQYRw/1zCMxn9Khgyv53PysVPbNv3w033fON6g2fWb2jb9DJfb0CN//qbV+5OkB/5vk/aVH9XROlezMObpJXMe7yWrrm1Qnavzw5g9LES9bGHqZbOqpy1UvZo+9lD1tIUq0hba7Pi+8qN6+u/bznjtuEhmvgIno8euBfTYoTWdNY7J2eDS7tKaE71vja9Q95TVyN3Kn8jeEWGNwa2X16vUvp24ebmvjdM6Vuc65XVvrQ5XnfRrh1NFjlodbZwV2VGhIRaFWCynD2NB5ngYOx602hrGTv26V3ioetqsCu3AwsAut6FJz3ysosra0w4RWPvA5X49lhBoC3rsgC7QkXFM9S53Y4Cr8gpxe8qOytVKgovuEXb8tWl8pFLjGkNcfKRie4V3+WQDa4jFp2YW9gi3amDfnhrYt+dp21U7G7zCXlMY3LD3iPL3V5zx5zS4DanF+GAei+V4eLFYLI3/lCyyeN6xWiS5DUP1rjPXnTEwRsMToro8jHUma4hFC6eO0pw3N8iilocILJw6ilAHnIIeuxbQY4dTnWkc0wvXj9PwhKjGAHdiNuru0prG0NBcpC1Uwxp73058eqlfpI29LDvJul1l+vGrX56x3fM/HqeMgb0lnQhQTcFKp36tlsPW6b7f9Dg97dVKcGvnc2/r/f1h9oU+Fdjbw1cnhgDdiR47oBOdaWcGSZr7+/xWz+8ZbvV+hdr464QoOwGui40f1EeJ0fYzvs67emyiX/b8tPX+xg/q092ldZopYxL13VEJPjVEAPBlPrEj8tKlS5WSkiK73a7MzEzl5eW16by33npLFotF06ZN8zp+yy23HP+/4JM+U6ZM6YLKEQz+ubOkTeu/hVtDdO6AaP1nxgA9ePUIvT7rAv1z3uXavGiy/jz3Ij37n+fqtosH69LUfkqM7kGo6wZNr/OkE71pTQLhdV6g31+TpiEC16b314Qhff3+foCuZHqP3apVq5Sdna1ly5YpMzNTS5Ys0eTJk1VQUKC4uLhWz9uzZ4/uu+8+XXzxxS1+f8qUKXr99dc9X9tsnTfAHIHNMAztKTuqTwsO67Mdpfp8R0mbznv2P9M0bRzLLviazprx66sC/f4AtI/pY+wyMzN1wQUX6IUXXpAkud1uJScn66677tK8efNaPMflcumSSy7Rf/3Xf+nzzz9XRUWF/vznP3u+f8sttzQ71h6MsQs+1c4GfbGzVJ/tKNGn20u0v7z1BX5b48/jmIKBr8347WyBfn9AMPObMXZ1dXVav3695s+f7zkWEhKirKwsrVu3rtXzHnvsMcXFxenWW2/V559/3mKbNWvWKC4uTr1799bll1+uJ554Qn378pcujnO7DW055Dge5ApKtH7vEa9JDmFWiy5I6aNLUvtp0tBY3fbGv1QcwOOYgoGvzfjtbIF+fwDaxtRgV1paKpfLpfj4eK/j8fHx2rat5YUp165dq+XLl2vjxo2tXnfKlCn6wQ9+oEGDBmnXrl168MEHddVVV2ndunWyWq3N2judTjmdTs/XDoejYzcEn1ZW7dTanaX6dHuJPtteqtJqp9f3U/pG6JLUfro0tZ8uHNzXayeDR1l2AQDgB0wfY9ceVVVVuummm/Tqq68qNja21XYzZszw/Hrs2LFKS0vTkCFDtGbNGl1xxRXN2i9evFiLFi3qkpphngaXW/n7K/TZ9uOvVzd9W+m12GxEuFUTh/TVpan9dElqv9OulcY4JgCAPzA12MXGxspqtaq4uNjreHFxsRISEpq137Vrl/bs2aOpU6d6jrndx7e/CQ0NVUFBgYYMGdLsvMGDBys2NlY7d+5sMdjNnz9f2dnZnq8dDoeSk5M7fF8wz7cVx44HuYIS/XNXqapqG7y+PzIxqjHIxer8gX0UHtr2ieEsuwAA8HWmBrvw8HBlZGQoNzfXs2SJ2+1Wbm6u7rzzzmbtR4wYoU2bNnkde/jhh1VVVaVf//rXrYaxAwcOqKysTImJLfeq2Gw2Zs36qdp6l77aXa5PC0r02Y4S7Txc7fX93hFhunjY8R65S4bFKi7q7PaVZBwTAMCXmf4qNjs7WzfffLPOP/98jR8/XkuWLFFNTY1mzZolSZo5c6b69++vxYsXy263a8yYMV7nx8TESJLneHV1tRYtWqQf/vCHSkhI0K5du3T//fdr6NChmjx5crfeGzqfYRjaVVKtNQUl+mxHqb4qLJOz4cSm5SEW6bxzenvGyo3pH02PGgAgaJge7KZPn66SkhItWLBARUVFSk9PV05OjmdCxb59+xQS0vbXZVarVV9//bVWrlypiooKJSUl6corr9Tjjz9Or5yfqjxWf2IpkoISHTxlseCkaPvxHrnUfrpoSKyiI8JMqhQAAHOZvo6dL2IdO3O53YY2fVvpmfSQv79CrpOWIgkPDVHmoD66tLFXbmhcL3ZxAAAELL9Zxw6BqSMLpR6uqtXn248vRbJ2Z6nKa+q8vj+kX0/P69XMQX3VI7z5sjUAAAQ7gh06Vc7mQ82WBElsYUmQuga31u894nm9uuWQ99qBkbZQTRzaV5emxumS1FgN6B3RbfcAAIC/Itih0+RsPqQ5b25otjtDUWWt5ry5QY9dO0aySJ8WlGjdrlLV1Lm82o3tH+1ZU27cOTEKs7Z9bCUAACDYoZO43IYWvbelxS23mo498pfNXsdje4XrksalSCYNi1VsLya3AABwNgh26BR5u8u9Xr+2ZmRCpP7j3CRdmtpPoxKjFMJSJAAAdBqCHTqs3uXW1wcq9WVhmf7674NtOuenlw3Rten9u7gyAACCE8EObdbgcmvTt5VaV1imLwvL9a895Tp6yji5M4mLPLudHwAAQOsIdmhVg8utzQcd+rKwTOt2lelfe8qbTXjoHRGmzEF9lTm4j5Z+slNl1XUtjrOzSEqIPr70CQAA6BoEO3g0uNzacsihdbvK9GVhmf7fniOqdjZ4tYmJCFPmoD66cHBfTRjSV6lxkZ5xconRds15c4Mskle4axpFt3DqKLb3AgCgCxHsgpjLbWhLY4/cl4VlyttdrqpTglyUPVSZg/tqwuC+unBwX41IiGx1wsOUMYl66cbzmq1jl9DCOnYAAKDzEeyCiMttaOuhE0Huq93lqqr1DnKR9lBlDuqrCwf30YQhfTUiIapdvWxTxiTqu6MS2r3zBAAAOHsEuwDmdhvaWuTQl4XlWrerTHm7y+Q4NcjZQjV+0PEQd+HgvhqZ2L4g1xJriEUThvQ9q2sAAID2I9gFELfbUEFxlWeM3Fe7y1V5rN6rTa/GIHfh4D6aMDhWo5LOPsgBAADfQLDzY263oe2Hq/TlrjKtawxyFUe9g1zPcKsuGNTHM0ZudFKUQtmqCwCAgESwM4HLbXRoDJphGNpxuNqrR668ps6rTUS4VRekHJ+1euHgPhrbP5ogBwBAkCDYdbOczYeazRpNbGXWqGEY2nm4+vg6coVl+qqwXGWnBLkeYVadn9LbM0ZubP9ohRHkAAAISgS7bpSz+ZDmvLmh2QK+RZW1mvPmBr14w3kaFh/ZuLNDmb4qLFNpdctB7sLGV6tpAwhyAADgOIJdN3G5DS16b0uLuzI0HZv7+w1yn9LAHhaijIG9PWPk0gbEKDyUIAcAAJoj2HWTvN3lXq9fW+I2pLAQiy44aWeHtAHRsoVau6lKAADgzwh23eRw1elDXZOnfzhWP8xI7uJqAABAIOKdXjeJi7S3qV1STEQXVwIAAAIVwa6bjB/UR4nRdrW2qIlFx2fHjh/UpzvLAgAAAYRg102sIRYtnDpKkpqFu6avF04dxS4QAACgwwh23WjKmES9dON5Soj2fi2bEG3XSzee12wdOwAAgPZg8kQ3mzImUd8dldChnScAAABOh2BnAmuIRROG9DW7DAAAEGB4FQsAABAgCHYAAAABgmAHAAAQIAh2AAAAAYJgBwAAECAIdgAAAAGCYAcAABAgCHYAAAABgmAHAAAQIAh2AAAAAYItxVpgGIYkyeFwmFwJAAAIdk15pCmfnA7BrgVVVVWSpOTkZJMrAQAAOK6qqkrR0dGnbWMx2hL/gozb7dbBgwcVGRkpi8Vy1tdzOBxKTk7W/v37FRUV1QkV4mzxTHwPz8T38Ex8D8/E93THMzEMQ1VVVUpKSlJIyOlH0dFj14KQkBANGDCg068bFRXFH0QfwzPxPTwT38Mz8T08E9/T1c/kTD11TZg8AQAAECAIdgAAAAGCYNcNbDabFi5cKJvNZnYpaMQz8T08E9/DM/E9PBPf42vPhMkTAAAAAYIeOwAAgABBsAMAAAgQBDsAAIAAQbDrJEuXLlVKSorsdrsyMzOVl5d32vZvv/22RowYIbvdrrFjx2r16tXdVGnwaM8zefXVV3XxxRerd+/e6t27t7Kyss74DNF+7f1z0uStt96SxWLRtGnTurbAINTeZ1JRUaG5c+cqMTFRNptNqamp/Perk7X3mSxZskTDhw9Xjx49lJycrHvvvVe1tbXdVG3g++yzzzR16lQlJSXJYrHoz3/+8xnPWbNmjc477zzZbDYNHTpUK1as6PI6PQyctbfeessIDw83XnvtNeObb74xZs+ebcTExBjFxcUttv/nP/9pWK1W49lnnzW2bNliPPzww0ZYWJixadOmbq48cLX3mVx//fXG0qVLjfz8fGPr1q3GLbfcYkRHRxsHDhzo5soDV3ufSZPdu3cb/fv3Ny6++GLj2muv7Z5ig0R7n4nT6TTOP/984+qrrzbWrl1r7N6921izZo2xcePGbq48cLX3mfzud78zbDab8bvf/c7YvXu38cEHHxiJiYnGvffe282VB67Vq1cbDz30kPHuu+8akow//elPp21fWFhoREREGNnZ2caWLVuM559/3rBarUZOTk631Euw6wTjx4835s6d6/na5XIZSUlJxuLFi1ts/6Mf/ci45pprvI5lZmYaP/nJT7q0zmDS3mdyqoaGBiMyMtJYuXJlV5UYdDryTBoaGoyJEycav/3tb42bb76ZYNfJ2vtMXnrpJWPw4MFGXV1dd5UYdNr7TObOnWtcfvnlXseys7ONiy66qEvrDFZtCXb333+/MXr0aK9j06dPNyZPntyFlZ3Aq9izVFdXp/Xr1ysrK8tzLCQkRFlZWVq3bl2L56xbt86rvSRNnjy51fZon448k1MdPXpU9fX16tOnT1eVGVQ6+kwee+wxxcXF6dZbb+2OMoNKR57JX//6V02YMEFz585VfHy8xowZo6eeekoul6u7yg5oHXkmEydO1Pr16z2vawsLC7V69WpdffXV3VIzmjP773j2ij1LpaWlcrlcio+P9zoeHx+vbdu2tXhOUVFRi+2Lioq6rM5g0pFncqoHHnhASUlJzf5womM68kzWrl2r5cuXa+PGjd1QYfDpyDMpLCzUxx9/rBtuuEGrV6/Wzp07dccdd6i+vl4LFy7sjrIDWkeeyfXXX6/S0lJNmjRJhmGooaFBP/3pT/Xggw92R8loQWt/xzscDh07dkw9evTo0p9Pjx1wiqefflpvvfWW/vSnP8lut5tdTlCqqqrSTTfdpFdffVWxsbFml4NGbrdbcXFxeuWVV5SRkaHp06froYce0rJly8wuLWitWbNGTz31lF588UVt2LBB7777rt5//309/vjjZpcGk9Bjd5ZiY2NltVpVXFzsdby4uFgJCQktnpOQkNCu9mifjjyTJr/85S/19NNP6x//+IfS0tK6ssyg0t5nsmvXLu3Zs0dTp071HHO73ZKk0NBQFRQUaMiQIV1bdIDryJ+TxMREhYWFyWq1eo6NHDlSRUVFqqurU3h4eJfWHOg68kweeeQR3XTTTbrtttskSWPHjlVNTY1uv/12PfTQQwoJof+mu7X2d3xUVFSX99ZJ9NidtfDwcGVkZCg3N9dzzO12Kzc3VxMmTGjxnAkTJni1l6SPPvqo1fZon448E0l69tln9fjjjysnJ0fnn39+d5QaNNr7TEaMGKFNmzZp48aNns/3vvc9fec739HGjRuVnJzcneUHpI78Obnooou0c+dOT8iWpO3btysxMZFQ1wk68kyOHj3aLLw1BW+DHUNNYfrf8d0yRSPAvfXWW4bNZjNWrFhhbNmyxbj99tuNmJgYo6ioyDAMw7jpppuMefPmedr/85//NEJDQ41f/vKXxtatW42FCxey3Ekna+8zefrpp43w8HDjnXfeMQ4dOuT5VFVVmXULAae9z+RUzIrtfO19Jvv27TMiIyONO++80ygoKDD+9re/GXFxccYTTzxh1i0EnPY+k4ULFxqRkZHGH/7wB6OwsND48MMPjSFDhhg/+tGPzLqFgFNVVWXk5+cb+fn5hiTjueeeM/Lz8429e/cahmEY8+bNM2666SZP+6blTn7+858bW7duNZYuXcpyJ/7o+eefN8455xwjPDzcGD9+vPHll196vnfppZcaN998s1f7P/7xj0ZqaqoRHh5ujB492nj//fe7ueLA155nMnDgQENSs8/ChQu7v/AA1t4/Jycj2HWN9j6TL774wsjMzDRsNpsxePBg48knnzQaGhq6uerA1p5nUl9fbzz66KPGkCFDDLvdbiQnJxt33HGHceTIke4vPEB98sknLf790PQcbr75ZuPSSy9tdk56eroRHh5uDB482Hj99de7rV6LYdBXCwAAEAgYYwcAABAgCHYAAAABgmAHAAAQIAh2AAAAAYJgBwAAECAIdgAAAAGCYAcAABAgCHYAAAABgmAHAAAQIAh2AAAAAYJgBwBdZO3atRo/frzsdrtiY2P161//2uySAAQ4gh0AdIHVq1fr+9//vu644w59/fXX+slPfqJ7771Xe/bsMbs0AAHMYhiGYXYRABBIamtrNWzYMD3zzDO6/vrrJUkul0sxMTFaunSpZs6caXKFAAIVPXYA0Mk+/vhjHTt2TNOnT/ccs1qtslgsstlsJlYGINAR7ACgk33yySdKT0+X1Wr1HNu5c6eqqqo0btw4EysDEOgIdgDQyfLz81VXV+d17MUXX1RGRoZSU1NNqgpAMAg1uwAACDT5+fkyDENvvPGGMjMz9fbbb+ull17SF198YXZpAAIcwQ4AOtG+fftUXl6uv/3tb5o3b562b9+utLQ05eTk8BoWQJdjViwAdKK//vWvmjVrlsrKyswuBUAQYowdAHSi/Px8jR071uwyAAQpgh0AdKL8/HylpaWZXQaAIMWrWAAAgABBjx0AAECAINgBAAAECIIdAABAgCDYAQAABAiCHQAAQIAg2AEAAAQIgh0AAECAINgBAAAECIIdAABAgCDYAQAABAiCHQAAQID4//Mn7u2TWe4QAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "eq0 = get(\"HELIOTRON\")\n", + "rho = np.linspace(0.01, 1, 10)\n", + "grid = LinearGrid(rho=rho, M=eq0.M_grid, N=eq0.N_grid, NFP=eq0.NFP, sym=False)\n", + "X = 32\n", + "Y = 64\n", + "Y_B = 128\n", + "num_transit = 20\n", + "num_well = 30 * num_transit\n", + "num_quad = 64\n", + "data = eq0.compute(\n", + " \"effective ripple\",\n", + " grid=grid,\n", + " theta=Bounce2D.compute_theta(eq0, X, Y, rho=rho),\n", + " Y_B=Y_B,\n", + " num_transit=num_transit,\n", + " num_well=num_well,\n", + " num_quad=num_quad,\n", + ")\n", + "\n", + "eps = grid.compress(data[\"effective ripple\"])\n", + "fig, ax = plt.subplots()\n", + "ax.plot(rho, eps, marker=\"o\")\n", + "ax.set(xlabel=r\"$\\rho$\", ylabel=r\"$\\epsilon$\", title=\"Heliotron\")\n", + "plt.tight_layout()\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "id": "a4fc40f2-278b-4e67-82a3-eb2fc0419989", + "metadata": {}, + "source": [ + "## Optimizing Heliotron" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "id": "5e65af04-7b46-4f30-b265-6467254eb2cb", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "---------------------------------------\n", + "Optimizing boundary modes M, N <= 2\n", + "---------------------------------------\n", + "Building objective: Effective ripple\n", + "Precomputing transforms\n", + "Timer: Precomputing transforms = 1.04 sec\n", + "Building objective: aspect ratio\n", + "Precomputing transforms\n", + "Timer: Precomputing transforms = 127 ms\n", + "Building objective: generic\n", + "Timer: Objective build = 2.77 sec\n", + "Building objective: force\n", + "Precomputing transforms\n", + "Timer: Precomputing transforms = 537 ms\n", + "Timer: Objective build = 1.07 sec\n", + "Timer: Proximal projection build = 11.1 sec\n", + "Building objective: lcfs R\n", + "Building objective: lcfs Z\n", + "Building objective: fixed pressure\n", + "Building objective: fixed iota\n", + "Building objective: fixed Psi\n", + "Timer: Objective build = 618 ms\n", + "Timer: Linear constraint projection build = 2.75 sec\n", + "Number of parameters: 24\n", + "Number of objectives: 253\n", + "Timer: Initializing the optimization = 14.6 sec\n", + "\n", + "Starting optimization\n", + "Using method: proximal-lsq-exact\n", + " Iteration Total nfev Cost Cost reduction Step norm Optimality \n", + " 0 1 7.884e-01 1.215e+00 \n", + " 1 2 7.278e-01 6.069e-02 4.309e-03 1.097e+00 \n", + " 2 3 6.565e-01 7.125e-02 7.446e-03 9.975e-01 \n", + " 3 4 5.382e-01 1.183e-01 7.610e-03 7.876e-01 \n", + " 4 5 4.509e-01 8.734e-02 1.415e-02 8.481e-01 \n", + " 5 6 3.607e-01 9.017e-02 1.965e-02 5.717e-01 \n", + "Warning: Maximum number of iterations has been exceeded.\n", + " Current function value: 3.607e-01\n", + " Total delta_x: 4.441e-02\n", + " Iterations: 5\n", + " Function evaluations: 6\n", + " Jacobian evaluations: 6\n", + "Timer: Solution time = 15.7 min\n", + "Timer: Avg time per step = 2.62 min\n", + "==============================================================================================================\n", + " Start --> End\n", + "Total (sum of squares): 7.884e-01 --> 3.607e-01, \n", + "Maximum absolute Effective ripple ε: 6.834e-01 --> 5.172e-01 ~\n", + "Minimum absolute Effective ripple ε: 4.986e-01 --> 2.126e-01 ~\n", + "Average absolute Effective ripple ε: 5.578e-01 --> 3.643e-01 ~\n", + "Maximum absolute Effective ripple ε: 6.834e-01 --> 5.172e-01 (normalized)\n", + "Minimum absolute Effective ripple ε: 4.986e-01 --> 2.126e-01 (normalized)\n", + "Average absolute Effective ripple ε: 5.578e-01 --> 3.643e-01 (normalized)\n", + "Aspect ratio: 1.048e+01 --> 1.064e+01 (dimensionless)\n", + "Maximum Generic objective value: -6.864e-01 --> -6.645e-01 (m^{-1})\n", + "Minimum Generic objective value: -5.858e+00 --> -5.919e+00 (m^{-1})\n", + "Average Generic objective value: -1.566e+00 --> -1.581e+00 (m^{-1})\n", + "Maximum Generic objective value: -6.864e-01 --> -6.645e-01 (normalized)\n", + "Minimum Generic objective value: -5.858e+00 --> -5.919e+00 (normalized)\n", + "Average Generic objective value: -1.566e+00 --> -1.581e+00 (normalized)\n", + "Maximum absolute Force error: 5.705e+03 --> 1.190e+04 (N)\n", + "Minimum absolute Force error: 2.188e-02 --> 5.924e-04 (N)\n", + "Average absolute Force error: 7.113e+01 --> 8.510e+01 (N)\n", + "Maximum absolute Force error: 4.588e-04 --> 9.574e-04 (normalized)\n", + "Minimum absolute Force error: 1.760e-09 --> 4.765e-11 (normalized)\n", + "Average absolute Force error: 5.720e-06 --> 6.844e-06 (normalized)\n", + "R boundary error: 0.000e+00 --> 0.000e+00 (m)\n", + "Z boundary error: 0.000e+00 --> 0.000e+00 (m)\n", + "Fixed pressure profile error: 0.000e+00 --> 0.000e+00 (Pa)\n", + "Fixed iota profile error: 0.000e+00 --> 0.000e+00 (dimensionless)\n", + "Fixed Psi error: 0.000e+00 --> 0.000e+00 (Wb)\n", + "==============================================================================================================\n", + "Optimization complete!\n" + ] + } + ], + "source": [ + "eq1 = eq0.copy()\n", + "k = 2 # which modes to unfix\n", + "print()\n", + "print(\"---------------------------------------\")\n", + "print(f\"Optimizing boundary modes M, N <= {k}\")\n", + "print(\"---------------------------------------\")\n", + "modes_R = np.vstack(\n", + " (\n", + " [0, 0, 0],\n", + " eq1.surface.R_basis.modes[np.max(np.abs(eq1.surface.R_basis.modes), 1) > k, :],\n", + " )\n", + ")\n", + "modes_Z = eq1.surface.Z_basis.modes[np.max(np.abs(eq1.surface.Z_basis.modes), 1) > k, :]\n", + "constraints = (\n", + " ForceBalance(eq=eq1),\n", + " FixBoundaryR(eq=eq1, modes=modes_R),\n", + " FixBoundaryZ(eq=eq1, modes=modes_Z),\n", + " FixPressure(eq=eq1),\n", + " FixIota(eq=eq1),\n", + " FixPsi(eq=eq1),\n", + ")\n", + "curvature_grid = LinearGrid(\n", + " rho=np.array([1.0]), M=eq1.M_grid, N=eq1.N_grid, NFP=eq1.NFP, sym=eq1.sym\n", + ")\n", + "ripple_grid = LinearGrid(\n", + " rho=np.linspace(0.2, 1, 5), M=eq1.M_grid, N=eq1.N_grid, NFP=eq1.NFP, sym=False\n", + ")\n", + "objective = ObjectiveFunction(\n", + " (\n", + " EffectiveRipple(\n", + " eq1,\n", + " grid=ripple_grid,\n", + " X=16,\n", + " Y=32,\n", + " Y_B=128,\n", + " num_transit=10,\n", + " num_well=25 * 10,\n", + " num_quad=32,\n", + " num_pitch=45,\n", + " ),\n", + " AspectRatio(eq1, bounds=(8, 11), weight=1e3),\n", + " GenericObjective(\n", + " \"curvature_k2_rho\", eq1, grid=curvature_grid, bounds=(-128, 10), weight=2e3\n", + " ),\n", + " )\n", + ")\n", + "optimizer = Optimizer(\"proximal-lsq-exact\")\n", + "(eq1,), _ = optimizer.optimize(\n", + " eq1,\n", + " objective,\n", + " constraints,\n", + " ftol=1e-4,\n", + " xtol=1e-6,\n", + " gtol=1e-6,\n", + " maxiter=5, # increase maxiter to 50 for a better result\n", + " verbose=3,\n", + " options={\"initial_trust_ratio\": 2e-3},\n", + ")\n", + "print(\"Optimization complete!\")" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "id": "ceced2bb-a5ef-45b7-8864-e874d78239fd", + "metadata": {}, + "outputs": [], + "source": [ + "data = eq1.compute(\n", + " \"effective ripple\",\n", + " grid=grid,\n", + " theta=Bounce2D.compute_theta(eq1, X, Y, rho=rho),\n", + " num_transit=num_transit,\n", + " num_well=num_well,\n", + " num_quad=num_quad,\n", + ")\n", + "eps_opt = grid.compress(data[\"effective ripple\"])" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "id": "7289f3dc-857a-49d6-9a21-1835d55ef6c0", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnYAAAHWCAYAAAD6oMSKAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAABkMElEQVR4nO3deXiU1f3+8ffMZCcbELKAgbBDWESCRHBDRcEFinVBbYFSxVZF2/KzArWKaBW01dIqFetXC9a27gsKBjVKi4IFWSoYCAJhEbIQlqxkm3l+fzzJhJBtEmYyycz9uq5cmZxnyWcclNtznnOOxTAMAxERERHp8KzeLkBERERE3EPBTkRERMRHKNiJiIiI+AgFOxEREREfoWAnIiIi4iMU7ERERER8hIKdiIiIiI9QsBMRERHxEQp2IiIiIj5CwU5E5Aw/+clPSEpKqtNmsVh45JFHvFKPiIirFOxEpMNavnw5FouFr7/+usHj48aNY+jQoW1cVV0ZGRk88sgj7N+/36t1iIh/CPB2ASIiHcGpU6cICGj5fzIzMjJYuHAh48aNq9cLKCLibuqxExFxQUhISKuCXUsYhsGpU6c8+jtExLcp2ImIX3n11VdJSUkhNDSULl26cMstt3Do0KFmr2voGbutW7dy9dVXExkZSXh4OFdccQVfffWV8/jy5cu56aabALjsssuwWCxYLBbWrl0LQFJSEtdddx1r1qxh1KhRhIaG8sILLwCwb98+brrpJrp06UJYWBgXXHABq1atqvP7165di8Vi4Y033uDxxx/nnHPOISQkhCuuuII9e/acxT8lEemoNBQrIh1eQUEB+fn59dorKyvr/Pz444/z0EMPcfPNN3PHHXdw9OhRnn32WS655BK2bt1KdHS0y7/z22+/5eKLLyYyMpIHHniAwMBAXnjhBcaNG8e///1vUlNTueSSS7jvvvv485//zG9+8xsGDx4M4PwOkJmZya233srPfvYzZs2axcCBA8nNzWXs2LGUlpZy33330bVrV1asWMHkyZN56623uP766+vUsnjxYqxWK/fffz8FBQU89dRT/OhHP+K///1vC/4piohPMEREOqi//e1vBtDk15AhQwzDMIz9+/cbNpvNePzxx+vcY/v27UZAQECd9hkzZhi9evWqcx5gLFiwwPnzlClTjKCgIGPv3r3OtiNHjhgRERHGJZdc4mx78803DcD4/PPP69Xfq1cvAzDS0tLqtP/yl780AGPdunXOtqKiIqN3795GUlKSYbfbDcMwjM8//9wAjMGDBxvl5eXOc//0pz8ZgLF9+/Zm/gmKiK/RUKyIdHhLly7lk08+qfc1fPhw5znvvPMODoeDm2++mfz8fOdXfHw8/fv35/PPP3f599ntdj7++GOmTJlCnz59nO0JCQncdtttfPHFFxQWFrp0r969ezNhwoQ6batXr2b06NFcdNFFzrbw8HDuvPNO9u/fT0ZGRp3zZ86cSVBQkPPniy++GDCHc0XEv2goVkQ6vNGjRzNq1Kh67Z07d3YO0X733XcYhkH//v0bvEdgYKDLv+/o0aOUlpYycODAescGDx6Mw+Hg0KFDDBkypNl79e7du17bgQMHSE1NbfDeNcdPX8alZ8+edc7r3LkzACdOnGj294uIb1GwExG/4HA4sFgsfPTRR9hstnrHw8PDvVAVhIaGnvU9Gno/YM6yFRH/omAnIn6hb9++GIZB7969GTBgwFndq1u3boSFhZGZmVnv2K5du7BarSQmJgLmbNqW6tWrV6P3rjkuItIQPWMnIn7hhz/8ITabjYULF9bryTIMg2PHjrl8L5vNxlVXXcX7779fZ0eJ3Nxc/vnPf3LRRRcRGRkJQKdOnQA4efKky/e/5ppr2LhxIxs2bHC2lZSU8Ne//pWkpCSSk5NdvpeI+Bf12ImIX+jbty+/+93vmD9/Pvv372fKlClERESQlZXFu+++y5133sn999/v8v1+97vf8cknn3DRRRdx9913ExAQwAsvvEB5eTlPPfWU87wRI0Zgs9l48sknKSgoIDg4mMsvv5zY2NhG7z1v3jz+9a9/cfXVV3PffffRpUsXVqxYQVZWFm+//TZWq/6fXEQapmAnIn5j3rx5DBgwgD/+8Y8sXLgQgMTERK666iomT57consNGTKEdevWMX/+fBYtWoTD4SA1NZVXX321zsSH+Ph4li1bxqJFi7j99tux2+18/vnnTQa7uLg41q9fz9y5c3n22WcpKytj+PDhfPDBB1x77bWte/Mi4hcshp6uFREREfEJ6s8XERER8REKdiIiIiI+QsFORERExEco2ImIiIj4CAU7ERERER+hYCciIiLiI/xuHTuHw8GRI0eIiIho1VY/IiIiIm3JMAyKioro3r17swuU+12wO3LkiHMPRxEREZGO4tChQ5xzzjlNnuN3wS4iIgIw/+HU7OUoIiIi0l4VFhaSmJjozDBN8btgVzP8GhkZqWAnIiIiHYYrj5Bp8oSIiIiIj1CwExEREfERCnYiIiIiPsLvnrFzld1up7Ky0ttliBsEBgZis9m8XYaIiIjHKdidwTAMcnJyOHnypLdLETeKjo4mPj5eaxeKiIhP83qwW7p0Kb///e/Jycnh3HPP5dlnn2X06NGNnr9kyRKef/55Dh48SExMDDfeeCOLFi0iJCTELfXUhLrY2FjCwsIUBDo4wzAoLS0lLy8PgISEBC9XJCIi4jleDXavv/46c+bMYdmyZaSmprJkyRImTJhAZmYmsbGx9c7/5z//ybx583j55ZcZO3Ysu3fv5ic/+QkWi4VnnnnmrOux2+3OUNe1a9ezvp+0D6GhoQDk5eURGxurYVkREfFZXp088cwzzzBr1ixmzpxJcnIyy5YtIywsjJdffrnB89evX8+FF17IbbfdRlJSEldddRW33norGzdudEs9Nc/UhYWFueV+0n7UfKZ6blJERHyZ14JdRUUFmzdvZvz48bXFWK2MHz+eDRs2NHjN2LFj2bx5szPI7du3j9WrV3PNNdc0+nvKy8spLCys89UcDb/6Hn2mIiLiD7w2FJufn4/dbicuLq5Oe1xcHLt27Wrwmttuu438/HwuuugiDMOgqqqKn//85/zmN79p9PcsWrSIhQsXurV2ERERkfaoQ61jt3btWp544gn+8pe/sGXLFt555x1WrVrFY4891ug18+fPp6CgwPl16NChNqy4fXvkkUcYMWJEi64ZN24cv/zlL71eh4iIiLfZHQYb9h7j/W2H2bD3GHaH4e2SvNdjFxMTg81mIzc3t057bm4u8fHxDV7z0EMPMW3aNO644w4Ahg0bRklJCXfeeScPPvggVmv9nBocHExwcLD730Az7A6DjVnHySsqIzYihNG9u2Cztq/hwPvvv5977723Rde88847BAYGeqgiERGRjiFtRzYLP8ggu6DM2ZYQFcKCSclMHOq9FRi8FuyCgoJISUkhPT2dKVOmAOBwOEhPT2f27NkNXlNaWlovvNXMcDQM76fkGu31w65hGAZ2u53w8HDCw8NbdG2XLl08VJWIiEjHkLYjm7te3cKZySOnoIy7Xt3C8z8e6bW/7706FDtnzhxefPFFVqxYwc6dO7nrrrsoKSlh5syZAEyfPp358+c7z580aRLPP/88r732GllZWXzyySc89NBDTJo0qd0sYVHzYZ8e6qD2w07bke2R31teXs59991HbGwsISEhXHTRRWzatAkwh7AtFgsfffQRKSkpBAcH88UXX9QbAq2qquK+++4jOjqarl27MnfuXGbMmOEM3lB/KDYpKYknnniCn/70p0RERNCzZ0/++te/1qlt7ty5DBgwgLCwMPr06cNDDz2k2akiItIh2R0GCz/IqBfqAGfbwg8yvDYs69V17KZOncrRo0d5+OGHycnJYcSIEaSlpTknVBw8eLBOD91vf/tbLBYLv/3tbzl8+DDdunVj0qRJPP744x6r0TAMTlXaXTrX7jBYsPLbRj9sC/DIygwu7Bfj0rBsaKDN5dmcDzzwAG+//TYrVqygV69ePPXUU0yYMIE9e/Y4z5k3bx5/+MMf6NOnD507d2bt2rV17vHkk0/yj3/8g7/97W8MHjyYP/3pT7z33ntcdtllTf7up59+mscee4zf/OY3vPXWW9x1111ceumlDBw4EICIiAiWL19O9+7d2b59O7NmzSIiIoIHHnjApfcmIiLSXmzMOl6v8+Z0BpBdUMbGrOOM6dv2a+J6feeJ2bNnNzr0embwCAgIYMGCBSxYsKANKjOdqrST/PAat9zLAHIKyxj2yMcunZ/x6ATCgpr/iEpKSnj++edZvnw5V199NQAvvvgin3zyCS+99BLnn38+AI8++ihXXnllo/d59tlnmT9/Ptdffz0Azz33HKtXr272919zzTXcfffdgNk798c//pHPP//cGex++9vfOs9NSkri/vvv57XXXlOwExGRDievqPFQ15rz3M3rwU7O3t69e6msrOTCCy90tgUGBjJ69Gh27tzpDHajRo1q9B4FBQXk5ubW2c7NZrORkpKCw+Fo8vcPHz7c+dpisRAfH+/cwgvMHUb+/Oc/s3fvXoqLi6mqqiIyMrLF71NERMTbYiNc28LU1fPcTcGuGaGBNjIeneDSuRuzjvOTv21q9rzlM89ndO/mJyGEBrr3ucFOnTq59X41zpwla7FYnGFww4YN/OhHP2LhwoVMmDCBqKgoXnvtNZ5++mmP1CIiIuJJo3t3ISEqpNHhWAsQHxXi0t/zntCh1rHzBovFQlhQgEtfF/fvRkJUCI09FWfBnB17cf9uLt3P1efr+vbtS1BQEF9++aWzrbKykk2bNpGcnOzSPaKiooiLi3NOuABz79wtW7a4dH1j1q9fT69evXjwwQcZNWoU/fv358CBA2d1TxEREW+xWS08dG3Df7fW/K29YFKy15Y4U7BzI5vVwoJJ5od95sfpyQ+7U6dO3HXXXfz6178mLS2NjIwMZs2aRWlpKbfffrvL97n33ntZtGgR77//PpmZmfziF7/gxIkTZ7UdV//+/Tl48CCvvfYae/fu5c9//jPvvvtuq+8nIiLibZ1CzAHPM/96jI8K8epSJ6ChWLebODSB5388st46dvEeXsdu8eLFOBwOpk2bRlFREaNGjWLNmjV07tzZ5XvMnTuXnJwcpk+fjs1m484772TChAlntZTM5MmT+dWvfsXs2bMpLy/n2muv5aGHHuKRRx5p9T1FRES86e3N3wPwo9SeXDuse7vajMBitKeVfdtAYWEhUVFRFBQU1HuAv6ysjKysLHr37k1IyNk99NgRdp5ojsPhYPDgwdx8881NbtvWEbjzsxUREf9VWFbJ+b/7lPIqBytnX8jwc6I9/zubyC5nUo+dh9isFq+sX3M2Dhw4wMcff8yll15KeXk5zz33HFlZWdx2223eLk1ERKRdWPVNNuVVDvrHhjOsR5S3y6lHz9iJk9VqZfny5Zx//vlceOGFbN++nU8//ZTBgwd7uzQREZF24a3qYdgbU845q2fQPUU9duKUmJhYZ2atiIiI1MrKL2HzgRNYLXD9eT28XU6D1GMnIiIi4oKaSROXDOhGbGT7fF5bwU5ERESkGQ6HwbtbDwNww8hzvFxN4xTsRERERJrx1b5jHD55ioiQAK5MjvN2OY1SsBMRERFpRs2kiUnndifEzVt+upOCnYiIiEgTisur+GhHDtC+h2FBwU5ERESkSau3Z3Oq0k6fmE6M7Bnt7XKapGAnTUpKSmLJkiVndY9HHnmEESNGuKWexowbN45f/vKXHv0dIiLin2pmw97QTteuO52Cnac47JC1Dra/ZX532L1dUZOWL19OdHR0vfZNmzZx5513ntW977//ftLT08/qHiIiIt5w6Hgp/806jqUdr113Oi1Q7AkZKyFtLhQeqW2L7A4Tn4Tkyd6rqxW6det21vcIDw8nPDzcDdWIiIi0rbe3mL11F/aNoXt0qJeraZ567NwtYyW8Mb1uqAMozDbbM1Z65NeWl5dz3333ERsbS0hICBdddBGbNm0CYO3atVgsFlatWsXw4cMJCQnhggsuYMeOHc7jM2fOpKCgAIvFgsVi4ZFHHgHqD8VaLBZeeOEFrrvuOsLCwhg8eDAbNmxgz549jBs3jk6dOjF27Fj27t3rvObModia33H6V1JSkvP4jh07uPrqqwkPDycuLo5p06aRn5/vPF5SUsL06dMJDw8nISGBp59+2v3/QEVExO85HIYz2N2Q0v5760DBrnmGARUlrn2VFcJHDwBGQzcyv6XNNc9z5X5GQ/dp2AMPPMDbb7/NihUr2LJlC/369WPChAkcP37cec6vf/1rnn76aTZt2kS3bt2YNGkSlZWVjB07liVLlhAZGUl2djbZ2dncf//9jf6uxx57jOnTp7Nt2zYGDRrEbbfdxs9+9jPmz5/P119/jWEYzJ49u9Hra35HdnY2e/bsoV+/flxyySUAnDx5kssvv5zzzjuPr7/+mrS0NHJzc7n55pvrvI9///vfvP/++3z88cesXbuWLVu2uPzPSkRExBWb9h/n0PFThAcHMGFIvLfLcYmGYptTWQpPdHfTzQyzJ29xomun/+YIBHVq9rSSkhKef/55li9fztVXXw3Aiy++yCeffMJLL73E+eefD8CCBQu48sorAVixYgXnnHMO7777LjfffDNRUVFYLBbi45v/gztz5kxn0Jo7dy5jxozhoYceYsKECQD84he/YObMmY1eX/M7DMPghhtuICoqihdeeAGA5557jvPOO48nnnjCef7LL79MYmIiu3fvpnv37rz00ku8+uqrXHHFFXXei4iIiDvV9NZdMyyesKCOEZk6RpXSpL1791JZWcmFF17obAsMDGT06NHs3LnTGezGjBnjPN6lSxcGDhzIzp07W/z7hg8f7nwdF2euvj1s2LA6bWVlZRQWFhIZGdnofX7zm9+wYcMGvv76a0JDzecW/ve///H55583+Eze3r17OXXqFBUVFaSmptZ7LyIiIu5SWlHFqm+yAbgxxcUOmXZAwa45gWFmz5krDqyHf9zY/Hk/egt6jXXtd7dDgYGBztc1074banM4HI3e49VXX+WPf/wja9eupUeP2ucWiouLmTRpEk8++WS9axISEtizZ89Z1y8iItKcNd/mUFJhp2eXMM5P6tzwSQ67+Xd/cS6Ex5l/t1u9uyuFgl1zLBaXhkMB6Hu5Ofu1MJuGn7OzmMf7Xu7WD75v374EBQXx5Zdf0qtXLwAqKyvZtGlTnbXdvvrqK3r27AnAiRMn2L17N4MHDwYgKCgIu71tlmTZsGEDd9xxBy+88AIXXHBBnWMjR47k7bffJikpiYCA+n88+/btS2BgIP/973/rvZdLL720TeoXERHfV7OF2A0jG1m7rp2ugKHJE+5ktZkfKABn/iGo/nniYren+U6dOnHXXXfx61//mrS0NDIyMpg1axalpaXcfvvtzvMeffRR0tPT2bFjBz/5yU+IiYlhypQpgDn7tbi4mPT0dPLz8yktLXVrjTVycnK4/vrrueWWW5gwYQI5OTnk5ORw9OhRAO655x6OHz/OrbfeyqZNm9i7dy9r1qxh5syZ2O12wsPDuf322/n1r3/NZ5995nwvVqv+KIuIiHscPnmK9XuPAfDDkQ3MhvXSChiu0N+G7pY8GW5+BSIT6rZHdjfbPZTiFy9ezA033MC0adMYOXIke/bsYc2aNXTu3LnOOb/4xS9ISUkhJyeHDz74gKCgIADGjh3Lz3/+c6ZOnUq3bt146qmnPFLnrl27yM3NZcWKFSQkJDi/ap4D7N69O19++SV2u52rrrqKYcOG8ctf/pLo6GhnePv973/PxRdfzKRJkxg/fjwXXXQRKSkpHqlXRET8z7tbvscw4II+XUjscsZjUQ672VPX5AoY87y2MYHFMFqwpoYPKCwsJCoqioKCgnoP9peVlZGVlUXv3r0JCQk5u1/Ujsbd165dy2WXXcaJEyca3F3CH7j1sxUREZ9lGAaXP/1vsvJL+P2Nw7lp1BkTJ7LWwYrrmr/RjA+h98Vuqamp7HImPWPnKVab2z5QERERaRtbDp4kK7+E0EAbVw9LqH9Cca5rN3L1PDfTUKyIiIhItZpJE1cPiyc8uIH+r/A4127k6nluph47PzBu3Dj8bMRdRESkxcoq7Xz4jTkh4saRjSx832ts9QoYjS2FVr0ChivLmnmAeuxEREREgI8zcikqq6JHdCgX9Ona8El1VsA4k+dWwHCVgp2IiIgI8Hb1MOwPR/bAam1g7boaiakNt3t4BQxXaCi2AU3tmCAdkz5TERFpSm5hGeu+M9dUvaGxYdgauz40v3cfCVc+2i5WwKihYHeaoKAgrFYrR44coVu3bgQFBTW82rR0GIZhUFFRwdGjR7Farc51+0RERE737tbDOAwY1aszSTHN7Di18wPze/LkdrcChoLdaaxWK7179yY7O5sjR1zcH1Y6hLCwMHr27KkdKkREpB7DMGq3EEtppreu9DjsX2e+Huy9IdfGKNidISgoiJ49e1JVVdVme6eKZ9lsNgICAtT7KiIiDfrm+wL25BUTHGDl2uENrF13ut1p4KiC2CHQtW/bFNgCCnYNsFgsBAYGEhgY6O1SRERExMPe3mL21k0YEk9kSDN/99cMww6e5OGqWkfjUiIiIuK3yqvsvL+teu265oZhy4thT7r5WsFOREREpH35bGceBacqiY8M4cJ+MU2fvOcTsJdDlz4QN6RtCmwhBTsRERHxWzWTJq4f2QNbU2vXAWSsNL8PngTt9LltBTsRERHxS0eLylm728W16yrL4LuPzdftcDZsDQU7ERER8UvvbzuM3WEwIjGafrHhTZ+8by1UFENEd3Nh4nZKwU5ERET8kstr10Hd2bDteE3U9luZiIiIiId8e6SAXTlFBNmsTGpu7Tp7JWSuMl+309mwNRTsRERExO/U9NZdmRxHdFgz200e+BJOnYCwrtBzTBtU13rtItgtXbqUpKQkQkJCSE1NZePGjY2eO27cOCwWS72va6+9tg0rFhERkY6qosrhXLvuhpQezV9QMww76Fqwte+9Hbwe7F5//XXmzJnDggUL2LJlC+eeey4TJkwgLy+vwfPfeecdsrOznV87duzAZrNx0003tXHlIiIi0hGtzczjeEkFMeHBXNK/W9MnOxyw80PzdTueDVvD68HumWeeYdasWcycOZPk5GSWLVtGWFgYL7/8coPnd+nShfj4eOfXJ598QlhYmIKdiIiIuKRmC7Hrz+tOgK2ZKPT9JijOgeBI6H1JG1R3drwa7CoqKti8eTPjx493tlmtVsaPH8+GDRtcusdLL73ELbfcQqdOnTxVpoiIiPiI4yUVfLbLHBV0bTZs9aLEAyZAQLAHK3MPrw4U5+fnY7fbiYuLq9MeFxfHrl27mr1+48aN7Nixg5deeqnRc8rLyykvL3f+XFhY2PqCRUREpENbue0wlXaDoT0iGRQf2fTJhnHaMiftfxgW2sFQ7Nl46aWXGDZsGKNHj270nEWLFhEVFeX8SkxMbMMKRUREpD15q3oYttmdJgByvoGTByAgFPpd4eHK3MOrwS4mJgabzUZubm6d9tzcXOLj45u8tqSkhNdee43bb7+9yfPmz59PQUGB8+vQoUNnXbeIiIh0PJk5Rew4XEigzcIPRrRgNmy/KyCoYzzy5dVgFxQUREpKCunp6c42h8NBeno6Y8Y0vU7Mm2++SXl5OT/+8Y+bPC84OJjIyMg6XyIiIuJ/aiZNXDYwli6dmlm7DjrcMCx4+Rk7gDlz5jBjxgxGjRrF6NGjWbJkCSUlJcycOROA6dOn06NHDxYtWlTnupdeeokpU6bQtWtXb5QtIiIiHUiV3cE7Ww4DcKMrkyaO7oaju8AaaE6c6CC8HuymTp3K0aNHefjhh8nJyWHEiBGkpaU5J1QcPHgQ6xl7smVmZvLFF1/w8ccfe6NkERER6WDWfZdPfnE5XToFMW5gbPMX1MyG7XMphEZ7tDZ38nqwA5g9ezazZ89u8NjatWvrtQ0cOBDDMDxclYiIiPiKmi3EfjCiO0EBLjyJ5hyGbd97w56pQ8+KFREREWlOQWkln2SYEzVdmg178iBkbwOLFQZ2rC1LFexERETEp6385ggVdgeD4iMY0t2FSZQ1vXU9x0J4M1uOtTMKdiIiIuLT3q4ehr0x5RwsFkvzF3TQYVhQsBMREREftievmG2HTmKzurh2XVEuHPzKfD34Os8W5wEKdiIiIuKzatauGzegG90iXNjrNXMVYECPFIhy4Xm8dkbBTkRERHyS3WHwbvXadTe4snYdQEb1MicdcBgWFOxERETER325J5+cwjKiQgO5YrALa9eVHof968zXgxTsRERERNqNmmHYyed2JzjA1vwFu9eAowpikyGmn4er8wwFOxEREfE5hWWVpO3IAVzcQgw65N6wZ1KwExEREZ+z+ptsyqsc9IsNZ/g5Uc1fUF4Me9PN1x30+TpQsBMREREfVLOF2A0jXVy7bs8nUFUGnXtD3BAPV+c5CnYiIiLiU/bnl/D1gRNYLXD9eS6sXQd1FyV2JQi2Uwp2IiIi4lPeqZ40cVH/bsRHhTR/QWWZOXECIPkHHqzM8xTsRERExGc4HAZvV69d5/KkiX1roaIYIrpD95GeK64NKNiJiIiIz/gq6xiHT54iIiSAq5LjXLvIOQx7HVg7djTq2NWLiIiInKZm0sR1w7sTEujC2nX2quptxOjQy5zUULATERERn1BSXnXa2nUuTpo48AWcOgFhXaHnGA9W1zYU7ERERMQnrN6eTWmFnd4xnRjZs7NrF9UMww68BmwBniuujSjYiYiIiE+o2ULshpE9XFu7zuGAnR+ar31gGBYU7ERERMQHHDpeylf7jmOxwPUjXZwNe/hrKM6B4Ejoc6lnC2wjCnYiIiLS4b1TvcTJ2L5d6REd6tpFGe+b3wdMgIBgD1XWthTsREREpEMzDOO0YVgXe+sMo+5uEz5CwU5EREQ6tE37T3DweCmdgmxMHBrv2kU52+HkAQgIhX7jPVtgG1KwExERkQ7t7eq1664ZlkBYkIszW3euNL/3uwKCOnmosranYCciIiId1qkKO6u2ZwMt2EIMThuG9Y3ZsDUU7ERERKTDWvNtDsXlVSR2CeX8pC6uXXR0NxzdBdYAc+KED1GwExERkQ6rZguxH553DlarC2vXAeyq7q3rfSmERnumMC9RsBMREZEO6cjJU3y5Nx9owWxYgIzq5+uSfWsYFhTsREREpIN6d+thDANG9+5Cz65hrl108iBkbwMsMPBaT5bnFQp2IiIi0uEYhuGcDduySRPVW4j1Ggvh3TxQmXcp2ImIiEiHs/XQSfbllxAaaOOaYQmuX+ijs2FrKNiJiIhIh1MzaeLqofGEB7u4dl1RLhzcYL4efJ2HKvMuBTsRERHpUMoq7XzwvyMA3NCSYdjMVYAB3UdCVAuu60AU7ERERKRD+SQjl6KyKrpHhTCmT1fXL/TBvWHPpGAnIiIiHcrbW6rXrhvZgrXrTp2ArP+Yr330+TpQsBMREZEOJLewjP/sPgrAD0f2cP3CzDRwVEFsMsT081B13qdgJyIiIh3Ge1sP4zAgpVdn+nQLd/1CPxiGBQU7ERER6SAMw3DOhm3RThPlxbA33XytYCciIiLifdsPF/BdXjHBAVauHd6Ctev2fAJVZdC5N8QN9VyB7YCCnYiIiHQINTtNXDUknqjQQNcvPH0Y1uLiZIsOSsFORERE2r3yKjvvV69d16ItxCrLYPca87UPz4atoWAnIiIi7d7nu/I4WVpJXGQwF/WLcf3CrH9DRTFEJECPFM8V2E4o2ImIiEi7VzNpYsp5PbC5unYdQMZK8/vgSWD1/djj++9QREREOrSjReV8nmmuXXdjS2bD2quqtxHD52fD1lCwExERkXbt/W2HsTsMzj0niv5xEa5feOBLc8eJ0C7Qc6znCmxHFOxERESkXXt7y2GghZMmoHY27KBrwRbg5qraJ68Hu6VLl5KUlERISAipqals3LixyfNPnjzJPffcQ0JCAsHBwQwYMIDVq1e3UbUiIiLSlr49UsDO7EKCbFYmndvd9QsdjtOWOfH92bA1vBpfX3/9debMmcOyZctITU1lyZIlTJgwgczMTGJjY+udX1FRwZVXXklsbCxvvfUWPXr04MCBA0RHR7d98SIiIuJxb282e+vGJ8cSHRbk+oWHv4biHAiKgD6Xeqi69serwe6ZZ55h1qxZzJw5E4Bly5axatUqXn75ZebNm1fv/Jdffpnjx4+zfv16AgPNhQmTkpLasmQRERFpI5V2B+9vM4Ndi7YQA9hZPRt2wAQICHZzZe2X14ZiKyoq2Lx5M+PHj68txmpl/PjxbNiwocFrVq5cyZgxY7jnnnuIi4tj6NChPPHEE9jt9kZ/T3l5OYWFhXW+REREpP1bm3mUYyUVxIQHccmAbq5faBi1y5wk+88wLHgx2OXn52O324mLi6vTHhcXR05OToPX7Nu3j7feegu73c7q1at56KGHePrpp/nd737X6O9ZtGgRUVFRzq/ExES3vg8RERHxjJotxKaM6EGgrQWRJWc7nDwAASHQb3zz5/sQr0+eaAmHw0FsbCx//etfSUlJYerUqTz44IMsW7as0Wvmz59PQUGB8+vQoUNtWLGIiIi0xomSCtJ35QJwQ2tnw/YbD0Gd3FxZ++a1Z+xiYmKw2Wzk5ubWac/NzSU+Pr7BaxISEggMDMRmsznbBg8eTE5ODhUVFQQF1X+oMjg4mOBg/xlbFxER8QUr/3eESrvBkO6RDE6IbNnFztmw/rEo8em81mMXFBRESkoK6enpzjaHw0F6ejpjxoxp8JoLL7yQPXv24HA4nG27d+8mISGhwVAnIiIiHVPNFmItnjSR/x0c3QnWABgw0QOVtW9eHYqdM2cOL774IitWrGDnzp3cddddlJSUOGfJTp8+nfnz5zvPv+uuuzh+/Di/+MUv2L17N6tWreKJJ57gnnvu8dZbEBERETfbnVvE9sMFBFgt/GBEC9aug9rZsL0vhdBot9fW3nl1uZOpU6dy9OhRHn74YXJychgxYgRpaWnOCRUHDx7EetqGvYmJiaxZs4Zf/epXDB8+nB49evCLX/yCuXPneustiIiIiJvVTJq4bFAsXcNb+DiVHw/DAlgMwzC8XURbKiwsJCoqioKCAiIjWzhmLyIiIh5VZXcwZvFnHC0q54VpKUwY0vBz9w06eQiWDAUscP93EN6CJVLasZZklw41K1ZERER827o9+RwtKqdzWCCXDay/C1WTanrreo31mVDXUgp2IiIi0m7UTJr4wYgeBAW0MKb4+TAsKNiJiIhIO1FQWsknGeYyaDe2dO264jw4WL1z1aDr3FxZx6FgJyIiIu3CB98coaLKwcC4CIZ0b+Fz8Ls+BAzoPhKi/XeXKQU7ERERaRfe3mIOw96Ycg4Wi6VlF2sYFlCwExERkXZg79Fith48ic1q4QfntXDtulMnIOs/5uvBk91fXAeiYCciIiJeV7N23aUDuhEbEdKyi3evAUcVdBsMMf08UF3HoWAnIiIiXmV3GLy79TDQii3EADKqd5tI9u/eOlCwExERES9bvzef7IIyIkMCuGJwC9euKy+GvdX7zvv583WgYCciIiJeVjMMO3lEd0ICbS27eM+nUFUGnZMgbqj7i+tgFOxERETEa4rKKkn7Ngdo5TDs6bNhWzqT1gcp2ImIiIjXrN6eTVmlg77dOjEiMbplF1eVmxMnAAb/wO21dUQKdiIiIuI1NVuI3dCatev2rYWKIohIgB4p7i+uA1KwExEREa84cKyETftPYLXAD89rzTBs9WzYQdeBVZEGFOxERETES97eYi5xcmG/GOKjWrh2nb0Kdq02X2uZEycFOxEREWlzDofhnA17Y0oreusOfAmnjkNoF+g51s3VdVwKdiIiItLm/pt1nMMnTxERHMBVyfEtv0HNbNhB14AtwL3FdWAKdiIiItLmaiZNXDs8gdCgFq5d53DArg/N136+N+yZFOxERESkTZWUV/HRjmyglcOwh7+GomwIioA+49xbXAenYCciIiJt6qMdOZRW2EnqGkZKr84tv0HNbNgBEyAg2L3FdXAKdiIiItKmaiZN3DCyFWvXGUbd3SakDgU7ERERaTOHjpeyYd8xAK4f2aPlN8jdASf2Q0AI9Bvv3uJ8gIKdiIiItJl3t5pr143t25VzOoe1/AYZ1cOw/cZDcLgbK/MNCnYiIiLSJgzD4O0ttcOwraJh2CYp2ImIiEib+PrACQ4cKyUsyMbEoa1Yuy7/Ozi6E6wB5sQJqUfBTkRERNpEzaSJa4Yl0Cm4FYsK18yG7X0JhLZiNq0fULATERERjztVYefDb8y1685+GFaLEjdGwU5EREQ87uOMHIrLqzincyipvbu0/AYnD8GRrYAFBl3r9vp8hYKdiIiIeFzNFmI/HHkOVmsL166D2i3Eeo6B8Fg3VuZbFOxERETEo7ILTvHFnnwAbmjN2nVQu8xJsoZhm6JgJyIiIh71zpbDGAaMTupCr66dWn6D4jw4uMF8Peg69xbnYxTsRERExGPqrF2X0sreul2rAAO6nwfRie4rzge1Yq6xiIiISNPsDoONWcfZtP8Y+46WEBxg4ZphCa27mRYldpmCnYiIiLhV2o5sFn6QQXZBmbPNYrHw5Z58Jg5tYbg7dQKy/m2+HvwDN1bpmzQUKyIiIm6TtiObu17dUifUAZRVOrjr1S2k7chu2Q13rwFHFXQbDDH93Fipb1KwExEREbewOwwWfpCB0cQ5Cz/IwO5o6owzaBi2RRTsRERExC02Zh2v11N3OgPILihjY9Zx125YXgx7PjVfK9i5RM/YiYiIyFmpqHKwMes4L67b69L5eUWNh7869nwKVWXQOQnih7W+QD+iYCciIiItdrSonM8z8/h8Vx7rvsunuLzK5WtjI0JcO/H0YVhLK3ar8EMKdiIiItIswzD49kgh6Tvz+Cwzj/8dOlnneEx4MOMGxvDpzjwKSisbfM7OAsRHhTDalb1iq8rNiRMAg7XbhKsU7ERERKRBpRVVfPFdPp9n5vHZrjxyC8vrHB/WI4rLB8Vy+aBYhvWIwmq1OGfFWqBOuKvpb1swKRmbK3vF7lsLFUUQkQA9RrnpHfk+BTsRERFxOnS8lM8z80jfmceGfceoqHI4j4UF2bioXwyXD4rlskGxxEXWH1KdODSB5388st46dvFRISyYlOz6OnY7q/eGHXQdWDXX01UKdiIiIn6syu5g66GT5hDrrlx25xbXOX5O51CuGBTL5YPjSO3dhZBAW7P3nDg0gSuT49mYdZy8ojJiI8zhV5d66gDsVbBrtflas2FbRMFORETEz5wsreDfu4/y2a481mYepeBUpfOYzWohpVdnLh8UyxWDYukXG46lFRMXbFYLY/p2bV2BB9fDqeMQ2gV6Xdi6e/gpBTsREREfZxgGe/KKSd+Vx2c78/j6wHFOXyM4KjSQcQO7cfmgWC4d0I3osCDvFQuQUTMMew3YFFVaQv+0REREfFBZpZ3/Zh3ns525pO/K4/sTp+ocHxAXzuWD4rhicCznJUYTYGsnz7E5HLDrQ/O1ZsO2WLsIdkuXLuX3v/89OTk5nHvuuTz77LOMHj26wXOXL1/OzJkz67QFBwdTVubiYociIiI+KrewjM935ZG+K48vvsvnVKXdeSwowMqYPl25YnAslw2MJbFLmBcrbcLhzVCUDUER0PtSb1fT4Xg92L3++uvMmTOHZcuWkZqaypIlS5gwYQKZmZnExsY2eE1kZCSZmZnOn1sz9i8iItLRORwG2w8XmEOsu3LZcbiwzvG4yODq5UjiuLBfV8KCvP7XfvN2vm9+H3AVBLq4kLE4ef0TfuaZZ5g1a5azF27ZsmWsWrWKl19+mXnz5jV4jcViIT4+vi3LFBERaReKy6v44rujpO/M4/PMo+QX111b7tzEaHMW66BYhnSP7FidH4Zx2m4TGoZtDa8Gu4qKCjZv3sz8+fOdbVarlfHjx7Nhw4ZGrysuLqZXr144HA5GjhzJE088wZAhQxo8t7y8nPLy2j/0hYWFDZ4nIiLSluwOw+XlQA4cK6kOcnl8te8YlfbamQ+dgmxcMsCc+DBuYCzdIoLb6i24X+4OOLEfAkKg33hvV9MheTXY5efnY7fbiYuLq9MeFxfHrl27Grxm4MCBvPzyywwfPpyCggL+8Ic/MHbsWL799lvOOeeceucvWrSIhQsXeqR+ERGR1kjbkV1vAd+E0xbwrbQ7+Hr/CT7blctnu/LYe7SkzvW9uoZxxaA4Lh8Uy+jeXQgKaCcTH85WTW9d3ysgONy7tXRQXh+KbakxY8YwZswY589jx45l8ODBvPDCCzz22GP1zp8/fz5z5sxx/lxYWEhiYmKb1CoiInKmmi23ztxLNaegjJ+/uoWUXtHszi2mqKzKeSzAauH8pC7mxIdBsfSJ6dSxhlhdVbPMiRYlbjWvBruYmBhsNhu5ubl12nNzc11+hi4wMJDzzjuPPXv2NHg8ODiY4OAO3C0tIiI+w+4wWPhBRr1QB7X7qm4+cBKALp2CGDegG5cPjuXi/t2ICg1sqzK9I/87OLoTrAEwcKK3q+mwvNp3GxQUREpKCunp6c42h8NBenp6nV65ptjtdrZv305Cgot7z4mIiHjJf/cdqzP82piFk4ew6cHxPDN1BNcN7+77oQ5qh2F7XwKhnb1bSwfm9aHYOXPmMGPGDEaNGsXo0aNZsmQJJSUlzlmy06dPp0ePHixatAiARx99lAsuuIB+/fpx8uRJfv/733PgwAHuuOMOb74NERGRBlXZHWzaf4K0Hdm8t+2IS9dEhwW6vq+qr3DOhtUw7NnwerCbOnUqR48e5eGHHyYnJ4cRI0aQlpbmnFBx8OBBrNbajsUTJ04wa9YscnJy6Ny5MykpKaxfv57k5GRvvQUREZE6yqvsrN97jLTtOXyyM5fjJRUtuj42ws/Wbzt5CI5sASww6DpvV9OhWQzDaGio32cVFhYSFRVFQUEBkZGR3i5HRER8RGlFFf/ZfZSPduTw2c48isprJz9EhwVy5eA4rkqO46H3d5BbWN7gc3YWID4qhC/mXu5fPXZfPQ9p86DnWPjpR96upt1pSXbxeo+diIhIR1VwqpLPduWStiOHf+8+Slmlw3ksNiKYCUPimTg0ntG9uxBYvRer3TC469UtWKBOuKuJcQsmJftXqAMNw7pRi4Pd+PHj+X//7/9x9dVX12l3OBx1hkxFRER8UX5xOZ9kmGFu/d78OosFn9M5lKuHmmHuvMTOWBsIaBOHJvD8j0fWW8cu/rR17PxKcR4cWG++Hqxh2LPV4mD39ddfk5SUBMCBAwfo1asXAP/3f//HunXr+Pvf/+7WAkVERLztyMlTrPk2h7QdOWzafxzHaV1t/WLDuXpoPBOGxLu8hdfEoQlcmRzv8s4TPm3XKsCA7udBdE9vV9PhtTjYVVRUEBERAcCwYcPYtm0bffr0YezYsTzyyCPurk9ERMQr9ueX8NGOHNK+zeF/h07WOTasRxQTh8YzYUgc/WIjWnV/m9XCmL5d3VBpB6dhWLdqcbDr378/GzduJCIigpKSEgoKCgCIiIjg+PHjbi9QRESkLRiGQWZuER9tz2HNtznsyilyHrNYYFSvzkwYYvbMJXYJ82KlPuTUScj6t/l68GSvluIrWhzs7r33XmbNmkVSUhLDhw/npZde4rnnnmPdunX19nwVERFpzwzD4H/fF/DRjmzW7Mhh/7FS5zGb1cLYvl2ZMCSeq5LjiI30syVI2sLuNHBUQbdBENPf29X4hBYHuzvuuIMuXbqwe/duZs2axS233EKfPn3Izs5m9uzZnqhRRETEbewOg41Zx1nzrdkzd/oEhqAAK5f078bEofGMHxxLdFiQFyv1A85hWPXWuUurljv54Q9/6Hz90Ucf8e6771JRUcEtt9zitsJERETcpaLKwZd781mzI4dPMnI5dtqCwZ2CbFw2KJaJQ+O5bGAsnYK1ElibqCiBPZ+ar/V8nduc9Z/egIAAbrrpJnfUIiJtpKbHwu9n44lPO1Vh59+780jbkUP6GQsGR4UGcmVyHBOHxHNR/xhCAm1erNRP7fkUqsoguhfED/N2NT5D/1si4mfSdmTXWz8rwV/XzxKfU1hWyWc7zTC3dndenQWDu0UEM2FIHBOHJJDap3bBYPGSjJXm98GTzNkp4hYKdiJ+JG1HNne9uqXeVkY5BWXc9eoWnv/xSIU7aRda0qt8rGbB4G9z+HJP/QWDJw6J5+phjS8YLF5QVQ6715ivk3/g3Vp8jIKdiJ+wOwwWfpDR4P6UBuZ2Rgs/yODK5HgNy4pXudKrnF1wijXVa8xtzKq/YPDE6q28XF0wWNrYvn9DRRGEx0OPUd6uxqco2In4gfIqe73Zf2cygOyCMv6+YT9j+sYQERJAREgAnYICOlwvhz88Q+ir77GpXuWfv7qF68/rQVZ+CdvOWDB4aI9IZ5hr7YLB0oZ21gzDXgfajtStFOxEOrCySjt5heXkFpWRV1hOXlEZeUXl5BaWcbSo3HnsZGmly/d85IOMOj9bLBARHEBESCARIQFEhgQSGVr7c03b6T9HhAQSddo5oYG2Nus18YdnCH31PTbXqwzw7tbDgPnnMqVn5+rdH7RgcIdir6reRgwtc+IBFsMwGvp3yGcVFhYSFRVFQUEBkZGR3i5H2ilv94aUlFc5A1peUTl51UHN+XP166KyquZvVi3AaqHK0fy/7nGRwVTaDYrKKus8q3Q2AqwWZ+BrKAxGhgQQGRpY55zIkLo/uzJrsbHenppPzheeIWyr92h3GJRX2SmvdFBhd1Be6TB/rnI4252vq8487nDpvIozzisqq6KwrPn/CfnphUn8/NK+WjC4o8r6D6yYBKGd4f49YFMfU3Nakl30T1PkDJ7qDTEMg6LyKrNnzRnQysgtLK8X3koq7C7fNzjASlxkCLERwcRGBhMbEVL7PSLYeSwiJICLn/qcnIKyBntELEB8VAhfzL0cm9WCYRiUVzkoPFVJYVkVRWWVzr94i077uaisqslzHAZUOQxOlFZyogU9h2cKCrAS2WDwM9vCgwP425dZTfb2/Pa9HcRGhDiHlmv+v7bmeO3/5hrOn8881tg1BsbplzZ63Kh3vO79aOx8wwxb89/Z3uR7fOCtb8jMKaLSbjQRuuy1oerMY5Xma1f+J8Bbzk2MVqjryGoWJR54rUKdB6jHTuQ0rekNMQyDglOV1QGtZkj0tOFQZ3grq7P0QnPCgmzERYbQLSK4TkCLjQwmrjq8dYsIITIkwOVhzpr3B9R5j57q0TIMg9IKe52gV3haGCxqIjA6j5e73ispnhFgtRAcYCU40GZ+D7ASHGAjOPC01wFWggOtBNkaP9bg6wAbQdX33JVTyNy3tzdbz79mXcCYvl3b4J2L2zkc8MdkKMqGW1+HgRO9XVGHoB47kVZw5fmeX7/5DV/sySe/qMIZ2I4Wl1NR5XpgiwgJMANaRAhxkcHEVge2bnXCWwjhHlj9fuLQBJ7/8ch6PZLxHno+y2Kx0Ck4gE7BASREte4eDodBccXpQbB+GCwsq2T79wWs33us2ft1DgskLCjAuWyW83t1vK39GWdgdsZmS51v9Y43di+aO7+JGk5vOFlSwYHjtXuZNmZM364MjIs4I0BVBzObtenQdUYoCwqwttljCEN7RLHk0++a7VUe3btLm9QjHnB4sxnqgiKgzzhvV+OTFOzE71VUOdh/rIRV32Q3OWsUoKi8ile/OtjgseiwQGdgqzcUGhnsPBYa5N0V7icOTeDK5PgOM6PSarWYEzZCAps8b8PeYy4Fu7/8KKXD9vZs2HuMW1/8qtnz7ru8f4d8jzarhQWTkrnr1S1YaLhXecGk5Hb7Z1VcUDMbdsBVEKjhdE9QsBO/UVZpZ9/REr7LK2JPXjHf5RbzXV4R+4+VYm/B80RXJsdyUb9uxFUPhdb0tnWkLYlsVkuH/Iu/KaN7dyEhKsSne3v84T22da+ytCHDqH2+TnvDeoyCnfickvIq9h4tNsNbdYDbk1fEweOlNJbfIoIDiIsKZk9eSbP3/+mFfXwuFPkCf+jt8Yf3CB2vV1lclLsDTmRBQAj0u9Lb1fgsBTvpsIrKKp3hbU9eMbtzi/gut5jDJ081ek1UaCAD4sLpFxtB/9hw+seF0z82grjIYBwGXPTkZz7dG+Lr/KG3xx/eI/hmr7Lfq+mt63sFBId7txYfpmAn7d7J0gpnz1vNMOqevOImn4eLCQ+iX6wZ2vrHhTtfx4QHNTqD1GbBL3pDfJ0/9Pb4w3sUH6Rh2DahYCct5onFew3D4FhJhXPYtDbIFZNfXN7odXGRwfSPjTCDW3XvW7/YcLp0CmpVHf7SG+Lr/KG3xx/eo/iQ/D2QlwHWAC1x4mEKdtIiZ7t4r2EY5BWVO3vfvssrZk/166YWr+0RHVrd6xZe3QNnBrio0KZnSraGekNERNysZjZs70vMHSfEYxTsxGVNbc5916tb6ixuaxgGRwrK+C637gzU7/KKG90Gy2KBxM5h9I8Np19171v/2HD6xoZ7ZE23pqg3RETEjTQM22YU7MQlLi3e+9Y3fPxtrnNGamPbYlktkNS1U73h077dwr2+xpuIiLjZyUNwZAtgMbcRE49SsBOXrM3Ma37x3rIq3tl62PlzgNVC75hOzqHTmmHU3jGdCA5QgBMR8WkOOxxYD1tfNX9OTIWIOO/W5AcU7MSprNLOgWOlZOUXk5Vf872ErPwS8osrXLrHNUPjmXRud/rHhdOraycCbVYPVy0iIu1OxkpImwuFR2rb8naa7cmTvVeXH1Cw8zNVdgeHT55iX34JWUdLnMEtK7+EIwWnMFzfgKFB08Yk6dk0ERF/lrES3pgOZz68U15ott/8isKdBynY+SDDMMgtLGdffjH7T+t525dfwqHjpVTaG09vESEB9InpRO+YTvSOCad3t0707tqJxC6hXP2ndVq8V0REGuewmz11jT6RbYG0eTDoWrDqkRxPULDrwE6WVtTteTtmvt5/rITSRiYuAAQHWKuDWyeSqr/XhLkunRpfwFeL94qISJMOrK87/FqPAYWHzfN6X9xmZfkTBTsPcOcCvqUVVWTllzh73vadNnR6sol132xWC4mdQ+v1vPXu1omEyBCsrahHi/eKiEiTju9z7bziXM/W4ccU7NysNQv4VlQ5OHSi1Nnzti+/hP3V4S2nsOmZqAlRISRVB7baIdROnNM5jKAA909c0OK9IiJST8522Pgi/O81184P1+xYT1Gwc6PmFvD93ZSh9OraqV7P2/cnTmF3NP7cW+ewwNqet5iw6u+dSIoJIyyo7T9CLd4rIiJUVZg7Smx8EQ59VdtuDQBHwwvRgwUiu0OvsW1Soj9SsHMTVxbwffC9HY1eHxZkq9fzlhRjDp92buW+pyIiIm5XcBg2/w02r4CSPLPNGmDuKnH+LCjNhzdmVJ/cwBPZExdr4oQHKdi5ycas480u4AvQPSqE5O5RdXre+nTrRGxEcKOTFkRERLzKMCDr37Dp/2DXajCqJ+iFx8OomTByBkSe9rjRza/UX8cusrsZ6rTUiUcp2LlJXlHzoQ5g7tWD+MGIHh6uRkRExA3KCuF//zIDXf7u2vZeF8HoO2DQdWALrH9d8mRzSZMD682JEuFx5vCreuo8TsHOTWIjQtx6noiIiNfkZsCmF+F/r0NlidkWFA7n3gKjboe45ObvYbVpSRMvULBzk9G9u5AQFaIFfEVEpGOyV8LOD8zeuQNf1rbHDITRs2D4VAiJ9F594hIFOzexWS1awFdERDqewmzYvNz8Ks4x2yw2cyh19CxIuhj0DHiHoWDnRlrAV0REOgTDMHvlNr4Iuz6sXZ6kUyyk/MT8itLz4B2Rgp2baQFfERFpt8qL4JvXYeP/wdGdte09x8D5d8DgyRCgJbY6MgU7D9ACviIi0q4czazdGaKiyGwLDIPhN5trz8UP9W594jYKdiIiIr7IXgWZq8xAt39dbXvXfmbv3Lm3Qmi018oTz3D/ZqKtsHTpUpKSkggJCSE1NZWNGze6dN1rr72GxWJhypQpni1QRESkoyjKhX8/BUuGwRvTzVBnsZprzk17D+7ZBBfcpVDno7zeY/f6668zZ84cli1bRmpqKkuWLGHChAlkZmYSGxvb6HX79+/n/vvv5+KLtUaOiIj4OcOAg1+Za89lrARHpdkeFgMpMyBlJkQnerdGaRMWwzAa332+DaSmpnL++efz3HPPAeBwOEhMTOTee+9l3rx5DV5jt9u55JJL+OlPf8q6des4efIk7733nku/r7CwkKioKAoKCoiM1Ho8IiLSgZUXw/Y3zbXnck/bj/yc0eZSJck/gIBg79UnbtGS7OLVHruKigo2b97M/PnznW1Wq5Xx48ezYcOGRq979NFHiY2N5fbbb2fdunWNniciIuKT8r8zw9y2f0J5odkWEArDbjQDXcK53q1PvMarwS4/Px+73U5cXFyd9ri4OHbt2tXgNV988QUvvfQS27Ztc+l3lJeXU15e7vy5sLCw1fWKiIh4jb0KdqeZw6371ta2d+ljbvN13o8gtLPXypP2wevP2LVEUVER06ZN48UXXyQmJsalaxYtWsTChQs9XJmIiIiHFB+FLSvg679B4ffVjRYYMMHsnetzOVjbxVxIaQe8GuxiYmKw2Wzk5ubWac/NzSU+Pr7e+Xv37mX//v1MmjTJ2eZwOAAICAggMzOTvn371rlm/vz5zJkzx/lzYWEhiYl6gFRERLzMYYcD66E4F8LjoNdYsNrMY4YB328ylyrJeA/sFWZ7aBcYOQ1G/RQ6J3mrcmnHvBrsgoKCSElJIT093blkicPhID09ndmzZ9c7f9CgQWzfvr1O229/+1uKior405/+1GBgCw4OJjhYD46KiEg7krES0uZC4ZHatsjuMP5RqDplBrqcb2qP9UgxFxIecj0EhrR9vdJheH0ods6cOcyYMYNRo0YxevRolixZQklJCTNnzgRg+vTp9OjRg0WLFhESEsLQoXVXx46Ojgao1y4iItIuZaw015fjjEUpCo/AO3fU/mwLNidDnH8H9BjZpiVKx+X1YDd16lSOHj3Kww8/TE5ODiNGjCAtLc05oeLgwYNY9eyAiIj4Aofd7Kk7M9SdzmKDKx6CkTMgrEublSa+wevr2LU1rWMnIiJek7UOVlzX/HkzPoTeWoBfTC3JLuoKExERaQsVJbD1H66dW5zb/DkiDfD6UKyIiIhPKz1uTob47zI4ddy1a8Ljmj9HpAEKdiIiIp5QcBi++ou5/lxlidkW3QvKTkJZIQ0/Z2cxZ8f2GtuGhYovUbATERFxp/zv4Msl8L/XwVFptsUNg4t+CclTIHN19axYC3XDncX8NnFx7Xp2Ii2kYCciIuIOhzfDF3+EnR/iDGy9LoKLfgX9rgBLdXBLngw3v9LwOnYTF5vHRVpJwU5ERKS1DMPct/WLP0LWv2vbB15jBrrE0Q1flzwZBl3b+M4TIq2kYCciItJSDjvs+tAMdEe2mm0WGwy/GS78BcQObv4eVpuWNBG3U7ATERFxVVU5fPM6fPknOLbHbAsIhZHTYexsiO7p3frE7ynYiYiINKe8CDYvhw1LoSjbbAuJgtE/g9SfQacYr5YnUkPBTkREpDEl+fDfF2DjX81lSgAiEmDMbEiZAcERXi1P5EwKdiIiImc6eRDWPwdbXoGqU2Zb137m83PDp0JAsHfrE2mEgp2IiEiNvJ3m83Pb3wRHldmWMAIungODrtOsVWn3FOxEREQObTRnuGaurm3rfam5ZEmfcbVr0Im0cwp2IiLinwwD9qTDF8/AgS+rGy0weJK5S0SPFG9WJ9IqCnYiIuJf7FWQ8R58sQRyt5tt1kA4dyqM/QV0G+DN6kTOioKdiIj4h8oy+N8/zWfoTuw32wI7waiZcMHdENXDq+WJuIOCnYiI+LayAvj6ZdjwFyjJM9tCu0Dqz2H0LAjr4t36RNxIwU5ERHxTUS7893nY9BKUF5ptkefA2Hth5DQI6uTd+kQ8QMFORER8y/EsWP8sbH0V7OVmW8xAc0LEsJvAFujV8kQ8ScFORER8Q852c0LEt++A4TDbeowy16AbcDVYrV4tT6QtKNiJiEjHZRhwcIO5Bt13H9e29xtvrkHX60KtQSd+RcFORETaH4cdDqyH4lwIj4NeY+vu+uBwwHdrzEB36L9mm8UKyVPMIdeEc71RtYjXKdiJiEj7krES0uZC4ZHatsjuMPFJGHg17HjbHHI9utM8ZguCET8yJ0V07euVkkXaCwU7ERFpPzJWwhvTAaNue2E2vDENwmKgNN9sC4qA839qrkEXEd/mpYq0Rwp2IiLSPjjsZk/dmaEOattK881wN+ZuGHU7hEa3YYEi7Z+CnYiItA8H1tcdfm3MD18wJ0eISD2a+y0iIu3DyYOunXfqpEfLEOnI1GMnIiLelbMdNi+Hbf907fzwOI+WI9KRKdiJiEjbKy82FxLevBwOb65tt9jAsDdykcWcHdtrbFtUKNIhKdiJiEjbObINtqyAb96EiiKzzRoIg66FlJ9AWSG8OaP65NMnUVQvMjxxcd317ESkDgU7ERHxrPIi2P6W2TuXva22vUsfM8ydexuEd6ttt7zSyDp2iyF5chsVLdIxKdiJiIj7GQYc2WqGue1vQWWJ2W4NNMNZyk+g10UN79+aPNnswWtq5wkRaZCCnYiIuE9ZIWx/0wx0Od/UtnftV907dyt0imn+PlYb9L7YU1WK+CwFOxEROTuGAYe3wOa/mdt9VZaa7bbg03rnLgSLxatlivgDBTsREWmdsgL45g3YvAJyt9e2xwys7p27BcK6eK08EX+kYCciIq4zDPh+kznUuuMdqDplttuCYcj1ZqDreYF650S8RMFORESad+pEde/ccsjLqG3vNtgMc8NvVu+cSDugYCciIg0zDDj0XzPMffsuVJWZ7QGhMPSHZqA753z1zom0Iwp2IiJSV+lx+N9rZqDLz6xtjx0Co2bCsJsgNNpb1YlIExTsRETE7J07sN4Mcxnvg73cbA8Mq+6dmwk9UtQ7J9LOKdiJiPizkmPwv3+Zge7Yd7Xt8cPModZhN0FIlLeqE5EWUrATEfE3hgH715lhbucHYK8w2wM7wbAbzUDX/Tz1zol0QAp2IiL+ovgo/O+f5rpzx/fWtieMqO6duxGCI7xVnYi4gYKdiIgvczhg/3+qe+c+BEel2R4Ubg6zpswwe+dExCco2ImIdEQOuznZoTgXwuOg11hzf9UaxXmw7R9m79yJrNr2Hilm79yQH0JweJuXLSKepWAnItLRZKyEtLlQeKS2LbI7TFgMIRFm79yuVeCoMo8FR5oLCI+cAQnDvVKyiLQNq7cLAFi6dClJSUmEhISQmprKxo0bGz33nXfeYdSoUURHR9OpUydGjBjB3//+9zasVkTEizJWwhvT64Y6MH9+czr8/XpzuRJHlbl48A+Wwv/bBdc+rVAn4ge83mP3+uuvM2fOHJYtW0ZqaipLlixhwoQJZGZmEhsbW+/8Ll268OCDDzJo0CCCgoL48MMPmTlzJrGxsUyYMMEL70BEpI047GZPHUYTJ1ng/DvMhYTjhrRVZSLSTlgMw2jqvxAel5qayvnnn89zzz0HgMPhIDExkXvvvZd58+a5dI+RI0dy7bXX8thjjzV7bmFhIVFRURQUFBAZGXlWtYuItKmsdbDiuubPm/Eh9L7Y8/WISJtoSXbx6lBsRUUFmzdvZvz48c42q9XK+PHj2bBhQ7PXG4ZBeno6mZmZXHLJJQ2eU15eTmFhYZ0vEZEOpaoCvn0PPprr2vnFuR4tR0TaL68Oxebn52O324mLi6vTHhcXx65duxq9rqCggB49elBeXo7NZuMvf/kLV155ZYPnLlq0iIULF7q1bhGRNpG3C7b+3dwZovSY69eFxzV/joj4JK8/Y9caERERbNu2jeLiYtLT05kzZw59+vRh3Lhx9c6dP38+c+bMcf5cWFhIYmJiG1YrItICFSXw7buw5RU49N/a9ogEOPdWcwmT4jwafs7OYs6O7TW2raoVkXbGq8EuJiYGm81Gbm7dYYPc3Fzi4+Mbvc5qtdKvXz8ARowYwc6dO1m0aFGDwS44OJjg4GC31i0i4laGAUe2mGFu+9tQUWS2W2wwYCKMnA79xoMtwFxM+I3pgIW64a56+6+Ji+uuZycifsWrwS4oKIiUlBTS09OZMmUKYE6eSE9PZ/bs2S7fx+FwUF5e7qEqRUQ8pPQ4bH/TDHS5O2rbO/c2w9yI2yDijP/JTZ4MN7/S8Dp2Exebx0XEb3l9KHbOnDnMmDGDUaNGMXr0aJYsWUJJSQkzZ84EYPr06fTo0YNFixYB5jNzo0aNom/fvpSXl7N69Wr+/ve/8/zzz3vzbYiIuMbhgANfmGEuYyXYq/+nNCAEkn8A502DpIvAYmn8HsmTYdC1Te88ISJ+yevBburUqRw9epSHH36YnJwcRowYQVpamnNCxcGDB7FaayfvlpSUcPfdd/P9998TGhrKoEGDePXVV5k6daq33oKISPMKs83n47a+WneLr7hh5n6tw26E0M6u389q05ImIlKP19exa2tax05E2oy9Cr772Oyd++5jMOxme3CkGeRGToeEEU33zomI32tJdvF6j52IiM85vg+2/B22/ROKc2rbe44xw1zyDyCok/fqExGfpWAnIuIOlWWw8wPYsgL2r6ttD4uBEbfCedOh2wDv1ScifkHBTkTkbOTsMIdav3kdyk5WN1qg3xVm79yAqyEgyJsViogfUbATEWmpskLY8bYZ6I5sqW2PSjRntY64DaK1ELqItD0FOxERVxiGuRPEllfMnSEqS812a6C59MjI6dBnnJYcERGvUrATEWlKSb65V+uWVyB/d217zEAzzJ17C3SK8V59IiKnUbATETmTww77PjfD3K7V4Kg02wPDYMgPzUCXOFrLlIhIu6NgJyJS4+Sh2kWECw7VtncfaYa5oTdAiNa/FJH2S8FORPxbVQXs/sjsnduTDlSv2R4SDcOnwshpED/MmxWKiLhMwU5EfI/D3vw+qkd3w9ZXYNu/oDS/tr33JTByBgy6DgJD2rZuEZGzpGAnIr4lYyWkzYXCI7Vtkd1h4pPm2nLfvmf2zh36qvZ4eDyc9yM478fQpU+blywi4i4KdiLiOzJWwhvTcQ6n1ig8Am9Mg4BQqDpltllsMGCC+excvyvBpv8cikjHp/+SiYhvcNjNnrozQ93pqk5BdBKkTIdzb4PIhLaqTkSkTSjYiYhvOPBl3eHXxkx+Fvpc4vl6RES8QMFORDoue5X5rFzmR/DNG65dU5Ln2ZpERLxIwU5EOpbyInNZksyP4Ls1cOpEy64Pj/NMXSIi7YCCnYi0f4VHIHO1Geay/gP2itpjoZ1hwEToPwHWzIeiHBp+zs5izo7tNbatqhYRaXMKdiLS/hgG5O4wg9yuVZC9re7xLn1g4DXmV2Jq7YxWq616VqyFuuGueuuviYvrr2cnIuJDFOxEpH2oqjAnQGR+ZH4VHDztoAXOOR8GVYe5mAEN79OaPBlufqWRdewWm8dFRHyYgp2IeM+pk7DnU3OY9btPobyg9lhAKPS9HAZeba43Fx7r2j2TJ8Oga5vfeUJExAcp2IlI2zpxoLpXbrXZQ+eoqj3WKRYGTjR75XpfCkFhrfsdVhv0vtg99YqIdCAKdiLiWQ4HZG+tfl5uNeR9W/d4t0G1z8v1SAGr1Tt1ioj4AAU7EXG/yjJz9mrmatidBkXZtccsVug51nxebsBE6NrXe3WKiPgYBTsRcY+SY+a6cpmrYc9nUFlSeywoHPpdAQOvhf5XQlgX79UpIuLDFOxEpPWO7TWXI8n8yNwBwnDUHovobk58GHiN+bxbQLD36hQR8RMKdiLiOocdvv8aMqvDXP7uusfjh9U+L5dwbsNLkoiIiMco2In4I4fd9eVAKkpg31pz4sPuNCjNrz1mDYCki6vD3NUQndgm5YuISMMU7ET8TcbKRhbwfbJ2Ad+iXDPEZa42Q11VWe25IVHQ/yozyPUbb/4sIiLtgoKdiD/JWFm95dYZe6kWZsMb02DYTXA8Cw5/Xfd4dE9z4sPAq83ePVtgm5UsIiKuU7AT8RcOu9lTd2aog9q27W/WNnUfWbuFV2yynpcTEekAFOxE/MWB9XWHXxtzwT0w9l6ITPB8TSIi4lYKdiK+zl4F+9fBuqddO7/HSIU6EZEOSsFOxBfZq+DAF/Dtu7DzAyg95vq14XGeq0tERDxKwU7EV9ir4MCXp4W505YlCe0Cg68zFxMuPU7Dz9lZzNmxvca2VcUiIuJmCnYiHZnDXhvmMlY2EOYmwZDrzbXmbAHQ78rqWbEW6oa76okRExc3vp6diIi0ewp2Ih1NzeLC374LO1dCydHaY6GdzwhzZyxLkjwZbn6lkXXsFteuYyciIh2Sgp1IR+Cww8ENtT1zJXm1x0Kia8Nc70uaX2MueTIMutb1nSdERKTDULATaa8cdjj4VW3PXHFu7bGQaPOZuSHXQ+9LW75gsNUGvS92a7kiIuJ9CnYi7YnDAYeqw1zG+2eEuSgYdFrPXECQ9+oUEZF2ScFOxNscDjj039PCXE7tseCouj1zCnMiItIEBTsRb3A44PuNtWGuKLv2WHCU+QzckOuhzziFORERcZmCnUhbcYa596rD3GmzUoMjzwhzwd6qUkREOjAFOxFPcjjg+02Q8Z4Z6M4McwOvMcNc38sU5kRE5Kwp2Im4m8MBh7+u7pl7DwoP1x4LioBBNWHucoU5ERFxKwU7EXcwDPj+69qeucLva48FhZ/WM3c5BIZ4q0oREfFxVm8XALB06VKSkpIICQkhNTWVjRs3Nnruiy++yMUXX0znzp3p3Lkz48ePb/J8kVZx2CFrHWx/y/zusNc/pybMrXkQlgyDl8bDhufMUBcUDsNuglv+Cb/eCze8aPbUKdSJiIgHeb3H7vXXX2fOnDksW7aM1NRUlixZwoQJE8jMzCQ2Nrbe+WvXruXWW29l7NixhISE8OSTT3LVVVfx7bff0qNHDy+8A/E5GSsb2XLrSXOHh8NbIONd+PZ9KDhYe05gJxh4NQyZAv3GQ2Bom5cuIiL+zWIYhtH8aZ6TmprK+eefz3PPPQeAw+EgMTGRe++9l3nz5jV7vd1up3Pnzjz33HNMnz692fMLCwuJioqioKCAyMjIs65ffEzGSnhjOtDIvxZhMVCaX/tzYCcYOBGSp0D/KxXmRETE7VqSXbzaY1dRUcHmzZuZP3++s81qtTJ+/Hg2bNjg0j1KS0uprKykS5cunipT/IXDbvbUNRbqwAx1AaGn9cxdCUFhbVWhiIhIk7wa7PLz87Hb7cTFxdVpj4uLY9euXS7dY+7cuXTv3p3x48c3eLy8vJzy8nLnz4WFha0vWHxTZRnkZZjP050+/NqYqa9C/4b/vImIiHiT15+xOxuLFy/mtddeY+3atYSENPxQ+qJFi1i4cGEbVybtVnkR5GyH7P9B9jeQ8w0c3QWOKtfvUXbSY+WJiIicDa8Gu5iYGGw2G7m5uXXac3NziY+Pb/LaP/zhDyxevJhPP/2U4cOHN3re/PnzmTNnjvPnwsJCEhMTz65w6RhK8s0Al/NNbZA7vrfhc8O6QlQiZG9r/r7hcc2fIyIi4gVeDXZBQUGkpKSQnp7OlClTAHPyRHp6OrNnz270uqeeeorHH3+cNWvWMGrUqCZ/R3BwMMHBWgTWpxmGuQhw9jd1g9zpCwOfLrIHJJwL8cPN7wnDzTbDAUuGQmE2DT9nZzFnx/Ya68l3IyIi0mpeH4qdM2cOM2bMYNSoUYwePZolS5ZQUlLCzJkzAZg+fTo9evRg0aJFADz55JM8/PDD/POf/yQpKYmcnBwAwsPDCQ8P99r7kDbicMCJLLNn7fQgV3qs4fO79K0NbzVBrlNMw+dabOaSJm9MByzUDXcW89vExWC1ue/9iIiIuJHXg93UqVM5evQoDz/8MDk5OYwYMYK0tDTnhIqDBw9itdauo/z8889TUVHBjTfeWOc+CxYs4JFHHmnL0sXT7JVwNLNuL1zODqgoqn+uxQaxg+v2wsUNhZAWLmmTPBlufqWRdewWm8dFRETaKa+vY9fWtI5dO1V5CnK/rX4WrjrI5WaAvbz+uQEhEDek7nBqbLJ7d3Vw2OHAeijONZ+p6zVWPXUiIuIVHWYdO+mgzjb0nDppzkzN+aZ2ODV/NxgNbNsVHFkd3obXBrmYAWDz8B9dqw16X+zZ3yEiIuJmCnbSMk1tt9XQMGVxXnV421Y7nHpif8P37tSt/qSG6CSwtostjUVERNo9BTtxXWPbbRVmm+3XPWOGs9MnNRRlN3yvqJ51e+ESzoWIeLBYPP42REREfJWCnSf44vNZDjt89AANLwNS3fbhrxo4ZoGu/Wp74GqCXJi2gBMREXE3BTt3a+lQZVsxDHOCQllB7Vd5YfXrk3Xb630VwqkT4Khs/vd07g1JF0L8aTNTg7UMjYiISFtQsHOn5oYqb36l9eHOMKCytInwdbI2hDV2jivB7Gxd/lsYdmPz54mIiIjbKdi5i8Nu9tQ1OlRpgY/mmkORFcV1e8PqhbMGvsoLW7afaWMsVgiJauQruu7PwZG1r49mwts/bf7+2m5LRETEaxTs3OXA+rrDr/UYUHQE/tT4vrYusQY0HMqcISy6ieAWBUGdWjdBIXYwfPJbbbclIiLSjinYuUtxrmvnWWzmxIHTe8Oa7D0747zAMO/MHLVquy0REZH2TsHOXVwdgpz+HvS+xKOleIy22xIREWnXFOzcpddYM+A0O1R5YVtX5l7Jk2HQtb63nIuIiIgPULBzF38aqtR2WyIiIu2S9mpyp5qhysiEuu2R3c9uqRMRERERF6jHzt00VCkiIiJeomDnCRqqFBERES/QUKyIiIiIj1CwExEREfERCnYiIiIiPkLBTkRERMRHKNiJiIiI+AgFOxEREREfoWAnIiIi4iMU7ERERER8hIKdiIiIiI9QsBMRERHxEX63pZhhGAAUFhZ6uRIRERGR5tVklpoM0xS/C3ZFRUUAJCYmerkSEREREdcVFRURFRXV5DkWw5X450McDgdHjhwhIiICi8XilnsWFhaSmJjIoUOHiIyMdMs95ezpc2m/9Nm0T/pc2i99Nu1XW3w2hmFQVFRE9+7dsVqbforO73rsrFYr55xzjkfuHRkZqX/h2iF9Lu2XPpv2SZ9L+6XPpv3y9GfTXE9dDU2eEBEREfERCnYiIiIiPkLBzg2Cg4NZsGABwcHB3i5FTqPPpf3SZ9M+6XNpv/TZtF/t7bPxu8kTIiIiIr5KPXYiIiIiPkLBTkRERMRHKNiJiIiI+AgFOxcsXbqUpKQkQkJCSE1NZePGjU2e/+abbzJo0CBCQkIYNmwYq1evbqNK/U9LPpsXX3yRiy++mM6dO9O5c2fGjx/f7GcprdfSf29qvPbaa1gsFqZMmeLZAv1USz+XkydPcs8995CQkEBwcDADBgzQf9M8pKWfzZIlSxg4cCChoaEkJibyq1/9irKysjaq1j/85z//YdKkSXTv3h2LxcJ7773X7DVr165l5MiRBAcH069fP5YvX+7xOuswpEmvvfaaERQUZLz88svGt99+a8yaNcuIjo42cnNzGzz/yy+/NGw2m/HUU08ZGRkZxm9/+1sjMDDQ2L59extX7vta+tncdtttxtKlS42tW7caO3fuNH7yk58YUVFRxvfff9/Glfu+ln42NbKysowePXoYF198sfGDH/ygbYr1Iy39XMrLy41Ro0YZ11xzjfHFF18YWVlZxtq1a41t27a1ceW+r6WfzT/+8Q8jODjY+Mc//mFkZWUZa9asMRISEoxf/epXbVy5b1u9erXx4IMPGu+8844BGO+++26T5+/bt88ICwsz5syZY2RkZBjPPvusYbPZjLS0tLYp2DAMBbtmjB492rjnnnucP9vtdqN79+7GokWLGjz/5ptvNq699to6bampqcbPfvYzj9bpj1r62ZypqqrKiIiIMFasWOGpEv1Waz6bqqoqY+zYscb//d//GTNmzFCw84CWfi7PP/+80adPH6OioqKtSvRbLf1s7rnnHuPyyy+v0zZnzhzjwgsv9Gid/syVYPfAAw8YQ4YMqdM2depUY8KECR6srC4NxTahoqKCzZs3M378eGeb1Wpl/PjxbNiwocFrNmzYUOd8gAkTJjR6vrROaz6bM5WWllJZWUmXLl08VaZfau1n8+ijjxIbG8vtt9/eFmX6ndZ8LitXrmTMmDHcc889xMXFMXToUJ544gnsdntble0XWvPZjB07ls2bNzuHa/ft28fq1au55ppr2qRmaVh7yAB+t1dsS+Tn52O324mLi6vTHhcXx65duxq8Jicnp8Hzc3JyPFanP2rNZ3OmuXPn0r1793r/EsrZac1n88UXX/DSSy+xbdu2NqjQP7Xmc9m3bx+fffYZP/rRj1i9ejV79uzh7rvvprKykgULFrRF2X6hNZ/NbbfdRn5+PhdddBGGYVBVVcXPf/5zfvOb37RFydKIxjJAYWEhp06dIjQ01OM1qMdO/NLixYt57bXXePfddwkJCfF2OX6tqKiIadOm8eKLLxITE+PtcuQ0DoeD2NhY/vrXv5KSksLUqVN58MEHWbZsmbdL83tr167liSee4C9/+QtbtmzhnXfeYdWqVTz22GPeLk28TD12TYiJicFms5Gbm1unPTc3l/j4+AaviY+Pb9H50jqt+Wxq/OEPf2Dx4sV8+umnDB8+3JNl+qWWfjZ79+5l//79TJo0ydnmcDgACAgIIDMzk759+3q2aD/Qmn9nEhISCAwMxGazOdsGDx5MTk4OFRUVBAUFebRmf9Gaz+ahhx5i2rRp3HHHHQAMGzaMkpIS7rzzTh588EGsVvXbeENjGSAyMrJNeutAPXZNCgoKIiUlhfT0dGebw+EgPT2dMWPGNHjNmDFj6pwP8MknnzR6vrROaz4bgKeeeorHHnuMtLQ0Ro0a1Ral+p2WfjaDBg1i+/btbNu2zfk1efJkLrvsMrZt20ZiYmJblu+zWvPvzIUXXsiePXucQRtg9+7dJCQkKNS5UWs+m9LS0nrhrSaAG9op1GvaRQZos2kaHdRrr71mBAcHG8uXLzcyMjKMO++804iOjjZycnIMwzCMadOmGfPmzXOe/+WXXxoBAQHGH/7wB2Pnzp3GggULtNyJh7T0s1m8eLERFBRkvPXWW0Z2drbzq6ioyFtvwWe19LM5k2bFekZLP5eDBw8aERERxuzZs43MzEzjww8/NGJjY43f/e533noLPquln82CBQuMiIgI41//+pexb98+4+OPPzb69u1r3Hzzzd56Cz6pqKjI2Lp1q7F161YDMJ555hlj69atxoEDBwzDMIx58+YZ06ZNc55fs9zJr3/9a2Pnzp3G0qVLtdxJe/Tss88aPXv2NIKCgozRo0cbX331lfPYpZdeasyYMaPO+W+88YYxYMAAIygoyBgyZIixatWqNq7Yf7Tks+nVq5cB1PtasGBB2xfuB1r6783pFOw8p6Wfy/r1643U1FQjODjY6NOnj/H4448bVVVVbVy1f2jJZ1NZWWk88sgjRt++fY2QkBAjMTHRuPvuu40TJ060feE+7PPPP2/w742az2LGjBnGpZdeWu+aESNGGEFBQUafPn2Mv/3tb21as8Uw1GcrIiIi4gv0jJ2IiIiIj1CwExEREfERCnYiIiIiPkLBTkRERMRHKNiJiIiI+AgFOxEREREfoWAnIiIi4iMU7ERERER8hIKdiIiIiI9QsBMRERHxEQp2IiJu8MUXXzB69GhCQkKIiYnhT3/6k7dLEhE/pGAnInKWVq9ezfXXX8/dd9/NN998w89+9jN+9atfsX//fm+XJiJ+xmIYhuHtIkREOqqysjL69+/Pk08+yW233QaA3W4nOjqapUuXMn36dC9XKCL+RD12IiJn4bPPPuPUqVNMnTrV2Waz2bBYLAQHB3uxMhHxRwp2IiJn4fPPP2fEiBHYbDZn2549eygqKuK8887zYmUi4o8U7EREzsLWrVupqKio0/aXv/yFlJQUBgwY4KWqRMRfBXi7ABGRjmzr1q0YhsErr7xCamoqb775Js8//zzr16/3dmki4ocU7EREWungwYMcP36cDz/8kHnz5rF7926GDx9OWlqahmFFxCs0K1ZEpJVWrlzJzJkzOXbsmLdLEREB9IydiEirbd26lWHDhnm7DBERJwU7EZFW2rp1K8OHD/d2GSIiThqKFREREfER6rETERER8REKdiIiIiI+QsFORERExEco2ImIiIj4CAU7ERERER+hYCciIiLiIxTsRERERHyEgp2IiIiIj1CwExEREfERCnYiIiIiPkLBTkRERMRH/H+RfJbGkbWU2gAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "fig, ax = plt.subplots()\n", + "ax.plot(rho, eps, marker=\"o\", label=\"original\")\n", + "ax.plot(rho, eps_opt, marker=\"o\", label=\"optimized\")\n", + "ax.set(xlabel=r\"$\\rho$\", ylabel=r\"$\\epsilon$\", title=\"Heliotron\")\n", + "ax.legend()\n", + "plt.tight_layout()\n", + "plt.show()" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.12.7" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/docs/write_variables.py b/docs/write_variables.py index 13b15b906..9fdce882d 100644 --- a/docs/write_variables.py +++ b/docs/write_variables.py @@ -51,6 +51,8 @@ def write_csv(parameterization): } # stuff like |x| is interpreted as a substitution by rst, need to escape d["Description"] = _escape(d["Description"]) + if "deprecated" in d["Name"]: + continue writer.writerow(d) diff --git a/requirements.txt b/requirements.txt index 9e0525e93..138c95162 100644 --- a/requirements.txt +++ b/requirements.txt @@ -1,16 +1,16 @@ -jax >= 0.4.24, != 0.4.36, <= 0.4.37 +jax >= 0.4.24, != 0.4.36, <= 0.4.38 colorama <= 0.4.6 -diffrax >= 0.4.1, <= 0.6.1 +diffrax >= 0.4.1, <= 0.6.2 h5py >= 3.0.0, <= 3.12.1 interpax >= 0.3.3, <= 0.3.4 matplotlib >= 3.5.0, <= 3.9.3 mpmath >= 1.0.0, <= 1.3.0 netcdf4 >= 1.5.4, <= 1.7.2 -numpy >= 1.20.0, <= 2.2.0 +numpy >= 1.20.0, <= 2.2.1 nvgpu <= 0.10.0 orthax <= 0.2.1 plotly >= 5.16, <= 5.24.1 -psutil <= 6.1.0 +psutil <= 6.1.1 pylatexenc >= 2.0, <= 2.10 quadax >= 0.2.2, <= 0.2.4 scikit-image <= 0.25.0 diff --git a/tests/baseline/test_Gamma_c.png b/tests/baseline/test_Gamma_c.png deleted file mode 100644 index 451f7c0cf..000000000 Binary files a/tests/baseline/test_Gamma_c.png and /dev/null differ diff --git a/tests/baseline/test_Gamma_c_Nemov_1D.png b/tests/baseline/test_Gamma_c_Nemov_1D.png new file mode 100644 index 000000000..68ac89b8c Binary files /dev/null and b/tests/baseline/test_Gamma_c_Nemov_1D.png differ diff --git a/tests/baseline/test_Gamma_c_Nemov_2D.png b/tests/baseline/test_Gamma_c_Nemov_2D.png new file mode 100644 index 000000000..51734836b Binary files /dev/null and b/tests/baseline/test_Gamma_c_Nemov_2D.png differ diff --git a/tests/baseline/test_Gamma_c_Velasco.png b/tests/baseline/test_Gamma_c_Velasco_1D.png similarity index 100% rename from tests/baseline/test_Gamma_c_Velasco.png rename to tests/baseline/test_Gamma_c_Velasco_1D.png diff --git a/tests/baseline/test_Gamma_c_Velasco_2D.png b/tests/baseline/test_Gamma_c_Velasco_2D.png new file mode 100644 index 000000000..86012f510 Binary files /dev/null and b/tests/baseline/test_Gamma_c_Velasco_2D.png differ diff --git a/tests/baseline/test_binormal_drift_bounce2d.png b/tests/baseline/test_binormal_drift_bounce2d.png index 0af4fae29..eacf7e2eb 100644 Binary files a/tests/baseline/test_binormal_drift_bounce2d.png and b/tests/baseline/test_binormal_drift_bounce2d.png differ diff --git a/tests/baseline/test_bounce1d_checks.png b/tests/baseline/test_bounce1d_checks.png index 71b757f20..2b1c9f864 100644 Binary files a/tests/baseline/test_bounce1d_checks.png and b/tests/baseline/test_bounce1d_checks.png differ diff --git a/tests/baseline/test_bounce2d_checks.png b/tests/baseline/test_bounce2d_checks.png index 472f3aeef..c358d95b0 100644 Binary files a/tests/baseline/test_bounce2d_checks.png and b/tests/baseline/test_bounce2d_checks.png differ diff --git a/tests/baseline/test_effective_ripple.png b/tests/baseline/test_effective_ripple.png deleted file mode 100644 index c61ff3003..000000000 Binary files a/tests/baseline/test_effective_ripple.png and /dev/null differ diff --git a/tests/baseline/test_effective_ripple_1D.png b/tests/baseline/test_effective_ripple_1D.png new file mode 100644 index 000000000..57b9aa17a Binary files /dev/null and b/tests/baseline/test_effective_ripple_1D.png differ diff --git a/tests/baseline/test_effective_ripple_2D.png b/tests/baseline/test_effective_ripple_2D.png new file mode 100644 index 000000000..1fce98053 Binary files /dev/null and b/tests/baseline/test_effective_ripple_2D.png differ diff --git a/tests/baseline/test_fsa_F_normalized.png b/tests/baseline/test_fsa_F_normalized.png index 2a31dd555..1f56273ae 100644 Binary files a/tests/baseline/test_fsa_F_normalized.png and b/tests/baseline/test_fsa_F_normalized.png differ diff --git a/tests/inputs/master_compute_data_rpz.pkl b/tests/inputs/master_compute_data_rpz.pkl index 46fcc1210..df82ddd94 100644 Binary files a/tests/inputs/master_compute_data_rpz.pkl and b/tests/inputs/master_compute_data_rpz.pkl differ diff --git a/tests/test_axis_limits.py b/tests/test_axis_limits.py index 991e5f9a6..bc3bbe144 100644 --- a/tests/test_axis_limits.py +++ b/tests/test_axis_limits.py @@ -28,8 +28,8 @@ zero_limits = {"rho", "psi", "psi_r", "psi_rrr", "e_theta", "sqrt(g)", "B_t"} # These compute quantities require kinetic profiles, which are not defined for all -# configurations (giving NaN values) -not_continuous_limits = {"current Redl", "P_ISS04", "P_fusion", ""} +# configurations (giving NaN values). Gamma_c is 0 on axis. +not_continuous_limits = {"current Redl", "P_ISS04", "P_fusion", "", "Gamma_c"} not_finite_limits = { "D_Mercier", @@ -139,14 +139,16 @@ def _skip_this(eq, name): or (eq.anisotropy is None and "beta_a" in name) or (eq.pressure is not None and " Redl" in name) or (eq.current is None and "iota_num" in name) - # These quantities require a coordinate mapping to compute and special grids, so - # it's not economical to test their axis limits here. Instead, a grid that - # includes the axis should be used in existing unit tests for these quantities. or bool( data_index["desc.equilibrium.equilibrium.Equilibrium"][name][ "source_grid_requirement" ] ) + or bool( + data_index["desc.equilibrium.equilibrium.Equilibrium"][name][ + "grid_requirement" + ] + ) ) diff --git a/tests/test_compute_everything.py b/tests/test_compute_everything.py index e745188be..1a16eb790 100644 --- a/tests/test_compute_everything.py +++ b/tests/test_compute_everything.py @@ -221,10 +221,12 @@ def test_compute_everything(): names = set(data_index[p].keys()) - def need_src(name): - return bool(data_index[p][name]["source_grid_requirement"]) + def need_special(name): + return bool(data_index[p][name]["source_grid_requirement"]) or bool( + data_index[p][name]["grid_requirement"] + ) - names -= _grow_seeds(p, set(filter(need_src, names)), names) + names -= _grow_seeds(p, set(filter(need_special, names)), names) this_branch_data_rpz[p] = things[p].compute( list(names), **grid.get(p, {}), basis="rpz" diff --git a/tests/test_examples.py b/tests/test_examples.py index b43245e28..6898b5c28 100644 --- a/tests/test_examples.py +++ b/tests/test_examples.py @@ -21,6 +21,7 @@ ) from desc.continuation import solve_continuation_automatic from desc.equilibrium import EquilibriaFamily, Equilibrium +from desc.equilibrium.coords import get_rtz_grid from desc.examples import get from desc.geometry import FourierRZToroidalSurface from desc.grid import LinearGrid @@ -1965,7 +1966,8 @@ def test_ballooning_stability_opt(): for i in range(len(surfaces)): rho = surfaces[i] - grid = eq._get_rtz_grid( + grid = get_rtz_grid( + eq, rho, alpha, zeta, @@ -2045,7 +2047,8 @@ def test_ballooning_stability_opt(): for i in range(len(surfaces)): rho = surfaces[i] - grid = eq._get_rtz_grid( + grid = get_rtz_grid( + eq, rho, alpha, zeta, diff --git a/tests/test_fast_ion.py b/tests/test_fast_ion.py new file mode 100644 index 000000000..cb604c9e3 --- /dev/null +++ b/tests/test_fast_ion.py @@ -0,0 +1,97 @@ +"""Test fast ion compute functions.""" + +import matplotlib.pyplot as plt +import numpy as np +import pytest +from tests.test_plotting import tol_1d + +from desc.equilibrium.coords import get_rtz_grid +from desc.examples import get +from desc.grid import LinearGrid +from desc.integrals import Bounce2D + + +@pytest.mark.unit +@pytest.mark.slow +@pytest.mark.mpl_image_compare(remove_text=True, tolerance=tol_1d) +def test_Gamma_c_Nemov_2D(): + """Test Γ_c Nemov with W7-X.""" + eq = get("W7-X") + rho = np.linspace(1e-12, 1, 10) + grid = LinearGrid(rho=rho, M=eq.M_grid, N=eq.N_grid, NFP=eq.NFP, sym=False) + num_transit = 10 + data = eq.compute( + "Gamma_c", + grid=grid, + theta=Bounce2D.compute_theta(eq, X=32, Y=64, rho=rho), + Y_B=128, + num_transit=num_transit, + num_well=20 * num_transit, + ) + assert np.isfinite(data["Gamma_c"]).all() + fig, ax = plt.subplots() + ax.plot(rho, grid.compress(data["Gamma_c"]), marker="o") + return fig + + +@pytest.mark.unit +@pytest.mark.slow +@pytest.mark.mpl_image_compare(remove_text=True, tolerance=tol_1d) +def test_Gamma_c_Velasco_2D(): + """Test Γ_c Velasco with W7-X.""" + eq = get("W7-X") + rho = np.linspace(1e-12, 1, 10) + grid = LinearGrid(rho=rho, M=eq.M_grid, N=eq.N_grid, NFP=eq.NFP, sym=False) + num_transit = 10 + data = eq.compute( + "Gamma_c Velasco", + grid=grid, + theta=Bounce2D.compute_theta(eq, X=32, Y=64, rho=rho), + Y_B=128, + num_transit=num_transit, + num_well=20 * num_transit, + ) + assert np.isfinite(data["Gamma_c Velasco"]).all() + fig, ax = plt.subplots() + ax.plot(rho, grid.compress(data["Gamma_c Velasco"]), marker="o") + return fig + + +@pytest.mark.unit +@pytest.mark.mpl_image_compare(remove_text=True, tolerance=tol_1d) +def test_Gamma_c_Nemov_1D(): + """Test Γ_c Nemov 1D with W7-X.""" + eq = get("W7-X") + Y_B = 100 + num_transit = 10 + num_well = 20 * num_transit + rho = np.linspace(0, 1, 10) + alpha = np.array([0]) + zeta = np.linspace(0, num_transit * 2 * np.pi, num_transit * Y_B) + grid = get_rtz_grid(eq, rho, alpha, zeta, coordinates="raz") + data = eq.compute("deprecated(Gamma_c)", grid=grid, num_well=num_well) + + assert np.isfinite(data["deprecated(Gamma_c)"]).all() + fig, ax = plt.subplots() + ax.plot(rho, grid.compress(data["deprecated(Gamma_c)"]), marker="o") + return fig + + +@pytest.mark.unit +@pytest.mark.mpl_image_compare(remove_text=True, tolerance=tol_1d) +def test_Gamma_c_Velasco_1D(): + """Test Γ_c Velasco 1D with W7-X.""" + eq = get("W7-X") + Y_B = 100 + num_transit = 10 + num_well = 20 * num_transit + rho = np.linspace(0, 1, 10) + alpha = np.array([0]) + zeta = np.linspace(0, num_transit * 2 * np.pi, num_transit * Y_B) + grid = get_rtz_grid(eq, rho, alpha, zeta, coordinates="raz") + data = eq.compute("deprecated(Gamma_c Velasco)", grid=grid, num_well=num_well) + + assert np.isfinite(data["deprecated(Gamma_c Velasco)"]).all() + fig, ax = plt.subplots() + ax.plot(rho, grid.compress(data["deprecated(Gamma_c Velasco)"]), marker="o") + return fig diff --git a/tests/test_integrals.py b/tests/test_integrals.py index 62e364946..0f5b1ef3b 100644 --- a/tests/test_integrals.py +++ b/tests/test_integrals.py @@ -35,12 +35,7 @@ surface_variance, virtual_casing_biot_savart, ) -from desc.integrals._bounce_utils import ( - _get_extrema, - bounce_points, - interp_to_argmin, - interp_to_argmin_hard, -) +from desc.integrals._bounce_utils import _get_extrema, bounce_points from desc.integrals._interp_utils import fourier_pts from desc.integrals.basis import FourierChebyshevSeries from desc.integrals.quad_utils import ( @@ -1112,7 +1107,7 @@ def test_bounce1d_checks(self): Bounce1D.required_names + ["min_tz |B|", "max_tz |B|", "g_zz"], grid=grid ) # 5. Make the bounce integration operator. - bounce = Bounce1D(grid.source_grid, data, quad=leggauss(3), check=True) + bounce = Bounce1D(grid.source_grid, data, check=True) pitch_inv, _ = bounce.get_pitch_inv_quad( min_B=grid.compress(data["min_tz |B|"]), max_B=grid.compress(data["max_tz |B|"]), @@ -1126,7 +1121,7 @@ def test_bounce1d_checks(self): num = bounce.integrate( integrand=TestBounce._example_numerator, pitch_inv=pitch_inv, - data={"g_zz": Bounce1D.reshape_data(grid.source_grid, data["g_zz"])}, + data={"g_zz": Bounce1D.reshape(grid.source_grid, data["g_zz"])}, points=points, check=True, ) @@ -1163,8 +1158,7 @@ def test_bounce1d_checks(self): return fig @pytest.mark.unit - @pytest.mark.parametrize("func", [interp_to_argmin, interp_to_argmin_hard]) - def test_interp_to_argmin(self, func): + def test_interp_to_argmin(self): """Test interpolation of h to argmin g.""" # noqa: D202 # Test functions chosen with purpose; don't change unless plotted and compared. @@ -1187,16 +1181,9 @@ def dg_dz(z): data = dict.fromkeys(Bounce1D.required_names, g(zeta)) data["|B|_z|r,a"] = dg_dz(zeta) bounce = Bounce1D(Grid.create_meshgrid([1, 0, zeta], coordinates="raz"), data) + points = np.array(0, ndmin=2), np.array(2 * np.pi, ndmin=2) np.testing.assert_allclose( - func( - h=h(zeta), - points=(np.array(0, ndmin=2), np.array(2 * np.pi, ndmin=2)), - knots=zeta, - g=bounce.B, - dg_dz=bounce._dB_dz, - ), - h(argmin_g), - rtol=1e-3, + bounce.interp_to_argmin(h(zeta), points), h(argmin_g), rtol=1e-3 ) @staticmethod @@ -1381,8 +1368,8 @@ def test_binormal_drift_bounce1d(self): points = bounce.points(pitch_inv, num_well=1) bounce.check_points(points, pitch_inv, plot=False) interp_data = { - "cvdrift": Bounce1D.reshape_data(things["grid"].source_grid, cvdrift), - "gbdrift": Bounce1D.reshape_data(things["grid"].source_grid, gbdrift), + "cvdrift": Bounce1D.reshape(things["grid"].source_grid, cvdrift), + "gbdrift": Bounce1D.reshape(things["grid"].source_grid, gbdrift), } drift_numerical_num = bounce.integrate( integrand=TestBounce.drift_num_integrand, @@ -1505,12 +1492,11 @@ def g(z): theta=grid.meshgrid_reshape(grid.nodes[:, 1], "rtz"), Y_B=2 * nyquist, num_transit=1, - spline=True, ) + points = np.array(0, ndmin=2), np.array(2 * np.pi, ndmin=2) np.testing.assert_allclose( bounce.interp_to_argmin( - grid.meshgrid_reshape(h(grid.nodes[:, 2]), "rtz"), - (np.array(0, ndmin=2), np.array(2 * np.pi, ndmin=2)), + grid.meshgrid_reshape(h(grid.nodes[:, 2]), "rtz"), points ), h(argmin_g), rtol=1e-6, @@ -1540,9 +1526,7 @@ def test_bounce2d_checks(self): # 4. Compute DESC coordinates of optimal interpolation nodes. theta = Bounce2D.compute_theta(eq, X=8, Y=64, rho=rho) # 5. Make the bounce integration operator. - bounce = Bounce2D( - grid, data, theta, num_transit=2, quad=leggauss(3), check=True, spline=False - ) + bounce = Bounce2D(grid, data, theta, num_transit=2, check=True, spline=False) pitch_inv, _ = bounce.get_pitch_inv_quad( min_B=grid.compress(data["min_tz |B|"]), max_B=grid.compress(data["max_tz |B|"]), @@ -1556,7 +1540,7 @@ def test_bounce2d_checks(self): num = bounce.integrate( integrand=TestBounce._example_numerator, pitch_inv=pitch_inv, - data={"g_zz": Bounce2D.reshape_data(grid, data["g_zz"])}, + data={"g_zz": Bounce2D.reshape(grid, data["g_zz"])}, points=points, check=True, ) @@ -1655,9 +1639,7 @@ def test_binormal_drift_bounce2d(self): ) points = bounce.points(pitch_inv, num_well=1) bounce.check_points(points, pitch_inv, plot=False) - interp_data = { - name: Bounce2D.reshape_data(grid, grid_data[name]) for name in names - } + interp_data = {name: Bounce2D.reshape(grid, grid_data[name]) for name in names} drift_numerical_num = bounce.integrate( integrand=TestBounce2D.drift_num_integrand, pitch_inv=pitch_inv, diff --git a/tests/test_neoclassical.py b/tests/test_neoclassical.py index 6df2e1603..bcfc85ef2 100644 --- a/tests/test_neoclassical.py +++ b/tests/test_neoclassical.py @@ -1,4 +1,4 @@ -"""Test for neoclassical transport compute functions.""" +"""Test neoclassical transport compute functions.""" from datetime import datetime @@ -10,11 +10,73 @@ from desc.equilibrium.coords import get_rtz_grid from desc.examples import get from desc.grid import LinearGrid +from desc.integrals import Bounce2D from desc.utils import setdefault from desc.vmec import VMECIO @pytest.mark.unit +@pytest.mark.slow +@pytest.mark.mpl_image_compare(remove_text=True, tolerance=tol_1d) +def test_effective_ripple_2D(): + """Test effective ripple with W7-X against NEO.""" + eq = get("W7-X") + rho = np.linspace(0, 1, 10) + grid = LinearGrid(rho=rho, M=eq.M_grid, N=eq.N_grid, NFP=eq.NFP, sym=False) + num_transit = 10 + data = eq.compute( + "effective ripple 3/2", + grid=grid, + theta=Bounce2D.compute_theta(eq, X=32, Y=64, rho=rho), + Y_B=128, + num_transit=num_transit, + num_well=20 * num_transit, + ) + + assert np.isfinite(data["effective ripple 3/2"]).all() + eps_32 = grid.compress(data["effective ripple 3/2"]) + # TODO: Compute at higher boozer resolution once Neo works again. + neo_rho, neo_eps_32 = NeoIO.read("tests/inputs/neo_out.w7x") + np.testing.assert_allclose(eps_32, np.interp(rho, neo_rho, neo_eps_32), rtol=0.16) + + fig, ax = plt.subplots() + ax.plot(rho, eps_32, marker="o") + ax.plot(neo_rho, neo_eps_32) + return fig + + +@pytest.mark.unit +@pytest.mark.mpl_image_compare(remove_text=True, tolerance=tol_1d) +def test_effective_ripple_1D(): + """Test effective ripple 1D with W7-X against NEO.""" + eq = get("W7-X") + Y_B = 100 + num_transit = 10 + num_well = 20 * num_transit + rho = np.linspace(0, 1, 10) + alpha = np.array([0]) + zeta = np.linspace(0, num_transit * 2 * np.pi, num_transit * Y_B) + grid = get_rtz_grid(eq, rho, alpha, zeta, coordinates="raz") + data = eq.compute("deprecated(effective ripple)", grid=grid, num_well=num_well) + + assert np.isfinite(data["deprecated(effective ripple)"]).all() + np.testing.assert_allclose( + data["deprecated(effective ripple 3/2)"] ** (2 / 3), + data["deprecated(effective ripple)"], + err_msg="Bug in source grid logic in eq.compute.", + ) + eps_32 = grid.compress(data["deprecated(effective ripple 3/2)"]) + neo_rho, neo_eps_32 = NeoIO.read("tests/inputs/neo_out.w7x") + np.testing.assert_allclose(eps_32, np.interp(rho, neo_rho, neo_eps_32), rtol=0.16) + + fig, ax = plt.subplots() + ax.plot(rho, eps_32, marker="o") + ax.plot(neo_rho, neo_eps_32) + return fig + + +@pytest.mark.unit +@pytest.mark.slow def test_fieldline_average(): """Test that fieldline average converges to surface average.""" rho = np.array([1]) @@ -52,69 +114,6 @@ def test_fieldline_average(): assert np.all(data["fieldline length/volume"] > 0) -@pytest.mark.unit -@pytest.mark.mpl_image_compare(remove_text=True, tolerance=tol_1d) -def test_effective_ripple(): - """Test effective ripple with W7-X.""" - eq = get("W7-X") - rho = np.linspace(0, 1, 10) - alpha = np.array([0]) - Y_B = 100 - num_transit = 10 - zeta = np.linspace(0, 2 * np.pi * num_transit, Y_B * num_transit) - grid = get_rtz_grid(eq, rho, alpha, zeta, coordinates="raz") - data = eq.compute("effective ripple", grid=grid) - assert np.isfinite(data["effective ripple"]).all() - np.testing.assert_allclose( - data["effective ripple 3/2"] ** (2 / 3), - data["effective ripple"], - err_msg="Bug in source grid logic in eq.compute.", - ) - eps_32 = grid.compress(data["effective ripple 3/2"]) - fig, ax = plt.subplots() - ax.plot(rho, eps_32, marker="o") - - neo_rho, neo_eps_32 = NeoIO.read("tests/inputs/neo_out.w7x") - np.testing.assert_allclose(eps_32, np.interp(rho, neo_rho, neo_eps_32), rtol=0.16) - return fig - - -@pytest.mark.unit -@pytest.mark.mpl_image_compare(remove_text=True, tolerance=tol_1d) -def test_Gamma_c_Velasco(): - """Test Γ_c with W7-X.""" - eq = get("W7-X") - rho = np.linspace(0, 1, 10) - alpha = np.array([0]) - Y_B = 100 - num_transit = 10 - zeta = np.linspace(0, 2 * np.pi * num_transit, Y_B * num_transit) - grid = eq._get_rtz_grid(rho, alpha, zeta, coordinates="raz") - data = eq.compute("Gamma_c Velasco", grid=grid) - assert np.isfinite(data["Gamma_c Velasco"]).all() - fig, ax = plt.subplots() - ax.plot(rho, grid.compress(data["Gamma_c Velasco"]), marker="o") - return fig - - -@pytest.mark.unit -@pytest.mark.mpl_image_compare(remove_text=True, tolerance=tol_1d) -def test_Gamma_c(): - """Test Γ_c Nemov with W7-X.""" - eq = get("W7-X") - rho = np.linspace(0, 1, 10) - alpha = np.array([0]) - Y_B = 100 - num_transit = 10 - zeta = np.linspace(0, 2 * np.pi * num_transit, Y_B * num_transit) - grid = eq._get_rtz_grid(rho, alpha, zeta, coordinates="raz") - data = eq.compute("Gamma_c", grid=grid) - assert np.isfinite(data["Gamma_c"]).all() - fig, ax = plt.subplots() - ax.plot(rho, grid.compress(data["Gamma_c"]), marker="o") - return fig - - class NeoIO: """Class to interface with NEO.""" @@ -127,8 +126,8 @@ def __init__(self, name, eq, ns=256, M_booz=None, N_booz=None): self.eq = eq self.ns = ns # number of surfaces - self.M_booz = setdefault(M_booz, 3 * eq.M + 1) - self.N_booz = setdefault(N_booz, 3 * eq.N) + self.M_booz = setdefault(M_booz, 5 * eq.M + 1) + self.N_booz = setdefault(N_booz, 5 * eq.N) @staticmethod def read(name): diff --git a/tests/test_objective_funs.py b/tests/test_objective_funs.py index 47a06db06..8fad7ec77 100644 --- a/tests/test_objective_funs.py +++ b/tests/test_objective_funs.py @@ -23,10 +23,10 @@ ) from desc.compute import get_transforms from desc.equilibrium import Equilibrium -from desc.equilibrium.coords import get_rtz_grid from desc.examples import get from desc.geometry import FourierPlanarCurve, FourierRZToroidalSurface, FourierXYZCurve from desc.grid import ConcentricGrid, LinearGrid, QuadratureGrid +from desc.integrals import Bounce2D from desc.io import load from desc.magnetic_fields import ( CurrentPotentialField, @@ -1639,24 +1639,27 @@ def test_objective_compute(self): """To avoid issues such as #1424.""" eq = get("W7-X") rho = np.linspace(0.1, 1, 3) - alpha = np.array([0]) - Y_B = 50 + grid = LinearGrid(rho=rho, M=eq.M_grid, N=eq.N_grid, NFP=eq.NFP, sym=False) + X = 16 + Y = 32 num_transit = 4 - num_pitch = 16 + num_well = 15 * num_transit num_quad = 16 - zeta = np.linspace(0, 2 * np.pi * num_transit, Y_B * num_transit) - grid = get_rtz_grid(eq, rho, alpha, zeta, coordinates="raz") + num_pitch = 16 data = eq.compute( ["effective ripple", "Gamma_c"], grid=grid, + theta=Bounce2D.compute_theta(eq, X=X, Y=Y, rho=rho), + num_transit=num_transit, + num_well=num_well, num_quad=num_quad, num_pitch=num_pitch, ) obj = EffectiveRipple( eq, - rho=rho, - alpha=alpha, - Y_B=Y_B, + grid=grid, + X=X, + Y=Y, num_transit=num_transit, num_quad=num_quad, num_pitch=num_pitch, @@ -1670,9 +1673,9 @@ def test_objective_compute(self): ) obj = GammaC( eq, - rho=rho, - alpha=alpha, - Y_B=Y_B, + grid=grid, + X=X, + Y=Y, num_transit=num_transit, num_quad=num_quad, num_pitch=num_pitch, @@ -2633,9 +2636,12 @@ def _reduced_resolution_objective(eq, objective): """Speed up testing suite by defining rules to reduce objective resolution.""" kwargs = {} if objective in {EffectiveRipple, GammaC}: - kwargs["Y_B"] = 50 - kwargs["num_transit"] = 2 - kwargs["num_pitch"] = 25 + kwargs["X"] = 8 + kwargs["Y"] = 16 + kwargs["num_transit"] = 4 + kwargs["num_well"] = 15 * kwargs["num_transit"] + kwargs["num_pitch"] = 16 + kwargs["num_quad"] = 16 return objective(eq=eq, **kwargs) @@ -3069,7 +3075,9 @@ def test_compute_scalar_resolution_others(self, objective): ) obj.build(verbose=0) f[i] = obj.compute_scalar(obj.x()) - np.testing.assert_allclose(f, f[-1], rtol=6e-2) + np.testing.assert_allclose( + f, f[-1], rtol=6e-2, atol=1e-4 if np.max(f) < 1e-3 else 0 + ) @pytest.mark.regression @pytest.mark.parametrize(