-
Notifications
You must be signed in to change notification settings - Fork 4
/
SIAttentionBiLSTM.py
253 lines (208 loc) · 11.3 KB
/
SIAttentionBiLSTM.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.nn.utils.rnn import pack_padded_sequence, pack_sequence, pad_packed_sequence, pad_sequence
from torch.utils.data import DataLoader, Dataset, SequentialSampler
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
from tqdm import tqdm
import time
import random
import os
import copy
import warnings
from utils import pad_and_sort_batch, preprocess_for_batch, pad_or_truncate
warnings.filterwarnings('ignore')
DEVICE = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
# class InterAttention(nn.Module):
# def __init__(self, method, hidden_size, dropout_p=0.0):
# super().__init__()
# self.method = method
# self.hidden_size = hidden_size
# self.dropout = nn.Dropout(dropout_p)
# if self.method == 'general':
# self.linear = nn.Linear(self.hidden_size*2, self.hidden_size*2)
# elif self.method == 'concat':
# self.linear = nn.Linear(self.hidden_size*4, self.hidden_size*2)
# self.v = nn.Linear(self.hidden_size*2, 1)
# def forward(self, Q, K, V, attn_mask=None):
# if self.method == 'dot':
# attn_weights = torch.bmm(K, Q).squeeze(2)
# # attn_weights shape: (batchsize, total_length)
# elif self.method == 'general':
# energy = F.tanh(self.linear(K))
# attn_weights = torch.bmm(energy, Q).squeeze(2)
# elif self.method == 'concat':
# Q.transpose_(1, 2)
# Q_expand = Q.expand(-1, K.size(1), -1)
# cat = torch.cat((Q_expand, K), 2)
# # cat shape: (batchsize, stepsize, 4*self.hidden_size)
# energy = F.tanh(self.linear(cat))
# Q.transpose_(1, 2)
# attn_weights = self.v(energy).squeeze(2)
# if attn_mask is not None:
# attn_weights.masked_fill_(attn_mask, -float('inf'))
# attn_weights = self.dropout(attn_weights)
# soft_attn_weights = F.softmax(attn_weights, 1)
# if attn_mask is not None:
# soft_attn_weights = soft_attn_weights.masked_fill(attn_mask, 0) # fill all zero sentence (nan)
# context = torch.matmul(attn, V)
# return context, soft_attn_weights
class ScaleDotProductAttention(nn.Module):
def __init__(self, dropout_p=0.0):
super().__init__()
self.dropout = nn.Dropout(dropout_p)
def forward(self, Q, K, V, attn_mask=None):
scores = torch.matmul(Q, K.transpose(-1, -2))/np.sqrt(K.size(2))
# scores shape: (batch_size, n_heads, sen_len(len_q), sen_len(len_k))
if attn_mask is not None:
scores.masked_fill_(attn_mask, -float('inf'))
attn = F.softmax(scores, dim=-1)
if attn_mask is not None:
attn = attn.masked_fill(attn_mask, 0)
attn = self.dropout(attn)
# attn shape: (batch_size, n_heads, len_q, len_k)
context = torch.matmul(attn, V)
# context shape: (batch_size, n_heads, sen_len, d_v)
return context, attn
class MultiHeadAttention(nn.Module):
def __init__(self, d_model, d_k, d_v, n_heads, multihead_dropout=0.0, self_att_dropout=0.0):
super().__init__()
self.d_model, self.d_k, self.d_v, self.n_heads = d_model, d_k, d_v, n_heads
self.linear_Q = nn.Linear(d_model, d_k*n_heads)
self.linear_K = nn.Linear(d_model, d_k*n_heads)
self.linear_V = nn.Linear(d_model, d_v*n_heads)
self.dropout = nn.Dropout(multihead_dropout)
self.attn = ScaleDotProductAttention(self_att_dropout)
self.out_linear = nn.Linear(d_v*n_heads, d_model)
self.layer_norm = nn.LayerNorm(d_model, elementwise_affine=True)
def forward(self, Q, K, V, attn_mask=None):
residual = Q
batch_size, sen_len, _ = Q.size()
q_heads = self.linear_Q(Q).view(batch_size, sen_len, self.n_heads, self.d_k).transpose(1, 2)
k_heads = self.linear_K(K).view(batch_size, sen_len, self.n_heads, self.d_k).transpose(1, 2)
v_heads = self.linear_V(V).view(batch_size, sen_len, self.n_heads, self.d_v).transpose(1, 2)
context, _ = self.attn(q_heads, k_heads, v_heads, attn_mask=attn_mask)
# context shape: (batch_size, n_heads, sen_len, d_v)
context = context.transpose(1, 2).contiguous().view(batch_size, sen_len, self.n_heads*self.d_v)
# context shape: (batch_size, sen_len, d_model)
output = self.out_linear(context)
output = self.dropout(output)
output = self.layer_norm(output + residual)
#output shape: (batch_size, sen_len, d_model)
return output
class EncoderLayer(nn.Module):
def __init__(self, d_model, d_k, d_v, n_heads, multihead_dropout=0.0, self_att_dropout=0.0):
super().__init__()
self.multihead_attention = MultiHeadAttention(d_model, d_k, d_v, n_heads, multihead_dropout, self_att_dropout)
def forward(self, inputs, attn_mask=None):
firstlayer_out = self.multihead_attention(inputs, inputs, inputs, attn_mask)
return firstlayer_out
class TransformerEncoder(nn.Module):
def __init__(self, n_layers, d_model, d_k, d_v, n_heads, multihead_dropout=0.0, transformer_dropout=0.0, self_att_dropout=0.0):
super().__init__()
self.n_heads = n_heads
self.dropout = nn.Dropout(transformer_dropout)
self.encode_layers = nn.ModuleList([EncoderLayer(d_model, d_k, d_v, n_heads, multihead_dropout, self_att_dropout) for _ in range(n_layers)])
def padding_mask(self, Q, K):
# inpus shape: (batch_size, sen_len)
len_k, len_q = K.size(1), Q.size(1)
pad_mask = K.eq(0)
pad_mask = pad_mask.unsqueeze(1).unsqueeze(1).expand(-1, self.n_heads, len_q, len_k)
return pad_mask
def forward(self, inputs, raw_inputs):
pad_mask = self.padding_mask(raw_inputs, raw_inputs)
for layer in self.encode_layers:
inputs = layer(inputs, attn_mask=pad_mask)
inputs = self.dropout(inputs)
return inputs
class EncoderBiLSTM(nn.Module):
def __init__(self, hidden_size=16, output_size=1, rnn_dropout=0.3, embedding_dropout=0.3, embedding_dim=100, vocab_size=10000, embedding=None):
super().__init__()
self.hidden_size = hidden_size
self.output_size = output_size
self.embedding_dim = embedding_dim
self.vocab_size = vocab_size
if embedding is None:
self.embedding = nn.Embedding(vocab_size, embedding_dim)
else:
self.embedding = nn.Embedding.from_pretrained(torch.FloatTensor(embedding).to(DEVICE), freeze=False)
self.vocab_size, self.embedding_dim = embedding.shape
self.embedding_dropout = nn.Dropout(embedding_dropout)
self.lstm = nn.LSTM(self.embedding_dim, self.hidden_size, bidirectional=True, batch_first=True)
self.rnn_dropout = nn.Dropout(rnn_dropout)
#self.layer_norm = nn.LayerNorm(2*self.hidden_size, elementwise_affine=True)
def forward(self, X, lengths):
total_length = X.size(1) # get the max sequence length
embedded = self.embedding(X)
embedded = self.embedding_dropout(embedded)
packed = pack_padded_sequence(embedded, lengths, batch_first=True)
packed_output, (h_n, c_n) = self.lstm(packed)
output, _ = pad_packed_sequence(packed_output, batch_first=True, total_length=total_length)
output = self.rnn_dropout(output)
# output shape: (batchsize, total_length, 2*hidden_size)
# h_n shape: (num_direction, batchsize, hidden_size)
c_n = c_n.transpose(0, 1).contiguous().view(-1, 1, 2*self.hidden_size)
h_n = h_n.transpose(0, 1).contiguous().view(-1, 1, 2*self.hidden_size)
#h_n = self.layer_norm(h_n)
h_n.transpose_(1, 2)
c_n.transpose_(1, 2)
#output = self.layer_norm(output)
#return output, c_n
return output, h_n
class InterAttention(nn.Module):
def __init__(self, method, hidden_size, dropout_p=0.0):
super().__init__()
self.method = method
self.hidden_size = hidden_size
self.dropout = nn.Dropout(dropout_p)
if self.method == 'no_query':
self.linear = nn.Linear(self.hidden_size*2, 1)
if self.method == 'general':
self.linear = nn.Linear(self.hidden_size*2, self.hidden_size*2)
elif self.method == 'concat':
self.linear = nn.Linear(self.hidden_size*4, self.hidden_size*2)
self.v = nn.Linear(self.hidden_size*2, 1)
def forward(self, encoder_output, hidden, attn_mask=None):
if self.method == 'no_query':
attn_weights = self.linear(encoder_output).squeeze(2)
elif self.method == 'dot':
attn_weights = torch.bmm(encoder_output, hidden).squeeze(2)
# attn_weights shape: (batchsize, total_length)
elif self.method == 'general':
energy = F.tanh(self.linear(encoder_output))
attn_weights = torch.bmm(energy, hidden).squeeze(2)
elif self.method == 'concat':
hidden.transpose_(1, 2)
hidden_expand = hidden.expand(-1, encoder_output.size(1), -1)
cat = torch.cat((hidden_expand, encoder_output), 2)
# cat shape: (batchsize, stepsize, 4*self.hidden_size)
energy = F.tanh(self.linear(cat))
hidden.transpose_(1, 2)
attn_weights = self.v(energy).squeeze(2)
if attn_mask is not None:
attn_weights.masked_fill_(attn_mask, -float('inf'))
attn_weights = self.dropout(attn_weights)
soft_attn_weights = F.softmax(attn_weights, 1)
return soft_attn_weights
class SIAttentionBiLSTM(nn.Module):
def __init__(self, n_layers, d_model, d_k, d_v, n_heads, hidden_size=16, output_size=1, multihead_dropout=0.0, rnn_dropout=0.0, embedding_dropout=0.0, context_dropout=0.0, transformer_dropout=0.0, inter_att_dropout=0.0, self_att_dropout=0.0, embedding_dim=100, vocab_size=10000, embedding=None, method='dot'):
super().__init__()
self.lstm_encoder = EncoderBiLSTM(hidden_size, output_size, rnn_dropout, embedding_dropout, embedding_dim, vocab_size, embedding)
self.transformer_encoder = TransformerEncoder(n_layers, d_model, d_k, d_v, n_heads,multihead_dropout=multihead_dropout, transformer_dropout=transformer_dropout, self_att_dropout=self_att_dropout)
self.hidden = torch.empty(1, hidden_size*2, 1).uniform_(-1, 1).requires_grad_(requires_grad=True).to(DEVICE)
self.attn = InterAttention(method, hidden_size, dropout_p=inter_att_dropout)
self.context_dropout = nn.Dropout(context_dropout)
self.out = nn.Linear(2*hidden_size, output_size)
def forward(self, X, lengths):
sen_len = X.size(1)
lstm_output, hidden_state = self.lstm_encoder(X, lengths)
encoder_output = self.transformer_encoder(lstm_output, X)
attn_weights = self.attn(encoder_output, self.hidden.expand(X.size(0),-1,-1), attn_mask=X.eq(0))
#attn_weights = self.attn(lstm_output, hidden_state, attn_mask=X.eq(0))
context = torch.bmm(encoder_output.transpose(1, 2), attn_weights.unsqueeze(2)).squeeze(2)
context = self.context_dropout(context)
# context shape: (batchsize, 2*hidden_size)
final_output = self.out(context)
return final_output