Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[BUG] BasisEmbedding does not work with lightning.qubit and jax.jit #6008

Closed
1 task done
isaacdevlugt opened this issue Jul 17, 2024 · 3 comments
Closed
1 task done
Labels
bug 🐛 Something isn't working

Comments

@isaacdevlugt
Copy link
Contributor

isaacdevlugt commented Jul 17, 2024

Expected behavior

I expect that a circuit running on default.qubit or lightning.qubit, where the circuit contains BasisEmbedding, should work with jit.

Actual behavior

Using lightning.qubit fails.

Additional information

I think this will also affect BasisState

Source code

import pennylane as qml
import jax
from jax import numpy as jnp

dev = qml.device("lightning.qubit", wires=3)

@jax.jit
@qml.qnode(dev)
def circuit_BasisEmbedding(n):
    qml.BasisEmbedding(n, wires)
    return qml.state()

n = jnp.array([0, 1, 1])

print(circuit_BasisEmbedding(n))

Tracebacks

---------------------------------------------------------------------------
TracerArrayConversionError                Traceback (most recent call last)
File ~/Documents/pennylane/pennylane/math/single_dispatch.py:783, in _to_numpy_jax(x)
    782 try:
--> 783     return np.array(getattr(x, "val", x))
    784 except TracerArrayConversionError as e:

File ~/.virtualenvs/pennylane-catalyst/lib/python3.11/site-packages/jax/_src/core.py:710, in Tracer.__array__(self, *args, **kw)
    709 def __array__(self, *args, **kw):
--> 710   raise TracerArrayConversionError(self)

TracerArrayConversionError: The numpy.ndarray conversion method __array__() was called on traced array with shape float32[].
See https://jax.readthedocs.io/en/latest/errors.html#jax.errors.TracerArrayConversionError

The above exception was the direct cause of the following exception:

ValueError                                Traceback (most recent call last)
Cell In[71], line 18
     14     return qml.state()
     16 n = jnp.array([0, 1, 1])
---> 18 print(circuit_BasisEmbedding(n))#print(qml.draw(circuit_BasisState)(n))

    [... skipping hidden 12 frame]

File ~/Documents/pennylane/pennylane/workflow/qnode.py:1164, in QNode.__call__(self, *args, **kwargs)
   1162 if qml.capture.enabled():
   1163     return qml.capture.qnode_call(self, *args, **kwargs)
-> 1164 return self._impl_call(*args, **kwargs)

File ~/Documents/pennylane/pennylane/workflow/qnode.py:1150, in QNode._impl_call(self, *args, **kwargs)
   1147 self._update_gradient_fn(shots=override_shots, tape=self._tape)
   1149 try:
-> 1150     res = self._execution_component(args, kwargs, override_shots=override_shots)
   1151 finally:
   1152     if old_interface == "auto":

File ~/Documents/pennylane/pennylane/workflow/qnode.py:1103, in QNode._execution_component(self, args, kwargs, override_shots)
   1100 _prune_dynamic_transform(full_transform_program, inner_transform_program)
   1102 # pylint: disable=unexpected-keyword-arg
-> 1103 res = qml.execute(
   1104     (self._tape,),
   1105     device=self.device,
   1106     gradient_fn=self.gradient_fn,
   1107     interface=self.interface,
   1108     transform_program=full_transform_program,
   1109     inner_transform=inner_transform_program,
   1110     config=config,
   1111     gradient_kwargs=self.gradient_kwargs,
   1112     override_shots=override_shots,
   1113     **self.execute_kwargs,
   1114 )
   1115 res = res[0]
   1117 # convert result to the interface in case the qfunc has no parameters

File ~/Documents/pennylane/pennylane/workflow/execution.py:835, in execute(tapes, device, gradient_fn, interface, transform_program, inner_transform, config, grad_on_execution, gradient_kwargs, cache, cachesize, max_diff, override_shots, expand_fn, max_expansion, device_batch_transform, device_vjp, mcm_config)
    827 ml_boundary_execute = _get_ml_boundary_execute(
    828     interface,
    829     _grad_on_execution,
    830     config.use_device_jacobian_product,
    831     differentiable=max_diff > 1,
    832 )
    834 if interface in jpc_interfaces:
--> 835     results = ml_boundary_execute(tapes, execute_fn, jpc, device=device)
    836 else:
    837     results = ml_boundary_execute(
    838         tapes, device, execute_fn, gradient_fn, gradient_kwargs, _n=1, max_diff=max_diff
    839     )

File ~/Documents/pennylane/pennylane/workflow/interfaces/jax.py:265, in jax_jvp_execute(tapes, execute_fn, jpc, device)
    261     logger.debug("Entry with (tapes=%s, execute_fn=%s, jpc=%s)", tapes, execute_fn, jpc)
    263 parameters = tuple(tuple(t.get_parameters()) for t in tapes)
--> 265 return _execute_jvp(parameters, _NonPytreeWrapper(tuple(tapes)), execute_fn, jpc)

    [... skipping hidden 6 frame]

File ~/Documents/pennylane/pennylane/workflow/interfaces/jax.py:230, in _execute_wrapper(params, tapes, execute_fn, jpc)
    228 """Executes ``tapes`` with ``params`` via ``execute_fn``"""
    229 new_tapes = set_parameters_on_copy_and_unwrap(tapes.vals, params, unwrap=False)
--> 230 return _to_jax(execute_fn(new_tapes))

File ~/Documents/pennylane/pennylane/workflow/execution.py:309, in _make_inner_execute.<locals>.inner_execute(tapes, **_)
    306 if cache is not None:
    307     transform_program.add_transform(_cache_transform, cache=cache)
--> 309 transformed_tapes, transform_post_processing = transform_program(tapes)
    311 # TODO: Apply expand_fn() as transform.
    312 if expand_fn:

File ~/Documents/pennylane/pennylane/transforms/core/transform_program.py:515, in TransformProgram.__call__(self, tapes)
    513 if self._argnums is not None and self._argnums[i] is not None:
    514     tape.trainable_params = self._argnums[i][j]
--> 515 new_tapes, fn = transform(tape, *targs, **tkwargs)
    516 execution_tapes.extend(new_tapes)
    518 fns.append(fn)

File ~/Documents/pennylane/pennylane/transforms/convert_to_numpy_parameters.py:87, in convert_to_numpy_parameters(tape)
     85 new_ops = (_convert_op_to_numpy_data(op) for op in tape.operations)
     86 new_measurements = (_convert_measurement_to_numpy_data(m) for m in tape.measurements)
---> 87 new_circuit = tape.__class__(
     88     new_ops, new_measurements, shots=tape.shots, trainable_params=tape.trainable_params
     89 )
     91 def null_postprocessing(results):
     92     """A postprocesing function returned by a transform that only converts the batch of results
     93     into a result for a single ``QuantumTape``.
     94     """

File ~/Documents/pennylane/pennylane/tape/qscript.py:175, in QuantumScript.__init__(self, ops, measurements, shots, trainable_params)
    168 def __init__(
    169     self,
    170     ops=None,
   (...)
    173     trainable_params: Optional[Sequence[int]] = None,
    174 ):
--> 175     self._ops = [] if ops is None else list(ops)
    176     self._measurements = [] if measurements is None else list(measurements)
    177     self._shots = Shots(shots)

File ~/Documents/pennylane/pennylane/transforms/convert_to_numpy_parameters.py:85, in <genexpr>(.0)
     50 @transform
     51 def convert_to_numpy_parameters(tape: QuantumScript) -> Tuple[Sequence[QuantumScript], Callable]:
     52     """Transforms a circuit to one with purely numpy parameters.
     53 
     54     Args:
   (...)
     83 
     84     """
---> 85     new_ops = (_convert_op_to_numpy_data(op) for op in tape.operations)
     86     new_measurements = (_convert_measurement_to_numpy_data(m) for m in tape.measurements)
     87     new_circuit = tape.__class__(
     88         new_ops, new_measurements, shots=tape.shots, trainable_params=tape.trainable_params
     89     )

File ~/Documents/pennylane/pennylane/transforms/convert_to_numpy_parameters.py:31, in _convert_op_to_numpy_data(op)
     29     return op
     30 # Use operator method to change parameters when it become available
---> 31 return qml.ops.functions.bind_new_parameters(op, math.unwrap(op.data))

File ~/Documents/pennylane/pennylane/math/multi_dispatch.py:782, in unwrap(values, max_depth)
    779     return new_val.tolist() if isinstance(new_val, ndarray) and not new_val.shape else new_val
    781 if isinstance(values, (tuple, list)):
--> 782     return type(values)(convert(val) for val in values)
    783 return (
    784     np.to_numpy(values, max_depth=max_depth)
    785     if isinstance(values, ArrayBox)
    786     else np.to_numpy(values)
    787 )

File ~/Documents/pennylane/pennylane/math/multi_dispatch.py:782, in <genexpr>(.0)
    779     return new_val.tolist() if isinstance(new_val, ndarray) and not new_val.shape else new_val
    781 if isinstance(values, (tuple, list)):
--> 782     return type(values)(convert(val) for val in values)
    783 return (
    784     np.to_numpy(values, max_depth=max_depth)
    785     if isinstance(values, ArrayBox)
    786     else np.to_numpy(values)
    787 )

File ~/Documents/pennylane/pennylane/math/multi_dispatch.py:777, in unwrap.<locals>.convert(val)
    774 if isinstance(val, (tuple, list)):
    775     return unwrap(val)
    776 new_val = (
--> 777     np.to_numpy(val, max_depth=max_depth) if isinstance(val, ArrayBox) else np.to_numpy(val)
    778 )
    779 return new_val.tolist() if isinstance(new_val, ndarray) and not new_val.shape else new_val

File ~/.virtualenvs/pennylane-catalyst/lib/python3.11/site-packages/autoray/autoray.py:81, in do(fn, like, *args, **kwargs)
     79 backend = _choose_backend(fn, args, kwargs, like=like)
     80 func = get_lib_fn(backend, fn)
---> 81 return func(*args, **kwargs)

File ~/Documents/pennylane/pennylane/math/single_dispatch.py:785, in _to_numpy_jax(x)
    783     return np.array(getattr(x, "val", x))
    784 except TracerArrayConversionError as e:
--> 785     raise ValueError(
    786         "Converting a JAX array to a NumPy array not supported when using the JAX JIT."
    787     ) from e

ValueError: Converting a JAX array to a NumPy array not supported when using the JAX JIT.

System information

Name: PennyLane
Version: 0.37.0
Summary: PennyLane is a cross-platform Python library for quantum computing, quantum machine learning, and quantum chemistry. Train a quantum computer the same way as a neural network.
Home-page: https://github.com/PennyLaneAI/pennylane
Author: 
Author-email: 
License: Apache License 2.0
Location: /Users/isaac/.virtualenvs/pennylane-catalyst/lib/python3.11/site-packages
Requires: appdirs, autograd, autoray, cachetools, networkx, numpy, packaging, pennylane-lightning, requests, rustworkx, scipy, semantic-version, toml, typing-extensions
Required-by: PennyLane-Catalyst, PennyLane_Lightning

Platform info:           macOS-14.5-arm64-arm-64bit
Python version:          3.11.8
Numpy version:           1.26.4
Scipy version:           1.12.0
Installed devices:
- default.clifford (PennyLane-0.38.0.dev0)
- default.gaussian (PennyLane-0.38.0.dev0)
- default.mixed (PennyLane-0.38.0.dev0)
- default.qubit (PennyLane-0.38.0.dev0)
- default.qubit.autograd (PennyLane-0.38.0.dev0)
- default.qubit.jax (PennyLane-0.38.0.dev0)
- default.qubit.legacy (PennyLane-0.38.0.dev0)
- default.qubit.tf (PennyLane-0.38.0.dev0)
- default.qubit.torch (PennyLane-0.38.0.dev0)
- default.qutrit (PennyLane-0.38.0.dev0)
- default.qutrit.mixed (PennyLane-0.38.0.dev0)
- default.tensor (PennyLane-0.38.0.dev0)
- null.qubit (PennyLane-0.38.0.dev0)
- lightning.qubit (PennyLane_Lightning-0.37.0)
- nvidia.custatevec (PennyLane-Catalyst-0.7.0)
- nvidia.cutensornet (PennyLane-Catalyst-0.7.0)
- oqc.cloud (PennyLane-Catalyst-0.7.0)
- softwareq.qpp (PennyLane-Catalyst-0.7.0)

Existing GitHub issues

  • I have searched existing GitHub issues to make sure the issue does not already exist.
@albi3ro
Copy link
Contributor

albi3ro commented Jul 22, 2024

I'd bet the issue is that the features are treated as a hyperparameter, not as a numeric array. So we don't convert it to numpy, and any non-backprop device can't handle things that aren't numpy.

@KetpuntoG
Copy link
Contributor

Yes, I think so :)
I'm adding it as data in my story 👍

KetpuntoG added a commit that referenced this issue Aug 21, 2024
This PR complete part of this story:
[[sc-68521](https://app.shortcut.com/xanaduai/story/68521)]

Goal: `BasisEmbedding` is an alias of `BasisState`. This way, we don't
have duplicate code that does the same thing.
In unifying this, I have had to modify some tests due to:
- `BasisEmbedding` and `BasisState` throw errors such as "incorrect
length" with different messages. Now it will always be the same. (test
modified for this reason: `test_default_qubit_legacy.py`,
`test_default_qubit_tf.py`
`test_default_qubit_torch.py`, `test_state_prep.py`,
`test_all_singles_doubles.py` and test_uccsd`)

- In `BasisEmbedding`, errors were thrown in `__init__` while in
BasisState in `state_vector`. Now they are unified in `__init__`. For
this reason, there were tests where the operator was not initialized
correctly but no error was thrown since `state_vector` was not being
called but now they are detected. To correct this, I have modified the
tests: `test_qscript.py`, `test_state_prep.py`,

- Now `BasisState` does not decompose `BasisStatePreparation` since we
are going to deprecate it. This causes the number of gates after
expanding to be affected. In this case I had to modify some test in
`test_tape.py`.

This PR also solves:

- [issue 6008](#6008)
- [issue 6007](#6007)
- [issue 6006](#6006)

---------

Co-authored-by: Isaac De Vlugt <[email protected]>
Co-authored-by: soranjh <[email protected]>
Co-authored-by: Utkarsh <[email protected]>
@DSGuala
Copy link
Contributor

DSGuala commented Sep 6, 2024

Closing as this was resolved in #6021

@DSGuala DSGuala closed this as completed Sep 6, 2024
mudit2812 pushed a commit that referenced this issue Sep 10, 2024
This PR complete part of this story:
[[sc-68521](https://app.shortcut.com/xanaduai/story/68521)]

Goal: `BasisEmbedding` is an alias of `BasisState`. This way, we don't
have duplicate code that does the same thing.
In unifying this, I have had to modify some tests due to:
- `BasisEmbedding` and `BasisState` throw errors such as "incorrect
length" with different messages. Now it will always be the same. (test
modified for this reason: `test_default_qubit_legacy.py`,
`test_default_qubit_tf.py`
`test_default_qubit_torch.py`, `test_state_prep.py`,
`test_all_singles_doubles.py` and test_uccsd`)

- In `BasisEmbedding`, errors were thrown in `__init__` while in
BasisState in `state_vector`. Now they are unified in `__init__`. For
this reason, there were tests where the operator was not initialized
correctly but no error was thrown since `state_vector` was not being
called but now they are detected. To correct this, I have modified the
tests: `test_qscript.py`, `test_state_prep.py`,

- Now `BasisState` does not decompose `BasisStatePreparation` since we
are going to deprecate it. This causes the number of gates after
expanding to be affected. In this case I had to modify some test in
`test_tape.py`.

This PR also solves:

- [issue 6008](#6008)
- [issue 6007](#6007)
- [issue 6006](#6006)

---------

Co-authored-by: Isaac De Vlugt <[email protected]>
Co-authored-by: soranjh <[email protected]>
Co-authored-by: Utkarsh <[email protected]>
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
bug 🐛 Something isn't working
Projects
None yet
Development

No branches or pull requests

4 participants