-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy path20191010m_springs.py
112 lines (86 loc) · 3 KB
/
20191010m_springs.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
# coding: utf-8
# In[ ]:
# %load m_springs.py
import pyro
import torch
import pyro.distributions as dist
import torch.nn.functional as func
from pyro.infer.mcmc import MCMC, NUTS
def save_M(M, f_out):
"""
Save CA trace of M in PDB file f_out.
(it adds - poorly placed - N and C atoms between the CA atoms)
"""
_ATOM = "%s%5i %-4s%3s %c%4i%c %8.3f%8.3f%8.3f%6.2f%6.2f %4s%2s%2s\n"
def get_ATOM_line(atom_i, name, resid, x, y, z, aa_type):
"""
Write PDB ATOM line.
"""
args=("ATOM ", atom_i, name, aa_type, "A", resid, " ", x, y, z, 0.0, 0.0, "X", " ", " ")
s = _ATOM % args
return s
fp = open(f_out, "w")
labels=["CA", "C", "N"]
for i in range(0, M.shape[0]-1):
v1=M[i]
v2=M[i+1]
delta=(v2-v1)/3.0
for j in range(0,3):
# Add C and N atoms in between the CA
x, y, z = v1+j*delta
s = get_ATOM_line(i*3+j, labels[j], i+1, x, y, z, "ALA")
fp.write(s)
# Last CA
x,y,z=M[-1]
s=get_ATOM_line(3*(M.shape[0]-1), "CA", M.shape[0], x, y, z, "ALA")
fp.write(s)
fp.close()
def get_samples(posterior, name):
"""
Extracts samples from a posterior object.
"""
marginal = posterior.marginal(sites=[name])
marginal_tensor = marginal.support()[name]
return marginal_tensor
# Fix first three coordinates
M_first=torch.tensor(((0,0,0),
(3.8,0,0),
(3.8,3.8,0.0)))
def model(N=10):
# Sample N-3 random points according to a Normal distribution
# The plates render all the coordinates independent
plate1=pyro.plate("aa", N-3, dim=-2)
plate2=pyro.plate("coord", 3, dim=-1)
with plate1, plate2:
M_last = pyro.sample("M", dist.Normal(0, 20))
# Stack fixed and moving coordinates
M=torch.cat((M_first, M_last))
# Make sure bond distances are around 3.8 Å
# Standard deviation of bonds
#sb=pyro.sample("sigma_bond", dist.HalfCauchy(scale=0.1))
# Calculate bond distances
# (skip first two bonds, as they are fixed)
bonds=torch.dist(M[2:-1], M[3:])
with pyro.plate("bonds"):
bond_obs=pyro.sample("bonds", dist.StudentT(1, bonds, 0.001), obs=torch.tensor(3.8))
# Add a distance restraint between first and last point
# Standard deviation of pairwise distance
sd=pyro.sample("sigma_dist", dist.HalfCauchy(scale=0.1))
d = torch.dist(M[0], M[-1])
d_obs = pyro.sample("d_obs", dist.StudentT(1, d, 0.001), obs=torch.tensor(10))
filename_pdb=
if __name__=="__main__":
# Nr samples
S= 500
# Nr samples burn-in
B=70
# Do NUTS sampling
nuts_kernel = NUTS(model, adapt_step_size=True)
mcmc_sampler = MCMC(nuts_kernel, num_samples=S, warmup_steps=B)
posterior = mcmc_sampler.run()
# Get the last sampled points
samples = get_samples(posterior, "M")
# Save to PDB file
M_last=samples[S-1]
M=torch.cat((M_first, M_last)) # Add fixed first 3 coordinates
save_M(M, filname_pdb+".pdb")