forked from tensorflow/models
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathcifar10_main.py
295 lines (226 loc) · 10.3 KB
/
cifar10_main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Runs a ResNet model on the CIFAR-10 dataset."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import argparse
import os
import sys
import tensorflow as tf
import resnet_model
parser = argparse.ArgumentParser()
# Basic model parameters.
parser.add_argument('--data_dir', type=str, default='/tmp/cifar10_data',
help='The path to the CIFAR-10 data directory.')
parser.add_argument('--model_dir', type=str, default='/tmp/cifar10_model',
help='The directory where the model will be stored.')
parser.add_argument('--resnet_size', type=int, default=32,
help='The size of the ResNet model to use.')
parser.add_argument('--train_epochs', type=int, default=250,
help='The number of epochs to train.')
parser.add_argument('--epochs_per_eval', type=int, default=10,
help='The number of epochs to run in between evaluations.')
parser.add_argument('--batch_size', type=int, default=128,
help='The number of images per batch.')
parser.add_argument(
'--data_format', type=str, default=None,
choices=['channels_first', 'channels_last'],
help='A flag to override the data format used in the model. channels_first '
'provides a performance boost on GPU but is not always compatible '
'with CPU. If left unspecified, the data format will be chosen '
'automatically based on whether TensorFlow was built for CPU or GPU.')
_HEIGHT = 32
_WIDTH = 32
_DEPTH = 3
_NUM_CLASSES = 10
_NUM_DATA_FILES = 5
# We use a weight decay of 0.0002, which performs better than the 0.0001 that
# was originally suggested.
_WEIGHT_DECAY = 2e-4
_MOMENTUM = 0.9
_NUM_IMAGES = {
'train': 50000,
'validation': 10000,
}
def record_dataset(filenames):
"""Returns an input pipeline Dataset from `filenames`."""
record_bytes = _HEIGHT * _WIDTH * _DEPTH + 1
return tf.data.FixedLengthRecordDataset(filenames, record_bytes)
def get_filenames(is_training, data_dir):
"""Returns a list of filenames."""
data_dir = os.path.join(data_dir, 'cifar-10-batches-bin')
assert os.path.exists(data_dir), (
'Run cifar10_download_and_extract.py first to download and extract the '
'CIFAR-10 data.')
if is_training:
return [
os.path.join(data_dir, 'data_batch_%d.bin' % i)
for i in range(1, _NUM_DATA_FILES + 1)
]
else:
return [os.path.join(data_dir, 'test_batch.bin')]
def parse_record(raw_record):
"""Parse CIFAR-10 image and label from a raw record."""
# Every record consists of a label followed by the image, with a fixed number
# of bytes for each.
label_bytes = 1
image_bytes = _HEIGHT * _WIDTH * _DEPTH
record_bytes = label_bytes + image_bytes
# Convert bytes to a vector of uint8 that is record_bytes long.
record_vector = tf.decode_raw(raw_record, tf.uint8)
# The first byte represents the label, which we convert from uint8 to int32
# and then to one-hot.
label = tf.cast(record_vector[0], tf.int32)
label = tf.one_hot(label, _NUM_CLASSES)
# The remaining bytes after the label represent the image, which we reshape
# from [depth * height * width] to [depth, height, width].
depth_major = tf.reshape(
record_vector[label_bytes:record_bytes], [_DEPTH, _HEIGHT, _WIDTH])
# Convert from [depth, height, width] to [height, width, depth], and cast as
# float32.
image = tf.cast(tf.transpose(depth_major, [1, 2, 0]), tf.float32)
return image, label
def preprocess_image(image, is_training):
"""Preprocess a single image of layout [height, width, depth]."""
if is_training:
# Resize the image to add four extra pixels on each side.
image = tf.image.resize_image_with_crop_or_pad(
image, _HEIGHT + 8, _WIDTH + 8)
# Randomly crop a [_HEIGHT, _WIDTH] section of the image.
image = tf.random_crop(image, [_HEIGHT, _WIDTH, _DEPTH])
# Randomly flip the image horizontally.
image = tf.image.random_flip_left_right(image)
# Subtract off the mean and divide by the variance of the pixels.
image = tf.image.per_image_standardization(image)
return image
def input_fn(is_training, data_dir, batch_size, num_epochs=1):
"""Input_fn using the tf.data input pipeline for CIFAR-10 dataset.
Args:
is_training: A boolean denoting whether the input is for training.
data_dir: The directory containing the input data.
batch_size: The number of samples per batch.
num_epochs: The number of epochs to repeat the dataset.
Returns:
A tuple of images and labels.
"""
dataset = record_dataset(get_filenames(is_training, data_dir))
if is_training:
# When choosing shuffle buffer sizes, larger sizes result in better
# randomness, while smaller sizes have better performance. Because CIFAR-10
# is a relatively small dataset, we choose to shuffle the full epoch.
dataset = dataset.shuffle(buffer_size=_NUM_IMAGES['train'])
dataset = dataset.map(parse_record)
dataset = dataset.map(
lambda image, label: (preprocess_image(image, is_training), label))
dataset = dataset.prefetch(2 * batch_size)
# We call repeat after shuffling, rather than before, to prevent separate
# epochs from blending together.
dataset = dataset.repeat(num_epochs)
# Batch results by up to batch_size, and then fetch the tuple from the
# iterator.
dataset = dataset.batch(batch_size)
iterator = dataset.make_one_shot_iterator()
images, labels = iterator.get_next()
return images, labels
def cifar10_model_fn(features, labels, mode, params):
"""Model function for CIFAR-10."""
tf.summary.image('images', features, max_outputs=6)
network = resnet_model.cifar10_resnet_v2_generator(
params['resnet_size'], _NUM_CLASSES, params['data_format'])
inputs = tf.reshape(features, [-1, _HEIGHT, _WIDTH, _DEPTH])
logits = network(inputs, mode == tf.estimator.ModeKeys.TRAIN)
predictions = {
'classes': tf.argmax(logits, axis=1),
'probabilities': tf.nn.softmax(logits, name='softmax_tensor')
}
if mode == tf.estimator.ModeKeys.PREDICT:
return tf.estimator.EstimatorSpec(mode=mode, predictions=predictions)
# Calculate loss, which includes softmax cross entropy and L2 regularization.
cross_entropy = tf.losses.softmax_cross_entropy(
logits=logits, onehot_labels=labels)
# Create a tensor named cross_entropy for logging purposes.
tf.identity(cross_entropy, name='cross_entropy')
tf.summary.scalar('cross_entropy', cross_entropy)
# Add weight decay to the loss.
loss = cross_entropy + _WEIGHT_DECAY * tf.add_n(
[tf.nn.l2_loss(v) for v in tf.trainable_variables()])
if mode == tf.estimator.ModeKeys.TRAIN:
# Scale the learning rate linearly with the batch size. When the batch size
# is 128, the learning rate should be 0.1.
initial_learning_rate = 0.1 * params['batch_size'] / 128
batches_per_epoch = _NUM_IMAGES['train'] / params['batch_size']
global_step = tf.train.get_or_create_global_step()
# Multiply the learning rate by 0.1 at 100, 150, and 200 epochs.
boundaries = [int(batches_per_epoch * epoch) for epoch in [100, 150, 200]]
values = [initial_learning_rate * decay for decay in [1, 0.1, 0.01, 0.001]]
learning_rate = tf.train.piecewise_constant(
tf.cast(global_step, tf.int32), boundaries, values)
# Create a tensor named learning_rate for logging purposes
tf.identity(learning_rate, name='learning_rate')
tf.summary.scalar('learning_rate', learning_rate)
optimizer = tf.train.MomentumOptimizer(
learning_rate=learning_rate,
momentum=_MOMENTUM)
# Batch norm requires update ops to be added as a dependency to the train_op
update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
with tf.control_dependencies(update_ops):
train_op = optimizer.minimize(loss, global_step)
else:
train_op = None
accuracy = tf.metrics.accuracy(
tf.argmax(labels, axis=1), predictions['classes'])
metrics = {'accuracy': accuracy}
# Create a tensor named train_accuracy for logging purposes
tf.identity(accuracy[1], name='train_accuracy')
tf.summary.scalar('train_accuracy', accuracy[1])
return tf.estimator.EstimatorSpec(
mode=mode,
predictions=predictions,
loss=loss,
train_op=train_op,
eval_metric_ops=metrics)
def main(unused_argv):
# Using the Winograd non-fused algorithms provides a small performance boost.
os.environ['TF_ENABLE_WINOGRAD_NONFUSED'] = '1'
# Set up a RunConfig to only save checkpoints once per training cycle.
run_config = tf.estimator.RunConfig().replace(save_checkpoints_secs=1e9)
cifar_classifier = tf.estimator.Estimator(
model_fn=cifar10_model_fn, model_dir=FLAGS.model_dir, config=run_config,
params={
'resnet_size': FLAGS.resnet_size,
'data_format': FLAGS.data_format,
'batch_size': FLAGS.batch_size,
})
for _ in range(FLAGS.train_epochs // FLAGS.epochs_per_eval):
tensors_to_log = {
'learning_rate': 'learning_rate',
'cross_entropy': 'cross_entropy',
'train_accuracy': 'train_accuracy'
}
logging_hook = tf.train.LoggingTensorHook(
tensors=tensors_to_log, every_n_iter=100)
cifar_classifier.train(
input_fn=lambda: input_fn(
True, FLAGS.data_dir, FLAGS.batch_size, FLAGS.epochs_per_eval),
hooks=[logging_hook])
# Evaluate the model and print results
eval_results = cifar_classifier.evaluate(
input_fn=lambda: input_fn(False, FLAGS.data_dir, FLAGS.batch_size))
print(eval_results)
if __name__ == '__main__':
tf.logging.set_verbosity(tf.logging.INFO)
FLAGS, unparsed = parser.parse_known_args()
tf.app.run(argv=[sys.argv[0]] + unparsed)