-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathplot_parareal_scaling.py
163 lines (140 loc) · 5.49 KB
/
plot_parareal_scaling.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
import numpy
from matplotlib import pyplot as plt
from pylab import rcParams
from subprocess import call
fs = 8
Nsamples = 5
machine = "centos"
if machine=="dora":
Nprocs = numpy.array([2, 4, 6, 8, 10, 12, 24])
if machine=="cub":
Nprocs = numpy.array([2, 4, 6, 8])
if machine=="mac":
Nprocs = numpy.array([2, 4, 6, 8])
if machine=="centos":
Nprocs = numpy.array([2, 4, 6, 8])
Niter = 4
timers = numpy.zeros([3, Nprocs.size, Nsamples])
timers_avg = numpy.zeros([3, Nprocs.size])
speedup = numpy.zeros([3, Nprocs.size])
bound = numpy.zeros([1, Nprocs.size])
stand_dev = numpy.zeros([3, Nprocs.size])
confidence = numpy.zeros([3,numpy.size(Nprocs)])
# Load serial runtime first
if Nsamples==1:
filename = "timings_serial_fine.dat"
else:
filename = "0_timings_serial_fine.dat"
f = open(filename,'r')
time_serial_f = float(f.readline())
f.close
# Load coarse runtime
if Nsamples==1:
filename = "timings_serial_coarse.dat"
else:
filename = "0_timings_serial_coarse.dat"
f = open(filename, 'r')
time_serial_g = float(f.readline())
f.close
g_to_f = time_serial_g/time_serial_f
niter_s = '%0.2i' % Niter
types = [ 'mpi', 'openmp', 'openmp_pipe' ]
for tt in range(0,3):
type = types.pop(0)
for ii in range(0,Nprocs.size):
np = Nprocs[ii]
nps = '%0.2i' % np
nps_m1 = '%0.2i' % (np-1)
for jj in range(0,Nsamples):
if Nsamples==1:
filename = "timings_"+type+niter_s+"_"+nps_m1+"_"+nps+".dat"
else:
filename = str(jj)+"_timings_"+type+niter_s+"_"+nps_m1+"_"+nps+".dat"
f = open(filename,'r')
total_time = float(f.readline())
fine_time = float(f.readline())
coarse_time = float(f.readline())
comm_time = float(f.readline())
timers[tt,ii,jj] = fine_time + coarse_time + comm_time
f.close()
# Compute averages
for jj in range(0,Nsamples):
timers_avg[tt,ii] = timers_avg[tt,ii] + timers[tt,ii,jj]/float(Nsamples)
# Compute standard deviation
stand_dev[tt,ii] = 0.0
for jj in range(0,Nsamples):
stand_dev[tt,ii] = stand_dev[tt,ii] + (timers[tt,ii,jj] - timers_avg[tt,ii])**2/float(Nsamples)
#
stand_dev[tt,ii] = numpy.sqrt(stand_dev[tt,ii])
print ("relative standard deviation: %9.3f" % (stand_dev[tt,ii]/timers_avg[tt,ii]) )
#
confidence[tt,ii] = 1.96*stand_dev[tt,ii]/numpy.sqrt(float(Nsamples))
speedup[tt,ii] = time_serial_f/timers_avg[tt,ii]
bound[0,ii] = 1.0/( (1.0 + float(Niter)/float(np))*g_to_f + float(Niter)/float(np))
rcParams['figure.figsize'] = 2.5, 2.5
fig = plt.figure()
plt.plot(Nprocs, speedup[0,:], linewidth=1.0, marker='^', markersize=fs, color='b', label='MPI')
#plt.plot(Nprocs, speedup[1,:], linewidth=1.0, marker='<', markersize=fs, color='g', label='OpenMP')
plt.plot(Nprocs, speedup[2,:], linewidth=1.0, marker='>', markersize=fs, color='r', label='OpenMP')
plt.plot(Nprocs, bound[0,:], linewidth=1.0, color='k', label='Bound')
nodes = list(Nprocs)
ymin = 0
ymax = max(map(max,speedup))+1.0
plt.xlabel(r'Number of cores $P$', fontsize=fs)
plt.ylabel(r'Speedup $s(P)$', fontsize=fs, labelpad=2)
if machine=="dora":
plt.xticks([2,6,10,14,18,22], fontsize=fs)
if machine=="cub" or machine=="centos":
plt.xticks(Nprocs, fontsize=fs)
plt.yticks(fontsize=fs)
plt.grid(True)
plt.legend(loc='upper left', fontsize=fs, prop={'size':fs})
plt.ylim([ymin, ymax])
filename = 'speedup_'+machine+'.pdf'
fig.savefig(filename,bbox_inches='tight')
call(["pdfcrop", filename, filename])
#plt.show()
rcParams['figure.figsize'] = 2.5, 2.5
fig = plt.figure()
plt.plot(Nprocs, timers_avg[0,:], linewidth=1.0, marker='^', markersize=fs, color='b', label='MPI')
#plt.plot(Nprocs, timers_avg[1,:], linewidth=1.0, marker='<', markersize=fs, color='g', label='OpenMP')
plt.plot(Nprocs, timers_avg[2,:], linewidth=1.0, marker='>', markersize=fs, color='r', label='OpenMP')
plt.plot(Nprocs, time_serial_f + 0.0*timers_avg[0,:], linewidth=1.0, color='k')
nodes = list(Nprocs)
ymax = max(map(max,timers_avg))+1.0
NN = Nprocs[ numpy.size(Nprocs) - 2] - 0.85
plt.gca().annotate('Serial runtime', xy=( NN, 1.075*time_serial_f), xytext=( NN, 1.075*time_serial_f ), fontsize=fs-1, fontweight='bold')
#plt.gca().set_yscale('log')
#plt.gca().set_xscale('log')
plt.xlabel(r'Number of cores $P$', fontsize=fs)
plt.ylabel('Runtime [sec.]', fontsize=fs, labelpad=2)
plt.tick_params(axis='both', which='major', labelsize=fs)
plt.gca().set_ylim([0.0, 20.0])
if machine=="dora":
plt.gca().set_xticks([2,6,10,14,18,22])
if machine=="cub" or machine=="centos":
plt.gca().set_xticks(Nprocs)
plt.gca().set_yticks([5, 10, 20])
plt.gca().set_yticklabels(["5", "10", "20"])
plt.gca().get_yaxis().get_major_formatter().labelOnlyBase = False
plt.grid(True)
if machine=="dora":
plt.legend(loc='upper right', prop={'size':fs})
if machine=="cub" or machine=="centos":
plt.legend(loc='lower left', prop={'size':fs})
# Saveing figure
filename = 'runtime_'+machine+'.pdf'
fig.savefig(filename,bbox_inches='tight')
call(["pdfcrop", filename, filename])
#plt.show()
print "For MPI ..."
for i in range(0,numpy.size(Nprocs)):
print "Average runtime for #proc = %2i : %5.3f +/- %5.3f" % (Nprocs[i], timers_avg[0,i], confidence[0,i])
print ""
print "For OpenMP ..."
for i in range(0,numpy.size(Nprocs)):
print "Average runtime for #proc = %2i : %5.3f +/- %5.3f" % (Nprocs[i], timers_avg[1,i], confidence[1,i])
print ""
print "For OpenMP-pipe ..."
for i in range(0,numpy.size(Nprocs)):
print "Average runtime for #proc = %2i : %5.3f +/- %5.3f" % (Nprocs[i], timers_avg[2,i], confidence[2,i])