-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathplot_parareal_energy.py
95 lines (86 loc) · 3.42 KB
/
plot_parareal_energy.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
#!/usr/bin/python
import numpy
from matplotlib import pyplot as plt
from pylab import rcParams
from subprocess import call
compiler = 'gcc'
def extract_energy(line):
str_to_find = "energy_used', "
ind1 = line.find(str_to_find)
ind1 = ind1 + len(str_to_find)
ind2 = line.find("]")
energy = int(line[ind1:ind2])
return energy
#
# Main part of script
#
fs = 8
Nsamples = 50
#Nsamples = 1
#Nprocs = numpy.array([2, 4, 6, 8, 12, 24])
Nprocs = numpy.array([24])
energy = numpy.zeros([3, Nprocs.size, Nsamples])
energy_avg = numpy.zeros([3, Nprocs.size])
stand_dev = numpy.zeros([3, Nprocs.size])
confidence = numpy.zeros([3, Nprocs.size])
# Load serial energy
#filename = "9_serial_f_Np1.rur"
#f = open(filename,'r')
#line1 = f.readline()
# Extract energy entry in RUR file
#line2 = f.readline()
#energy_fine = extract_energy(line2)
#f.close
# Load coarse runtime
#filename = "9_serial_g_Np1.rur"
#f = open(filename, 'r')
#line1 = f.readline()
#line2 = f.readline()
#energy_coarse = extract_energy(line2)
#f.close
types = [ 'mpi', 'openmp', 'openmp_pipe' ]
for tt in range(0,3):
type = types.pop(0)
for ii in range(0,Nprocs.size):
np = Nprocs[ii]
for jj in range(0,Nsamples):
filename = str(jj)+"_"+type+"_Np"+str(np)+".rur"
f = open(filename,'r')
line1 = f.readline()
line2 = f.readline()
if "energy_used" in line1:
energy[tt,ii,jj] = extract_energy(line1)
elif "energy_used" in line2:
energy[tt,ii,jj] = extract_energy(line2)
f.close()
# Compute averages
for jj in range(0,Nsamples):
energy_avg[tt,ii] = energy_avg[tt,ii] + energy[tt,ii,jj]/float(Nsamples)
# Compute standard deviation
for jj in range(0,Nsamples):
stand_dev[tt,ii] = stand_dev[tt,ii] + (energy[tt,ii,jj] - energy_avg[tt,ii])**2/float(Nsamples)
stand_dev[tt,ii] = numpy.sqrt(stand_dev[tt,ii])
print ("relative standard deviation: %9.3f" % (stand_dev[tt,ii]/energy_avg[tt,ii]) )
confidence[tt,ii] = 1.96*stand_dev[tt,ii]/numpy.sqrt(float(Nsamples))
#print ("95 percent confidence: +/- %9.3f" % (confidence[tt,ii]) )
print ('Average energy-to-solution for MPI: %7.2f +/- %5.2f joule' % (energy_avg[0,0], confidence[0,0]))
print ('Average energy-to-solution for OpenMP: %7.2f +/- %5.2f joule' % (energy_avg[1,0], confidence[1,0]))
print ('Average energy-to-solution for OpenMP-pipe: %7.2f +/- %5.2f joule' % (energy_avg[2,0], confidence[2,0]))
rcParams['figure.figsize'] = 2.5, 2.5
fig, ax = plt.subplots()
ind = numpy.arange(3)
width = 0.5
rects_1 = ax.bar(0.5-0.5*width, energy_avg[0,:]/1000, width, color='b', hatch='x', yerr = confidence[0,0]/1000, error_kw=dict(ecolor='k', lw=1, capsize=8, capthick=1.0))
rects_2 = ax.bar(1.5-0.5*width, energy_avg[2,:]/1000, width, color='r', hatch='\\', yerr = confidence[1,0]/1000, error_kw=dict(ecolor='k', lw=1, capsize=8, capthick=1.0))
#rects_3 = ax.bar(2.5-0.5*width, energy_avg[2,:]/1000, width, color='r', hatch='-', yerr = confidence[2,0]/1000, error_kw=dict(ecolor='k', lw=1, capsize=8, capthick=1.0))
ax.set_xlim([0, 2])
ax.grid()
#ax.set_yscale('log')
plt.tick_params(axis='both', which='major', labelsize=fs)
ax.set_xticks([0.5, 1.5])
ax.set_xticklabels( ('MPI', 'OpenMP') , fontsize=fs)
ax.set_ylabel('Energy-to-solution (kilojoule)', fontsize=fs, labelpad=15)
filename = 'energy_dora_'+compiler+'.pdf'
fig.savefig(filename, bbox_inches='tight')
call(["pdfcrop", filename, filename])
#plt.show()