-
Notifications
You must be signed in to change notification settings - Fork 0
/
paper.lyx
7845 lines (5521 loc) · 151 KB
/
paper.lyx
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#LyX 2.0 created this file. For more info see http://www.lyx.org/
\lyxformat 413
\begin_document
\begin_header
\textclass article
\begin_preamble
\usepackage{times}
\usepackage{graphics,natbib}
\newcommand{\matern}{Mat\'{e}rn }
\newcommand{\N}{\mathcal{N}}
\end_preamble
\use_default_options true
\begin_modules
knitr
\end_modules
\maintain_unincluded_children false
\language english
\language_package default
\inputencoding auto
\fontencoding global
\font_roman default
\font_sans default
\font_typewriter default
\font_default_family default
\use_non_tex_fonts false
\font_sc false
\font_osf false
\font_sf_scale 100
\font_tt_scale 100
\graphics default
\default_output_format default
\output_sync 0
\bibtex_command default
\index_command default
\paperfontsize 12
\spacing single
\use_hyperref false
\papersize default
\use_geometry true
\use_amsmath 1
\use_esint 1
\use_mhchem 1
\use_mathdots 1
\cite_engine natbib_authoryear
\use_bibtopic false
\use_indices false
\paperorientation portrait
\suppress_date false
\use_refstyle 1
\index Index
\shortcut idx
\color #008000
\end_index
\leftmargin 1in
\topmargin 1in
\rightmargin 1in
\bottommargin 1in
\secnumdepth 3
\tocdepth 3
\paragraph_separation indent
\paragraph_indentation default
\quotes_language english
\papercolumns 1
\papersides 1
\paperpagestyle default
\tracking_changes false
\output_changes false
\html_math_output 0
\html_css_as_file 0
\html_be_strict false
\end_header
\begin_body
\begin_layout Title
Statistically-estimated tree composition for the northeastern United States
\begin_inset Newline newline
\end_inset
at the time of Euro-American settlement
\end_layout
\begin_layout Author
Christopher J.
Paciorek
\begin_inset script superscript
\begin_layout Plain Layout
1,*
\end_layout
\end_inset
, Simon J.
Goring
\begin_inset script superscript
\begin_layout Plain Layout
2,&
\end_layout
\end_inset
, Andrew L.
Thurman
\begin_inset script superscript
\begin_layout Plain Layout
3,&
\end_layout
\end_inset
,
\begin_inset Newline newline
\end_inset
Charles V.
Cogbill
\begin_inset script superscript
\begin_layout Plain Layout
4
\end_layout
\end_inset
, John W.
Williams
\begin_inset script superscript
\begin_layout Plain Layout
2,3
\end_layout
\end_inset
, David J.
Mladenoff
\begin_inset script superscript
\begin_layout Plain Layout
6
\end_layout
\end_inset
,
\begin_inset Newline newline
\end_inset
Jody A.
Peters
\begin_inset script superscript
\begin_layout Plain Layout
7
\end_layout
\end_inset
, Jun Zhu
\begin_inset script superscript
\begin_layout Plain Layout
8
\end_layout
\end_inset
, and Jason S.
McLachlan
\begin_inset script superscript
\begin_layout Plain Layout
7
\end_layout
\end_inset
\end_layout
\begin_layout Address
\begin_inset script superscript
\begin_layout Plain Layout
1
\end_layout
\end_inset
Department of Statistics, University of California, Berkeley, California,
USA
\end_layout
\begin_layout Address
\begin_inset script superscript
\begin_layout Plain Layout
2
\end_layout
\end_inset
Department of Geography, University of Wisconsin, Madison, Wisconsin, USA
\end_layout
\begin_layout Address
\begin_inset script superscript
\begin_layout Plain Layout
3
\end_layout
\end_inset
VA Office of Rural Health, Veterans Rural Health Resource Center, Iowa City
VAMC, Iowa City, Iowa, USA
\end_layout
\begin_layout Address
\begin_inset script superscript
\begin_layout Plain Layout
4
\end_layout
\end_inset
Harvard Forest, Harvard University, Petersham, Massachusetts, USA
\end_layout
\begin_layout Address
\begin_inset script superscript
\begin_layout Plain Layout
5
\end_layout
\end_inset
Center for Climatic Research, University of Wisconsin, Madison, Wisconsin,
USA
\end_layout
\begin_layout Address
\begin_inset script superscript
\begin_layout Plain Layout
6
\end_layout
\end_inset
Department of Forest and Wildlife Ecology, University of Wisconsin, Madison,
Wisconsin, USA
\end_layout
\begin_layout Address
\begin_inset script superscript
\begin_layout Plain Layout
7
\end_layout
\end_inset
Department of Biological Sciences, University of Notre Dame, Notre Dame,
Indiana, USA
\end_layout
\begin_layout Address
\begin_inset script superscript
\begin_layout Plain Layout
8
\end_layout
\end_inset
Department of Statistics, University of Wisconsin, Madison, Wisconsin, USA
\end_layout
\begin_layout Address
\begin_inset script superscript
\begin_layout Plain Layout
*
\end_layout
\end_inset
Corresponding author; E-mail: [email protected]
\end_layout
\begin_layout Address
\begin_inset script superscript
\begin_layout Plain Layout
&
\end_layout
\end_inset
These authors contributed equally to this work.
\begin_inset ERT
status open
\begin_layout Plain Layout
\backslash
newpage
\end_layout
\end_inset
\end_layout
\begin_layout Quote
\begin_inset Note Note
status open
\begin_layout Plain Layout
Short title: Settlement-era northeastern U.S.
tree composition
\end_layout
\end_inset
\end_layout
\begin_layout Chunk
<<setup, echo=FALSE>>=
\end_layout
\begin_layout Chunk
inputDir <- 'output'
\end_layout
\begin_layout Chunk
version <- 0.4
\end_layout
\begin_layout Chunk
@
\end_layout
\begin_layout Abstract
We present a gridded 8 km-resolution data product of the estimated composition
of tree taxa at the time of Euro-American settlement of the northeastern
United States and the statistical methodology used to produce the product
from trees recorded by land surveyors.
Composition is defined as the proportion of stems larger than approximately
20 cm diameter at breast height for 22 tree taxa, generally at the genus
level.
The data come from settlement-era public survey records that are transcribed
and then aggregated spatially, giving count data.
The domain is divided into two regions, eastern (Maine to Ohio) and midwestern
(Indiana to Minnesota).
Public Land Survey point data in the midwestern region (ca.
0.8-km resolution) are aggregated to a regular 8 km grid, while data in
the eastern region, from Town Proprietor Surveys, are aggregated at the
township level in irregularly-shaped local administrative units.
The product is based on a Bayesian statistical model fit to the count data
that estimates composition on a regular 8 km grid across the entire domain.
The statistical model is designed to handle data from both the regular
grid and the irregularly-shaped townships and allows us to estimate composition
at locations with no data and to smooth over noise caused by limited counts
in locations with data.
Critically, the model also allows us to quantify uncertainty in our composition
estimates, making the product suitable for applications employing data
assimilation.
We expect this data product to be useful for understanding the state of
vegetation in the northeastern United States prior to large-scale Euro-American
settlement.
In addition to specific regional questions, the data product can also serve
as a baseline against which to investigate how forests and ecosystems change
after intensive settlement.
The data product is being made available at the NIS data portal as version
1.0.
\end_layout
\begin_layout Abstract
Keywords: biogeography, species composition, old-growth forests, spatial
modeling, Bayesian statistical model, vegetation mapping
\end_layout
\begin_layout Section
Introduction
\end_layout
\begin_layout Standard
Historical datasets provide critical context to understand forest ecology.
They allow researchers to define `baseline' conditions for conservation
management, to understand ecosystem processes at decadal and centennial
scales, to track forest responses to shifting climates, and, particularly
in regions with widespread land use change, to understand the extent to
which forests after conversion and regeneration differ from the original
forest cover.
\end_layout
\begin_layout Standard
Euro-American settlement and subsequent land use change occurred in a time-trans
ient fashion across North America and were accompanied by land surveys needed
to demarcate land for land tenure and use.
Various systems were used by surveyors to locate legal boundary markers,
usually by recording and marking trees adjacent to survey markers.
These data provide vegetation information that can be mapped and used quantitat
ively to represent the period of settlement.
Early surveys (from 1620 until 1825) in the northeastern United States
provide spatially-aggregated data at the township level
\begin_inset ERT
status open
\begin_layout Plain Layout
\backslash
citep{Cogb:etal:2002,thompson2013four}
\end_layout
\end_inset
\begin_inset ERT
status open
\begin_layout Plain Layout
\end_layout
\end_inset
, with typical township size on the order of 200
\begin_inset Formula $\mbox{km}^{2}$
\end_inset
and no information about the locations of individual trees; we refer to
these as the Town Proprietor Survey (TPS).
Later surveys after the establishment of the U.S.
Public Land Survey System (PLS) by the General Land Office (GLO) provide
point-level data along a regular grid, with one-half mile (800 m) spacing,
for Ohio and westward during the period 1785 to 1907
\begin_inset ERT
status open
\begin_layout Plain Layout
\backslash
citep{bourdo1956review,pattison1957beginnings,schulte2001original,goring2015comp
osition}
\end_layout
\end_inset
.
At each point 2-4 trees were identified, and the common name, diameter
at breast height, and distance and bearing from the point were recorded.
Survey instructions during the PLS varied through time and by point type.
Accounting for this variation requires data screening to maximize consistency
among points and the application of spatially-varying correction factors
\begin_inset CommandInset citation
LatexCommand citet
key " goring2015composition"
\end_inset
to accurately assess tree stem density, basal area and biomass from the
early settlement records, but the impact on composition estimates is limited
\begin_inset ERT
status open
\begin_layout Plain Layout
\backslash
citep{liu2011broadscale}
\end_layout
\end_inset
.
Surveyors sometimes used ambiguous common names, which requires matching
to scientific names and standardization
\begin_inset ERT
status open
\begin_layout Plain Layout
\backslash
citep{mladenoff2002narrowing,goring2015composition}
\end_layout
\end_inset
.
\end_layout
\begin_layout Standard
Logging, agriculture, and land abandonment have left an indelible mark on
forests in the northeastern United States
\begin_inset ERT
status open
\begin_layout Plain Layout
\backslash
citep{foster1998land,rhemtulla2009legacies,thompson2013four,goring2015compositio
n}
\end_layout
\end_inset
.
However most studies have assessed these effects in individual states or
smaller domains
\begin_inset ERT
status open
\begin_layout Plain Layout
\backslash
citep{friedman2005regional,rhemtulla2009historical}
\end_layout
\end_inset
and with various spatial resolutions, from townships (36 square miles)
to forest zones of hundreds or thousands of square miles.
\begin_inset CommandInset citation
LatexCommand citet
key "goring2015composition"
\end_inset
provide a new dataset of forest composition, biomass, and stem density
based on PLS data for the upper Midwest that is resolved to an 8 km by
8 km grid cell scale, providing broad spatial coverage at a spatial scale
that can be compared to modern forests using Forest Inventory and Analysis
products
\begin_inset ERT
status open
\begin_layout Plain Layout
\backslash
citep{gray2012forest}
\end_layout
\end_inset
.
Combined with additional, coarsely-sampled PLS data from Illinois and Indiana,
newly-digitized data from southern Michigan, and with the TPS data, this
gives us raw data for much of the northeastern United States.
However, there are several limitations of using the raw data that can be
alleviated by the use of a statistical model to develop a statistically-estimat
ed data product.
First, the PLS and TPS data only provide estimates of within-cell variance
that do not account for information from nearby locations.
Second, there are data gaps: the available digitized data from Illinois
and Indiana represent a small fraction of those states, and missing townships
are common in the TPS data.
Third, the TPS and PLS data have fundamentally different sampling design
and spatial resolution.
Our statistical model allows us to provide a spatially-complete data product
of settlement-era tree composition for a common 8 km grid with uncertainty
across the northeastern U.S.
\end_layout
\begin_layout Standard
In Section
\begin_inset CommandInset ref
LatexCommand ref
reference "sec:Data"
\end_inset
we describe the data sources, while Section
\begin_inset CommandInset ref
LatexCommand ref
reference "sec:Statistical-model"
\end_inset
describes our statistical models.
In Section
\begin_inset CommandInset ref
LatexCommand ref
reference "sec:Model-comparison"
\end_inset
we quantitatively compare competing statistical specifications, and in
Section
\begin_inset CommandInset ref
LatexCommand ref
reference "sec:Data-product"
\end_inset
we describe the final data product.
In Section
\begin_inset CommandInset ref
LatexCommand ref
reference "sec:Discussion"
\end_inset
we discuss
\color red
the uncertainties estimated by
\color inherit
and the limitations of the statistical model, and we list related data products
under development.
\end_layout
\begin_layout Standard
\begin_inset Note Note
status open
\begin_layout Plain Layout
Properly assessing uncertainty in ecological data is imperative to understanding
and modelling ecological processes
\begin_inset CommandInset citation
LatexCommand citep
key "cressie2009accounting"
\end_inset
.
In this way, a model that can account for the spatial structure of the
underlying PLS and TPS data, and provide reliable estimates of uncertainty
across the northeastern United States, provides a valuable tool for researchers
interested in the ecological structure and function of forests at longer
time scales.
\end_layout
\end_inset
\end_layout
\begin_layout Section
Data
\begin_inset CommandInset label
LatexCommand label
name "sec:Data"
\end_inset
\end_layout
\begin_layout Standard
The raw data were obtained from land division survey records collated and
digitized from across the northeastern U.S.
by a number of researchers (Fig.
\begin_inset CommandInset ref
LatexCommand ref
reference "fig:Spatial-domain"
\end_inset
).
For the states of Minnesota, Wisconsin, Illinois, Indiana, and Michigan
(the midwestern subdomain), digitized data are available at PLS survey
point locations and have been aggregated to a regular 8 km grid in the
Albers projection.
(Note that for Indiana and Illinois, at the moment trees are associated
with township centroids and then assigned to 8 km grid cells based on the
centroid, but in the near future we will have point locations available
for each tree.) For the states of Ohio, Pennsylvania, New Jersey, New York
and the six New England states (the eastern subdomain), data are aggregated
at the township level.
\color red
We make predictions for all of the states listed above; these constitute
our core domain.
\color inherit
There are also data from a single township in Quebec and a single township
in northern Delaware
\color red
; these data help inform predictions in nearby locations within our core
domain, but predictions are not made for Quebec or Delaware
\color inherit
.
Digitization of PLS data in Minnesota, Wisconsin and Michigan is essentially
complete, with PLS data for nearly all 8 km grid cells, but data in Illinois
and Indiana represent a sample of the full set of grid cells, with survey
record transcription ongoing.
Data for the eastern states are available for a subset of the full set
of townships covering the domain; the TPS data for some townships were
lost, incomplete, or have not been located
\begin_inset ERT
status open
\begin_layout Plain Layout
\backslash
citep{Cogb:etal:2002}
\end_layout
\end_inset
.
\end_layout
\begin_layout Standard
\begin_inset Float figure
wide false
sideways false
status open
\begin_layout Plain Layout
\begin_inset CommandInset label
LatexCommand label
name "fig:domain"
\end_inset
\begin_inset Graphics
filename fig1.pdf
scale 130
\end_inset
\end_layout
\begin_layout Plain Layout
\begin_inset Caption
\begin_layout Plain Layout
Spatial domain of the northeastern United States, with locations with data
shown in gray.
Locations are grid cells in midwestern portion and townships in eastern
portion.
In addition to locations without data being indicated in white, grid cells
completely covered in water are white (e.g., a few locations in the northwestern
portion of the domain in the states of Minnesota and Wisconsin).
\begin_inset CommandInset label
LatexCommand label
name "fig:Spatial-domain"
\end_inset
\end_layout
\end_inset
\end_layout
\end_inset
\end_layout
\begin_layout Standard
Note that surveys occurred over a period of more than 200 years as European
colonists (before U.S.
independence) and the United States settled what is now the northeastern
and midwestern United States.
Our estimates are for the period of settlement represented by the survey
data and therefore are time-transgressive; they do not represent any single
point in time across the domain, but rather the state of the landscape
at the time just prior to widespread Euro-American settlement and land
use
\begin_inset ERT
status open
\begin_layout Plain Layout
\backslash
citep{Whit:1996,Cogb:etal:2002}
\end_layout
\end_inset
.
These forest composition datasets do include the effects of Native American
land use and early Euro-American settlement activities
\begin_inset ERT
status open
\begin_layout Plain Layout
\backslash
citep[e.g.,][]{Blac:etal:2006}
\end_layout
\end_inset
, but it is likely that the imprint of this earlier land use is highly concentra
ted rather than spatially extensive
\begin_inset ERT
status open
\begin_layout Plain Layout
\backslash
citep{munoz2014defining}
\end_layout
\end_inset
\begin_inset ERT
status open
\begin_layout Plain Layout
\end_layout
\end_inset
.
\end_layout
\begin_layout Standard
Extensive details on the upper Midwest (Minnesota, Wisconsin, Michigan)
data and processing steps are available
\begin_inset ERT
status open
\begin_layout Plain Layout
\backslash
cite{goring2015composition}
\end_layout
\end_inset
; key elements include the use of only corner points, the use of only the
two closest trees at each corner point, spatially-varying correction factors
for sampling effort, and a standardized taxonomy table.
The lower Midwest (Illinois, Indiana) data were purchased from the Indiana
State Archives (Indiana) and Hubtack Document Resources (hubtack.com; Illinois)
and processed using similar steps as for the upper Midwest data.
Digitization of the Illinois and Indiana data is still underway, so many
grid cells contained no data at the time the statistical model was fit.
Note that the number of trees per grid cell varies depending on the number
of survey points in a cell, with an average of 124 trees per cell.
The gridded data at the 8 km resolution for the midwest subdomain are available
through the NIS data portal
\color red
\begin_inset ERT
status open
\begin_layout Plain Layout
\backslash
citep{Gori:etal:data:2016}
\end_layout
\end_inset
\color inherit
.
The TPS data were compiled by C.V.
Cogbill from a myriad of archival sources representing land division surveys
conducted in connection with local settlement
\color red
and are available through the NIS data portal
\begin_inset ERT
status open
\begin_layout Plain Layout
\backslash
citep{Cogb:dataNE:2016,Cogb:dataOH:2016}
\end_layout
\end_inset
\color inherit
.
\end_layout
\begin_layout Standard
The aggregation into taxonomic groups is primarily at the genus level but
is at the species level in some cases of monospecific genera.
We model the following 22 taxa plus an
\begin_inset Quotes eld
\end_inset
other hardwood
\begin_inset Quotes erd
\end_inset
category: Atlantic white cedar (
\emph on
Chamaecyparis thyoides
\emph default
), Ash (
\emph on
Fraxinus spp.
\emph default
), Basswood (
\emph on
Tilia americana
\emph default
), Beech (
\emph on
Fagus grandifolia)
\emph default
, Birch (
\emph on
Betula spp.
\emph default
), Black gum/sweet gum (
\emph on
Nyssa sylvatica
\emph default
and
\emph on
Liquidambar styraciflua
\emph default
), Cedar/juniper (
\emph on
Juniperus virginiana
\emph default
and
\emph on
Thuja occidentalis
\emph default
), Cherry (
\emph on
Prunus spp.
\emph default
), Chestnut (
\emph on
Castanea dentata
\emph default
), Dogwood (
\emph on
Cornus spp.
\emph default
), Elm (
\emph on
Ulmus spp.
\emph default
), Fir (
\emph on
Abies balsamea
\emph default
), Hemlock (
\emph on
Tsuga canadensis
\emph default
), Hickory (
\emph on
Carya spp.
\emph default
), Ironwood (
\emph on
Carpinus caroliniana
\emph default
and
\emph on
Ostrya virginiana
\emph default
), Maple (