-
Notifications
You must be signed in to change notification settings - Fork 172
/
Copy pathvideo_infer.py
133 lines (116 loc) · 5.41 KB
/
video_infer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
# Copyright (c) 2024 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import paddle
from paddlemix.models.qwen2_vl import MIXQwen2Tokenizer
from paddlemix.models.qwen2_vl.modeling_qwen2_vl import Qwen2VLForConditionalGeneration
from paddlemix.processors.qwen2_vl_processing import (
Qwen2VLImageProcessor,
Qwen2VLProcessor,
process_vision_info,
)
from paddlemix.utils.log import logger
def main(args):
paddle.seed(seed=0)
compute_dtype = args.dtype
if "npu" in paddle.get_device():
is_bfloat16_supported = True
else:
is_bfloat16_supported = paddle.amp.is_bfloat16_supported()
if compute_dtype == "bfloat16" and not is_bfloat16_supported:
logger.warning("bfloat16 is not supported on your device,change to float32")
compute_dtype = "float32"
model = Qwen2VLForConditionalGeneration.from_pretrained(args.model_path, dtype="bfloat16")
image_processor = Qwen2VLImageProcessor()
tokenizer = MIXQwen2Tokenizer.from_pretrained(args.model_path)
processor = Qwen2VLProcessor(image_processor, tokenizer)
# min_pixels = 256*28*28 # 200704
# max_pixels = 1280*28*28 # 1003520
# processor = Qwen2VLProcessor(image_processor, tokenizer, min_pixels=min_pixels, max_pixels=max_pixels)
# Messages containing a video and a text query
messages = [
{
"role": "user",
"content": [
{
"type": "video",
"video": f"{args.video_file}",
"max_pixels": 360 * 420,
"fps": 1.0,
},
{"type": "text", "text": f"{args.question}"},
],
}
]
# Preparation for inference
image_inputs, video_inputs = process_vision_info(messages)
question = messages[0]["content"][1]["text"]
video_pad_token = "<|vision_start|><|video_pad|><|vision_end|>"
text = f"<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n<|im_start|>user\n{video_pad_token}{question}<|im_end|>\n<|im_start|>assistant\n"
text = [text]
inputs = processor(
text=text,
images=image_inputs,
videos=video_inputs,
padding=True,
return_tensors="pd",
)
if args.benchmark:
import time
start = 0.0
total = 0.0
for i in range(20):
if i > 10:
start = time.time()
with paddle.no_grad():
generated_ids = model.generate(
**inputs, max_new_tokens=args.max_new_tokens, temperature=args.temperature, top_p=args.top_p
) # already trimmed in paddle
output_text = processor.batch_decode(
generated_ids[0], skip_special_tokens=True, clean_up_tokenization_spaces=False
)
if i > 10:
total += time.time() - start
print("s/it: ", total / 10)
print(f"GPU memory_allocated: {paddle.device.cuda.memory_allocated() / 1024 ** 3:.2f} GB")
print(f"GPU max_memory_allocated: {paddle.device.cuda.max_memory_allocated() / 1024 ** 3:.2f} GB")
print(f"GPU memory_reserved: {paddle.device.cuda.memory_reserved() / 1024 ** 3:.2f} GB")
print(f"GPU max_memory_reserved: {paddle.device.cuda.max_memory_reserved() / 1024 ** 3:.2f} GB")
print("output_text:\n", output_text)
else:
# Inference: Generation of the output
generated_ids = model.generate(
**inputs, max_new_tokens=args.max_new_tokens, temperature=args.temperature, top_p=args.top_p
) # already trimmed in paddle
output_text = processor.batch_decode(
generated_ids[0], skip_special_tokens=True, clean_up_tokenization_spaces=False
)
print(f"GPU memory_allocated: {paddle.device.cuda.memory_allocated() / 1024 ** 3:.2f} GB")
print(f"GPU max_memory_allocated: {paddle.device.cuda.max_memory_allocated() / 1024 ** 3:.2f} GB")
print(f"GPU memory_reserved: {paddle.device.cuda.memory_reserved() / 1024 ** 3:.2f} GB")
print(f"GPU max_memory_reserved: {paddle.device.cuda.max_memory_reserved() / 1024 ** 3:.2f} GB")
print("output_text:\n", output_text)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--model_path", type=str, default="Qwen/Qwen2-VL-2B-Instruct")
parser.add_argument("--question", type=str, default="Describe this video.")
parser.add_argument("--video_file", type=str, default="paddlemix/demo_images/red-panda.mp4")
parser.add_argument("--top_p", type=float, default=0.01)
parser.add_argument("--temperature", type=float, default=0.01)
parser.add_argument("--max_new_tokens", type=int, default=512)
parser.add_argument("--dtype", type=str, default="bfloat16")
parser.add_argument("--fp16", action="store_true")
parser.add_argument("--benchmark", action="store_true")
args = parser.parse_args()
main(args)