该案例提供了用户使用 PaddleClas 的超轻量图像分类方案(PULC,Practical Ultra Lightweight image Classification)快速构建轻量级、高精度、可落地的清晰度评估的分类模型。该模型返回图片清晰或者模糊的标签和概率值,该模型可以广泛应用于直播场景、审核场景、海量数据过滤场景等,也可以用于很多视觉任务的后处理中,助理视觉任务整体精度的提升,进而提升相关产品的用户满意度。
下表列出了清晰度评估模型的相关指标,前两行展现了使用 SwinTranformer_tiny 和 MobileNetV3_small_x0_35 作为 backbone 训练得到的模型的相关指标,第三行至第六行依次展现了替换 backbone 为 PP-LCNet_x1_0、使用 SSLD 预训练模型、使用 SSLD 预训练模型 + EDA 策略、使用 SSLD 预训练模型 + EDA 策略 + SKL-UGI 知识蒸馏策略训练得到的模型的相关指标。
模型 | Accuracy(%) | 延时(ms) | 存储(M) | 策略 |
---|---|---|---|---|
SwinTranformer_tiny | - | - | 111 | 使用 ImageNet 预训练模型 |
MobileNetV3_small_x0_35 | - | 2.85 | 2.6 | 使用 ImageNet 预训练模型 |
PPLCNet_x1_0 | - | 2.13 | 7.0 | 使用 ImageNet 预训练模型 |
PPLCNet_x1_0 | - | 2.13 | 7.0 | 使用 SSLD 预训练模型 |
PPLCNet_x1_0 | - | 2.13 | 7.0 | 使用 SSLD 预训练模型+EDA 策略 |
PPLCNet_x1_0 | 95.30 | 2.13 | 7.0 | 使用 SSLD 预训练模型+EDA 策略+SKL-UGI 知识蒸馏策略 |
备注:
- 延时是基于 Intel(R) Xeon(R) Gold 6148 CPU @ 2.40GHz 测试得到,开启 MKLDNN 加速策略,线程数为10。
- 关于PP-LCNet的介绍可以参考PP-LCNet介绍,相关论文可以查阅PP-LCNet paper。
- 您的机器安装的是 CUDA9 或 CUDA10,请运行以下命令安装
python3 -m pip install paddlepaddle-gpu -i https://mirror.baidu.com/pypi/simple
- 您的机器是CPU,请运行以下命令安装
python3 -m pip install paddlepaddle -i https://mirror.baidu.com/pypi/simple
更多的版本需求,请参照飞桨官网安装文档中的说明进行操作。
使用如下命令快速安装 paddleclas
pip3 install paddleclas
点击这里下载 demo 数据并解压,然后在终端中切换到相应目录。
- 使用命令行快速预测
paddleclas --model_name=clarity_assessment --infer_imgs=pulc_demo_imgs/clarity_assessment/blured_demo.jpg
结果如下:
>>> result
class_ids: [1], scores: [0.9955421453341842], label_names: ['blured'], filename: pulc_demo_imgs/clarity_assessment/blured_demo.jpg
Predict complete!
备注: 更换其他预测的数据时,只需要改变 --infer_imgs=xx
中的字段即可,支持传入整个文件夹。
- 在 Python 代码中预测
import paddleclas
model = paddleclas.PaddleClas(model_name="clarity_assessment")
result = model.predict(input_data="pulc_demo_imgs/clarity_assessment/blured_demo.jpg")
print(next(result))
备注:model.predict()
为可迭代对象(generator
),因此需要使用 next()
函数或 for
循环对其迭代调用。每次调用将以 batch_size
为单位进行一次预测,并返回预测结果, 默认 batch_size
为 1,如果需要更改 batch_size
,实例化模型时,需要指定 batch_size
,如 model = paddleclas.PaddleClas(model_name="clarity_assessment", batch_size=2)
, 使用默认的代码返回结果示例如下:
>>> result
[{'class_ids': [1], 'scores': [0.9955421453341842], 'label_names': ['blured'], 'filename': 'pulc_demo_imgs/clarity_assessment/blured_demo.jpg'}]
- 安装:请先参考文档环境准备 配置 PaddleClas 运行环境。
由于目前缺乏真实场景中的模糊数据,所以只能合成数据,我们基于 ImageNet、COCO 等公开数据集,在训练时,在线合成了很多模糊的数据,合成方法在3.2.2中介绍。
我们将公开数据处理成 PaddleClas 要求的数据格式 。之后在训练的预处理中增加了两种模糊方式,分别是运动模糊和高斯模糊。二者的处理代码如下所示:
# 运动模糊
def _motion_blur(img, max_ksize=12, max_angle=45):
degree = np.random.choice(np.arange(5, max_ksize, 2))
angle = np.random.choice(np.arange(-1 * max_angle, max_angle))
M = cv2.getRotationMatrix2D((degree / 2, degree / 2), angle, 1)
motion_blur_kernel = np.diag(np.ones(degree))
motion_blur_kernel = cv2.warpAffine(motion_blur_kernel, M,(degree, degree))
motion_blur_kernel = motion_blur_kernel / degree
blurred = cv2.filter2D(img, -1, motion_blur_kernel)
cv2.normalize(blurred, blurred, 0, 255, cv2.NORM_MINMAX)
img = np.array(blurred, dtype=np.uint8)
return img
# 高斯模糊
def _gaussian_blur(img, max_ksize=12):
ksize = (np.random.choice(np.arange(5, max_ksize, 2)),
np.random.choice(np.arange(5, max_ksize, 2)))
img = cv2.GaussianBlur(img, ksize, 0)
return img
在线数据模糊前后的图像对比如下图所示:
在训练时,数据处理部分会按照概率将输入图片模糊化,当前默认的概率为0.5,即训练的每一个 epoch 有一半的图片被模糊,当图片被模糊时,运动模糊和高斯模糊的概率各占一半。我们无需在 train_list.txt
中指定图片是否模糊,默认使用的公开数据集均为清晰图片,所有的模糊处理均在预处理中实现。其中,图片被模糊化后的标签为 1,否则标签为 0。
进入 PaddleClas 目录。
cd path_to_PaddleClas
进入 dataset/
目录,下载并解压清晰度评估场景的数据。
cd dataset
wget https://paddleclas.bj.bcebos.com/data/PULC/clarity_assessment.tar
tar -xf clarity_assessment.tar
cd ../
执行上述命令后,dataset/
下存在 clarity_assessment
目录,该目录中具有以下数据:
├── train
│ ├── 0
│ │ ├── 10021.jpg
│ │ ├── 10038.jpg
│ │ ├── ...
│ └── 1
│ ├── 10016.jpg
│ ├── 10028.jpg
│ ├── ...
├── train_list.txt
├── val
│ ├── 0
│ │ ├── 10077.jpg
│ │ ├── 10184.jpg
│ │ ├── ...
│ └── 1
│ ├── 10091.jpg
│ ├── 10098.jpg
│ ├── ...
└── val_list.txt
其中 train/
和 val/
分别为训练集和验证集。train_list.txt
和 val_list.txt
分别为训练集和验证集的标签文件。
备注:
-
关于
train_list.txt
、val_list.txt
的格式说明,可以参考 PaddleClas 分类数据集格式说明 。 -
关于如何得到蒸馏的标签文件可以参考知识蒸馏标签获得方法。
在 ppcls/configs/PULC/clarity_assessment/PPLCNet_x1_0.yaml
中提供了基于该场景的训练配置,可以通过如下脚本启动训练:
export CUDA_VISIBLE_DEVICES=0,1,2,3
python3 -m paddle.distributed.launch \
--gpus="0,1,2,3" \
tools/train.py \
-c ./ppcls/configs/PULC/clarity_assessment/PPLCNet_x1_0.yaml
验证集的最佳指标在 0.94-0.95
之间(数据集较小,容易造成波动)。
备注: 由于此处使用的是全量数据的子集,所以指标会略低,下同。本案例提供的预训练模型和 inference 模型是经过全量数据训练得到的,您可以直接下载使用。
训练好模型之后,可以通过以下命令实现对模型指标的评估。
python3 tools/eval.py \
-c ./ppcls/configs/PULC/clarity_assessment/PPLCNet_x1_0.yaml \
-o Global.pretrained_model="output/PPLCNet_x1_0/best_model"
其中 -o Global.pretrained_model="output/PPLCNet_x1_0/best_model"
指定了当前最佳权重所在的路径,如果指定其他权重,只需替换对应的路径即可。
模型训练完成之后,可以加载训练得到的预训练模型,进行模型预测。在模型库的 tools/infer.py
中提供了完整的示例,只需执行下述命令即可完成模型预测:
python3 tools/infer.py \
-c ./ppcls/configs/PULC/clarity_assessment/PPLCNet_x1_0.yaml \
-o Global.pretrained_model=output/PPLCNet_x1_0/best_model
输出结果如下:
[{'class_ids': [1], 'scores': [0.9999976], 'label_names': ['blured'], 'file_name': 'deploy/images/PULC/clarity_assessment/blured_demo.jpg'}]
备注:
-
这里
-o Global.pretrained_model="output/PPLCNet_x1_0/best_model"
指定了当前最佳权重所在的路径,如果指定其他权重,只需替换对应的路径即可。 -
默认是对
deploy/images/PULC/clarity_assessment/blured_demo.jpg
进行预测,此处也可以通过增加字段-o Infer.infer_imgs=xxx
对其他图片预测。
SKL-UGI 知识蒸馏是 PaddleClas 提出的一种简单有效的知识蒸馏方法,关于该方法的介绍,可以参考SKL-UGI 知识蒸馏。
复用 ppcls/configs/PULC/clarity_assessment/PPLCNet/PPLCNet_x1_0.yaml
中的超参数,训练教师模型,训练脚本如下:
export CUDA_VISIBLE_DEVICES=0,1,2,3
python3 -m paddle.distributed.launch \
--gpus="0,1,2,3" \
tools/train.py \
-c ./ppcls/configs/PULC/clarity_assessment/PPLCNet_x1_0.yaml \
-o Arch.name=ResNet101_vd
验证集的最佳指标为 0.95-0.96
之间,当前教师模型最好的权重保存在 output/ResNet101_vd/best_model.pdparams
。
配置文件ppcls/configs/PULC/clarity_assessment/PPLCNet_x1_0_distillation.yaml
提供了SKL-UGI知识蒸馏策略
的配置。该配置将ResNet101_vd
当作教师模型,PPLCNet_x1_0
当作学生模型,使用ImageNet数据集的验证集作为新增的无标签数据。训练脚本如下:
export CUDA_VISIBLE_DEVICES=0,1,2,3
python3 -m paddle.distributed.launch \
--gpus="0,1,2,3" \
tools/train.py \
-c ./ppcls/configs/PULC/clarity_assessment/PPLCNet_x1_0_distillation.yaml \
-o Arch.models.0.Teacher.pretrained=output/ResNet101_vd/best_model
验证集的最佳指标为 0.945-0.955
之间,当前模型最好的权重保存在 output/DistillationModel/best_model_student.pdparams
。
在 3.3 节和 4.1 节所使用的超参数是根据 PaddleClas 提供的 超参数搜索策略
搜索得到的,如果希望在自己的数据集上得到更好的结果,可以参考超参数搜索策略来获得更好的训练超参数。
备注: 此部分内容是可选内容,搜索过程需要较长的时间,您可以根据自己的硬件情况来选择执行。如果没有更换数据集,可以忽略此节内容。
Paddle Inference 是飞桨的原生推理库, 作用于服务器端和云端,提供高性能的推理能力。相比于直接基于预训练模型进行预测,Paddle Inference可使用 MKLDNN、CUDNN、TensorRT 进行预测加速,从而实现更优的推理性能。更多关于 Paddle Inference 推理引擎的介绍,可以参考 Paddle Inference官网教程。
当使用 Paddle Inference 推理时,加载的模型类型为 inference 模型。本案例提供了两种获得 inference 模型的方法,如果希望得到和文档相同的结果,请选择直接下载 inference 模型的方式。
此处,我们提供了将权重和模型转换的脚本,执行该脚本可以得到对应的 inference 模型:
python3 tools/export_model.py \
-c ./ppcls/configs/PULC/clarity_assessment/PPLCNet_x1_0.yaml \
-o Global.pretrained_model=output/DistillationModel/best_model_student \
-o Global.save_inference_dir=deploy/models/PPLCNet_x1_0_clarity_assessment_infer
执行完该脚本后会在 deploy/models/
下生成 PPLCNet_x1_0_clarity_assessment_infer
文件夹,models
文件夹下应有如下文件结构:
├── PPLCNet_x1_0_clarity_assessment_infer
│ ├── inference.pdiparams
│ ├── inference.pdiparams.info
│ └── inference.pdmodel
备注: 此处的最佳权重是经过知识蒸馏后的权重路径,如果没有执行知识蒸馏的步骤,最佳模型保存在output/PPLCNet_x1_0/best_model.pdparams
中。
6.1.1 小节提供了导出 inference 模型的方法,此处也提供了该场景可以下载的 inference 模型,可以直接下载体验。
cd deploy/models
# 下载 inference 模型并解压
wget https://paddleclas.bj.bcebos.com/models/PULC/clarity_assessment_infer.tar && tar -xf clarity_assessment_infer.tar
解压完毕后,models
文件夹下应有如下文件结构:
├── clarity_assessment_infer
│ ├── inference.pdiparams
│ ├── inference.pdiparams.info
│ └── inference.pdmodel
返回 deploy
目录:
cd ../
运行下面的命令,对图像 ./images/PULC/clarity_assessment/blured_demo.jpg
进行清晰度评估。
# 使用下面的命令使用 GPU 进行预测
python3.7 python/predict_cls.py -c configs/PULC/clarity_assessment/inference_clarity_assessment.yaml
# 使用下面的命令使用 CPU 进行预测
python3.7 python/predict_cls.py -c configs/PULC/clarity_assessment/inference_clarity_assessment.yaml -o Global.use_gpu=False
输出结果如下。
blured.jpg: class id(s): [1], score(s): [1.00], label_name(s): ['blured']
如果希望预测文件夹内的图像,可以直接修改配置文件中的 Global.infer_imgs
字段,也可以通过下面的 -o
参数修改对应的配置。
# 使用下面的命令使用 GPU 进行预测,如果希望使用 CPU 预测,可以在命令后面添加 -o Global.use_gpu=False
python3.7 python/predict_cls.py -c configs/PULC/clarity_assessment/inference_clarity_assessment.yaml -o Global.infer_imgs="./images/PULC/clarity_assessment/"
终端中会输出该文件夹内所有图像的分类结果,如下所示。
clarity_demo.jpg: class id(s): [0], score(s): [1.00], label_name(s): ['clarity']
blured_demo.jpg: class id(s): [1], score(s): [1.00], label_name(s): ['blured']
其中,blured
表示该图是模糊图片,clarity
表示该图是清晰图片。
PaddleClas 提供了基于 C++ 预测引擎推理的示例,您可以参考服务器端 C++ 预测来完成相应的推理部署。如果您使用的是 Windows 平台,可以参考基于 Visual Studio 2019 Community CMake 编译指南完成相应的预测库编译和模型预测工作。
Paddle Serving 提供高性能、灵活易用的工业级在线推理服务。Paddle Serving 支持 RESTful、gRPC、bRPC 等多种协议,提供多种异构硬件和多种操作系统环境下推理解决方案。更多关于Paddle Serving 的介绍,可以参考Paddle Serving 代码仓库。
PaddleClas 提供了基于 Paddle Serving 来完成模型服务化部署的示例,您可以参考模型服务化部署来完成相应的部署工作。
Paddle Lite 是一个高性能、轻量级、灵活性强且易于扩展的深度学习推理框架,定位于支持包括移动端、嵌入式以及服务器端在内的多硬件平台。更多关于 Paddle Lite 的介绍,可以参考Paddle Lite 代码仓库。
PaddleClas 提供了基于 Paddle Lite 来完成模型端侧部署的示例,您可以参考端侧部署来完成相应的部署工作。
Paddle2ONNX 支持将 PaddlePaddle 模型格式转化到 ONNX 模型格式。通过 ONNX 可以完成将 Paddle 模型到多种推理引擎的部署,包括TensorRT/OpenVINO/MNN/TNN/NCNN,以及其它对 ONNX 开源格式进行支持的推理引擎或硬件。更多关于 Paddle2ONNX 的介绍,可以参考Paddle2ONNX 代码仓库。
PaddleClas 提供了基于 Paddle2ONNX 来完成 inference 模型转换 ONNX 模型并作推理预测的示例,您可以参考Paddle2ONNX 模型转换与预测来完成相应的部署工作。