-
Notifications
You must be signed in to change notification settings - Fork 975
/
Copy pathdenoising-autoencoder-mnist-3.3.1.py
executable file
·154 lines (128 loc) · 5.2 KB
/
denoising-autoencoder-mnist-3.3.1.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
'''Trains a denoising autoencoder on MNIST dataset.
Denoising is one of the classic applications of autoencoders.
The denoising process removes unwanted noise that corrupted the
true data.
Noise + Data ---> Denoising Autoencoder ---> Data
Given a training dataset of corrupted data as input and
true data as output, a denoising autoencoder can recover the
hidden structure to generate clean data.
This example has modular design. The encoder, decoder and autoencoder
are 3 models that share weights. For example, after training the
autoencoder, the encoder can be used to generate latent vectors
of input data for low-dim visualization like PCA or TSNE.
'''
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from tensorflow.keras.layers import Dense, Input
from tensorflow.keras.layers import Conv2D, Flatten
from tensorflow.keras.layers import Reshape, Conv2DTranspose
from tensorflow.keras.models import Model
from tensorflow.keras import backend as K
from tensorflow.keras.datasets import mnist
import numpy as np
import matplotlib.pyplot as plt
from PIL import Image
np.random.seed(1337)
# load MNIST dataset
(x_train, _), (x_test, _) = mnist.load_data()
# reshape to (28, 28, 1) and normalize input images
image_size = x_train.shape[1]
x_train = np.reshape(x_train, [-1, image_size, image_size, 1])
x_test = np.reshape(x_test, [-1, image_size, image_size, 1])
x_train = x_train.astype('float32') / 255
x_test = x_test.astype('float32') / 255
# generate corrupted MNIST images by adding noise with normal dist
# centered at 0.5 and std=0.5
noise = np.random.normal(loc=0.5, scale=0.5, size=x_train.shape)
x_train_noisy = x_train + noise
noise = np.random.normal(loc=0.5, scale=0.5, size=x_test.shape)
x_test_noisy = x_test + noise
# adding noise may exceed normalized pixel values>1.0 or <0.0
# clip pixel values >1.0 to 1.0 and <0.0 to 0.0
x_train_noisy = np.clip(x_train_noisy, 0., 1.)
x_test_noisy = np.clip(x_test_noisy, 0., 1.)
# network parameters
input_shape = (image_size, image_size, 1)
batch_size = 32
kernel_size = 3
latent_dim = 16
# encoder/decoder number of CNN layers and filters per layer
layer_filters = [32, 64]
# build the autoencoder model
# first build the encoder model
inputs = Input(shape=input_shape, name='encoder_input')
x = inputs
# stack of Conv2D(32)-Conv2D(64)
for filters in layer_filters:
x = Conv2D(filters=filters,
kernel_size=kernel_size,
strides=2,
activation='relu',
padding='same')(x)
# shape info needed to build decoder model so we don't do hand computation
# the input to the decoder's first Conv2DTranspose will have this shape
# shape is (7, 7, 64) which can be processed by the decoder back to (28, 28, 1)
shape = K.int_shape(x)
# generate the latent vector
x = Flatten()(x)
latent = Dense(latent_dim, name='latent_vector')(x)
# instantiate encoder model
encoder = Model(inputs, latent, name='encoder')
encoder.summary()
# build the decoder model
latent_inputs = Input(shape=(latent_dim,), name='decoder_input')
# use the shape (7, 7, 64) that was earlier saved
x = Dense(shape[1] * shape[2] * shape[3])(latent_inputs)
# from vector to suitable shape for transposed conv
x = Reshape((shape[1], shape[2], shape[3]))(x)
# stack of Conv2DTranspose(64)-Conv2DTranspose(32)
for filters in layer_filters[::-1]:
x = Conv2DTranspose(filters=filters,
kernel_size=kernel_size,
strides=2,
activation='relu',
padding='same')(x)
# reconstruct the denoised input
outputs = Conv2DTranspose(filters=1,
kernel_size=kernel_size,
padding='same',
activation='sigmoid',
name='decoder_output')(x)
# instantiate decoder model
decoder = Model(latent_inputs, outputs, name='decoder')
decoder.summary()
# autoencoder = encoder + decoder
# instantiate autoencoder model
autoencoder = Model(inputs, decoder(encoder(inputs)), name='autoencoder')
autoencoder.summary()
# Mean Square Error (MSE) loss function, Adam optimizer
autoencoder.compile(loss='mse', optimizer='adam')
# train the autoencoder
autoencoder.fit(x_train_noisy,
x_train,
validation_data=(x_test_noisy, x_test),
epochs=10,
batch_size=batch_size)
# predict the autoencoder output from corrupted test images
x_decoded = autoencoder.predict(x_test_noisy)
# 3 sets of images with 9 MNIST digits
# 1st rows - original images
# 2nd rows - images corrupted by noise
# 3rd rows - denoised images
rows, cols = 3, 9
num = rows * cols
imgs = np.concatenate([x_test[:num], x_test_noisy[:num], x_decoded[:num]])
imgs = imgs.reshape((rows * 3, cols, image_size, image_size))
imgs = np.vstack(np.split(imgs, rows, axis=1))
imgs = imgs.reshape((rows * 3, -1, image_size, image_size))
imgs = np.vstack([np.hstack(i) for i in imgs])
imgs = (imgs * 255).astype(np.uint8)
plt.figure()
plt.axis('off')
plt.title('Original images: top rows, '
'Corrupted Input: middle rows, '
'Denoised Input: third rows')
plt.imshow(imgs, interpolation='none', cmap='gray')
Image.fromarray(imgs).save('corrupted_and_denoised.png')
plt.show()