-
Notifications
You must be signed in to change notification settings - Fork 5
/
eval_cifar.py
444 lines (370 loc) · 22.2 KB
/
eval_cifar.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
import argparse
import logging
import sys
import time
import math
from torchvision import datasets, transforms
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.utils.data as data
from torch.autograd import Variable
from sklearn.metrics import roc_auc_score, f1_score, roc_curve
from sklearn.manifold import TSNE
from sklearn.decomposition import PCA
#from autoattack import AutoAttack
from gama_multitarget_attacks import GAMA_PGD, GAMA_FW, multitarget_attack
import os
from models import *
from utils import *
BCEcriterion = nn.BCELoss()
def attack_pgd(model, X, y, epsilon, alpha, attack_iters, restarts=1, norm='l_inf',
twobranch=False, use_CWloss=False, adaptive_BCE=0):
max_loss = torch.zeros(y.shape[0]).cuda()
max_delta = torch.zeros_like(X).cuda()
norm_func = normalize
for _ in range(restarts):
delta = torch.zeros_like(X).cuda()
if norm == "l_inf":
delta.uniform_(-epsilon, epsilon)
elif norm == "l_2":
delta.normal_()
d_flat = delta.view(delta.size(0),-1)
n = d_flat.norm(p=2,dim=1).view(delta.size(0),1,1,1)
r = torch.zeros_like(n).uniform_(0, 1)
delta *= r/n*epsilon
else:
raise ValueError
delta = clamp(delta, lower_limit-X, upper_limit-X)
delta.requires_grad = True
for _ in range(attack_iters):
if twobranch:
output, evi = model(normalize(X + delta))
evi = evi.sigmoid().squeeze()
else:
output = model(normalize(X + delta))
evi = 1
output_s = torch.softmax(output, dim=1)
con_y = output_s[torch.tensor(range(X.size(0))), y].detach() # T-Con
con_pre = output_s.max(1)[0] # Con
RR_detector = con_pre * evi
loss = CW_loss(output, y) if use_CWloss else F.cross_entropy(output, y)
loss += adaptive_BCE * BCEcriterion(RR_detector, con_y)
#loss += adaptive_BCE * RR_detector.log().mean(dim=0)
grad = torch.autograd.grad(loss, delta)[0]
if norm == "l_inf":
d = torch.clamp(delta + alpha * torch.sign(grad), min=-epsilon, max=epsilon)
elif norm == "l_2":
g_norm = torch.norm(grad.view(grad.shape[0],-1),dim=1).view(-1,1,1,1)
scaled_g = grad/(g_norm + 1e-10)
d = (delta + scaled_g*alpha).view(delta.size(0),-1).renorm(p=2,dim=0,maxnorm=epsilon).view_as(delta)
d = clamp(d, lower_limit - X, upper_limit - X)
delta.data = d
if twobranch:
all_loss = F.cross_entropy(model(normalize(X+delta))[0], y, reduction='none')
else:
all_loss = F.cross_entropy(model(normalize(X+delta)), y, reduction='none')
max_delta[all_loss >= max_loss] = delta.detach()[all_loss >= max_loss]
max_loss = torch.max(max_loss, all_loss)
return max_delta
def get_args():
parser = argparse.ArgumentParser()
#parser.add_argument('--model', default='PreActResNet18')
parser.add_argument('--model_name', type=str, default='PreActResNet18')
parser.add_argument('--batch-size', default=128, type=int)
parser.add_argument('--dataset', default='CIFAR-10', type=str)
parser.add_argument('--data-dir', default='../cifar-data', type=str)
parser.add_argument('--epochs', default=200, type=int)
parser.add_argument('--lr-max', default=0.1, type=float)
parser.add_argument('--epsilon', default=8, type=int)
parser.add_argument('--attack-iters', default=10, type=int)
parser.add_argument('--restarts', default=1, type=int)
parser.add_argument('--pgd-alpha', default=2, type=float)
parser.add_argument('--fgsm-alpha', default=1.25, type=float)
parser.add_argument('--norm', default='l_inf', type=str, choices=['l_inf', 'l_2'])
parser.add_argument('--fgsm-init', default='random', choices=['zero', 'random', 'previous'])
parser.add_argument('--fname', default='cifar_model', type=str)
parser.add_argument('--seed', default=0, type=int)
parser.add_argument('--resume', default=0, type=int)
parser.add_argument('--load_epoch', default=101, type=int)
parser.add_argument('--evalset', default='test', choices=['test'])
parser.add_argument('--target', action='store_true') # whether use target-mode attack
parser.add_argument('--ConfidenceOnly', action='store_true')
parser.add_argument('--AuxiliaryOnly', action='store_true')
# two branch
parser.add_argument('--twobranch', action='store_true')
parser.add_argument('--out_dim', default=10, type=int)
parser.add_argument('--useBN', action='store_true')
parser.add_argument('--along', action='store_true')
parser.add_argument('--selfreweightCalibrate', action='store_true') # Calibrate
parser.add_argument('--selfreweightSelectiveNet', action='store_true')
parser.add_argument('--selfreweightATRO', action='store_true')
parser.add_argument('--selfreweightCARL', action='store_true') # CARL https://github.com/cassidylaidlaw/playing-it-safe
parser.add_argument('--lossversion', default='onehot', choices=['onehot', 'category'])
parser.add_argument('--tempC', default=1., type=float)
parser.add_argument('--evalonAA', action='store_true')# evaluate on AutoAttack
parser.add_argument('--evalonCWloss', action='store_true')# evaluate on PGD with CW loss
parser.add_argument('--evalonGAMA_FW', action='store_true')# evaluate on GAMA-FW
parser.add_argument('--evalonGAMA_PGD', action='store_true')# evaluate on GAMA-FW
parser.add_argument('--evalonMultitarget', action='store_true')# evaluate on GAMA-FW
parser.add_argument('--adaptive_BCE', default=0, type=float)
return parser.parse_args()
def main():
args = get_args()
# define a logger
logger = logging.getLogger(__name__)
logging.basicConfig(
format='[%(asctime)s] - %(message)s',
datefmt='%Y/%m/%d %H:%M:%S',
level=logging.DEBUG,
handlers=[
logging.FileHandler(os.path.join(args.fname, 'eval.log')),
logging.StreamHandler()
])
logger.info(args)
# set random seed
np.random.seed(args.seed)
torch.manual_seed(args.seed)
torch.cuda.manual_seed(args.seed)
epsilon = (args.epsilon / 255.)
pgd_alpha = (args.pgd_alpha / 255.)
if args.selfreweightCalibrate or args.selfreweightSelectiveNet or args.selfreweightCARL or args.selfreweightATRO:
along = True
args.out_dim = 1
transform_chain = transforms.Compose([transforms.ToTensor()])
if args.dataset == 'CIFAR-10':
item = datasets.CIFAR10(root=args.data_dir, train=False, transform=transform_chain, download=True)
num_cla = 10
elif args.dataset == 'CIFAR-100':
item = datasets.CIFAR100(root=args.data_dir, train=False, transform=transform_chain, download=True)
num_cla = 100
# load pretrained model
if args.model_name == 'PreActResNet18':
model = PreActResNet18(num_classes=num_cla)
elif args.model_name == 'PreActResNet18_twobranch_DenseV1':
model = PreActResNet18_twobranch_DenseV1(num_classes=num_cla, out_dim=args.out_dim, use_BN=args.useBN, along=along)
elif args.model_name == 'WideResNet':
model = WideResNet(34, num_cla, widen_factor=10, dropRate=0.0)
elif args.model_name == 'WideResNet_twobranch_DenseV1':
model = WideResNet_twobranch_DenseV1(34, num_cla, widen_factor=10, dropRate=0.0, along=along, use_BN=args.useBN, out_dim=args.out_dim)
elif args.model_name == 'PreActResNet18_threebranch_DenseV1':
model = PreActResNet18_threebranch_DenseV1(num_classes=num_cla, out_dim=args.out_dim, use_BN=args.useBN, along=along)
elif args.model_name == 'WideResNet_threebranch_DenseV1':
model = WideResNet_threebranch_DenseV1(34, num_cla, widen_factor=10, dropRate=0.0, use_BN=args.useBN, along=along, out_dim=args.out_dim)
else:
raise ValueError("Unknown model")
model = nn.DataParallel(model).cuda()
if args.load_epoch > 0:
model_dict = torch.load(os.path.join(args.fname, f'model_{args.load_epoch}.pth'))
logger.info(f'Resuming at epoch {args.load_epoch}')
else:
model_dict = torch.load(os.path.join(args.fname, f'model_best.pth'))
logger.info(f'Resuming at best epoch')
if 'state_dict' in model_dict.keys():
model.load_state_dict(model_dict['state_dict'])
else:
model.load_state_dict(model_dict)
model.eval()
if args.twobranch:
def normalize_model(x):
return model(normalize(x))[0]
else:
def normalize_model(x):
return model(normalize(x))
#adversary_AA = AutoAttack(normalize_model, norm='Linf', eps=epsilon, version='standard', verbose=True)
if args.evalset == 'test':
test_batches = data.DataLoader(item, batch_size=128, shuffle=False, num_workers=4)
test_acc, test_robust_acc, test_n = 0, 0, 0
test_classes_correct, test_classes_wrong = [], []
test_classes_robust_correct, test_classes_robust_wrong = [], []
# record con
test_con_correct, test_robust_con_correct = [], []
test_con_wrong, test_robust_con_wrong = [], []
# record evi
test_evi_correct, test_robust_evi_correct = [], []
test_evi_wrong, test_robust_evi_wrong = [], []
# record truecon
test_truecon_correct, test_robust_truecon_correct = [], []
test_truecon_wrong, test_robust_truecon_wrong = [], []
# record logits of classifier
test_robust_con_correct_LOGITS = torch.tensor([])
test_robust_con_wrong_LOGITS = torch.tensor([])
# record logits of rejector
test_robust_evi_correct_LOGITS = torch.tensor([])
test_robust_evi_wrong_LOGITS = torch.tensor([])
for i, (X, y) in enumerate(test_batches):
X, y = X.cuda(), y.cuda()
if args.evalonAA:
#X_adv = adversary_AA.run_standard_evaluation(X, y, bs=128)
pass
elif args.evalonGAMA_FW:
X_adv = GAMA_FW(model, X, y, eps=epsilon, twobranch=args.twobranch)
elif args.evalonGAMA_FW:
X_adv = GAMA_PGD(model, X, y, eps=epsilon, eps_iter=2*epsilon, twobranch=args.twobranch)
elif args.evalonMultitarget:
X_adv = multitarget_attack(model, X, y, epsilon, pgd_alpha, args.attack_iters, restarts=args.restarts,
norm='l_inf', twobranch=args.twobranch, num_cla=num_cla)
else:
if args.target:
y_target = sample_targetlabel(y, num_classes=num_cla)
delta = attack_pgd(model, X, y_target, epsilon, pgd_alpha, args.attack_iters, args.restarts, args.norm, target=True, twobranch=args.twobranch, use_CWloss=args.evalonCWloss, adaptive_BCE=args.adaptive_BCE)
else:
delta = attack_pgd(model, X, y, epsilon, pgd_alpha, args.attack_iters, args.restarts, args.norm, twobranch=args.twobranch, use_CWloss=args.evalonCWloss, adaptive_BCE=args.adaptive_BCE)
X_adv = X + delta.detach()
if args.twobranch:
output, output_aux = model(normalize(X))[0:2]
robust_output, robust_output_aux = model(normalize(torch.clamp(X_adv, min=lower_limit, max=upper_limit)))[0:2]
con_pre, _ = torch.softmax(output * args.tempC, dim=1).max(1) # predicted label and confidence
robust_con_pre, _ = torch.softmax(robust_output * args.tempC, dim=1).max(1) # predicted label and confidence
if args.selfreweightCalibrate:
output_aux = output_aux.sigmoid().squeeze()
robust_output_aux = robust_output_aux.sigmoid().squeeze() # bs x 1, Calibration function A \in [0,1]
test_evi_all = con_pre * output_aux
test_robust_evi_all = robust_con_pre * robust_output_aux
if args.ConfidenceOnly:
test_evi_all = con_pre
test_robust_evi_all = robust_con_pre
if args.AuxiliaryOnly:
test_evi_all = output_aux
test_robust_evi_all = robust_output_aux
elif args.selfreweightSelectiveNet:
test_evi_all = output_aux.sigmoid().squeeze()
test_robust_evi_all = robust_output_aux.sigmoid().squeeze()
elif args.selfreweightATRO:
test_evi_all = output_aux.tanh().squeeze()
test_robust_evi_all = robust_output_aux.tanh().squeeze() # bs x 1, Calibration function A \in [0,1]
elif args.selfreweightCARL:
output_all = torch.cat((output, output_aux), dim=1) # bs x 11 or bs x 101
ro_output_all = torch.cat((robust_output, robust_output_aux), dim=1) # bs x 11 or bs x 101
softmax_output = F.softmax(output_all, dim=1)
ro_softmax_output = F.softmax(ro_output_all, dim=1)
test_evi_all = softmax_output[torch.tensor(range(X.size(0))), -1]
test_robust_evi_all = ro_softmax_output[torch.tensor(range(X.size(0))), -1]
else:
output = model(normalize(X))
robust_output = model(normalize(torch.clamp(X_adv, min=lower_limit, max=upper_limit)))
test_evi_all = output.logsumexp(dim=1)
test_robust_evi_all = robust_output.logsumexp(dim=1)
output_s = F.softmax(output * args.tempC, dim=1)
out_con, out_pre = output_s.max(1)
out_truecon = output_s[torch.tensor(range(X.size(0))), y]
ro_output_s = F.softmax(robust_output * args.tempC, dim=1)
ro_out_con, ro_out_pre = ro_output_s.max(1)
ro_out_truecon = ro_output_s[torch.tensor(range(X.size(0))), y]
# output labels
labels = torch.where(out_pre == y)[0]
robust_labels = torch.where(ro_out_pre == y)[0]
labels_n = torch.where(out_pre != y)[0]
robust_labels_n = torch.where(ro_out_pre != y)[0]
# ground labels
test_classes_correct += y[labels].tolist()
test_classes_wrong += y[labels_n].tolist()
test_classes_robust_correct += y[robust_labels].tolist()
test_classes_robust_wrong += y[robust_labels_n].tolist()
# accuracy
test_acc += labels.size(0)
test_robust_acc += robust_labels.size(0)
# confidence
test_con_correct += out_con[labels].tolist()
test_con_wrong += out_con[labels_n].tolist()
test_robust_con_correct += ro_out_con[robust_labels].tolist()
test_robust_con_wrong += ro_out_con[robust_labels_n].tolist()
# true confidence
test_truecon_correct += out_truecon[labels].tolist()
test_truecon_wrong += out_truecon[labels_n].tolist()
test_robust_truecon_correct += ro_out_truecon[robust_labels].tolist()
test_robust_truecon_wrong += ro_out_truecon[robust_labels_n].tolist()
# evidence
test_evi_correct += test_evi_all[labels].tolist()
test_evi_wrong += test_evi_all[labels_n].tolist()
test_robust_evi_correct += test_robust_evi_all[robust_labels].tolist()
test_robust_evi_wrong += test_robust_evi_all[robust_labels_n].tolist()
test_n += y.size(0)
print('Finish ', i)
np.savetxt('eval_results' + str(args.tempC) + '/test_classes_correct.txt', np.array(test_classes_correct))
np.savetxt('eval_results' + str(args.tempC) + '/test_classes_wrong.txt', np.array(test_classes_wrong))
np.savetxt('eval_results' + str(args.tempC) + '/test_classes_robust_correct.txt', np.array(test_classes_robust_correct))
np.savetxt('eval_results' + str(args.tempC) + '/test_classes_robust_wrong.txt', np.array(test_classes_robust_wrong))
# confidence
test_con_correct = torch.tensor(test_con_correct)
test_robust_con_correct = torch.tensor(test_robust_con_correct)
test_con_wrong = torch.tensor(test_con_wrong)
test_robust_con_wrong = torch.tensor(test_robust_con_wrong)
# true confidence
test_truecon_correct = torch.tensor(test_truecon_correct)
test_robust_truecon_correct = torch.tensor(test_robust_truecon_correct)
test_truecon_wrong = torch.tensor(test_truecon_wrong)
test_robust_truecon_wrong = torch.tensor(test_robust_truecon_wrong)
# evidence
test_evi_correct = torch.tensor(test_evi_correct)
test_robust_evi_correct = torch.tensor(test_robust_evi_correct)
test_evi_wrong = torch.tensor(test_evi_wrong)
test_robust_evi_wrong = torch.tensor(test_robust_evi_wrong)
test_acc = test_acc/test_n
test_robust_acc = test_robust_acc/test_n
print('### Basic statistics ###')
logger.info('Clean | acc: %.4f | con cor: %.3f (%.3f) | con wro: %.3f (%.3f) | evi cor: %.3f (%.3f) | evi wro: %.3f (%.3f)',
test_acc,
test_con_correct.mean().item(), test_con_correct.std().item(),
test_con_wrong.mean().item(), test_con_wrong.std().item(),
test_evi_correct.mean().item(), test_evi_correct.std().item(),
test_evi_wrong.mean().item(), test_evi_wrong.std().item())
logger.info('Robust | acc: %.4f | con cor: %.3f (%.3f) | con wro: %.3f (%.3f) | evi cor: %.3f (%.3f) | evi wro: %.3f (%.3f)',
test_robust_acc,
test_robust_con_correct.mean().item(), test_robust_con_correct.std().item(),
test_robust_con_wrong.mean().item(), test_robust_con_wrong.std().item(),
test_robust_evi_correct.mean().item(), test_robust_evi_correct.std().item(),
test_robust_evi_wrong.mean().item(), test_robust_evi_wrong.std().item())
print('')
print('### ROC-AUC scores (confidence) ###')
clean_clean = calculate_auc_scores(test_con_correct, test_con_wrong)
_, acc95 = calculate_FPR_TPR(test_con_correct, test_con_wrong, tpr_ref=0.95)
_, acc99 = calculate_FPR_TPR(test_con_correct, test_con_wrong, tpr_ref=0.99)
robust_robust = calculate_auc_scores(test_robust_con_correct, test_robust_con_wrong)
_, ro_acc95 = calculate_FPR_TPR(test_robust_con_correct, test_robust_con_wrong, tpr_ref=0.95)
_, ro_acc99 = calculate_FPR_TPR(test_robust_con_correct, test_robust_con_wrong, tpr_ref=0.99)
logger.info('clean_clean: %.3f | robust_robust: %.3f',
clean_clean, robust_robust)
logger.info('TPR 95 clean acc: %.4f; 99 clean acc: %.4f | TPR 95 robust acc: %.4f; 99 robust acc: %.4f',
acc95 - test_acc, acc99 - test_acc, ro_acc95 - test_robust_acc, ro_acc99 - test_robust_acc)
np.savetxt('eval_results' + str(args.tempC) + '/test_robust_con_correct.txt', test_robust_con_correct.cpu().numpy())
np.savetxt('eval_results' + str(args.tempC) + '/test_robust_con_wrong.txt', test_robust_con_wrong.cpu().numpy())
np.savetxt('eval_results' + str(args.tempC) + '/test_con_correct.txt', test_con_correct.cpu().numpy())
np.savetxt('eval_results' + str(args.tempC) + '/test_con_wrong.txt', test_con_wrong.cpu().numpy())
np.savetxt('eval_results' + str(args.tempC) + '/test_robust_truecon_correct.txt', test_robust_truecon_correct.cpu().numpy())
np.savetxt('eval_results' + str(args.tempC) + '/test_robust_truecon_wrong.txt', test_robust_truecon_wrong.cpu().numpy())
np.savetxt('eval_results' + str(args.tempC) + '/test_truecon_correct.txt', test_truecon_correct.cpu().numpy())
np.savetxt('eval_results' + str(args.tempC) + '/test_truecon_wrong.txt', test_truecon_wrong.cpu().numpy())
print('')
print('### ROC-AUC scores (evidence) ###')
clean_clean = calculate_auc_scores(test_evi_correct, test_evi_wrong)
_, acc95 = calculate_FPR_TPR(test_evi_correct, test_evi_wrong, tpr_ref=0.95)
_, acc99 = calculate_FPR_TPR(test_evi_correct, test_evi_wrong, tpr_ref=0.99)
robust_robust = calculate_auc_scores(test_robust_evi_correct, test_robust_evi_wrong)
_, ro_acc95 = calculate_FPR_TPR(test_robust_evi_correct, test_robust_evi_wrong, tpr_ref=0.95)
_, ro_acc99 = calculate_FPR_TPR(test_robust_evi_correct, test_robust_evi_wrong, tpr_ref=0.99)
logger.info('clean_clean: %.3f | robust_robust: %.3f',
clean_clean, robust_robust)
logger.info('TPR 95 clean acc: %.4f; 99 clean acc: %.4f | TPR 95 robust acc: %.4f; 99 robust acc: %.4f',
acc95 - test_acc, acc99 - test_acc, ro_acc95 - test_robust_acc, ro_acc99 - test_robust_acc)
# logger.info('TPR 95 clean acc improve: %.4f | TPR 95 robust acc improve: %.4f',
# acc - test_acc, ro_acc - test_robust_acc)
np.savetxt('eval_results' + str(args.tempC) + '/test_robust_evi_correct.txt', test_robust_evi_correct.cpu().numpy())
np.savetxt('eval_results' + str(args.tempC) + '/test_robust_evi_wrong.txt', test_robust_evi_wrong.cpu().numpy())
np.savetxt('eval_results' + str(args.tempC) + '/test_evi_correct.txt', test_evi_correct.cpu().numpy())
np.savetxt('eval_results' + str(args.tempC) + '/test_evi_wrong.txt', test_evi_wrong.cpu().numpy())
# print('')
# print('### ROC-AUC scores (truecon) ###')
# clean_clean = calculate_auc_scores(test_truecon_correct, test_truecon_wrong)
# _, acc95 = calculate_FPR_TPR(test_truecon_correct, test_truecon_wrong, tpr_ref=0.95)
# _, acc99 = calculate_FPR_TPR(test_truecon_correct, test_truecon_wrong, tpr_ref=0.99)
# robust_robust = calculate_auc_scores(test_robust_truecon_correct, test_robust_truecon_wrong)
# _, ro_acc95 = calculate_FPR_TPR(test_robust_truecon_correct, test_robust_truecon_wrong, tpr_ref=0.95)
# _, ro_acc99 = calculate_FPR_TPR(test_robust_truecon_correct, test_robust_truecon_wrong, tpr_ref=0.99)
# logger.info('clean_clean: %.3f | robust_robust: %.3f',
# clean_clean, robust_robust)
# logger.info('TPR 95 clean acc: %.4f; 99 clean acc: %.4f | TPR 95 robust acc: %.4f; 99 robust acc: %.4f',
# acc95 - test_acc, acc99 - test_acc, ro_acc95 - test_robust_acc, ro_acc99 - test_robust_acc)
if __name__ == "__main__":
main()