forked from vsitzmann/deepvoxels
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutil.py
299 lines (217 loc) · 9.79 KB
/
util.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
import os, struct, math
import numpy as np
import torch
from glob import glob
import data_util
import shlex
import subprocess
import torch.nn.functional as F
def backproject(ux, uy, depth, intrinsic):
'''Given a point in pixel coordinates plus depth gives the coordinates of the imaged point in camera coordinates
'''
x = (ux - intrinsic[0][2]) / intrinsic[0][0]
y = (uy - intrinsic[1][2]) / intrinsic[1][1]
return torch.stack([depth * x, depth * y, depth, torch.ones_like(depth)], dim=0)
def parse_intrinsics(filepath, trgt_sidelength, invert_y=False):
# Get camera intrinsics
with open(filepath, 'r') as file:
f, cx, cy = list(map(float, file.readline().split()))[:3]
grid_barycenter = torch.Tensor(list(map(float, file.readline().split())))
near_plane = float(file.readline())
scale = float(file.readline())
height, width = map(float, file.readline().split())
try:
world2cam_poses = int(file.readline())
except ValueError:
world2cam_poses = None
if world2cam_poses is None:
world2cam_poses = False
world2cam_poses = bool(world2cam_poses)
cx = cx / width * trgt_sidelength
cy = cy / height * trgt_sidelength
f = trgt_sidelength / height * f
fx = f
if invert_y:
fy = -f
else:
fy = f
# Build the intrinsic matrices
full_intrinsic = np.array([[fx, 0., cx, 0.],
[0., fy, cy, 0],
[0., 0, 1, 0],
[0, 0, 0, 1]])
return full_intrinsic, grid_barycenter, scale, near_plane, world2cam_poses
def resize2d(img, size):
return F.adaptive_avg_pool2d(img, size[2:])
def compute_warp_idcs(cam_1_intrinsic,
cam_2_intrinsic,
img_1_pose,
img_1_depth,
img_2_pose,
img_2_depth):
cam_1_intrinsic = cam_1_intrinsic.squeeze().cuda()
cam_2_intrinsic = cam_2_intrinsic.squeeze().cuda()
img_1_pose = img_1_pose.squeeze().cuda()
img_2_pose = img_2_pose.squeeze().cuda()
img_1_depth = img_1_depth.squeeze().cuda()
img_2_depth = img_2_depth.squeeze().cuda()
# Get the new size
side_length = img_1_depth.shape[0]
# Get camera coordinates of pixels in camera 1
pixel_range = torch.arange(0, side_length)
xx, yy = torch.meshgrid([pixel_range, pixel_range])
xx = xx.contiguous().view(-1).float().cuda()
yy = yy.contiguous().view(-1).float().cuda()
img_1_cam_coords = backproject(yy,
xx,
img_1_depth.contiguous().view(-1),
cam_1_intrinsic)
# Convert to world coordinates
world_coords = torch.mm(img_1_pose, img_1_cam_coords)
# Convert to cam 2 coordinates
trgt_coords = torch.mm(torch.inverse(img_2_pose), world_coords)
trgt_coords = torch.mm(cam_2_intrinsic, trgt_coords)
# Get the depths in the target camera frame
transformed_depths = trgt_coords[2, :].clone()
# z-divide.
trgt_coords /= trgt_coords[2:3, :] + 1e-9
trgt_idcs = torch.round(trgt_coords[:2]).long()
# Mask out everything outside the image boundaries
mask_img_bounds = (torch.ge(trgt_idcs[0], 0) *
torch.ge(trgt_idcs[1], 0))
mask_img_bounds = (mask_img_bounds *
torch.lt(trgt_idcs[0], side_length) *
torch.lt(trgt_idcs[1], side_length))
if not mask_img_bounds.any():
print('Nothing in warped image')
return None
valid_trgt_idcs = trgt_idcs[:, mask_img_bounds]
gt_depths = img_2_depth[valid_trgt_idcs[1, :], valid_trgt_idcs[0, :]]
not_occluded = (torch.abs(gt_depths.detach() - transformed_depths[mask_img_bounds].detach()) < 0.05)
# not_occluded = gt_depths < 1000.
if not not_occluded.any():
print('Nothing unoccluded')
return None
# Get the final coordinates
valid_xx = xx[mask_img_bounds][not_occluded].long()
valid_yy = yy[mask_img_bounds][not_occluded].long()
valid_trgt_coords = trgt_coords[:, mask_img_bounds][:, not_occluded]
return torch.stack([valid_xx, valid_yy], dim=0), valid_trgt_coords
def concat_pose(feature_map, pose):
feat_map = torch.cat([feature_map, pose.squeeze()[None, :, None, None].repeat(1, 1, 64, 64)], dim=1)
return feat_map
def num_divisible_by_2(number):
i = 0
while not number % 2:
number = number // 2
i += 1
return i
def compute_view_directions(intrinsic,
cam2world,
img_height_width,
voxel_size,
frustrum_depth=1,
near_plane=np.sqrt(3) / 2):
xx, yy, zz = torch.meshgrid([torch.arange(0, img_height_width[1]),
torch.arange(0, img_height_width[0]),
torch.arange(0, frustrum_depth)])
coords = torch.stack([xx, yy, zz, torch.zeros_like(xx)], dim=0).float()
coords[2] *= voxel_size
coords[2] += near_plane
coords[0] = (coords[0] - intrinsic[0][2]) / intrinsic[0][0]
coords[1] = (coords[1] - intrinsic[1][2]) / intrinsic[1][1]
coords[:2] *= coords[2]
coords = coords.view(4, -1)
world_coords = torch.mm(cam2world, coords)[:3]
world_coords /= world_coords.norm(2, dim=0, keepdim=True)
world_coords = world_coords.view(3, img_height_width[1], img_height_width[0], frustrum_depth)
return world_coords
# util for saving tensors, for debug purposes
def write_array_to_file(tensor, filename):
sz = tensor.shape
with open(filename, 'wb') as f:
f.write(struct.pack('Q', sz[0]))
f.write(struct.pack('Q', sz[1]))
f.write(struct.pack('Q', sz[2]))
tensor.tofile(f)
def read_lines_from_file(filename):
assert os.path.isfile(filename)
lines = open(filename).read().splitlines()
return lines
# create camera intrinsics
def make_intrinsic(fx, fy, mx, my):
intrinsic = torch.eye(4)
intrinsic[0][0] = fx
intrinsic[1][1] = fy
intrinsic[0][2] = mx
intrinsic[1][2] = my
return intrinsic
# create camera intrinsics
def adjust_intrinsic(intrinsic, intrinsic_image_dim, image_dim):
if intrinsic_image_dim == image_dim:
return intrinsic
resize_width = int(math.floor(image_dim[1] * float(intrinsic_image_dim[0]) / float(intrinsic_image_dim[1])))
intrinsic[0, 0] *= float(resize_width) / float(intrinsic_image_dim[0])
intrinsic[1, 1] *= float(image_dim[1]) / float(intrinsic_image_dim[1])
# account for cropping here
intrinsic[0, 2] *= float(image_dim[0] - 1) / float(intrinsic_image_dim[0] - 1)
intrinsic[1, 2] *= float(image_dim[1] - 1) / float(intrinsic_image_dim[1] - 1)
return intrinsic
def get_sample_files(samples_path):
files = [f for f in os.listdir(samples_path) if f.endswith('.sample')] # and os.path.isfile(join(samples_path, f))]
return files
def get_sample_files_for_scene(scene, samples_path):
files = [f for f in os.listdir(samples_path) if
f.startswith(scene) and f.endswith('.sample')] # and os.path.isfile(join(samples_path, f))]
print('found ', len(files), ' for ', os.path.join(samples_path, scene))
return files
def cond_mkdir(path):
if not os.path.exists(path):
os.makedirs(path)
def load_pose(filename):
assert os.path.isfile(filename)
pose = torch.Tensor(4, 4)
lines = open(filename).read().splitlines()
assert len(lines) == 4
lines = [[x[0], x[1], x[2], x[3]] for x in (x.split(" ") for x in lines)]
return torch.from_numpy(np.asarray(lines).astype(np.float32))
def expand_to_feature_map(torch_tensor, img_size):
return torch_tensor[:, :, None, None].repeat(1, 1, img_size[0], img_size[1])
def normalize(img):
return (img - img.min()) / (img.max() - img.min())
def write_image(writer, name, img, iter):
writer.add_image(name, normalize(img.permute([0, 3, 1, 2])), iter)
def print_network(net):
model_parameters = filter(lambda p: p.requires_grad, net.parameters())
params = sum([np.prod(p.size()) for p in model_parameters])
print("%d" % params)
def custom_load(model, path, discriminator=None):
whole_dict = torch.load(path)
model.load_state_dict(whole_dict['model'])
if discriminator:
discriminator.load_state_dict(whole_dict['discriminator'])
def custom_save(model, path, discriminator=None):
whole_dict = {'model': model.state_dict()}
if discriminator:
whole_dict.update({'discriminator': discriminator.state_dict()})
torch.save(whole_dict, path)
def get_nearest_neighbors_pose(train_pose_dir, test_pose_dir, sampling_pattern='skip_2', metric='cos'):
if sampling_pattern != 'all':
skip_val = int(sampling_pattern.split('_')[-1])
else:
skip_val = 0
train_pose_files = sorted(glob(os.path.join(train_pose_dir, '*.txt')))
idcs = list(range(len(train_pose_files)))[::skip_val + 1]
train_pose_files = train_pose_files[::skip_val + 1]
test_pose_files = sorted(glob(os.path.join(test_pose_dir, '*.txt')))
train_poses = np.stack([data_util.load_pose(pose)[:3, 3] for pose in train_pose_files], axis=0)
train_poses /= np.linalg.norm(train_poses, axis=1, keepdims=True)
test_poses = np.stack([data_util.load_pose(pose)[:3, 3] for pose in test_pose_files], axis=0)
test_poses /= np.linalg.norm(test_poses, axis=1, keepdims=True)
if metric == 'cos':
cos_distance_mat = test_poses.dot(train_poses.T) # nxn matrix of cosine distances
nn_idcs = [idcs[int(val)] for val in np.argmax(cos_distance_mat, axis=1)]
elif metric == 'l2':
l2_distance_mat = np.linalg.norm(test_poses[:, None, :] - train_poses[None, :, :], axis=2)
nn_idcs = [idcs[int(val)] for val in np.argmin(l2_distance_mat, axis=1)]
return nn_idcs