From e98dd7f1079c9f7fcbbc61c8d97d335c06b09935 Mon Sep 17 00:00:00 2001 From: Brian Pondi Date: Tue, 12 Dec 2023 10:42:34 +0100 Subject: [PATCH] reset --- CHANGELOG.md | 1 - meta/subtype-schemas.json | 8 +---- proposals/ml_fit_class_xgboost.json | 46 ++--------------------------- 3 files changed, 4 insertions(+), 51 deletions(-) diff --git a/CHANGELOG.md b/CHANGELOG.md index 97606d4a..c2a4f1d7 100644 --- a/CHANGELOG.md +++ b/CHANGELOG.md @@ -33,7 +33,6 @@ and this project adheres to [Semantic Versioning](https://semver.org/spec/v2.0.0 - `flatten_dimensions` - `load_geojson` - `load_url` - - `ml_fit_class_xgboost` - `unflatten_dimension` - `vector_buffer` - `vector_reproject` diff --git a/meta/subtype-schemas.json b/meta/subtype-schemas.json index 6809dcb1..347df234 100644 --- a/meta/subtype-schemas.json +++ b/meta/subtype-schemas.json @@ -232,12 +232,6 @@ } } }, - "ml-model": { - "type": "object", - "subtype": "ml-model", - "title": "Machine Learning Model", - "description": "A machine learning model, accompanied with STAC metadata that implements the the STAC ml-model extension." - }, "output-format": { "type": "string", "subtype": "output-format", @@ -426,4 +420,4 @@ "description": "Year as integer, can be any number of digits and can be negative." } } -} \ No newline at end of file +} diff --git a/proposals/ml_fit_class_xgboost.json b/proposals/ml_fit_class_xgboost.json index 869aea15..cced25b1 100644 --- a/proposals/ml_fit_class_xgboost.json +++ b/proposals/ml_fit_class_xgboost.json @@ -1,7 +1,7 @@ { "id": "ml_fit_class_xgboost", "summary": "Train an XGBoost classification model", - "description": "Executes the fit of an XGBoost classification model based on training data.", + "description": "Fit an XGBoost classification model to training data. XGBoost is a high-performance, flexible, and portable distributed gradient boosting library. It implements machine learning algorithms within the Gradient Boosting framework, featuring parallel tree boosting for efficiency", "categories": [ "machine learning" ], @@ -9,7 +9,7 @@ "parameters": [ { "name": "predictors", - "description": "The predictors for the XGBoost classification model as a vector data cube. Aggregated to the features (vectors) of the target input variable.", + "description": "The predictors for the XGBoost classification model as a vector data cube. They are the independent variables that the XGBoost algorithm analyses to learn patterns and relationships within the data.", "schema": { "type": "object", "subtype": "datacube", @@ -25,7 +25,7 @@ }, { "name": "target", - "description": "Labeled data for XGBoost classification, aligning with predictor values based on a shared geometry dimension. This ensures a clear connection between predictor rows and labels, allowing the model to associate specific predictor values with rows during training.", + "description": "Labeled data for XGBoost classification, aligning with predictor values based on a shared geometry dimension. This ensures a clear connection between predictor rows and labels.", "schema": { "type": "object", "subtype": "datacube", @@ -84,46 +84,6 @@ "minimum": 0 } }, - { - "name": "max_delta_step", - "description": "Maximum delta step we allow each tree's weight estimation to be.", - "optional": true, - "default": 1, - "schema": { - "type": "number", - "minimum": 0 - } - }, - { - "name": "nfold", - "description": "Number of folds for cross-validation.", - "optional": true, - "default": 5, - "schema": { - "type": "integer", - "minimum": 2 - } - }, - { - "name": "nrounds", - "description": "Number of boosting rounds.", - "optional": true, - "default": 100, - "schema": { - "type": "integer", - "minimum": 1 - } - }, - { - "name": "early_stopping_rounds", - "description": "Activates early stopping. Validation metric needs to improve at least once in every early_stopping_rounds round(s) to continue training.", - "optional": true, - "default": 20, - "schema": { - "type": "integer", - "minimum": 1 - } - }, { "name": "seed", "description": "A randomization seed to use for the random sampling in training. If not given or `null`, no seed is used and results may differ on subsequent use.",