-
Notifications
You must be signed in to change notification settings - Fork 2
/
main_TaraEuropa.m
executable file
·266 lines (225 loc) · 11.5 KB
/
main_TaraEuropa.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
% Main Particulate InLine Analysis Script
% author: Guillaume Bourdin
% created: Jun 27, 2023
clear
close all
% cd('/Volumes/Data/TaraEuropa/InLineAnalysis-master')
cd('/Users/gui/Documents/MATLAB/InLineAnalysis/InLineAnalysis-master')
% Load InLineAnalysis and the configuration
ila = InLineAnalysis('cfg/TaraEuropa_cfg.m');
% Quick cfg update
%% set the date to process
% ila.cfg.days2run = datenum(2023,4,4):datenum(2023,4,19); %datenum(2023,5,10):datenum(2023,5,30);datenum(2023,6,6):datenum(2023,6,30);datenum(2023,7,8):datenum(2023,8,3)
% ila.cfg.days2run = datenum(2023,4,9):datenum(2023,4,19);
% ila.cfg.days2run = datenum(2023,4,20):datenum(2023,5,26);
% ila.cfg.days2run = datenum(2023,5,2):datenum(2023,5,3);
% ila.cfg.days2run = datenum(2023,4,4):datenum(2023,4,6);
ila.cfg.days2run = datenum(2023,8,24):datenum(2023,8,24);
%% 'SBE384504970286','SBE38450269','NMEA','FLOW','ACS412','HyperBB8002','BB3349','SUVF6254','WS3S1081','LISST1183'
ila.cfg.instruments2run = {'FLOW','SUVF6244','SBE384504970286','ACS3'};
ila.cfg.qcref.view = 'ACS3';
% ila.cfg.instruments2run = {'FLOW','SUVF6244'};
% ila.cfg.qcref.view = 'SUVF6244';
% ila.cfg.instruments2run = {'FLOW','SBE384504970286','SUVF6244','ACS3'};
ila.cfg.parallel = Inf;
ila.cfg.calibrate.(ila.cfg.qcref.view).compute_dissolved = false;
%% 1. Import | Load raw data
ila.cfg.force_import = false; %no need if first time
ila.ReadRaw();
ila.CheckDataStatus();
%% Or Load data from already processed mat files
% ila.Read('raw');
% ila.Read('bin');
ila.Read('qc');
ila.Read('prod');
% ila.CheckDataStatus();
%% 2. Synchronise instruments
% % % Independent of flow rate (for now)
% % % If flow rate varies use the Strech method
% % % Play with delay of synchronisation
% % % TSG is assumed to be set at zero
% % % No noticeable difference was observed between the TSG of EXPORTS and the BB3
% % % ila.instrument.FLOW.Sync(30);
% ila.instrument.TSG.Sync(0);
% ila.instrument.SUVF.Sync(0);
% ila.instrument.ACS57.Sync(0);
% ila.instrument.HBB.Sync(0);
% ila.instrument.BB31502.Sync(0);
% ila.instrument.LISST1183.Sync(0);
% ila.instrument.WSCD859.Sync(0);
% ila.instrument.ALFA.Sync(0);
% % % Quick visualizzation to sync with TSG
% % fig(30, 'sync TSG');
% % yyaxis('left'); plot(ila.instrument.TSG.data.dt, ila.instrument.TSG.data.t); ylabel('Temperature (^o C)');
% % % yyaxis('right'); plot(ila.instrument.BB3.data.dt, ila.instrument.BB3.data.beta(:,2)); ylabel('\beta (m^{-1} sr^{-1})'); ylim([80 300]);
% % % datetick2_doy();
% % visSync(ila.instrument.BB3.data, ila.instrument.TSG.data.dt, ila.instrument.TSG.data.t, 'Temp (C)');
% visSync(ila.instrument.FLOW.data, ila.instrument.SUVF.data.dt, ila.instrument.SUVF.data.fdom, 'FDOM (counts)');
% visSync(ila.instrument.FLOW.data, ila.instrument.ACS57.data.dt, ila.instrument.ACS57.data.a(:,20), 'a (m^{-1})');
% visSync(ila.instrument.FLOW.data, ila.instrument.ACS57.data.dt, ila.instrument.ACS57.data.c(:,40), 'c (m^{-1})');
% visSync(ila.instrument.FLOW.data, ila.instrument.HBB.data.dt, ila.instrument.HBB.data.beta(:,14), '\beta (counts)');
% visSync(ila.instrument.FLOW.data, ila.instrument.BB31052.data.dt, ila.instrument.BB31502.data.beta(:,1), '\beta (counts)');
% visSync(ila.instrument.FLOW.data, ila.instrument.LISST1183.data.dt, ila.instrument.LISST1183.data.beta(:,10), '\beta (counts)');
% visSync(ila.instrument.FLOW.data, ila.instrument.WSCD859.data.dt, ila.instrument.WSCD859.data.fdom, 'FDOM (counts)');
% visSync(ila.instrument.FLOW.data, ila.instrument.ALFA.data.dt, ila.instrument.ALFA.data.Chlb, 'chlb');yyaxis('left'); ylim([0 2]);
% % %
% % % % xlim([datenum(2018,08,14,9,55,0) datenum(2018,08,14,11,05,0)]);
% % % % ylim([-0.1 0.2]);
% % % % Once settings are good set them in the configuration file.
% % % % The software is now doing the same with one line of code.
% % ila.Sync()
% % % % ila.instrument.BB31502.Sync(-90);
% % % % ila.instrument.BB31502.Sync(-10);
%% 2. Auto-synchronise: automatic detection of filter events for AC and BB sensors
% ila.cfg.qcref.MinFiltPeriod = 60; % filter even period in minute % ACS: 55 % BB3: 60
% ila.cfg.qcref.szFilt = 10; % filter even length in minute % default = 10
% ila.SplitDetect(ila.cfg.qcref.MinFiltPeriod, ila.cfg.qcref.szFilt);
%% 3. QC Reference: Check filter event position
% run with mode ui during first run (it saves your work for the next run)
% run with mode load to load previous QC
% Note: when redoing QC of a given period of time (days2run) the previous
% QC during the same period of time is erased, QC done on other periods of
% time is kept in the json file
ila.cfg.qcref.mode='load'; % 'ui' or 'load'
ila.cfg.qcref.remove_old = false; % clear old selection of the same period
ila.QCRef();
%% 4. Split fsw and tsw
ila.Split();
ila.CheckDataStatus();
%% 4.1. Spectral QC
% check raw spectrums AC | BB | LISST sensors
ila.SpectralQC('AC',{'raw'});
%% 5. Automatic QC of raw data for step in ACS spectrum, BB saturated and obvious bad PAR & ALFA values
% Tolerance factor for auto QC ACS.
% Varies between ACS: 0.1 = minimum tolerance and >> 10 = very high tolerance (default = 3)
ila.cfg.qc.AutoQC_tolerance.filtered.a = 'auto'; %
ila.cfg.qc.AutoQC_tolerance.filtered.c = 'auto'; %
ila.cfg.qc.AutoQC_tolerance.total.a = 'auto'; %
ila.cfg.qc.AutoQC_tolerance.total.c = 'auto'; %
% define saturation threshold of a and c in uncalibrated m^-1
ila.cfg.qc.AutoQC_Saturation_Threshold.a = 10; % remove any spectra > threshold m^-1 (uncalibrated)
ila.cfg.qc.AutoQC_Saturation_Threshold.c = 40; % remove any spectra > threshold m^-1 (uncalibrated)
% Tolerance factor for auto QC BB
% 0.1 = minimum tolerance and >> 10 = very high tolerance (default = 3)
ila.cfg.qc.AutoQC_tolerance.filtered.bb = 100; % 10
ila.cfg.qc.AutoQC_tolerance.total.bb = 10; % 10
% define saturation threshold of beta in counts
ila.cfg.qc.AutoQC_Saturation_Threshold.bb = 4100; % saturate above 4000 counts
ila.AutoQC('raw');
ila.CheckDataStatus();
%% 5.1. Spectral QC
% check raw spectrums AC | BB | LISST sensors
ila.SpectralQC('AC',{'raw'}); % AC or BB
%% 5.2. Run QC directly on spectra at any level
% ila.SpectralQC inputs:
% 1) 'AC' | 'BB' | 'LISST' sensors
% 2) 'level': 'raw' | 'bin' | 'qc' | 'prod'
% 3) save plot option: boolean
% 4) table and variable to QC as shown in examples below
% Examples:
% - to QC 'a' of 'tsw' table of 'qc' level of ACs: ila.SpectralQC('AC',{'qc'}, false, {'tsw','a'})
% - to QC 'cp' of 'p' table of 'prod' level of ACs: ila.SpectralQC('AC',{'prod'}, false, {'p','cp'})
% - to QC 'beta' of 'fsw' table of 'bin' level of HBB or BB3: ila.SpectralQC('BB',{'bin'}, false, {'fsw','beta'})
% - to QC 'ag' of 'g' table of prod level of ACs: ila.SpectralQC('AC',{'prod'}, false, {'g','ag'})
ila.SpectralQC('AC',{'raw'}, false, {'fsw','c'});
%% 5.3. Loading previous qc pick selection at raw level
ila.cfg.qc.mode='ui'; % load or ui
ila.cfg.qc.specific.run = {ila.cfg.qcref.view}; % 'FLOW','ACS57','TSG', 'BB31502', 'WSCD859','PAR'
ila.QC();
%% 5.4. Write clean raw after split for BB3 and HBB | write only 'part' or 'diw' or 'all'
ila.Write('raw', 'part')
ila.CheckDataStatus();
%% 6. Bin
% % Set settings directly in configuration file (no tunning at this step)
ila.cfg.bin.skip = {};
ila.Bin()
ila.CheckDataStatus();
%% 6.1. Spectral QC
% check binned spectrums AC | BB | LISST sensors
ila.SpectralQC('AC',{'bin'});
%% 6.2. Write bin | write only 'part' or 'diw' or 'all'
ila.Write('bin', 'part')
ila.CheckDataStatus();
%% 7. Flag
ila.Flag() % copy data to next level
ila.CheckDataStatus();
%% 8. QC Interactive or Loading previous qc selection
%%%%% Settings %%%%%
ila.cfg.qc.mode='ui'; % load or ui
ila.cfg.qc.remove_old = false; % remove old selection of this period
ila.cfg.qc.qc_once_for_all = false; % true = QC all variables | false = QC variables separately)
ila.cfg.qc.remove_when_flow_below = 0; % true = remove data when flow <= 0.5 | false = no data removal data depending on flow | number = remove data when flow <= number)
% Glob
ila.cfg.qc.global.view = {ila.cfg.qcref.view};
ila.cfg.qc.global.active = false;
% Specific
ila.cfg.qc.specific.run = {ila.cfg.qcref.view};
%%%%%%%%%%%%%%%%%%%
% QCmap(ila.cfg.days2run); % plot SST maps to help QC in coastal waters
ila.QC();
ila.CheckDataStatus();
%% 8.1. Auto QC at level 'qc': run until it stabilize to 0
% ila.AutoQC('qc');
%% 8.2. Spectral QC
% check QCed spectrums AC | BB | LISST sensors
ila.SpectralQC('AC',{'qc'});
%% 8.3. Run QC directly on spectra at any level
% ila.SpectralQC inputs:
% 1) 'AC' | 'BB' | 'LISST' sensors
% 2) 'level': 'raw' | 'bin' | 'qc' | 'prod'
% 3) save plot option: boolean
% 4) table and variable to QC as shown in examples below
% Examples:
% - to QC 'a' of 'tsw' table of 'qc' level of ACs: ila.SpectralQC('AC',{'qc'}, false, {'tsw','a'})
% - to QC 'cp' of 'p' table of 'prod' level of ACs: ila.SpectralQC('AC',{'prod'}, false, {'p','cp'})
% - to QC 'beta' of 'fsw' table of 'bin' level of HBB or BB3: ila.SpectralQC('BB',{'bin'}, false, {'fsw','beta'})
% - to QC 'ag' of 'g' table of prod level of ACs: ila.SpectralQC('AC',{'prod'}, false, {'g','ag'})
% ila.SpectralQC('AC',{'qc'}, false, {'fsw','a'});
ila.SpectralQC('AC',{'qc'}, false, {'fsw','c'});
%% 9. QC Switch position
% QC switch position to make sure each filter event is separated by a
% period of total water and eventually move filter events
ila.QCSwitchPosition()
%% 9.1. Write qc | write only 'part' or 'diw' or 'all'
ila.Write('qc', 'part')
%% 10. Calibrate
% ila.cfg.calibrate.skip = {'FLOW', 'TSG', 'ALFA', 'NMEA','SBE384504970269','SBE384504970286','SUVF6244'};
ila.cfg.calibrate.skip = {'FLOW', 'TSG', 'ALFA', 'NMEA','SBE384504970269','SBE384504970286'};%SBE384504970286'};
% update filter event calcualtion method if needed: exponential_fit 25percentil
ila.cfg.calibrate.(ila.cfg.qcref.view).filt_method = '25percentil';
% update filter interpolation method if needed: CDOM linear
ila.cfg.calibrate.(ila.cfg.qcref.view).interpolation_method = 'CDOM';
ila.cfg.min_nb_pts_per_cluster = 100;
ila.cfg.time_weight_for_cluster = 0.9;
% update scattering correction method if needed: Rottgers2013_semiempirical Zaneveld1994_proportional
ila.cfg.calibrate.(ila.cfg.qcref.view).scattering_correction = 'Rottgers2013_semiempirical';
ila.Calibrate();
ila.CheckDataStatus();
%% 10.1 Product visualisation plots with option to save
save_figures = false;
%%% AC or BB 3D plots %%%
ila.SpectralQC('AC', {'prod'}, save_figures); % AC or BB
%%% ACS BB3 TSG PAR WSCD SUVF ALFA LISST final product visualisation %%%
ila.visProd_timeseries()
%% 11. Run QC directly on spectra at any level
% ila.SpectralQC inputs:
% 1) 'AC' | 'BB' | 'LISST' sensors
% 2) 'level': 'raw' | 'bin' | 'qc' | 'prod'
% 3) save plot option: boolean
% 4) table and variable to QC as shown in examples below
% Examples:
% - to QC 'a' of 'tsw' table of 'qc' level of ACs: ila.SpectralQC('AC',{'qc'}, false, {'tsw','a'})
% - to QC 'cp' of 'p' table of 'prod' level of ACs: ila.SpectralQC('AC',{'prod'}, false, {'p','cp'})
% - to QC 'beta' of 'fsw' table of 'bin' level of HBB or BB3: ila.SpectralQC('BB',{'bin'}, false, {'fsw','beta'})
% - to QC 'ag' of 'g' table of prod level of ACs: ila.SpectralQC('AC',{'prod'}, false, {'g','ag'})
ila.SpectralQC('AC',{'prod'}, false, {'p','ap'});
%% 11.1. Load previous qc pick selection at prod level
ila.cfg.qc.mode = 'load'; % load or ui
ila.cfg.qc.specific.run = {ila.cfg.qcref.view}; % 'FLOW','ACS57','TSG', 'BB31502', 'WSCD859','PAR'
ila.QC();
%% 12. Save products | write only 'part' or 'diw' or 'all'
ila.Write('prod', 'part')
%% re-write final version of 'raw', 'qc' and 'bin' | write only 'part' or 'diw' or 'all'
ila.Write('raw', 'part')
ila.Write('bin', 'part')
ila.Write('qc', 'part')