diff --git a/dataset_transform.py b/dataset_transform.py index 81ff63a..a8d6bd5 100644 --- a/dataset_transform.py +++ b/dataset_transform.py @@ -6,22 +6,24 @@ from io import BytesIO from sklearn.model_selection import train_test_split - -# 读取csv文件 ''' original_dataset原始数据的路径文件夹,需修改为实际的路径 ''' + +#训练和验证集文本数据的文件 data1 = pd.read_csv('original_dataset/data1/ImageWordData.csv') +#训练和验证集图像数据的目录 +data1_images_folder='original_dataset/data1/ImageData' # 先将文本及对应图像id划分划分训练集和验证集 train_data, val_data = train_test_split(data1, test_size=0.2, random_state=42) # 创建函数来处理数据集,使文本关联到其对应图像id的图像 -def process_train_valid(data, img_file, txt_file): +def process_train_valid(data, images_folder, img_file, txt_file): with open(img_file, 'w') as f_img, open(txt_file, 'w') as f_txt: for index, row in data.iterrows(): # 图片内容需要被编码为base64格式 - img_path = os.path.join('original_dataset/data1/ImageData', row['image_id']) + img_path = os.path.join(images_folder, row['image_id']) with open(img_path, 'rb') as f_img_file: img = Image.open(f_img_file) img_buffer = BytesIO() @@ -36,21 +38,24 @@ def process_train_valid(data, img_file, txt_file): f_txt.write(json.dumps(text_data) + '\n') # 处理训练集和验证集 -process_train_valid(train_data, 'Chinese-CLIP/datasets/DatasetName/train_imgs.tsv', 'Chinese-CLIP/datasets/DatasetName/train_texts.jsonl') -process_train_valid(val_data, 'Chinese-CLIP/datasets/DatasetName/valid_imgs.tsv', 'Chinese-CLIP/datasets/DatasetName/valid_texts.jsonl') +# datasets/DatasetName为在Chinese-CLIP项目目录下新建的存放转换后数据集的文件夹 +process_train_valid(train_data, data1_images_folder, 'Chinese-CLIP/datasets/DatasetName/train_imgs.tsv', 'Chinese-CLIP/datasets/DatasetName/train_texts.jsonl') +process_train_valid(val_data, data1_images_folder, 'Chinese-CLIP/datasets/DatasetName/valid_imgs.tsv', 'Chinese-CLIP/datasets/DatasetName/valid_texts.jsonl') -#制作从文本到图像(Text_to_Image)检索时的,测试集。data2为Text_to_Image测试数据文件夹名 +# 制作从文本到图像(Text_to_Image)检索时的,测试集。data2为Text_to_Image测试数据文件夹名 image_data2 = pd.read_csv('original_dataset/data2/image_data.csv') word_test2 = pd.read_csv('original_dataset/data2/word_test.csv') +# 原始图像测试集目录 +data2_images_folder='original_dataset/data2/ImageData' # 处理Text_to_Image测试集 -def process_text_to_image(image_data, word_test, img_file, txt_file): +def process_text_to_image(image_data, images_folder, word_test, img_file, txt_file): with open(img_file, 'w') as f_img, open(txt_file, 'w') as f_txt: for index, row in image_data.iterrows(): # 图片内容需要被编码为base64格式 - img_path = os.path.join('../dataset/data2/ImageData', row['image_id']) + img_path = os.path.join(images_folder, row['image_id']) with open(img_path, 'rb') as f_img_file: img = Image.open(f_img_file) img_buffer = BytesIO() @@ -65,20 +70,23 @@ def process_text_to_image(image_data, word_test, img_file, txt_file): text_data = {"text_id": row["text_id"], "text": row["caption"], "image_ids": []} f_txt.write(json.dumps(text_data) + '\n') -process_text_to_image(image_data2, word_test2, 'Chinese-CLIP/datasets/DatasetName/test2_imgs.tsv', 'Chinese-CLIP/datasets/DatasetName/test2_texts.jsonl') +# datasets/DatasetName为在Chinese-CLIP项目目录下新建的存放转换后数据集的文件夹 +process_text_to_image(image_data2, data2_images_folder, word_test2, 'Chinese-CLIP/datasets/DatasetName/test2_imgs.tsv', 'Chinese-CLIP/datasets/DatasetName/test2_texts.jsonl') -#制作从图像到文本(Image_to_Text)检索时的,测试集。data3为Image_to_Text测试数据文件夹名 +# 制作从图像到文本(Image_to_Text)检索时的,测试集。data3为Image_to_Text测试数据文件夹名 image_test3 = pd.read_csv('original_dataset/data3/image_test.csv') word_data3 = pd.read_csv('original_dataset/data3/word_data.csv') +# 原始图像测试集目录 +data3_images_folder='original_dataset/data3/ImageData' # 处理Image_to_Text测试集集 -def process_image_to_text(image_data, word_test, img_file, txt_file): +def process_image_to_text(image_data, images_folder, word_test, img_file, txt_file): with open(img_file, 'w') as f_img, open(txt_file, 'w') as f_txt: for index, row in image_data.iterrows(): # 图片内容需要被编码为base64格式 - img_path = os.path.join('../dataset/data3/ImageData', row['image_id']) + img_path = os.path.join(images_folder, row['image_id']) with open(img_path, 'rb') as f_img_file: img = Image.open(f_img_file) img_buffer = BytesIO() @@ -93,7 +101,8 @@ def process_image_to_text(image_data, word_test, img_file, txt_file): text_data = {"text_id": row["text_id"], "text": row["caption"], "image_ids": []} f_txt.write(json.dumps(text_data) + '\n') -process_image_to_text(image_test3, word_data3, 'Chinese-CLIP/datasets/DatasetName/test3_imgs.tsv', 'Chinese-CLIP/datasets/DatasetName/test3_texts.jsonl') +# datasets/DatasetName为在Chinese-CLIP项目目录下新建的存放转换后数据集的文件夹 +process_image_to_text(image_test3, data3_images_folder, word_data3, 'Chinese-CLIP/datasets/DatasetName/test3_imgs.tsv', 'Chinese-CLIP/datasets/DatasetName/test3_texts.jsonl') '''