forked from ml-jku/hopfield-layers
-
Notifications
You must be signed in to change notification settings - Fork 0
/
functional.py
453 lines (405 loc) · 26.1 KB
/
functional.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
import torch
import torch.nn as nn
from torch import Tensor
from typing import Optional, Tuple, Union
def hopfield_core_forward(query, # type: Tensor
key, # type: Tensor
value, # type: Tensor
embed_dim_to_check, # type: int
num_heads, # type: int
in_proj_weight, # type: Optional[Tensor]
in_proj_bias, # type: Optional[Tensor]
bias_k, # type: Optional[Tensor]
bias_v, # type: Optional[Tensor]
add_zero_attn, # type: bool
dropout_p, # type: float
out_proj_weight, # type: Tensor
out_proj_bias, # type: Tensor
training=True, # type: bool
key_padding_mask=None, # type: Optional[Tensor]
need_weights=True, # type: bool
attn_mask=None, # type: Optional[Tensor]
use_separate_proj_weight=False, # type: bool
q_proj_weight=None, # type: Optional[Tensor]
k_proj_weight=None, # type: Optional[Tensor]
v_proj_weight=None, # type: Optional[Tensor]
static_k=None, # type: Optional[Tensor]
static_v=None, # type: Optional[Tensor]
key_as_static=False, # type: bool
query_as_static=False, # type: bool
value_as_static=False, # type: bool
value_as_connected=False, # type: bool
normalize_pattern=False, # type: bool
normalize_pattern_eps=1e-5, # type: float
p_norm_weight=None, # type: Optional[Tensor]
p_norm_bias=None, # type: Optional[Tensor]
head_dim=None, # type: Optional[int]
pattern_dim=None, # type: Optional[int]
scaling=None, # type: Optional[Union[float, Tensor]]
update_steps_max=0, # type: Optional[Union[int, Tensor]]
update_steps_eps=1e-4, # type: Union[float, Tensor]
return_raw_associations=False, # type: bool
return_projected_patterns=False # type: bool
):
# type: (...) -> Tuple[Tensor, Optional[Tensor]]
r"""
Args:
query, key, value: map a query and a set of key-value pairs to an output.
See "Attention Is All You Need" for more details.
See "Hopfield Networks is All You Need" for more details in the setting of Hopfield networks.
embed_dim_to_check: total dimension of the model (in case of default head dimension).
num_heads: parallel attention heads.
in_proj_weight, in_proj_bias: input projection weight and bias.
bias_k, bias_v: bias of the key and value sequences to be added at dim=0.
add_zero_attn: add a new batch of zeros to the key and
value sequences at dim=1.
dropout_p: probability of an element to be zeroed.
out_proj_weight, out_proj_bias: the output projection weight and bias.
training: apply dropout if is ``True``.
key_padding_mask: if provided, specified padding elements in the key will
be ignored by the attention. This is an binary mask. When the value is True,
the corresponding value on the attention layer will be filled with -inf.
need_weights: output attn_output_weights.
attn_mask: 2D or 3D mask that prevents attention to certain positions. A 2D mask will be broadcasted for all
the batches while a 3D mask allows to specify a different mask for the entries of each batch.
use_separate_proj_weight: the function accept the proj. weights for query, key,
and value in different forms. If false, in_proj_weight will be used, which is
a combination of q_proj_weight, k_proj_weight, v_proj_weight.
q_proj_weight, k_proj_weight, v_proj_weight, in_proj_bias: input projection weight and bias.
static_k, static_v: static key and value used for attention operators.
key_as_static: interpret specified key as being static.
query_as_static: interpret specified key as being static.
value_as_static: interpret specified key as being static.
value_as_connected: connect value projection with key projection.
normalize_pattern: enable normalization of patterns.
normalize_pattern_eps: offset of the denominator for numerical stability.
p_norm_weight, p_norm_bias: pattern normalization weight and bias.
head_dim: dimensionality of each head.
pattern_dim: dimensionality of each projected value input.
scaling: scaling of association heads, often represented as beta (one entry per head).
update_steps_max: maximum count of association update steps (None equals to infinity).
update_steps_eps: minimum difference threshold between two consecutive association update steps.
return_raw_associations: return raw association (softmax) values, unmodified.
return_projected_patterns: return pattern projection values, unmodified.
Shape:
Inputs:
- query: :math:`(L, N, E)` where L is the target sequence length, N is the batch size, E is
the embedding dimension.
- key: :math:`(S, N, E)`, where S is the source sequence length, N is the batch size, E is
the embedding dimension.
- value: :math:`(S, N, E)` where S is the source sequence length, N is the batch size, E is
the embedding dimension.
- key_padding_mask: :math:`(N, S)` where N is the batch size, S is the source sequence length.
If a ByteTensor is provided, the non-zero positions will be ignored while the zero positions
will be unchanged. If a BoolTensor is provided, the positions with the
value of ``True`` will be ignored while the position with the value of ``False`` will be unchanged.
- attn_mask: 2D mask :math:`(L, S)` where L is the target sequence length, S is the source sequence length.
3D mask :math:`(N*num_heads, L, S)` where N is the batch size, L is the target sequence length,
S is the source sequence length. attn_mask ensures that position i is allowed to attend the unmasked
positions. If a ByteTensor is provided, the non-zero positions are not allowed to attend
while the zero positions will be unchanged. If a BoolTensor is provided, positions with ``True``
are not allowed to attend while ``False`` values will be unchanged. If a FloatTensor
is provided, it will be added to the attention weight.
- static_k: :math:`(N*num_heads, S, head_dim)`, where S is the source sequence length, N is the batch size.
- static_v: :math:`(N*num_heads, S, head_dim)`, where S is the source sequence length, N is the batch size.
- scaling: :math:`(num_heads,)`, where num_heads is the amount of heads.
Outputs:
- attn_output: :math:`(L, N, E)`, where L is the target sequence length, N is the batch size,
E is the embedding dimension.
- attn_output_weights: :math:`(N, L, S)`, where N is the batch size,
L is the target sequence length, S is the source sequence length.
- attn_raw: :math:``(N, num_heads, L, S)`, where N is the batch size,
L is the target sequence length, S is the source sequence length.
"""
if not torch.jit.is_scripting():
tens_ops = (query, key, value, in_proj_weight, in_proj_bias, bias_k, bias_v,
out_proj_weight, out_proj_bias)
if any([type(t) is not Tensor for t in tens_ops]) and nn.functional.has_torch_function(tens_ops):
return nn.functional.handle_torch_function(
hopfield_core_forward, tens_ops, query, key, value,
embed_dim_to_check, num_heads, in_proj_weight, in_proj_bias,
bias_k, bias_v, add_zero_attn, dropout_p, out_proj_weight,
out_proj_bias, training=training, key_padding_mask=key_padding_mask,
need_weights=need_weights, attn_mask=attn_mask,
use_separate_proj_weight=use_separate_proj_weight,
q_proj_weight=q_proj_weight, k_proj_weight=k_proj_weight,
v_proj_weight=v_proj_weight, static_k=static_k, static_v=static_v,
key_as_static=key_as_static, query_as_static=query_as_static,
value_as_static=value_as_static, value_as_connected=value_as_connected,
normalize_pattern=normalize_pattern, normalize_pattern_eps=normalize_pattern_eps,
p_norm_weight=p_norm_weight, p_norm_bias=p_norm_bias,
head_dim=head_dim, pattern_dim=pattern_dim, scaling=scaling, update_steps_max=update_steps_max,
update_steps_eps=update_steps_eps, return_raw_associations=return_raw_associations)
tgt_len, bsz, embed_dim = query.shape[0], value.shape[1], query.shape[2]
assert embed_dim == embed_dim_to_check
# allow MHA to have different sizes for the feature dimension
assert key.size(0) == value.size(0) and key.size(1) == value.size(1)
assert (scaling is None) or (type(scaling) in (float, torch.Tensor))
if type(scaling) == torch.Tensor:
assert scaling.ndimension() == 1 and scaling.shape[0] == num_heads, "only one entry per head."
assert (update_steps_max is None) or (type(update_steps_max) in (int, torch.Tensor))
if type(update_steps_max) == torch.Tensor:
assert update_steps_max.ndimension() == 1 and update_steps_max.shape[0] == num_heads, "only one entry per head."
elif type(update_steps_max) == int:
update_steps_max = torch.tensor([update_steps_max] * num_heads, dtype=torch.int32, device=query.device)
elif update_steps_max is None:
update_steps_max = -torch.ones(size=(num_heads,), dtype=torch.int32, device=query.device)
assert type(update_steps_eps) in (float, torch.Tensor)
if type(update_steps_eps) == torch.Tensor:
assert update_steps_eps.ndimension() == 1 and update_steps_eps.shape[0] == num_heads, "only one entry per head."
assert (update_steps_eps <= 0.0).sum() == 0, "only positive thresholds allowed."
update_steps_eps = update_steps_eps.to(device=query.device)
elif type(update_steps_eps) == float:
assert update_steps_eps > 0, "only positive thresholds allowed."
update_steps_eps = torch.tensor([update_steps_eps] * num_heads, dtype=query.dtype, device=query.device)
# Adapt dimensionality of each each.
if head_dim is None:
head_dim = embed_dim // num_heads
assert head_dim * num_heads == embed_dim, r'embed_dim must be divisible by num_heads.'
hopfield_dim = num_heads * head_dim
# Adapt dimensionality of each value projection.
if pattern_dim is None:
pattern_dim = head_dim
assert (not value_as_connected) or (pattern_dim == head_dim)
q, k, v, xi, src_len = None, None, None, None, 0
update_step, xi_old, xi_difference_norm = 0, None, float(r'+inf')
update_active_heads = torch.tensor([[[True]]] * num_heads * bsz, device=query.device)
assert update_active_heads.any(), "at least one head needs to be active."
####################################################################################################################
# BEGIN HOPFIELD UPDATE ITERATION #
####################################################################################################################
while update_active_heads.any():
# The query is already projected into the "Hopfield" space at "update_step" equals 0.
# No more projection necessary if "update_step" greater than 0.
if update_step == 0:
if not use_separate_proj_weight:
if torch.equal(query, key) and torch.equal(key, value) and not (
key_as_static or query_as_static or value_as_static):
# self-attention
q, k, v = nn.functional.linear(query, in_proj_weight, in_proj_bias).chunk(3, dim=-1)
elif torch.equal(key, value) and not (key_as_static or value_as_static):
# encoder-decoder attention
_start, _end = 0, hopfield_dim
if query_as_static:
q = query.repeat(1, num_heads, 1)
else:
# This is inline in_proj function with in_proj_weight and in_proj_bias
_b = in_proj_bias
_w = in_proj_weight[_start:_end, :]
if _b is not None:
_b = _b[_start:_end]
q = nn.functional.linear(query, _w, _b)
_start = hopfield_dim
_end = None
if key is None:
assert value is None
k = None
v = None
else:
# This is inline in_proj function with in_proj_weight and in_proj_bias
_b = in_proj_bias
_w = in_proj_weight[_start:_end, :]
if _b is not None:
_b = _b[_start:_end]
k, v = nn.functional.linear(key, _w, _b).chunk(2, dim=-1)
else:
_start, _end = 0, hopfield_dim
if query_as_static:
q = query.repeat(1, num_heads, 1)
else:
# This is inline in_proj function with in_proj_weight and in_proj_bias
_b = in_proj_bias
_w = in_proj_weight[_start:_end, :]
if _b is not None:
_b = _b[_start:_end]
q = nn.functional.linear(query, _w, _b)
_start += hopfield_dim
_end += hopfield_dim
if key_as_static:
k = key.repeat(1, num_heads, 1)
else:
# This is inline in_proj function with in_proj_weight and in_proj_bias
_b = in_proj_bias
_w = in_proj_weight[_start:_end, :]
if _b is not None:
_b = _b[_start:_end]
k = nn.functional.linear(key, _w, _b)
_start += hopfield_dim
_end += hopfield_dim
if value_as_static:
v = value.repeat(1, num_heads, 1)
else:
# This is inline in_proj function with in_proj_weight and in_proj_bias
_b = in_proj_bias
_w = in_proj_weight[_start:_end, :]
if _b is not None:
_b = _b[_start:_end]
v = nn.functional.linear(value, _w, _b)
else:
_start, _end = 0, hopfield_dim
if query_as_static:
q = query.repeat(1, num_heads, 1)
else:
q_proj_weight_non_opt = torch.jit._unwrap_optional(q_proj_weight)
len1, len2 = q_proj_weight_non_opt.size()
assert len1 == hopfield_dim and len2 == query.size(-1)
if in_proj_bias is not None:
q = nn.functional.linear(query, q_proj_weight_non_opt, in_proj_bias[_start:_end])
_start += hopfield_dim
_end += hopfield_dim
else:
q = nn.functional.linear(query, q_proj_weight_non_opt, in_proj_bias)
v = value
if key_as_static:
k = key.repeat(1, num_heads, 1)
else:
k_proj_weight_non_opt = torch.jit._unwrap_optional(k_proj_weight)
len1, len2 = k_proj_weight_non_opt.size()
assert len1 == hopfield_dim and len2 == key.size(-1)
_bias = None if in_proj_bias is None else in_proj_bias[_start:_end]
k = nn.functional.linear(key, k_proj_weight_non_opt, _bias)
if value_as_connected:
v = nn.functional.linear(v, k_proj_weight_non_opt, _bias)
_start += hopfield_dim
_end += num_heads * pattern_dim
if value_as_static:
if not (value_as_connected or key_as_static):
v = v.repeat(1, num_heads, 1)
else:
v_proj_weight_non_opt = torch.jit._unwrap_optional(v_proj_weight)
len1, len2 = v_proj_weight_non_opt.size()
assert len1 == (num_heads * pattern_dim) and len2 == v.size(-1)
if in_proj_bias is not None:
v = nn.functional.linear(v, v_proj_weight_non_opt, in_proj_bias[_start:])
else:
v = nn.functional.linear(v, v_proj_weight_non_opt, in_proj_bias)
if attn_mask is not None:
assert attn_mask.dtype == torch.float32 or attn_mask.dtype == torch.float64 or \
attn_mask.dtype == torch.float16 or attn_mask.dtype == torch.uint8 or \
attn_mask.dtype == torch.bool, \
'Only float, byte, and bool types are supported for attn_mask, not {}'.format(attn_mask.dtype)
if attn_mask.dtype == torch.uint8:
warnings.warn(
"Byte tensor for attn_mask in nn.HopfieldCore is deprecated. Use bool tensor instead.")
attn_mask = attn_mask.to(torch.bool)
if attn_mask.dim() == 2:
attn_mask = attn_mask.unsqueeze(0)
if list(attn_mask.size()) != [1, query.size(0), key.size(0)]:
raise RuntimeError('The size of the 2D attn_mask is not correct.')
elif attn_mask.dim() == 3:
if list(attn_mask.size()) != [bsz * num_heads, query.size(0), key.size(0)]:
raise RuntimeError('The size of the 3D attn_mask is not correct.')
else:
raise RuntimeError("attn_mask's dimension {} is not supported".format(attn_mask.dim()))
# attn_mask's dim is 3 now.
# Optionally normalize patterns.
if normalize_pattern:
q = torch.nn.functional.layer_norm(
input=q.reshape(shape=(-1, head_dim)), normalized_shape=(head_dim,),
weight=p_norm_weight, bias=p_norm_bias, eps=normalize_pattern_eps).reshape(shape=q.shape)
k = torch.nn.functional.layer_norm(
input=k.reshape(shape=(-1, head_dim)), normalized_shape=(head_dim,),
weight=p_norm_weight, bias=p_norm_bias, eps=normalize_pattern_eps).reshape(shape=k.shape)
else:
active_xi = xi.masked_select(mask=update_active_heads).view(size=(-1, *xi.shape[1:]))
active_k = k.masked_select(mask=update_active_heads).view(size=(-1, *k.shape[1:]))
q = torch.masked_scatter(input=q, mask=update_active_heads, source=torch.bmm(active_xi, active_k))
# Optionally scale association heads (each head separately).
if type(scaling) == float:
q = q * scaling
elif type(scaling) == torch.Tensor:
q = q * scaling.view(1, 1, -1).repeat(repeats=(1, 1, q.shape[2] // scaling.shape[0]))
if update_step == 0:
# convert ByteTensor key_padding_mask to bool
if key_padding_mask is not None and key_padding_mask.dtype == torch.uint8:
warnings.warn(
"Byte tensor for key_padding_mask in nn.HopfieldCore is deprecated. Use bool tensor instead.")
key_padding_mask = key_padding_mask.to(torch.bool)
if bias_k is not None and bias_v is not None:
if static_k is None and static_v is None and key_as_static is None and value_as_static is None:
k = torch.cat([k, bias_k.repeat(1, bsz, 1)])
v = torch.cat([v, bias_v.repeat(1, bsz, 1)])
if attn_mask is not None:
attn_mask = nn.functional.pad(attn_mask, [0, 1])
if key_padding_mask is not None:
key_padding_mask = nn.functional.pad(key_padding_mask, [0, 1])
else:
assert static_k is None, "bias cannot be added to static key."
assert static_v is None, "bias cannot be added to static value."
assert not key_as_static, "bias cannot be added to static key."
assert not value_as_static, "bias cannot be added to static value."
else:
assert bias_k is None
assert bias_v is None
q = q.contiguous().view(tgt_len, -1, head_dim).transpose(0, 1)
if k is not None:
k = k.contiguous().view(-1, bsz * num_heads, head_dim).transpose(0, 1)
if v is not None:
v = v.contiguous().view(v.shape[0], bsz * num_heads, -1).transpose(0, 1)
if static_k is not None:
assert static_k.size(0) == bsz * num_heads
assert static_k.size(2) == head_dim
k = static_k
if static_v is not None:
assert static_v.size(0) == bsz * num_heads
assert static_v.size(2) == pattern_dim
v = static_v
src_len = k.size(1)
if key_padding_mask is not None:
assert key_padding_mask.size(0) == bsz
assert key_padding_mask.size(1) == src_len
if add_zero_attn:
src_len += 1
k = torch.cat([k, torch.zeros((k.size(0), 1) + k.size()[2:], dtype=k.dtype, device=k.device)], dim=1)
v = torch.cat([v, torch.zeros((v.size(0), 1) + v.size()[2:], dtype=v.dtype, device=v.device)], dim=1)
if attn_mask is not None:
attn_mask = nn.functional.pad(attn_mask, [0, 1])
if key_padding_mask is not None:
key_padding_mask = nn.functional.pad(key_padding_mask, [0, 1])
attn_output_weights = torch.bmm(q, k.transpose(1, 2))
assert list(attn_output_weights.size()) == [bsz * num_heads, tgt_len, src_len]
if attn_mask is not None:
if attn_mask.dtype == torch.bool:
attn_output_weights.masked_fill_(attn_mask, float('-inf'))
else:
attn_output_weights += attn_mask
if key_padding_mask is not None:
attn_output_weights = attn_output_weights.view(bsz, num_heads, tgt_len, src_len)
attn_output_weights = attn_output_weights.masked_fill(
key_padding_mask.unsqueeze(1).unsqueeze(2),
float('-inf'),
)
attn_output_weights = attn_output_weights.view(bsz * num_heads, tgt_len, src_len)
# Compute new xi for Hopfield retrieve iterations.
if xi is None:
xi = nn.functional.softmax(attn_output_weights, dim=-1)
else:
xi = torch.masked_scatter(input=xi, mask=update_active_heads, source=nn.functional.softmax(
attn_output_weights.masked_select(mask=update_active_heads).view(size=(-1, *xi.shape[1:])), dim=-1))
# Compute threshold-based stopping criterion for Hopfield retrieve iterations.
with torch.no_grad():
xi_active = xi.view(size=(bsz, num_heads, tgt_len, src_len))
update_active_heads = (update_step < update_steps_max) | (update_steps_max < 0)
if xi_old is not None:
update_active_heads &= ((xi_old - xi_active).norm(p=2, dim=(2, 3)).max(axis=0)[0]) > update_steps_eps
update_active_heads = update_active_heads.unsqueeze(dim=1).unsqueeze(dim=2).repeat(repeats=(bsz, 1, 1))
xi_old = xi_active
update_step += 1
####################################################################################################################
# END HOPFIELD UPDATE ITERATION #
####################################################################################################################
attn_output_weights = nn.functional.dropout(xi, p=dropout_p, training=training)
attn_output = torch.bmm(attn_output_weights, v)
assert list(attn_output.shape[:2]) == [bsz * num_heads, tgt_len]
attn_output = attn_output.transpose(0, 1).contiguous().view(tgt_len, bsz, -1)
if out_proj_weight is not None:
assert attn_output.shape[2] == num_heads * pattern_dim
attn_output = nn.functional.linear(attn_output, out_proj_weight, out_proj_bias)
xi = xi.view(bsz, num_heads, tgt_len, src_len) if return_raw_associations else None
v = v.view(bsz, num_heads, src_len, -1) if return_projected_patterns else None
if need_weights:
# average attention weights over heads
attn_output_weights = attn_output_weights.view(bsz, num_heads, tgt_len, src_len)
return attn_output, attn_output_weights.sum(dim=1) / num_heads, xi, v
else:
return attn_output, None, xi, v