-
Notifications
You must be signed in to change notification settings - Fork 4
/
train_rel.py
137 lines (113 loc) · 5.98 KB
/
train_rel.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
import gc
import logging
import os
import random
from argparse import ArgumentParser
from datetime import datetime
import torchtext
import torch
import numpy as np
import datasets.utils
from datasets.lifelong_fewrel_dataset import LifelongFewRelDataset
from models.rel_agem import AGEM
from models.rel_anml import ANML
from models.rel_baseline import Baseline
from models.rel_maml import MAML
from models.rel_oml import OML
from models.rel_replay import Replay
logging.basicConfig(level='INFO', format='%(asctime)s - %(name)s - %(levelname)s - %(message)s')
logger = logging.getLogger('ContinualLearningLog')
if __name__ == '__main__':
# Parse command line arguments
parser = ArgumentParser()
parser.add_argument('--n_epochs', type=int, help='Number of epochs (only for MTL)', default=1)
parser.add_argument('--lr', type=float, help='Learning rate (only for the baselines)', default=3e-5)
parser.add_argument('--inner_lr', type=float, help='Inner-loop learning rate', default=0.001)
parser.add_argument('--meta_lr', type=float, help='Meta learning rate', default=3e-5)
parser.add_argument('--model', type=str, help='Name of the model', default='bert')
parser.add_argument('--learner', type=str, help='Learner method', default='sequential')
parser.add_argument('--mini_batch_size', type=int, help='Batch size of data points within an episode', default=4)
parser.add_argument('--updates', type=int, help='Number of inner-loop updates', default=5)
parser.add_argument('--write_prob', type=float, help='Write probability for buffer memory', default=1.0)
parser.add_argument('--max_length', type=int, help='Maximum sequence length for the input', default=64)
parser.add_argument('--seed', type=int, help='Random seed', default=42)
parser.add_argument('--replay_rate', type=float, help='Replay rate from memory', default=0.01)
parser.add_argument('--order', type=int, help='Number of task orders to run for', default=5)
parser.add_argument('--num_clusters', type=int, help='Number of clusters to take', default=10)
parser.add_argument('--replay_every', type=int, help='Number of data points between replay', default=1600)
args = parser.parse_args()
logger.info('Using configuration: {}'.format(vars(args)))
# Set random seed
torch.manual_seed(args.seed)
random.seed(args.seed)
np.random.seed(args.seed)
# Set base path
base_path = os.path.dirname(os.path.abspath(__file__))
# Load training and validation data
logger.info('Loading the dataset')
data_dir = os.path.join(base_path, '../data/LifelongFewRel')
relation_file = os.path.join(data_dir, 'relation_name.txt')
training_file = os.path.join(data_dir, 'training_data.txt')
validation_file = os.path.join(data_dir, 'val_data.txt')
relation_names = datasets.utils.read_relations(relation_file)
train_data = datasets.utils.read_rel_data(training_file)
val_data = datasets.utils.read_rel_data(validation_file)
logger.info('Finished loading the dataset')
# Load GloVe vectors
logger.info('Loading GloVe vectors')
glove = torchtext.vocab.GloVe(name='6B', dim=300)
logger.info('Finished loading GloVe vectors')
# Get relation embeddings for clustering
relation_embeddings = datasets.utils.get_relation_embedding(relation_names, glove)
# Set the device
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# Generate clusters
relation_index = datasets.utils.get_relation_index(train_data)
cluster_labels, relation_embeddings = datasets.utils.create_relation_clusters(args.num_clusters,
relation_embeddings, relation_index)
# Validation dataset
val_dataset = LifelongFewRelDataset(val_data, relation_names)
# Run for different orders of the clusters
accuracies = []
for i in range(args.order):
logger.info('Running order {}'.format(i + 1))
# Initialize the model
if args.learner == 'sequential':
learner = Baseline(device=device, training_mode='sequential', **vars(args))
elif args.learner == 'multi_task':
learner = Baseline(device=device, training_mode='multi_task', **vars(args))
elif args.learner == 'agem':
learner = AGEM(device=device, **vars(args))
elif args.learner == 'replay':
learner = Replay(device=device, **vars(args))
elif args.learner == 'maml':
learner = MAML(device=device, **vars(args))
elif args.learner == 'oml':
learner = OML(device=device, **vars(args))
elif args.learner == 'anml':
learner = ANML(device=device, **vars(args))
else:
raise NotImplementedError
logger.info('Using {} as learner'.format(learner.__class__.__name__))
# Generate continual learning training data
logger.info('Generating continual learning data')
train_datasets = datasets.utils.prepare_rel_datasets(train_data, relation_names, cluster_labels, args.num_clusters)
logger.info('Finished generating continual learning data')
# Training
logger.info('----------Training starts here----------')
model_file_name = learner.__class__.__name__ + '-' + str(datetime.now()).replace(':', '-').replace(' ', '_') + '.pt'
model_dir = os.path.join(base_path, 'saved_models')
os.makedirs(model_dir, exist_ok=True)
learner.training(train_datasets, **vars(args))
learner.save_model(os.path.join(model_dir, model_file_name))
logger.info('Saved the model with name {}'.format(model_file_name))
# Testing
logger.info('----------Testing starts here----------')
acc = learner.testing(val_dataset, **vars(args))
accuracies.append(acc)
# Delete the model to free memory
del learner
gc.collect()
if device.type == 'cuda':
torch.cuda.empty_cache()
logger.info('Average accuracy across runs: {}'.format(np.mean(accuracies)))