forked from suryanshsk/Python-Voice-Assistant-Suryanshsk
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathplanting_analysis.py
150 lines (128 loc) · 4.66 KB
/
planting_analysis.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
import folium
import matplotlib.pyplot as plt
import numpy as np
from geopy.geocoders import Nominatim
def get_location_coordinates(area_name):
geolocator = Nominatim(user_agent="Planting_Analysis")
try:
location = geolocator.geocode(area_name)
if location:
return location.latitude, location.longitude
else:
print("Area not found")
return None, None
except Exception as e:
print(f"Error occurred while fetching coordinates: {e}")
return None, None
def interactive_map(lat, lon, area_name):
area_map = folium.Map(location=[lat, lon], zoom_start=13)
folium.Marker([lat, lon], popup=f"{area_name}").add_to(area_map)
map_filename = f"{area_name}_map.html"
area_map.save(map_filename)
print(f"Interactive map saved as {map_filename}")
return map_filename
def trees_capacity(area_km2, tree_species):
species_density = {
"Oak": 200,
"Pine": 300,
"Maple": 150,
"Cedar": 250,
"Birch": 180,
"Willow": 220,
"Spruce": 260,
"Fir": 240,
"Aspen": 190,
"Cherry": 200,
"Magnolia": 170,
"Redwood": 150,
"Palms": 100,
"Teak": 120,
"Bamboo": 300,
}
if tree_species in species_density:
trees_per_km2 = species_density[tree_species]
else:
trees_per_km2 = 100 # default density
total_trees = area_km2 * trees_per_km2
return total_trees
def oxygen_output(trees, tree_species):
species_oxygen = {
"Oak": 180,
"Pine": 140,
"Maple": 150,
"Cedar": 170,
"Birch": 160,
"Willow": 155,
"Spruce": 150,
"Fir": 140,
"Aspen": 145,
"Cherry": 160,
"Magnolia": 170,
"Redwood": 150,
"Palms": 50,
"Teak": 120,
"Bamboo": 75,
}
oxygen_per_tree = species_oxygen.get(tree_species, 118)
total_oxygen = trees * oxygen_per_tree
return total_oxygen
def planting_recommendations(area_name):
recommendations = {
"tropical": ["Teak", "Bamboo", "Palm"],
"temperate": ["Oak", "Maple", "Cherry"],
"arid": ["Cedar", "Willow", "Fir"],
"coastal": ["Birch", "Magnolia", "Redwood"],
}
if "tropical" in area_name.lower():
return recommendations["tropical"]
elif "arid" in area_name.lower():
return recommendations["arid"]
elif "coastal" in area_name.lower():
return recommendations["coastal"]
else:
return recommendations["temperate"]
def carbon_offset(trees):
carbon_per_tree = 22
total_offset = trees * carbon_per_tree
return total_offset
def visualize_results(tree_capacity, oxygen_output_val, tree_species):
labels = ['Trees', 'Oxygen Output (kg)']
values = [tree_capacity, oxygen_output_val]
x = np.arange(len(labels))
width = 0.35
fig, ax = plt.subplots()
rects1 = ax.bar(x - width/2, values, width, label='Values')
ax.set_ylabel('Count / Output')
ax.set_title('Tree Capacity and Oxygen Output')
ax.set_xticks(x)
ax.set_xticklabels(labels)
ax.legend()
for rect in rects1:
height = rect.get_height()
ax.annotate('{}'.format(height),
xy=(rect.get_x() + rect.get_width() / 2, height),
xytext=(0, 3),
textcoords="offset points",
ha='center', va='bottom')
plt.show()
def analyze_area_for_tree(area_name, area_km2, tree_species):
lat, lon = get_location_coordinates(area_name)
if lat is None or lon is None:
return
map_file = interactive_map(lat, lon, area_name)
tree_capacity = trees_capacity(area_km2, tree_species)
oxygen_output_val = oxygen_output(tree_capacity, tree_species)
carbon_offset_val = carbon_offset(tree_capacity)
suitable_trees = planting_recommendations(area_name)
print(f"For the area of {area_km2} km² in {area_name}: ")
print(f"Estimated number of {tree_species} trees that can be planted: {tree_capacity}")
print(f"Estimated annual oxygen output: {oxygen_output_val} kg")
print(f"Estimated carbon offset: {carbon_offset_val} kg/year")
print(f"View the interactive map here: {map_file}")
print(f"Recommended tree species for planting: {', '.join(suitable_trees)}")
visualize_results(tree_capacity, oxygen_output_val, tree_species)
if __name__ == "__main__":
area_name = input("Enter the name of the city/Area Name: ")
area_km2 = float(input("Enter the area in km²: "))
tree_species = input("Enter the tree species (e.g. Oak, Pine, Maple, Cedar, Cherry etc): ")
analyze_area_for_tree(area_name, area_km2, tree_species)