forked from barak/quantumminigolf
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathClassicSimulator.cpp
220 lines (190 loc) · 5.85 KB
/
ClassicSimulator.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
/* Quantum Minigolf, a computer game illustrating quantum mechanics
Copyright (C) 2007 Friedemann Reinhard <[email protected]>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#include "ClassicSimulator.h"
ClassicSimulator::ClassicSimulator (int width, int height,
Renderer * renderer, int holex, int holey,
int holer)
{
this->width = width;
this->height = height;
this->renderer = renderer;
this->holex = holex;
this->holey = holey;
this->holer = holer;
}
ClassicSimulator::~ClassicSimulator (void)
{
}
void
ClassicSimulator::setPosition (float x, float y)
{
pos[0] = x;
pos[1] = y;
}
void
ClassicSimulator::setVelocity (float vx, float vy)
{
vel[0] = vx, vel[1] = vy;
}
//propagate - propagation of the classical ball during dt milliseconds
//
// it propagates the ball in mini-steps, each moving forward oonly one pixel
// according to the following scheme
//
// 1. move the ball one pixel ("trial move")
// 2. check for a wall collision (either with the hole or the
// "hard" part of the potential)
// In case of a collision, undo the trial move and change the velocity
// 3. Modify the velocity according to the soft potential
// 4. apply friction
// 5. goto 1
int
ClassicSimulator::propagate (Uint32 dt)
{
float speed = sqrt (vel[0] * vel[0] + vel[1] * vel[1]);
// determine, how much 1-pixel will be neccessary during dt
int steps = (int) (speed * dt);
float t, tic = 1 / speed; // tic: time increment during a 1-pixel step
// normalized components of the velocity
float nvx = vel[0] / speed;
float nvy = vel[1] / speed;
float slow = .001, shrink;
Uint32 *sdat = (Uint32 *) (soft->pixels);
Uint32 *hdat = (Uint32 *) (hard->pixels);
bool hit = false; // have we hit a wall ?
int x, y, xx, yy, xl, xu, yl, yu;
float wx, wy, wn; // direction of the wall normal and wall vector length at a collision
unsigned char pot = 0, mops;
unsigned char lpot, rpot, upot, dpot; //potentials left /right / up /down the current position
// used to compute potential gradient;
bool inhole;
// do steps iterations, each tic long, moving each time one pixel
// tic may change during the propagation due to a changing speed !
for (t = 0; t < dt; t += tic)
{
//check whether we are in the hole
inhole = (holer * holer >
(pos[0] - holex) * (pos[0] - holex) +
(pos[1] - holey) * (pos[1] - holey));
// move the ball forward one pixel, check for collision
pos[0] += nvx;
pos[1] += nvy;
x = (int) (pos[0]);
y = (int) (pos[1]);
if (pos[0] < 5)
pos[0] = 5;
if (pos[0] > width - 5)
pos[0] = width - 5;
if (pos[1] < 5)
pos[1] = 5;
if (pos[1] > height - 5)
pos[1] = height - 5;
// check whether we have left the hole, if so, simulate a wall
// collision to reflect from the hole wall
if (inhole && (holer * holer <
(pos[0] - holex) * (pos[0] - holex) +
(pos[1] - holey) * (pos[1] - holey)))
{
hit = true;
wx = pos[0] - holex;
wy = pos[1] - holey;
wn = sqrt (wx * wx + wy * wy);
wx /= wn;
wy /= wn;
}
// check whether we have collided with a potential wall
SDL_GetRGB (hdat[y * width + x], hard->format, &pot, &mops, &mops);
if (pot == 255)
{ // collision detected, determine the wall normal
// by taking the potential-weighted position average
// in the 8x8 square around as
hit = true;
wx = 0;
wy = 0;
xl = x - 3;
if (xl < 0)
xl = 0;
xu = x + 4;
if (xu > width)
xu = width;
yl = y - 3;
if (xl < 0)
yl = 0;
yu = y + 4;
if (yu > height)
yu = height;
for (xx = xl; xx < xu; xx++)
{
for (yy = yl; yy < yu; yy++)
{
SDL_GetRGB (hdat[yy * width + xx], hard->format,
&pot, &mops, &mops);
wx += pot * (x - xx);
wy += pot * (y - yy);
}
}
wn = sqrt (wx * wx + wy * wy);
wx /= wn;
wy /= wn;
}
// we have been hit and know the wall normal
// => undo test move to get off from the wall
if (hit)
{
pos[0] -= nvx;
pos[1] -= nvy;
x = (int) (pos[0]);
y = (int) (pos[1]);
float sp = vel[0] * wx + vel[1] * wy;
float cvx = vel[0] - sp * wx;
float cvy = vel[1] - sp * wy;
vel[0] = -wx * sp + cvx;
vel[1] = -wy * sp + cvy;
nvx = vel[0] / speed;
nvy = vel[1] / speed;
hit = false;
}
//change velocity according to potential gradient
if (y > 0 && y < height - 1 && x > 0 && x < width - 1)
{
SDL_GetRGB (sdat[y * width + x - 1], soft->format, &lpot, &mops,
&mops);
SDL_GetRGB (sdat[y * width + x + 1], soft->format, &rpot, &mops,
&mops);
SDL_GetRGB (sdat[(y - 1) * width + x], soft->format, &upot, &mops,
&mops);
SDL_GetRGB (sdat[(y + 1) * width + x], soft->format, &dpot, &mops,
&mops);
vel[0] -= .002 / 1.2 * tic * (rpot - lpot);
vel[1] += .002 / 1.2 * tic * (upot - dpot);
}
//simulate friction and update tic length due to changed speed
speed = sqrt (vel[0] * vel[0] + vel[1] * vel[1]);
shrink = 1 - tic * slow / speed;
if (shrink <= 0)
shrink = 0;
speed *= shrink;
vel[0] *= shrink;
vel[1] *= shrink;
if (speed == 0)
tic = 1e4;
else
tic = 1 / speed;
}
if (speed == 0)
return 1;
else
return 0;
}