-
Notifications
You must be signed in to change notification settings - Fork 0
/
information.txt
172 lines (159 loc) · 11.9 KB
/
information.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
Siêu tham số của mô hình CNN
1. Số lượng layer
- Conv2D 4 lớp (32, 64, 128, 128 bộ lọc)
- MaxPooling2D: 4 lớp
2. (Filter Size)
- (3, 3).
3. (Number of Filters)
- Lớp 1: 32 bộ lọc
- Lớp 2: 64 bộ lọc
- Lớp 3: 128 bộ lọc
- Lớp 4: 128 bộ lọc
4. (Input Shape)
- (150, 150, 3)
5. Activation Function
- Conv2D sử dụng t ReLU.
- Dense sử dụng softmax.
6. Số lượng nút trong lớp Dense
- 512 nút.
7. Tối ưu hóa (Optimizer)
- Adam (tham số mặc định):
α = 0.001
β1 = 0.9
β2 = 0.999
ε = 1e-07
8. Loss Function
- categorical_crossentropy.
9. Batch Size
- 32
10. Số lượng epoch (Epochs)
- epochs=30
-------
Epoch's figures
Epoch 1/30
577/577 ━━━━━━━━━━━━━━━━━━━━ 0s 421ms/step - accuracy: 0.2646 - loss: 1.9063E:\ANIMALS_CLASSIFICATION\venv\Lib\site-packages\keras\src\trainers\data_adapters\py_dataset_adapter.py:121: UserWarning: Your `PyDataset` class should call `super().__init__(**kwargs)` in its constructor. `**kwargs` can include `workers`, `use_multiprocessing`, `max_queue_size`. Do not pass these arguments to `fit()`, as they will be ignored.
self._warn_if_super_not_called()
577/577 ━━━━━━━━━━━━━━━━━━━━ 256s 442ms/step - accuracy: 0.2647 - loss: 1.9062 - val_accuracy: 0.4698 - val_loss: 1.4674
Epoch 2/30
2024-10-13 10:31:41.074029: I tensorflow/core/framework/local_rendezvous.cc:404] Local rendezvous is aborting with status: OUT_OF_RANGE: End of sequence
[[{{node IteratorGetNext}}]]
E:\Anaconda3\Lib\contextlib.py:158: UserWarning: Your input ran out of data; interrupting training. Make sure that your dataset or generator can generate at least `steps_per_epoch * epochs` batches. You may need to use the `.repeat()` function when building your dataset.
self.gen.throw(value)
2024-10-13 10:31:41.117223: I tensorflow/core/framework/local_rendezvous.cc:404] Local rendezvous is aborting with status: OUT_OF_RANGE: End of sequence
[[{{node IteratorGetNext}}]]
577/577 ━━━━━━━━━━━━━━━━━━━━ 0s 129us/step - accuracy: 0.0000e+00 - loss: 0.0000e+00
Epoch 3/30
577/577 ━━━━━━━━━━━━━━━━━━━━ 191s 330ms/step - accuracy: 0.4748 - loss: 1.4615 - val_accuracy: 0.5800 - val_loss: 1.1733
Epoch 4/30
2024-10-13 10:34:51.703344: I tensorflow/core/framework/local_rendezvous.cc:404] Local rendezvous is aborting with status: OUT_OF_RANGE: End of sequence
[[{{node IteratorGetNext}}]]
577/577 ━━━━━━━━━━━━━━━━━━━━ 0s 75us/step - accuracy: 0.0000e+00 - loss: 0.0000e+00
Epoch 5/30
577/577 ━━━━━━━━━━━━━━━━━━━━ 194s 337ms/step - accuracy: 0.5599 - loss: 1.2360 - val_accuracy: 0.5941 - val_loss: 1.1204
Epoch 6/30
577/577 ━━━━━━━━━━━━━━━━━━━━ 0s 72us/step - accuracy: 0.0000e+00 - loss: 0.0000e+00
Epoch 7/30
577/577 ━━━━━━━━━━━━━━━━━━━━ 188s 325ms/step - accuracy: 0.6078 - loss: 1.1083 - val_accuracy: 0.6636 - val_loss: 0.9785
Epoch 8/30
2024-10-13 10:41:14.033241: I tensorflow/core/framework/local_rendezvous.cc:404] Local rendezvous is aborting with status: OUT_OF_RANGE: End of sequence
[[{{node IteratorGetNext}}]]
577/577 ━━━━━━━━━━━━━━━━━━━━ 0s 93us/step - accuracy: 0.0000e+00 - loss: 0.0000e+00
Epoch 9/30
577/577 ━━━━━━━━━━━━━━━━━━━━ 173s 299ms/step - accuracy: 0.6353 - loss: 1.0430 - val_accuracy: 0.6695 - val_loss: 0.9411
Epoch 10/30
577/577 ━━━━━━━━━━━━━━━━━━━━ 0s 31us/step - accuracy: 0.0000e+00 - loss: 0.0000e+00
Epoch 11/30
577/577 ━━━━━━━━━━━━━━━━━━━━ 172s 299ms/step - accuracy: 0.6540 - loss: 0.9765 - val_accuracy: 0.6953 - val_loss: 0.8765
Epoch 12/30
577/577 ━━━━━━━━━━━━━━━━━━━━ 0s 24us/step - accuracy: 0.0000e+00 - loss: 0.0000e+00
Epoch 13/30
577/577 ━━━━━━━━━━━━━━━━━━━━ 176s 305ms/step - accuracy: 0.6778 - loss: 0.9184 - val_accuracy: 0.6699 - val_loss: 0.9543
Epoch 14/30
577/577 ━━━━━━━━━━━━━━━━━━━━ 0s 163us/step - accuracy: 0.0000e+00 - loss: 0.0000e+00
Epoch 15/30
2024-10-13 10:41:14.033241: I tensorflow/core/framework/local_rendezvous.cc:404] Local rendezvous is aborting with status: OUT_OF_RANGE: End of sequence
[[{{node IteratorGetNext}}]]
577/577 ━━━━━━━━━━━━━━━━━━━━ 0s 93us/step - accuracy: 0.0000e+00 - loss: 0.0000e+00
Epoch 9/30
2024-10-13 10:41:14.033241: I tensorflow/core/framework/local_rendezvous.cc:404] Local rendezvous is aborting with status: OUT_OF_RANGE: End of sequence
[[{{node IteratorGetNext}}]]
2024-10-13 10:41:14.033241: I tensorflow/core/framework/local_rendezvous.cc:404] Local rendezvous is aborting with status: OUT_OF_RANGE: End of sequence
2024-10-13 10:41:14.033241: I tensorflow/core/framework/local_rendezvous.cc:404] Local rendezvous is aborting with status: OUT_OF_RANGE: End of sequence
[[{{node IteratorGetNext}}]]
577/577 ━━━━━━━━━━━━━━━━━━━━ 0s 93us/step - accuracy: 0.0000e+00 - loss: 0.0000e+00
Epoch 9/30
577/577 ━━━━━━━━━━━━━━━━━━━━ 173s 299ms/step - accuracy: 0.6353 - loss: 1.0430 - val_accuracy: 0.6695 - val_loss: 0.9411
Epoch 10/30
577/577 ━━━━━━━━━━━━━━━━━━━━ 0s 31us/step - accuracy: 0.0000e+00 - loss: 0.0000e+00
Epoch 11/30
577/577 ━━━━━━━━━━━━━━━━━━━━ 172s 299ms/step - accuracy: 0.6540 - loss: 0.9765 - val_accuracy: 0.6953 - val_loss: 0.8765
Epoch 12/30
577/577 ━━━━━━━━━━━━━━━━━━━━ 0s 24us/step - accuracy: 0.0000e+00 - loss: 0.0000e+00
Epoch 13/30
577/577 ━━━━━━━━━━━━━━━━━━━━ 176s 305ms/step - accuracy: 0.6778 - loss: 0.9184 - val_accuracy: 0.6699 - val_loss: 0.9543
Epoch 14/30
577/577 ━━━━━━━━━━━━━━━━━━━━ 0s 163us/step - accuracy: 0.0000e+00 - loss: 0.0000e+00
Epoch 15/30
577/577 ━━━━━━━━━━━━━━━━━━━━ 184s 320ms/step - accuracy: 0.6843 - loss: 0.8867 - val_accuracy: 0.7020 - val_loss: 0.8724
Epoch 16/30
Epoch 13/30
577/577 ━━━━━━━━━━━━━━━━━━━━ 176s 305ms/step - accuracy: 0.6778 - loss: 0.9184 - val_accuracy: 0.6699 - val_loss: 0.9543
Epoch 14/30
577/577 ━━━━━━━━━━━━━━━━━━━━ 0s 163us/step - accuracy: 0.0000e+00 - loss: 0.0000e+00
Epoch 15/30
577/577 ━━━━━━━━━━━━━━━━━━━━ 184s 320ms/step - accuracy: 0.6843 - loss: 0.8867 - val_accuracy: 0.7020 - val_loss: 0.8724
Epoch 16/30
577/577 ━━━━━━━━━━━━━━━━━━━━ 0s 163us/step - accuracy: 0.0000e+00 - loss: 0.0000e+00
Epoch 15/30
577/577 ━━━━━━━━━━━━━━━━━━━━ 184s 320ms/step - accuracy: 0.6843 - loss: 0.8867 - val_accuracy: 0.7020 - val_loss: 0.8724
Epoch 16/30
Epoch 15/30
577/577 ━━━━━━━━━━━━━━━━━━━━ 184s 320ms/step - accuracy: 0.6843 - loss: 0.8867 - val_accuracy: 0.7020 - val_loss: 0.8724
Epoch 16/30
577/577 ━━━━━━━━━━━━━━━━━━━━ 184s 320ms/step - accuracy: 0.6843 - loss: 0.8867 - val_accuracy: 0.7020 - val_loss: 0.8724
Epoch 16/30
Epoch 16/30
2024-10-13 10:52:59.757877: I tensorflow/core/framework/local_rendezvous.cc:404] Local rendezvous is aborting with status: OUT_OF_RANGE: End of sequence
[[{{node IteratorGetNext}}]]
577/577 ━━━━━━━━━━━━━━━━━━━━ 0s 74us/step - accuracy: 0.0000e+00 - loss: 0.0000e+00
[[{{node IteratorGetNext}}]]
577/577 ━━━━━━━━━━━━━━━━━━━━ 0s 74us/step - accuracy: 0.0000e+00 - loss: 0.0000e+00
577/577 ━━━━━━━━━━━━━━━━━━━━ 0s 74us/step - accuracy: 0.0000e+00 - loss: 0.0000e+00
Epoch 17/30
577/577 ━━━━━━━━━━━━━━━━━━━━ 173s 300ms/step - accuracy: 0.6974 - loss: 0.8584 - val_accuracy: 0.6775 - val_loss: 0.9397
Epoch 18/30
577/577 ━━━━━━━━━━━━━━━━━━━━ 0s 88us/step - accuracy: 0.0000e+00 - loss: 0.0000e+00
Epoch 19/30
577/577 ━━━━━━━━━━━━━━━━━━━━ 183s 316ms/step - accuracy: 0.7096 - loss: 0.8228 - val_accuracy: 0.7098 - val_loss: 0.8722
Epoch 20/30
577/577 ━━━━━━━━━━━━━━━━━━━━ 0s 90us/step - accuracy: 0.0000e+00 - loss: 0.0000e+00
Epoch 21/30
577/577 ━━━━━━━━━━━━━━━━━━━━ 174s 256ms/step - accuracy: 0.7269 - loss: 0.7857 - val_accuracy: 0.7459 - val_loss: 0.7525
Epoch 22/30
577/577 ━━━━━━━━━━━━━━━━━━━━ 0s 88us/step - accuracy: 0.0000e+00 - loss: 0.0000e+00
Epoch 23/30
577/577 ━━━━━━━━━━━━━━━━━━━━ 192s 332ms/step - accuracy: 0.7189 - loss: 0.7926 - val_accuracy: 0.7245 - val_loss: 0.8066
Epoch 24/30
577/577 ━━━━━━━━━━━━━━━━━━━━ 0s 74us/step - accuracy: 0.0000e+00 - loss: 0.0000e+00
Epoch 25/30
577/577 ━━━━━━━━━━━━━━━━━━━━ 182s 315ms/step - accuracy: 0.7392 - loss: 0.7596 - val_accuracy: 0.6829 - val_loss: 0.9465
Epoch 26/30
577/577 ━━━━━━━━━━━━━━━━━━━━ 0s 62us/step - accuracy: 0.0000e+00 - loss: 0.0000e+00
Epoch 27/30
577/577 ━━━━━━━━━━━━━━━━━━━━ 162s 280ms/step - accuracy: 0.7475 - loss: 0.7327 - val_accuracy: 0.7652 - val_loss: 0.7005
Epoch 28/30
577/577 ━━━━━━━━━━━━━━━━━━━━ 0s 72us/step - accuracy: 0.0000e+00 - loss: 0.0000e+00
Epoch 29/30
577/577 ━━━━━━━━━━━━━━━━━━━━ 163s 282ms/step - accuracy: 0.7482 - loss: 0.7223 - val_accuracy: 0.6963 - val_loss: 0.9070
Epoch 30/30
577/577 ━━━━━━━━━━━━━━━━━━━━ 0s 60us/step - accuracy: 0.0000e+00 - loss: 0.0000e+00
WARNING:absl:You are saving your model as an HDF5 file via `model.save()` or `keras.saving.save_model(model)`. This file format is considered legacy. We recommend using instead the native Keras format, e.g. `model.save('my_model.keras')` or `keras.saving.save_model(model, 'my_model.keras')`.
145/145 ━━━━━━━━━━━━━━━━━━━━ 9s 64ms/step - accuracy: 0.6978 - loss: 0.9277
Loss: 0.9069618582725525, Accuracy: 0.6963396072387695
577/577 ━━━━━━━━━━━━━━━━━━━━ 0s 60us/step - accuracy: 0.0000e+00 - loss: 0.0000e+00
WARNING:absl:You are saving your model as an HDF5 file via `model.save()` or `keras.saving.save_model(model)`. This file format is considered legacy. We recom577/577 ━━━━━━━━━━━━━━━━━━━━ 0s 60us/step - accuracy: 0.0000e+00 - loss: 0.0000e+00
577/577 ━━━━━━━━━━━━━━━━━━━━ 0s 60us/step - accuracy: 0.0000e+00 - loss: 0.0000e+00
577/577 ━━━━━━━━━━━━━━━━━━━━ 0s 60us/step - accuracy: 0.0000e+00 - loss: 0.0000e+00
WARNING:absl:You are saving your model as an HDF5 file via `model.save()` or `keras.saving.save_model(model)`. This file format is considered legacy. We recommend using instead the native Keras format, e.g. `model.save('my_model.keras')` or `keras.saving.save_model(model, 'my_model.keras')`.
145/145 ━━━━━━━━━━━━━━━━━━━━ 9s 64ms/step - accuracy: 0.6978 - loss: 0.9277
Loss: 0.9069618582725525, Accuracy: 0.6963396072387695