From de5172604a1ecb14edac5a8e8aead5f63537b455 Mon Sep 17 00:00:00 2001 From: "Documenter.jl" Date: Mon, 28 Oct 2024 09:13:42 +0000 Subject: [PATCH] build based on 35a5192 --- dev/.documenter-siteinfo.json | 2 +- dev/acb/index.html | 16 ++++----- dev/algebraic/index.html | 26 +++++++-------- dev/arb/index.html | 18 +++++----- dev/complex/index.html | 16 ++++----- dev/exact/index.html | 8 ++--- dev/ff_embedding/index.html | 4 +-- dev/finitefield/index.html | 10 +++--- dev/fraction/index.html | 24 +++++++------- dev/integer/index.html | 62 +++++++++++++++++------------------ dev/matrix/index.html | 28 ++++++++-------- dev/numberfield/index.html | 10 +++--- dev/padic/index.html | 8 ++--- dev/polynomial/index.html | 16 ++++----- dev/puiseux/index.html | 2 +- dev/qadic/index.html | 8 ++--- dev/real/index.html | 26 +++++++-------- dev/residue/index.html | 2 +- 18 files changed, 143 insertions(+), 143 deletions(-) diff --git a/dev/.documenter-siteinfo.json b/dev/.documenter-siteinfo.json index 67576d01fb..817327ae52 100644 --- a/dev/.documenter-siteinfo.json +++ b/dev/.documenter-siteinfo.json @@ -1 +1 @@ -{"documenter":{"julia_version":"1.10.5","generation_timestamp":"2024-10-28T09:13:16","documenter_version":"1.7.0"}} \ No newline at end of file +{"documenter":{"julia_version":"1.10.5","generation_timestamp":"2024-10-28T09:13:32","documenter_version":"1.7.0"}} \ No newline at end of file diff --git a/dev/acb/index.html b/dev/acb/index.html index 9767dd0f6b..3c1ca5ea19 100644 --- a/dev/acb/index.html +++ b/dev/acb/index.html @@ -12,7 +12,7 @@ 0.50000000000000000000 julia> d = CC(12) -12.000000000000000000

Note that whilst one can coerce double precision floating point values into an Arb complex field, unless those values can be represented exactly in double precision the resulting ball can't be any more precise than the double precision supplied.

If instead, values can be represented precisely using decimal arithmetic then one can supply them to Arb using a string. In this case, Arb will store them to the precision specified when creating the Arb complex field.

If the values can be stored precisely as a binary floating point number, Arb will store the values exactly. See the function is_exact below for more information.

Constructors

Nemo.oneiMethod
onei(r::AcbField)

Return exact one times $i$ in the given Arb complex field.

source

Examples

julia> CC = AcbField(64)
+12.000000000000000000

Note that whilst one can coerce double precision floating point values into an Arb complex field, unless those values can be represented exactly in double precision the resulting ball can't be any more precise than the double precision supplied.

If instead, values can be represented precisely using decimal arithmetic then one can supply them to Arb using a string. In this case, Arb will store them to the precision specified when creating the Arb complex field.

If the values can be stored precisely as a binary floating point number, Arb will store the values exactly. See the function is_exact below for more information.

Constructors

Nemo.oneiMethod
onei(r::AcbField)

Return exact one times $i$ in the given Arb complex field.

source

Examples

julia> CC = AcbField(64)
 Complex Field with 64 bits of precision and error bounds
 
 julia> c = onei(CC)
@@ -42,7 +42,7 @@
 nan
 
 julia> g = CC(RR(3))
-3.0000000000000000000

In addition to the above, developers of custom complex field types must ensure that they provide the equivalent of the function base_ring(R::AcbField) which should return Union{}. In addition to this they should ensure that each complex field element contains a field parent specifying the parent object of the complex field element, or at least supply the equivalent of the function parent(a::AcbFieldElem) to return the parent object of a complex field element.

Basic manipulation

Base.isfiniteMethod
isfinite(x::AcbFieldElem)

Return true if $x$ is finite, i.e. its real and imaginary parts have finite midpoint and radius, otherwise return false.

source
Nemo.is_exactMethod
is_exact(x::AcbFieldElem)

Return true if $x$ is exact, i.e. has its real and imaginary parts have zero radius, otherwise return false.

source
Base.isintegerMethod
isinteger(x::AcbFieldElem)

Return true if $x$ is an exact integer, otherwise return false.

source
Nemo.accuracy_bitsMethod
accuracy_bits(x::AcbFieldElem)

Return the relative accuracy of $x$ measured in bits, capped between typemax(Int) and -typemax(Int).

source

Examples

julia> CC = AcbField(64)
+3.0000000000000000000

In addition to the above, developers of custom complex field types must ensure that they provide the equivalent of the function base_ring(R::AcbField) which should return Union{}. In addition to this they should ensure that each complex field element contains a field parent specifying the parent object of the complex field element, or at least supply the equivalent of the function parent(a::AcbFieldElem) to return the parent object of a complex field element.

Basic manipulation

Base.isfiniteMethod
isfinite(x::AcbFieldElem)

Return true if $x$ is finite, i.e. its real and imaginary parts have finite midpoint and radius, otherwise return false.

source
Nemo.is_exactMethod
is_exact(x::AcbFieldElem)

Return true if $x$ is exact, i.e. has its real and imaginary parts have zero radius, otherwise return false.

source
Base.isintegerMethod
isinteger(x::AcbFieldElem)

Return true if $x$ is an exact integer, otherwise return false.

source
Nemo.accuracy_bitsMethod
accuracy_bits(x::AcbFieldElem)

Return the relative accuracy of $x$ measured in bits, capped between typemax(Int) and -typemax(Int).

source

Examples

julia> CC = AcbField(64)
 Complex Field with 64 bits of precision and error bounds
 
 julia> a = CC("1.2 +/- 0.001")
@@ -68,7 +68,7 @@
 
 julia> f = accuracy_bits(a)
 9
-

Containment

It is often necessary to determine whether a given exact value or box is contained in a given complex box or whether two boxes overlap. The following functions are provided for this purpose.

Nemo.overlapsMethod
overlaps(x::AcbFieldElem, y::AcbFieldElem)

Returns true if any part of the box $x$ overlaps any part of the box $y$, otherwise return false.

source
Base.containsMethod
contains(x::AcbFieldElem, y::AcbFieldElem)

Returns true if the box $x$ contains the box $y$, otherwise return false.

source
Base.containsMethod
contains(x::AcbFieldElem, y::Integer)

Returns true if the box $x$ contains the given integer value, otherwise return false.

source
Base.containsMethod
contains(x::AcbFieldElem, y::ZZRingElem)

Returns true if the box $x$ contains the given integer value, otherwise return false.

source
Base.containsMethod
contains(x::AcbFieldElem, y::QQFieldElem)

Returns true if the box $x$ contains the given rational value, otherwise return false.

source

The following functions are also provided for determining if a box intersects a certain part of the complex number plane.

Nemo.contains_zeroMethod
contains_zero(x::AcbFieldElem)

Returns true if the box $x$ contains zero, otherwise return false.

source

Examples

julia> CC = AcbField(64)
+

Containment

It is often necessary to determine whether a given exact value or box is contained in a given complex box or whether two boxes overlap. The following functions are provided for this purpose.

Nemo.overlapsMethod
overlaps(x::AcbFieldElem, y::AcbFieldElem)

Returns true if any part of the box $x$ overlaps any part of the box $y$, otherwise return false.

source
Base.containsMethod
contains(x::AcbFieldElem, y::AcbFieldElem)

Returns true if the box $x$ contains the box $y$, otherwise return false.

source
Base.containsMethod
contains(x::AcbFieldElem, y::Integer)

Returns true if the box $x$ contains the given integer value, otherwise return false.

source
Base.containsMethod
contains(x::AcbFieldElem, y::ZZRingElem)

Returns true if the box $x$ contains the given integer value, otherwise return false.

source
Base.containsMethod
contains(x::AcbFieldElem, y::QQFieldElem)

Returns true if the box $x$ contains the given rational value, otherwise return false.

source

The following functions are also provided for determining if a box intersects a certain part of the complex number plane.

Nemo.contains_zeroMethod
contains_zero(x::AcbFieldElem)

Returns true if the box $x$ contains zero, otherwise return false.

source

Examples

julia> CC = AcbField(64)
 Complex Field with 64 bits of precision and error bounds
 
 julia> x = CC("1 +/- 0.001")
@@ -90,7 +90,7 @@
 false
 
 julia> contains_zero(x)
-false

Comparison

Nemo provides a full range of comparison operations for Arb complex boxes.

In addition to the standard comparisons, we introduce an exact equality. This is distinct from arithmetic equality implemented by ==, which merely compares up to the minimum of the precisions of its operands.

Base.isequalMethod
isequal(x::AcbFieldElem, y::AcbFieldElem)

Return true if the boxes $x$ and $y$ are precisely equal, i.e. their real and imaginary parts have the same midpoints and radii.

source

A full range of ad hoc comparison operators is provided. These are implemented directly in Julia, but we document them as though only == were provided.

Function
==(x::AcbFieldElem, y::Integer)
==(x::Integer, y::AcbFieldElem)
==(x::AcbFieldElem, y::ZZRingElem)
==(x::ZZRingElem, y::AcbFieldElem)
==(x::ArbFieldElem, y::ZZRingElem)
==(x::ZZRingElem, y::ArbFieldElem)
==(x::AcbFieldElem, y::Float64)
==(x::Float64, y::AcbFieldElem)

Examples

julia> CC = AcbField(64)
+false

Comparison

Nemo provides a full range of comparison operations for Arb complex boxes.

In addition to the standard comparisons, we introduce an exact equality. This is distinct from arithmetic equality implemented by ==, which merely compares up to the minimum of the precisions of its operands.

Base.isequalMethod
isequal(x::AcbFieldElem, y::AcbFieldElem)

Return true if the boxes $x$ and $y$ are precisely equal, i.e. their real and imaginary parts have the same midpoints and radii.

source

A full range of ad hoc comparison operators is provided. These are implemented directly in Julia, but we document them as though only == were provided.

Function
==(x::AcbFieldElem, y::Integer)
==(x::Integer, y::AcbFieldElem)
==(x::AcbFieldElem, y::ZZRingElem)
==(x::ZZRingElem, y::AcbFieldElem)
==(x::ArbFieldElem, y::ZZRingElem)
==(x::ZZRingElem, y::ArbFieldElem)
==(x::AcbFieldElem, y::Float64)
==(x::Float64, y::AcbFieldElem)

Examples

julia> CC = AcbField(64)
 Complex Field with 64 bits of precision and error bounds
 
 julia> x = CC("1 +/- 0.001")
@@ -129,7 +129,7 @@
 [-2.52e+7 +/- 4.26e+4]
 
 julia> b = ldexp(x, -ZZ(15))
-[-9.16e-5 +/- 7.78e-8]

Miscellaneous operations

Nemo.trimMethod
trim(x::AcbFieldElem)

Return an AcbFieldElem box containing $x$ but which may be more economical, by rounding off insignificant bits from midpoints.

source
Nemo.unique_integerMethod
unique_integer(x::AcbFieldElem)

Return a pair where the first value is a boolean and the second is an ZZRingElem integer. The boolean indicates whether the box $x$ contains a unique integer. If this is the case, the second return value is set to this unique integer.

source

Examples

julia> CC = AcbField(64)
+[-9.16e-5 +/- 7.78e-8]

Miscellaneous operations

Nemo.trimMethod
trim(x::AcbFieldElem)

Return an AcbFieldElem box containing $x$ but which may be more economical, by rounding off insignificant bits from midpoints.

source
Nemo.unique_integerMethod
unique_integer(x::AcbFieldElem)

Return a pair where the first value is a boolean and the second is an ZZRingElem integer. The boolean indicates whether the box $x$ contains a unique integer. If this is the case, the second return value is set to this unique integer.

source

Examples

julia> CC = AcbField(64)
 Complex Field with 64 bits of precision and error bounds
 
 julia> x = CC("-3 +/- 0.001", "0.1")
@@ -145,11 +145,11 @@
 [-3.00 +/- 1.01e-3] + [-0.100000000000000000 +/- 1.22e-20]*im
 
 julia> f = angle(x)
-[3.1083 +/- 3.95e-5]

Constants

Nemo.const_piMethod
const_pi(r::AcbField)

Return $\pi = 3.14159\ldots$ as an element of $r$.

source

Examples

julia> CC = AcbField(200)
+[3.1083 +/- 3.95e-5]

Constants

Nemo.const_piMethod
const_pi(r::AcbField)

Return $\pi = 3.14159\ldots$ as an element of $r$.

source

Examples

julia> CC = AcbField(200)
 Complex Field with 200 bits of precision and error bounds
 
 julia> a = const_pi(CC)
-[3.14159265358979323846264338327950288419716939937510582097494 +/- 5.73e-60]

Mathematical and special functions

Nemo.rsqrtMethod
rsqrt(x::AcbFieldElem)

Return the reciprocal of the square root of $x$, i.e. $1/\sqrt{x}$.

source
Base.cispiMethod
cispi(x::AcbFieldElem)

Return the exponential of $\pi i x$.

source
Nemo.root_of_unityMethod
root_of_unity(C::AcbField, k::Int)

Return $\exp(2\pi i/k)$.

source
Nemo.log_sinpiMethod
log_sinpi(x::AcbFieldElem)

Return $\log\sin(\pi x)$, constructed without branch cuts off the real line.

source
Nemo.gammaMethod
gamma(x::AcbFieldElem)

Return the Gamma function evaluated at $x$.

source
Nemo.lgammaMethod
lgamma(x::AcbFieldElem)

Return the logarithm of the Gamma function evaluated at $x$.

source
Nemo.rgammaMethod
rgamma(x::AcbFieldElem)

Return the reciprocal of the Gamma function evaluated at $x$.

source
Nemo.digammaMethod
digamma(x::AcbFieldElem)

Return the logarithmic derivative of the gamma function evaluated at $x$, i.e. $\psi(x)$.

source
Nemo.zetaMethod
zeta(x::AcbFieldElem)

Return the Riemann zeta function evaluated at $x$.

source
Nemo.barnes_gMethod
barnes_g(x::AcbFieldElem)

Return the Barnes $G$-function, evaluated at $x$.

source
Nemo.log_barnes_gMethod
log_barnes_g(x::AcbFieldElem)

Return the logarithm of the Barnes $G$-function, evaluated at $x$.

source
Nemo.erfMethod
erf(x::AcbFieldElem)

Return the error function evaluated at $x$.

source
Nemo.erfiMethod
erfi(x::AcbFieldElem)

Return the imaginary error function evaluated at $x$.

source
Nemo.exp_integral_eiMethod
exp_integral_ei(x::AcbFieldElem)

Return the exponential integral evaluated at $x$.

source
Nemo.sin_integralMethod
sin_integral(x::AcbFieldElem)

Return the sine integral evaluated at $x$.

source
Nemo.cos_integralMethod
cos_integral(x::AcbFieldElem)

Return the exponential cosine integral evaluated at $x$.

source
Nemo.sinh_integralMethod
sinh_integral(x::AcbFieldElem)

Return the hyperbolic sine integral evaluated at $x$.

source
Nemo.cosh_integralMethod
cosh_integral(x::AcbFieldElem)

Return the hyperbolic cosine integral evaluated at $x$.

source
Nemo.dedekind_etaMethod
dedekind_eta(x::AcbFieldElem)

Return the Dedekind eta function $\eta(\tau)$ at $\tau = x$.

source
Nemo.modular_weber_fMethod
modular_weber_f(x::AcbFieldElem)

Return the modular Weber function $\mathfrak{f}(\tau) = \frac{\eta^2(\tau)}{\eta(\tau/2)\eta(2\tau)},$ at $x$ in the complex upper half plane.

source
Nemo.modular_weber_f1Method
modular_weber_f1(x::AcbFieldElem)

Return the modular Weber function $\mathfrak{f}_1(\tau) = \frac{\eta(\tau/2)}{\eta(\tau)},$ at $x$ in the complex upper half plane.

source
Nemo.modular_weber_f2Method
modular_weber_f2(x::AcbFieldElem)

Return the modular Weber function $\mathfrak{f}_2(\tau) = \frac{\sqrt{2}\eta(2\tau)}{\eta(\tau)}$ at $x$ in the complex upper half plane.

source
Nemo.j_invariantMethod
j_invariant(x::AcbFieldElem)

Return the $j$-invariant $j(\tau)$ at $\tau = x$.

source
Nemo.modular_lambdaMethod
modular_lambda(x::AcbFieldElem)

Return the modular lambda function $\lambda(\tau)$ at $\tau = x$.

source
Nemo.modular_deltaMethod
modular_delta(x::AcbFieldElem)

Return the modular delta function $\Delta(\tau)$ at $\tau = x$.

source
Nemo.eisenstein_gMethod
eisenstein_g(k::Int, x::AcbFieldElem)

Return the non-normalized Eisenstein series $G_k(\tau)$ of $\mathrm{SL}_2(\mathbb{Z})$. Also defined for $\tau = i \infty$.

source
Nemo.elliptic_kMethod
elliptic_k(x::AcbFieldElem)

Return the complete elliptic integral $K(x)$.

source
Nemo.elliptic_eMethod
elliptic_e(x::AcbFieldElem)

Return the complete elliptic integral $E(x)$.

source
Nemo.agmMethod
agm(x::AcbFieldElem)

Return the arithmetic-geometric mean of $1$ and $x$.

source
Nemo.agmMethod
agm(x::AcbFieldElem, y::AcbFieldElem)

Return the arithmetic-geometric mean of $x$ and $y$.

source
Nemo.polygammaMethod
polygamma(s::AcbFieldElem, a::AcbFieldElem)

Return the generalised polygamma function $\psi(s,z)$.

source
Nemo.zetaMethod
zeta(s::AcbFieldElem, a::AcbFieldElem)

Return the Hurwitz zeta function $\zeta(s,a)$.

source
AbstractAlgebra.Generic.rising_factorialMethod
rising_factorial(x::AcbFieldElem, n::Int)

Return the rising factorial $x(x + 1)\ldots (x + n - 1)$ as an Acb.

source
AbstractAlgebra.Generic.rising_factorial2Method
rising_factorial2(x::AcbFieldElem, n::Int)

Return a tuple containing the rising factorial $x(x + 1)\ldots (x + n - 1)$ and its derivative.

source
Nemo.polylogMethod
polylog(s::Union{AcbFieldElem,Int}, a::AcbFieldElem)

Return the polylogarithm Li$_s(a)$.

source
Nemo.log_integralMethod
log_integral(x::AcbFieldElem)

Return the logarithmic integral, evaluated at $x$.

source
Nemo.log_integral_offsetMethod
log_integral_offset(x::AcbFieldElem)

Return the offset logarithmic integral, evaluated at $x$.

source
Nemo.exp_integral_eMethod
exp_integral_e(s::AcbFieldElem, x::AcbFieldElem)

Return the generalised exponential integral $E_s(x)$.

source
Nemo.gammaMethod
gamma(s::AcbFieldElem, x::AcbFieldElem)

Return the upper incomplete gamma function $\Gamma(s,x)$.

source
Nemo.gamma_regularizedMethod
gamma_regularized(s::AcbFieldElem, x::AcbFieldElem)

Return the regularized upper incomplete gamma function $\Gamma(s,x) / \Gamma(s)$.

source
Nemo.gamma_lowerMethod
gamma_lower(s::AcbFieldElem, x::AcbFieldElem)

Return the lower incomplete gamma function $\gamma(s,x) / \Gamma(s)$.

source
Nemo.gamma_lower_regularizedMethod
gamma_lower_regularized(s::AcbFieldElem, x::AcbFieldElem)

Return the regularized lower incomplete gamma function $\gamma(s,x) / \Gamma(s)$.

source
Nemo.airy_aiMethod
airy_ai(x::AcbFieldElem)

Return the Airy function $\operatorname{Ai}(x)$.

source
Nemo.airy_ai_primeMethod
airy_ai_prime(x::AcbFieldElem)

Return the derivative of the Airy function $\operatorname{Ai}^\prime(x)$.

source
Nemo.airy_biMethod
airy_bi(x::AcbFieldElem)

Return the Airy function $\operatorname{Bi}(x)$.

source
Nemo.airy_bi_primeMethod
airy_bi_prime(x::AcbFieldElem)

Return the derivative of the Airy function $\operatorname{Bi}^\prime(x)$.

source
Nemo.bessel_jMethod
bessel_j(nu::AcbFieldElem, x::AcbFieldElem)

Return the Bessel function $J_{\nu}(x)$.

source
Nemo.bessel_yMethod
bessel_y(nu::AcbFieldElem, x::AcbFieldElem)

Return the Bessel function $Y_{\nu}(x)$.

source
Nemo.bessel_iMethod
bessel_i(nu::AcbFieldElem, x::AcbFieldElem)

Return the Bessel function $I_{\nu}(x)$.

source
Nemo.bessel_kMethod
bessel_k(nu::AcbFieldElem, x::AcbFieldElem)

Return the Bessel function $K_{\nu}(x)$.

source
Nemo.hypergeometric_1f1Method
hypergeometric_1f1(a::AcbFieldElem, b::AcbFieldElem, x::AcbFieldElem)

Return the confluent hypergeometric function ${}_1F_1(a,b,x)$.

source
Nemo.hypergeometric_1f1_regularizedMethod
hypergeometric_1f1_regularized(a::AcbFieldElem, b::AcbFieldElem, x::AcbFieldElem)

Return the regularized confluent hypergeometric function ${}_1F_1(a,b,x) / \Gamma(b)$.

source
Nemo.hypergeometric_uMethod
hypergeometric_u(a::AcbFieldElem, b::AcbFieldElem, x::AcbFieldElem)

Return the confluent hypergeometric function $U(a,b,x)$.

source
Nemo.hypergeometric_2f1Method
hypergeometric_2f1(a::AcbFieldElem, b::AcbFieldElem, c::AcbFieldElem, x::AcbFieldElem; flags=0)

Return the Gauss hypergeometric function ${}_2F_1(a,b,c,x)$.

source
Nemo.jacobi_thetaMethod
jacobi_theta(z::AcbFieldElem, tau::AcbFieldElem)

Return a tuple of four elements containing the Jacobi theta function values $\theta_1, \theta_2, \theta_3, \theta_4$ evaluated at $z, \tau$.

source
Nemo.weierstrass_pMethod
weierstrass_p(z::AcbFieldElem, tau::AcbFieldElem)

Return the Weierstrass elliptic function $\wp(z,\tau)$.

source

Examples

julia> CC = AcbField(64)
+[3.14159265358979323846264338327950288419716939937510582097494 +/- 5.73e-60]

Mathematical and special functions

Nemo.rsqrtMethod
rsqrt(x::AcbFieldElem)

Return the reciprocal of the square root of $x$, i.e. $1/\sqrt{x}$.

source
Base.cispiMethod
cispi(x::AcbFieldElem)

Return the exponential of $\pi i x$.

source
Nemo.root_of_unityMethod
root_of_unity(C::AcbField, k::Int)

Return $\exp(2\pi i/k)$.

source
Nemo.log_sinpiMethod
log_sinpi(x::AcbFieldElem)

Return $\log\sin(\pi x)$, constructed without branch cuts off the real line.

source
Nemo.gammaMethod
gamma(x::AcbFieldElem)

Return the Gamma function evaluated at $x$.

source
Nemo.lgammaMethod
lgamma(x::AcbFieldElem)

Return the logarithm of the Gamma function evaluated at $x$.

source
Nemo.rgammaMethod
rgamma(x::AcbFieldElem)

Return the reciprocal of the Gamma function evaluated at $x$.

source
Nemo.digammaMethod
digamma(x::AcbFieldElem)

Return the logarithmic derivative of the gamma function evaluated at $x$, i.e. $\psi(x)$.

source
Nemo.zetaMethod
zeta(x::AcbFieldElem)

Return the Riemann zeta function evaluated at $x$.

source
Nemo.barnes_gMethod
barnes_g(x::AcbFieldElem)

Return the Barnes $G$-function, evaluated at $x$.

source
Nemo.log_barnes_gMethod
log_barnes_g(x::AcbFieldElem)

Return the logarithm of the Barnes $G$-function, evaluated at $x$.

source
Nemo.erfMethod
erf(x::AcbFieldElem)

Return the error function evaluated at $x$.

source
Nemo.erfiMethod
erfi(x::AcbFieldElem)

Return the imaginary error function evaluated at $x$.

source
Nemo.exp_integral_eiMethod
exp_integral_ei(x::AcbFieldElem)

Return the exponential integral evaluated at $x$.

source
Nemo.sin_integralMethod
sin_integral(x::AcbFieldElem)

Return the sine integral evaluated at $x$.

source
Nemo.cos_integralMethod
cos_integral(x::AcbFieldElem)

Return the exponential cosine integral evaluated at $x$.

source
Nemo.sinh_integralMethod
sinh_integral(x::AcbFieldElem)

Return the hyperbolic sine integral evaluated at $x$.

source
Nemo.cosh_integralMethod
cosh_integral(x::AcbFieldElem)

Return the hyperbolic cosine integral evaluated at $x$.

source
Nemo.dedekind_etaMethod
dedekind_eta(x::AcbFieldElem)

Return the Dedekind eta function $\eta(\tau)$ at $\tau = x$.

source
Nemo.modular_weber_fMethod
modular_weber_f(x::AcbFieldElem)

Return the modular Weber function $\mathfrak{f}(\tau) = \frac{\eta^2(\tau)}{\eta(\tau/2)\eta(2\tau)},$ at $x$ in the complex upper half plane.

source
Nemo.modular_weber_f1Method
modular_weber_f1(x::AcbFieldElem)

Return the modular Weber function $\mathfrak{f}_1(\tau) = \frac{\eta(\tau/2)}{\eta(\tau)},$ at $x$ in the complex upper half plane.

source
Nemo.modular_weber_f2Method
modular_weber_f2(x::AcbFieldElem)

Return the modular Weber function $\mathfrak{f}_2(\tau) = \frac{\sqrt{2}\eta(2\tau)}{\eta(\tau)}$ at $x$ in the complex upper half plane.

source
Nemo.j_invariantMethod
j_invariant(x::AcbFieldElem)

Return the $j$-invariant $j(\tau)$ at $\tau = x$.

source
Nemo.modular_lambdaMethod
modular_lambda(x::AcbFieldElem)

Return the modular lambda function $\lambda(\tau)$ at $\tau = x$.

source
Nemo.modular_deltaMethod
modular_delta(x::AcbFieldElem)

Return the modular delta function $\Delta(\tau)$ at $\tau = x$.

source
Nemo.eisenstein_gMethod
eisenstein_g(k::Int, x::AcbFieldElem)

Return the non-normalized Eisenstein series $G_k(\tau)$ of $\mathrm{SL}_2(\mathbb{Z})$. Also defined for $\tau = i \infty$.

source
Nemo.elliptic_kMethod
elliptic_k(x::AcbFieldElem)

Return the complete elliptic integral $K(x)$.

source
Nemo.elliptic_eMethod
elliptic_e(x::AcbFieldElem)

Return the complete elliptic integral $E(x)$.

source
Nemo.agmMethod
agm(x::AcbFieldElem)

Return the arithmetic-geometric mean of $1$ and $x$.

source
Nemo.agmMethod
agm(x::AcbFieldElem, y::AcbFieldElem)

Return the arithmetic-geometric mean of $x$ and $y$.

source
Nemo.polygammaMethod
polygamma(s::AcbFieldElem, a::AcbFieldElem)

Return the generalised polygamma function $\psi(s,z)$.

source
Nemo.zetaMethod
zeta(s::AcbFieldElem, a::AcbFieldElem)

Return the Hurwitz zeta function $\zeta(s,a)$.

source
AbstractAlgebra.Generic.rising_factorialMethod
rising_factorial(x::AcbFieldElem, n::Int)

Return the rising factorial $x(x + 1)\ldots (x + n - 1)$ as an Acb.

source
AbstractAlgebra.Generic.rising_factorial2Method
rising_factorial2(x::AcbFieldElem, n::Int)

Return a tuple containing the rising factorial $x(x + 1)\ldots (x + n - 1)$ and its derivative.

source
Nemo.polylogMethod
polylog(s::Union{AcbFieldElem,Int}, a::AcbFieldElem)

Return the polylogarithm Li$_s(a)$.

source
Nemo.log_integralMethod
log_integral(x::AcbFieldElem)

Return the logarithmic integral, evaluated at $x$.

source
Nemo.log_integral_offsetMethod
log_integral_offset(x::AcbFieldElem)

Return the offset logarithmic integral, evaluated at $x$.

source
Nemo.exp_integral_eMethod
exp_integral_e(s::AcbFieldElem, x::AcbFieldElem)

Return the generalised exponential integral $E_s(x)$.

source
Nemo.gammaMethod
gamma(s::AcbFieldElem, x::AcbFieldElem)

Return the upper incomplete gamma function $\Gamma(s,x)$.

source
Nemo.gamma_regularizedMethod
gamma_regularized(s::AcbFieldElem, x::AcbFieldElem)

Return the regularized upper incomplete gamma function $\Gamma(s,x) / \Gamma(s)$.

source
Nemo.gamma_lowerMethod
gamma_lower(s::AcbFieldElem, x::AcbFieldElem)

Return the lower incomplete gamma function $\gamma(s,x) / \Gamma(s)$.

source
Nemo.gamma_lower_regularizedMethod
gamma_lower_regularized(s::AcbFieldElem, x::AcbFieldElem)

Return the regularized lower incomplete gamma function $\gamma(s,x) / \Gamma(s)$.

source
Nemo.airy_aiMethod
airy_ai(x::AcbFieldElem)

Return the Airy function $\operatorname{Ai}(x)$.

source
Nemo.airy_ai_primeMethod
airy_ai_prime(x::AcbFieldElem)

Return the derivative of the Airy function $\operatorname{Ai}^\prime(x)$.

source
Nemo.airy_biMethod
airy_bi(x::AcbFieldElem)

Return the Airy function $\operatorname{Bi}(x)$.

source
Nemo.airy_bi_primeMethod
airy_bi_prime(x::AcbFieldElem)

Return the derivative of the Airy function $\operatorname{Bi}^\prime(x)$.

source
Nemo.bessel_jMethod
bessel_j(nu::AcbFieldElem, x::AcbFieldElem)

Return the Bessel function $J_{\nu}(x)$.

source
Nemo.bessel_yMethod
bessel_y(nu::AcbFieldElem, x::AcbFieldElem)

Return the Bessel function $Y_{\nu}(x)$.

source
Nemo.bessel_iMethod
bessel_i(nu::AcbFieldElem, x::AcbFieldElem)

Return the Bessel function $I_{\nu}(x)$.

source
Nemo.bessel_kMethod
bessel_k(nu::AcbFieldElem, x::AcbFieldElem)

Return the Bessel function $K_{\nu}(x)$.

source
Nemo.hypergeometric_1f1Method
hypergeometric_1f1(a::AcbFieldElem, b::AcbFieldElem, x::AcbFieldElem)

Return the confluent hypergeometric function ${}_1F_1(a,b,x)$.

source
Nemo.hypergeometric_1f1_regularizedMethod
hypergeometric_1f1_regularized(a::AcbFieldElem, b::AcbFieldElem, x::AcbFieldElem)

Return the regularized confluent hypergeometric function ${}_1F_1(a,b,x) / \Gamma(b)$.

source
Nemo.hypergeometric_uMethod
hypergeometric_u(a::AcbFieldElem, b::AcbFieldElem, x::AcbFieldElem)

Return the confluent hypergeometric function $U(a,b,x)$.

source
Nemo.hypergeometric_2f1Method
hypergeometric_2f1(a::AcbFieldElem, b::AcbFieldElem, c::AcbFieldElem, x::AcbFieldElem; flags=0)

Return the Gauss hypergeometric function ${}_2F_1(a,b,c,x)$.

source
Nemo.jacobi_thetaMethod
jacobi_theta(z::AcbFieldElem, tau::AcbFieldElem)

Return a tuple of four elements containing the Jacobi theta function values $\theta_1, \theta_2, \theta_3, \theta_4$ evaluated at $z, \tau$.

source
Nemo.weierstrass_pMethod
weierstrass_p(z::AcbFieldElem, tau::AcbFieldElem)

Return the Weierstrass elliptic function $\wp(z,\tau)$.

source

Examples

julia> CC = AcbField(64)
 Complex Field with 64 bits of precision and error bounds
 
 julia> s = CC(1, 2)
@@ -168,7 +168,7 @@
 [0.63189634741402481 +/- 4.85e-18] + [0.00970090757446076 +/- 4.66e-18]*im
 
 julia> d = hypergeometric_1f1(s, s+1, z)
-[-1.3355297330012291 +/- 5.83e-17] + [-0.1715020340928697 +/- 4.97e-17]*im

Linear dependence

Nemo.lindepMethod
lindep(A::Vector{AcbFieldElem}, bits::Int)

Find a small linear combination of the entries of the array $A$ that is small (using LLL). The entries are first scaled by the given number of bits before truncating the real and imaginary parts to integers for use in LLL. This function can be used to find linear dependence between a list of complex numbers. The algorithm is heuristic only and returns an array of Nemo integers representing the linear combination.

source
Nemo.lindepMethod
lindep(A::Matrix{AcbFieldElem}, bits::Int)

Find a (common) small linear combination of the entries in each row of the array $A$, that is small (using LLL). It is assumed that the complex numbers in each row of the array share the same linear combination. The entries are first scaled by the given number of bits before truncating the real and imaginary parts to integers for use in LLL. This function can be used to find a common linear dependence shared across a number of lists of complex numbers. The algorithm is heuristic only and returns an array of Nemo integers representing the common linear combination.

source

Examples

julia> CC = AcbField(128)
+[-1.3355297330012291 +/- 5.83e-17] + [-0.1715020340928697 +/- 4.97e-17]*im

Linear dependence

Nemo.lindepMethod
lindep(A::Vector{AcbFieldElem}, bits::Int)

Find a small linear combination of the entries of the array $A$ that is small (using LLL). The entries are first scaled by the given number of bits before truncating the real and imaginary parts to integers for use in LLL. This function can be used to find linear dependence between a list of complex numbers. The algorithm is heuristic only and returns an array of Nemo integers representing the linear combination.

source
Nemo.lindepMethod
lindep(A::Matrix{AcbFieldElem}, bits::Int)

Find a (common) small linear combination of the entries in each row of the array $A$, that is small (using LLL). It is assumed that the complex numbers in each row of the array share the same linear combination. The entries are first scaled by the given number of bits before truncating the real and imaginary parts to integers for use in LLL. This function can be used to find a common linear dependence shared across a number of lists of complex numbers. The algorithm is heuristic only and returns an array of Nemo integers representing the common linear combination.

source

Examples

julia> CC = AcbField(128)
 Complex Field with 128 bits of precision and error bounds
 
 julia> # These are two of the roots of x^5 + 3x + 1
diff --git a/dev/algebraic/index.html b/dev/algebraic/index.html
index dd2de7d362..8efcc1957d 100644
--- a/dev/algebraic/index.html
+++ b/dev/algebraic/index.html
@@ -22,11 +22,11 @@
 3-element Vector{QQBarFieldElem}:
  Root 2.00000 of x - 2
  Root 0.500000 + 0.866025*im of x^2 - x + 1
- Root 0.500000 - 0.866025*im of x^2 - x + 1

Interface

AbstractAlgebra.Generic.rootsMethod
roots(R::QQBarField, f::ZZPolyRingElem)

Return all the roots of the polynomial f in the field of algebraic numbers R. The output array is sorted in the default sort order for algebraic numbers. Roots of multiplicity higher than one are repeated according to their multiplicity.

source
AbstractAlgebra.Generic.rootsMethod
roots(R::QQBarField, f::QQPolyRingElem)

Return all the roots of the polynomial f in the field of algebraic numbers R. The output array is sorted in the default sort order for algebraic numbers. Roots of multiplicity higher than one are repeated according to their multiplicity.

source
Nemo.eigenvaluesMethod
eigenvalues(R::QQBarField, A::ZZMatrix)
-eigenvalues(R::QQBarField, A::QQMatrix)

Return the eigenvalues A in the field of algebraic numbers R. The output array is sorted in the default sort order for algebraic numbers.

source
eigenvalues(L::Field, M::MatElem{T}) where T <: RingElem

Return the eigenvalues of M over the field L.

source
Nemo.eigenvalues_with_multiplicitiesMethod
eigenvalues_with_multiplicities(R::QQBarField, A::ZZMatrix)
-eigenvalues_with_multiplicities(R::QQBarField, A::QQMatrix)

Return the eigenvalues A in the field of algebraic numbers R together with their algebraic multiplicities as a vector of tuples. The output array is sorted in the default sort order for algebraic numbers.

source
eigenvalues_with_multiplicities(L::Field, M::MatElem{T}) where T <: RingElem

Return the eigenvalues of M over the field L together with their algebraic multiplicities as a vector of tuples.

source
Nemo.eigenvaluesMethod
eigenvalues(R::QQBarField, A::ZZMatrix)
-eigenvalues(R::QQBarField, A::QQMatrix)

Return the eigenvalues A in the field of algebraic numbers R. The output array is sorted in the default sort order for algebraic numbers.

source
eigenvalues(L::Field, M::MatElem{T}) where T <: RingElem

Return the eigenvalues of M over the field L.

source
Nemo.eigenvalues_with_multiplicitiesMethod
eigenvalues_with_multiplicities(R::QQBarField, A::ZZMatrix)
-eigenvalues_with_multiplicities(R::QQBarField, A::QQMatrix)

Return the eigenvalues A in the field of algebraic numbers R together with their algebraic multiplicities as a vector of tuples. The output array is sorted in the default sort order for algebraic numbers.

source
eigenvalues_with_multiplicities(L::Field, M::MatElem{T}) where T <: RingElem

Return the eigenvalues of M over the field L together with their algebraic multiplicities as a vector of tuples.

source
Base.randMethod
rand(R::QQBarField; degree::Int, bits::Int, randtype::Symbol=:null)

Return a random algebraic number with degree up to degree and coefficients up to bits in size. By default, both real and complex numbers are generated. Set the optional randtype to :real or :nonreal to generate a specific type of number. Note that nonreal numbers require degree at least 2.

source

Numerical evaluation

Examples

Algebraic numbers can be evaluated numerically to arbitrary precision by converting to real or complex Arb fields:

julia> RR = ArbField(64); RR(sqrt(QQBar(2)))
+ Root 0.500000 - 0.866025*im of x^2 - x + 1

Interface

AbstractAlgebra.Generic.rootsMethod
roots(R::QQBarField, f::ZZPolyRingElem)

Return all the roots of the polynomial f in the field of algebraic numbers R. The output array is sorted in the default sort order for algebraic numbers. Roots of multiplicity higher than one are repeated according to their multiplicity.

source
AbstractAlgebra.Generic.rootsMethod
roots(R::QQBarField, f::QQPolyRingElem)

Return all the roots of the polynomial f in the field of algebraic numbers R. The output array is sorted in the default sort order for algebraic numbers. Roots of multiplicity higher than one are repeated according to their multiplicity.

source
Nemo.eigenvaluesMethod
eigenvalues(R::QQBarField, A::ZZMatrix)
+eigenvalues(R::QQBarField, A::QQMatrix)

Return the eigenvalues A in the field of algebraic numbers R. The output array is sorted in the default sort order for algebraic numbers.

source
eigenvalues(L::Field, M::MatElem{T}) where T <: RingElem

Return the eigenvalues of M over the field L.

source
Nemo.eigenvalues_with_multiplicitiesMethod
eigenvalues_with_multiplicities(R::QQBarField, A::ZZMatrix)
+eigenvalues_with_multiplicities(R::QQBarField, A::QQMatrix)

Return the eigenvalues A in the field of algebraic numbers R together with their algebraic multiplicities as a vector of tuples. The output array is sorted in the default sort order for algebraic numbers.

source
eigenvalues_with_multiplicities(L::Field, M::MatElem{T}) where T <: RingElem

Return the eigenvalues of M over the field L together with their algebraic multiplicities as a vector of tuples.

source
Nemo.eigenvaluesMethod
eigenvalues(R::QQBarField, A::ZZMatrix)
+eigenvalues(R::QQBarField, A::QQMatrix)

Return the eigenvalues A in the field of algebraic numbers R. The output array is sorted in the default sort order for algebraic numbers.

source
eigenvalues(L::Field, M::MatElem{T}) where T <: RingElem

Return the eigenvalues of M over the field L.

source
Nemo.eigenvalues_with_multiplicitiesMethod
eigenvalues_with_multiplicities(R::QQBarField, A::ZZMatrix)
+eigenvalues_with_multiplicities(R::QQBarField, A::QQMatrix)

Return the eigenvalues A in the field of algebraic numbers R together with their algebraic multiplicities as a vector of tuples. The output array is sorted in the default sort order for algebraic numbers.

source
eigenvalues_with_multiplicities(L::Field, M::MatElem{T}) where T <: RingElem

Return the eigenvalues of M over the field L together with their algebraic multiplicities as a vector of tuples.

source
Base.randMethod
rand(R::QQBarField; degree::Int, bits::Int, randtype::Symbol=:null)

Return a random algebraic number with degree up to degree and coefficients up to bits in size. By default, both real and complex numbers are generated. Set the optional randtype to :real or :nonreal to generate a specific type of number. Note that nonreal numbers require degree at least 2.

source

Numerical evaluation

Examples

Algebraic numbers can be evaluated numerically to arbitrary precision by converting to real or complex Arb fields:

julia> RR = ArbField(64); RR(sqrt(QQBar(2)))
 [1.414213562373095049 +/- 3.45e-19]
 
 julia> CC = AcbField(32); CC(QQBar(-1) ^ (QQBar(1) // 4))
@@ -36,7 +36,7 @@
 julia> conjugates(QQBar(1+2im))
 2-element Vector{QQBarFieldElem}:
  Root 1.00000 + 2.00000*im of x^2 - 2x + 5
- Root 1.00000 - 2.00000*im of x^2 - 2x + 5

Interface

Base.iszeroMethod
iszero(x::QQBarFieldElem)

Return whether x is the number 0.

source
Base.isoneMethod
isone(x::QQBarFieldElem)

Return whether x is the number 1.

source
Base.isintegerMethod
isinteger(x::QQBarFieldElem)

Return whether x is an integer.

source
Nemo.is_rationalMethod
is_rational(x::QQBarFieldElem)

Return whether x is a rational number.

source
Base.isrealMethod
isreal(x::QQBarFieldElem)

Return whether x is a real number.

source
AbstractAlgebra.degreeMethod
degree(x::QQBarFieldElem)

Return the degree of the minimal polynomial of x.

source
Nemo.is_algebraic_integerMethod
is_algebraic_integer(x::QQBarFieldElem)

Return whether x is an algebraic integer.

source
AbstractAlgebra.minpolyMethod
minpoly(R::ZZPolyRing, x::QQBarFieldElem)

Return the minimal polynomial of x as an element of the polynomial ring R.

source
AbstractAlgebra.minpolyMethod
minpoly(R::ZZPolyRing, x::QQBarFieldElem)

Return the minimal polynomial of x as an element of the polynomial ring R.

source
Nemo.conjugatesMethod
conjugates(a::QQBarFieldElem)

Return all the roots of the polynomial f in the field of algebraic numbers R. The output array is sorted in the default sort order for algebraic numbers.

source
Base.denominatorMethod
denominator(x::QQBarFieldElem)

Return the denominator of x, defined as the leading coefficient of the minimal polynomial of x. The result is returned as an ZZRingElem.

source
Base.numeratorMethod
numerator(x::QQBarFieldElem)

Return the numerator of x, defined as x multiplied by its denominator. The result is an algebraic integer.

source
Nemo.heightMethod
height(x::QQBarFieldElem)

Return the height of the algebraic number x. The result is an ZZRingElem integer.

source
Nemo.height_bitsMethod
height_bits(x::QQBarFieldElem)

Return the height of the algebraic number x measured in bits. The result is a Julia integer.

source

Complex parts

Examples

julia> real(sqrt(QQBar(1im)))
+ Root 1.00000 - 2.00000*im of x^2 - 2x + 5

Interface

Base.iszeroMethod
iszero(x::QQBarFieldElem)

Return whether x is the number 0.

source
Base.isoneMethod
isone(x::QQBarFieldElem)

Return whether x is the number 1.

source
Base.isintegerMethod
isinteger(x::QQBarFieldElem)

Return whether x is an integer.

source
Nemo.is_rationalMethod
is_rational(x::QQBarFieldElem)

Return whether x is a rational number.

source
Base.isrealMethod
isreal(x::QQBarFieldElem)

Return whether x is a real number.

source
AbstractAlgebra.degreeMethod
degree(x::QQBarFieldElem)

Return the degree of the minimal polynomial of x.

source
Nemo.is_algebraic_integerMethod
is_algebraic_integer(x::QQBarFieldElem)

Return whether x is an algebraic integer.

source
AbstractAlgebra.minpolyMethod
minpoly(R::ZZPolyRing, x::QQBarFieldElem)

Return the minimal polynomial of x as an element of the polynomial ring R.

source
AbstractAlgebra.minpolyMethod
minpoly(R::ZZPolyRing, x::QQBarFieldElem)

Return the minimal polynomial of x as an element of the polynomial ring R.

source
Nemo.conjugatesMethod
conjugates(a::QQBarFieldElem)

Return all the roots of the polynomial f in the field of algebraic numbers R. The output array is sorted in the default sort order for algebraic numbers.

source
Base.denominatorMethod
denominator(x::QQBarFieldElem)

Return the denominator of x, defined as the leading coefficient of the minimal polynomial of x. The result is returned as an ZZRingElem.

source
Base.numeratorMethod
numerator(x::QQBarFieldElem)

Return the numerator of x, defined as x multiplied by its denominator. The result is an algebraic integer.

source
Nemo.heightMethod
height(x::QQBarFieldElem)

Return the height of the algebraic number x. The result is an ZZRingElem integer.

source
Nemo.height_bitsMethod
height_bits(x::QQBarFieldElem)

Return the height of the algebraic number x measured in bits. The result is a Julia integer.

source

Complex parts

Examples

julia> real(sqrt(QQBar(1im)))
 Root 0.707107 of 2x^2 - 1
 
 julia> abs(sqrt(QQBar(1im)))
@@ -46,7 +46,7 @@
 Root 31.0000 of x - 31
 
 julia> sign(QQBar(-10-20im))
-Root -0.447214 - 0.894427*im of 5x^4 + 6x^2 + 5

Interface

Base.realMethod
real(a::QQBarFieldElem)

Return the real part of a.

source
Base.imagMethod
imag(a::QQBarFieldElem)

Return the imaginary part of a.

source
Base.absMethod
abs(a::QQBarFieldElem)

Return the absolute value of a.

source
Base.abs2Method
abs2(a::QQBarFieldElem)

Return the squared absolute value of a.

source
Base.conjMethod
conj(a::QQBarFieldElem)

Return the complex conjugate of a.

source
Base.signMethod
sign(a::QQBarFieldElem)

Return the complex sign of a, defined as zero if a is zero and as $a / |a|$ otherwise.

source
Nemo.csgnMethod
csgn(a::QQBarFieldElem)

Return the extension of the real sign function taking the value 1 strictly in the right half plane, -1 strictly in the left half plane, and the sign of the imaginary part when on the imaginary axis. Equivalently, $\operatorname{csgn}(x) = x / \sqrt{x^2}$ except that the value is 0 at zero. The value is returned as a Julia integer.

source
Nemo.sign_realMethod
sign_real(a::QQBarFieldElem)

Return the sign of the real part of a as a Julia integer.

source
Nemo.sign_imagMethod
sign_imag(a::QQBarFieldElem)

Return the sign of the imaginary part of a as a Julia integer.

source

Comparing algebraic numbers

The operators == and != check exactly for equality.

We provide various comparison functions for ordering algebraic numbers:

The standard comparison will throw if either argument is nonreal.

The various comparisons for complex parts are provided as separate operations since these functions are far more efficient than explicitly computing the complex parts and then doing real comparisons.

The root sort order is a total order for complex algebraic numbers used to order the output of roots and conjugates canonically. We define this order as follows: real roots come first, in descending order. Nonreal roots are subsequently ordered first by real part in descending order, then in ascending order by the absolute value of the imaginary part, and then in descending order of the sign of the imaginary part. This implies that complex conjugate roots are adjacent, with the root in the upper half plane first.

Examples

julia> 1 < sqrt(QQBar(2)) < QQBar(3)//2
+Root -0.447214 - 0.894427*im of 5x^4 + 6x^2 + 5

Interface

Base.realMethod
real(a::QQBarFieldElem)

Return the real part of a.

source
Base.imagMethod
imag(a::QQBarFieldElem)

Return the imaginary part of a.

source
Base.absMethod
abs(a::QQBarFieldElem)

Return the absolute value of a.

source
Base.abs2Method
abs2(a::QQBarFieldElem)

Return the squared absolute value of a.

source
Base.conjMethod
conj(a::QQBarFieldElem)

Return the complex conjugate of a.

source
Base.signMethod
sign(a::QQBarFieldElem)

Return the complex sign of a, defined as zero if a is zero and as $a / |a|$ otherwise.

source
Nemo.csgnMethod
csgn(a::QQBarFieldElem)

Return the extension of the real sign function taking the value 1 strictly in the right half plane, -1 strictly in the left half plane, and the sign of the imaginary part when on the imaginary axis. Equivalently, $\operatorname{csgn}(x) = x / \sqrt{x^2}$ except that the value is 0 at zero. The value is returned as a Julia integer.

source
Nemo.sign_realMethod
sign_real(a::QQBarFieldElem)

Return the sign of the real part of a as a Julia integer.

source
Nemo.sign_imagMethod
sign_imag(a::QQBarFieldElem)

Return the sign of the imaginary part of a as a Julia integer.

source

Comparing algebraic numbers

The operators == and != check exactly for equality.

We provide various comparison functions for ordering algebraic numbers:

The standard comparison will throw if either argument is nonreal.

The various comparisons for complex parts are provided as separate operations since these functions are far more efficient than explicitly computing the complex parts and then doing real comparisons.

The root sort order is a total order for complex algebraic numbers used to order the output of roots and conjugates canonically. We define this order as follows: real roots come first, in descending order. Nonreal roots are subsequently ordered first by real part in descending order, then in ascending order by the absolute value of the imaginary part, and then in descending order of the sign of the imaginary part. This implies that complex conjugate roots are adjacent, with the root in the upper half plane first.

Examples

julia> 1 < sqrt(QQBar(2)) < QQBar(3)//2
 true
 
 julia> x = QQBar(3+4im)
@@ -59,7 +59,7 @@
 true
 
 julia> is_less_real(x, x // 2)
-false

Interface

Nemo.is_equal_realMethod
is_equal_real(a::QQBarFieldElem, b::QQBarFieldElem)

Compares the real parts of a and b.

source
Nemo.is_equal_imagMethod
is_equal_imag(a::QQBarFieldElem, b::QQBarFieldElem)

Compares the imaginary parts of a and b.

source
Nemo.is_equal_absMethod
is_equal_abs(a::QQBarFieldElem, b::QQBarFieldElem)

Compares the absolute values of a and b.

source
Nemo.is_equal_abs_realMethod
is_equal_abs_real(a::QQBarFieldElem, b::QQBarFieldElem)

Compares the absolute values of the real parts of a and b.

source
Nemo.is_equal_abs_imagMethod
is_equal_abs_imag(a::QQBarFieldElem, b::QQBarFieldElem)

Compares the absolute values of the imaginary parts of a and b.

source
Nemo.is_less_realMethod
is_less_real(a::QQBarFieldElem, b::QQBarFieldElem)

Compares the real parts of a and b.

source
Nemo.is_less_imagMethod
is_less_imag(a::QQBarFieldElem, b::QQBarFieldElem)

Compares the imaginary parts of a and b.

source
Nemo.is_less_absMethod
is_less_abs(a::QQBarFieldElem, b::QQBarFieldElem)

Compares the absolute values of a and b.

source
Nemo.is_less_abs_realMethod
is_less_abs_real(a::QQBarFieldElem, b::QQBarFieldElem)

Compares the absolute values of the real parts of a and b.

source
Nemo.is_less_abs_imagMethod
is_less_abs_imag(a::QQBarFieldElem, b::QQBarFieldElem)

Compares the absolute values of the imaginary parts of a and b.

source
Nemo.is_less_root_orderMethod
is_less_root_order(a::QQBarFieldElem, b::QQBarFieldElem)

Compares the a and b in root sort order.

source

Roots and trigonometric functions

Examples

julia> root(QQBar(2), 5)
+false

Interface

Nemo.is_equal_realMethod
is_equal_real(a::QQBarFieldElem, b::QQBarFieldElem)

Compares the real parts of a and b.

source
Nemo.is_equal_imagMethod
is_equal_imag(a::QQBarFieldElem, b::QQBarFieldElem)

Compares the imaginary parts of a and b.

source
Nemo.is_equal_absMethod
is_equal_abs(a::QQBarFieldElem, b::QQBarFieldElem)

Compares the absolute values of a and b.

source
Nemo.is_equal_abs_realMethod
is_equal_abs_real(a::QQBarFieldElem, b::QQBarFieldElem)

Compares the absolute values of the real parts of a and b.

source
Nemo.is_equal_abs_imagMethod
is_equal_abs_imag(a::QQBarFieldElem, b::QQBarFieldElem)

Compares the absolute values of the imaginary parts of a and b.

source
Nemo.is_less_realMethod
is_less_real(a::QQBarFieldElem, b::QQBarFieldElem)

Compares the real parts of a and b.

source
Nemo.is_less_imagMethod
is_less_imag(a::QQBarFieldElem, b::QQBarFieldElem)

Compares the imaginary parts of a and b.

source
Nemo.is_less_absMethod
is_less_abs(a::QQBarFieldElem, b::QQBarFieldElem)

Compares the absolute values of a and b.

source
Nemo.is_less_abs_realMethod
is_less_abs_real(a::QQBarFieldElem, b::QQBarFieldElem)

Compares the absolute values of the real parts of a and b.

source
Nemo.is_less_abs_imagMethod
is_less_abs_imag(a::QQBarFieldElem, b::QQBarFieldElem)

Compares the absolute values of the imaginary parts of a and b.

source
Nemo.is_less_root_orderMethod
is_less_root_order(a::QQBarFieldElem, b::QQBarFieldElem)

Compares the a and b in root sort order.

source

Roots and trigonometric functions

Examples

julia> root(QQBar(2), 5)
 Root 1.14870 of x^5 - 2
 
 julia> sinpi(QQBar(7) // 13)
@@ -84,28 +84,28 @@
 false
 
 julia> root_of_unity_as_args(w)
-(6, 5)

Interface

Base.sqrtMethod
sqrt(a::QQBarFieldElem; check::Bool=true)

Return the principal square root of a.

source
AbstractAlgebra.rootMethod
root(a::QQBarFieldElem, n::Int)

Return the principal n-th root of a. Requires positive n.

source
Nemo.root_of_unityMethod
root_of_unity(C::QQBarField, n::Int)

Return the root of unity $e^{2 \pi i / n}$ as an element of the field of algebraic numbers C.

source
Nemo.root_of_unityMethod
root_of_unity(C::QQBarField, n::Int, k::Int)

Return the root of unity $e^{2 \pi i k / n}$ as an element of the field of algebraic numbers C.

source
Nemo.is_root_of_unityMethod
is_root_of_unity(a::QQBarFieldElem)

Return whether the given algebraic number is a root of unity.

source
Nemo.root_of_unity_as_argsMethod
root_of_unity_as_args(a::QQBarFieldElem)

Return a pair of integers (q, p) such that the given a equals $e^{2 \pi i p / q}$. The denominator q will be minimal, with $0 \le p < q$. Throws if a is not a root of unity.

source
Nemo.exp_pi_iMethod
exp_pi_i(a::QQBarFieldElem)

Return $e^{\pi i a}$ as an algebraic number. Throws if this value is transcendental.

source
Nemo.log_pi_iMethod
log_pi_i(a::QQBarFieldElem)

Return $\log(a) / (\pi i)$ as an algebraic number. Throws if this value is transcendental or undefined.

source
Base.Math.sinpiMethod
sinpi(a::QQBarFieldElem)

Return $\sin(\pi a)$ as an algebraic number. Throws if this value is transcendental.

Examples

julia> QQBar = algebraic_closure(QQ);
+(6, 5)

Interface

Base.sqrtMethod
sqrt(a::QQBarFieldElem; check::Bool=true)

Return the principal square root of a.

source
Nemo.root_of_unityMethod
root_of_unity(C::QQBarField, n::Int)

Return the root of unity $e^{2 \pi i / n}$ as an element of the field of algebraic numbers C.

source
Nemo.root_of_unityMethod
root_of_unity(C::QQBarField, n::Int, k::Int)

Return the root of unity $e^{2 \pi i k / n}$ as an element of the field of algebraic numbers C.

source
Nemo.root_of_unity_as_argsMethod
root_of_unity_as_args(a::QQBarFieldElem)

Return a pair of integers (q, p) such that the given a equals $e^{2 \pi i p / q}$. The denominator q will be minimal, with $0 \le p < q$. Throws if a is not a root of unity.

source
Nemo.exp_pi_iMethod
exp_pi_i(a::QQBarFieldElem)

Return $e^{\pi i a}$ as an algebraic number. Throws if this value is transcendental.

source
Nemo.log_pi_iMethod
log_pi_i(a::QQBarFieldElem)

Return $\log(a) / (\pi i)$ as an algebraic number. Throws if this value is transcendental or undefined.

source
Base.Math.sinpiMethod
sinpi(a::QQBarFieldElem)

Return $\sin(\pi a)$ as an algebraic number. Throws if this value is transcendental.

Examples

julia> QQBar = algebraic_closure(QQ);
 
 julia> x = sinpi(QQBar(1//3))
 Root 0.866025 of 4x^2 - 3
 
 julia> sinpi(x)
 ERROR: DomainError with Root 0.866025 of 4x^2 - 3:
-nonrational algebraic number
source
Base.Math.cospiMethod
cospi(a::QQBarFieldElem)

Return $\cos(\pi a)$ as an algebraic number. Throws if this value is transcendental.

Examples

julia> QQBar = algebraic_closure(QQ);
+nonrational algebraic number
source
Base.Math.cospiMethod
cospi(a::QQBarFieldElem)

Return $\cos(\pi a)$ as an algebraic number. Throws if this value is transcendental.

Examples

julia> QQBar = algebraic_closure(QQ);
 
 julia> x = cospi(QQBar(1//6))
 Root 0.866025 of 4x^2 - 3
 
 julia> cospi(x)
 ERROR: DomainError with Root 0.866025 of 4x^2 - 3:
-nonrational algebraic number
source
Base.Math.sincospiMethod
sincospi(a::QQBarFieldElem)

Return $\sin(\pi a)$ and $\cos(\pi a)$ as a pair of algebraic numbers. Throws if either value is transcendental.

Examples

julia> QQBar = algebraic_closure(QQ);
+nonrational algebraic number
source
Base.Math.sincospiMethod
sincospi(a::QQBarFieldElem)

Return $\sin(\pi a)$ and $\cos(\pi a)$ as a pair of algebraic numbers. Throws if either value is transcendental.

Examples

julia> QQBar = algebraic_closure(QQ);
 
 julia> s, c = sincospi(QQBar(1//3))
 (Root 0.866025 of 4x^2 - 3, Root 0.500000 of 2x - 1)
 
 julia> sincospi(s)
 ERROR: DomainError with Root 0.866025 of 4x^2 - 3:
-nonrational algebraic number
source
Base.Math.tanpiMethod
tanpi(a::QQBarFieldElem)

Return $\tan(\pi a)$ as an algebraic number. Throws if this value is transcendental or undefined.

source
Nemo.asinpiMethod
asinpi(a::QQBarFieldElem)

Return $\operatorname{asin}(a) / \pi$ as an algebraic number. Throws if this value is transcendental.

source
Nemo.acospiMethod
acospi(a::QQBarFieldElem)

Return $\operatorname{acos}(a) / \pi$ as an algebraic number. Throws if this value is transcendental.

source
Nemo.atanpiMethod
atanpi(a::QQBarFieldElem)

Return $\operatorname{atan}(a) / \pi$ as an algebraic number. Throws if this value is transcendental or undefined.

source

Guessing

Examples

An algebraic number can be recovered from a numerical value:

julia> RR = RealField(); guess(QQBar, RR("1.41421356 +/- 1e-6"), 2)
+nonrational algebraic number
source
Base.Math.tanpiMethod
tanpi(a::QQBarFieldElem)

Return $\tan(\pi a)$ as an algebraic number. Throws if this value is transcendental or undefined.

source
Nemo.asinpiMethod
asinpi(a::QQBarFieldElem)

Return $\operatorname{asin}(a) / \pi$ as an algebraic number. Throws if this value is transcendental.

source
Nemo.acospiMethod
acospi(a::QQBarFieldElem)

Return $\operatorname{acos}(a) / \pi$ as an algebraic number. Throws if this value is transcendental.

source
Nemo.atanpiMethod
atanpi(a::QQBarFieldElem)

Return $\operatorname{atan}(a) / \pi$ as an algebraic number. Throws if this value is transcendental or undefined.

source

Guessing

Examples

An algebraic number can be recovered from a numerical value:

julia> RR = RealField(); guess(QQBar, RR("1.41421356 +/- 1e-6"), 2)
 Root 1.41421 of x^2 - 2

Warning: the input should be an enclosure. If you have a floating-point approximation, you should add an error estimate; otherwise, at best the only algebraic number that can be guessed is the binary floating-point number itself, at worst no guess is possible.

julia> RR = RealField();
 
 julia> x = RR(0.1)       # note: 53-bit binary approximation of 1//10 without radius
@@ -118,4 +118,4 @@
 Root 0.100000 of 10x - 1

Interface

Nemo.guessFunction
guess(R::QQBarField, x::AcbFieldElem, maxdeg::Int, maxbits::Int=0)
 guess(R::QQBarField, x::ArbFieldElem, maxdeg::Int, maxbits::Int=0)
 guess(R::QQBarField, x::ComplexFieldElem, maxdeg::Int, maxbits::Int=0)
-guess(R::QQBarField, x::RealFieldElem, maxdeg::Int, maxbits::Int=0)

Try to reconstruct an algebraic number from a given numerical enclosure x. The algorithm looks for candidates up to degree maxdeg and with coefficients up to size maxbits (which defaults to the precision of x if not given). Throws if no suitable algebraic number can be found.

Guessing typically requires high precision to succeed, and it does not make much sense to call this function with input precision smaller than $O(maxdeg \cdot maxbits)$. If this function succeeds, then the output is guaranteed to be contained in the enclosure x, but failure does not prove that such an algebraic number with the specified parameters does not exist.

This function does a single iteration with the target parameters. For best performance, one should invoke this function repeatedly with successively larger parameters when the size of the intended solution is unknown or may be much smaller than a worst-case bound.

source
+guess(R::QQBarField, x::RealFieldElem, maxdeg::Int, maxbits::Int=0)

Try to reconstruct an algebraic number from a given numerical enclosure x. The algorithm looks for candidates up to degree maxdeg and with coefficients up to size maxbits (which defaults to the precision of x if not given). Throws if no suitable algebraic number can be found.

Guessing typically requires high precision to succeed, and it does not make much sense to call this function with input precision smaller than $O(maxdeg \cdot maxbits)$. If this function succeeds, then the output is guaranteed to be contained in the enclosure x, but failure does not prove that such an algebraic number with the specified parameters does not exist.

This function does a single iteration with the target parameters. For best performance, one should invoke this function repeatedly with successively larger parameters when the size of the intended solution is unknown or may be much smaller than a worst-case bound.

source diff --git a/dev/arb/index.html b/dev/arb/index.html index 15f5799453..3f8caf9036 100644 --- a/dev/arb/index.html +++ b/dev/arb/index.html @@ -12,7 +12,7 @@ 0.50000000000000000000 julia> d = RR(12) -12.000000000000000000

Note that whilst one can coerce double precision floating point values into an Arb real field, unless those values can be represented exactly in double precision the resulting ball can't be any more precise than the double precision supplied.

If instead, values can be represented precisely using decimal arithmetic then one can supply them to Arb using a string. In this case, Arb will store them to the precision specified when creating the Arb field.

If the values can be stored precisely as a binary floating point number, Arb will store the values exactly. See the function is_exact below for more information.

Real ball constructors

Nemo.ballMethod
ball(x::ArbFieldElem, y::ArbFieldElem)

Constructs an Arb ball enclosing $x_m \pm (|x_r| + |y_m| + |y_r|)$, given the pair $(x, y) = (x_m \pm x_r, y_m \pm y_r)$.

source

Examples

julia> RR = ArbField(64)
+12.000000000000000000

Note that whilst one can coerce double precision floating point values into an Arb real field, unless those values can be represented exactly in double precision the resulting ball can't be any more precise than the double precision supplied.

If instead, values can be represented precisely using decimal arithmetic then one can supply them to Arb using a string. In this case, Arb will store them to the precision specified when creating the Arb field.

If the values can be stored precisely as a binary floating point number, Arb will store the values exactly. See the function is_exact below for more information.

Real ball constructors

Nemo.ballMethod
ball(x::ArbFieldElem, y::ArbFieldElem)

Constructs an Arb ball enclosing $x_m \pm (|x_r| + |y_m| + |y_r|)$, given the pair $(x, y) = (x_m \pm x_r, y_m \pm y_r)$.

source

Examples

julia> RR = ArbField(64)
 Real Field with 64 bits of precision and error bounds
 
 julia> c = ball(RR(3), RR("0.0001"))
@@ -20,7 +20,7 @@
 Real Field with 64 bits of precision and error bounds
 
 julia> convert(Float64, RR(1//3))
-0.3333333333333333

Basic manipulation

Nemo.is_nonzeroMethod
is_nonzero(x::ArbFieldElem)

Return true if $x$ is certainly not equal to zero, otherwise return false.

source
Base.isfiniteMethod
isfinite(x::ArbFieldElem)

Return true if $x$ is finite, i.e. having finite midpoint and radius, otherwise return false.

source
Nemo.is_exactMethod
is_exact(x::ArbFieldElem)

Return true if $x$ is exact, i.e. has zero radius, otherwise return false.

source
Base.isintegerMethod
isinteger(x::ArbFieldElem)

Return true if $x$ is an exact integer, otherwise return false.

source
AbstractAlgebra.is_positiveMethod
is_positive(x::ArbFieldElem)

Return true if $x$ is certainly positive, otherwise return false.

source
Nemo.is_nonnegativeMethod
is_nonnegative(x::ArbFieldElem)

Return true if $x$ is certainly non-negative, otherwise return false.

source
AbstractAlgebra.is_negativeMethod
is_negative(x::ArbFieldElem)

Return true if $x$ is certainly negative, otherwise return false.

source
Nemo.is_nonpositiveMethod
is_nonpositive(x::ArbFieldElem)

Return true if $x$ is certainly nonpositive, otherwise return false.

source
Nemo.midpointMethod
midpoint(x::ArbFieldElem)

Return the midpoint of the ball $x$ as an Arb ball.

source
Nemo.radiusMethod
radius(x::ArbFieldElem)

Return the radius of the ball $x$ as an Arb ball.

source
Nemo.accuracy_bitsMethod
accuracy_bits(x::ArbFieldElem)

Return the relative accuracy of $x$ measured in bits, capped between typemax(Int) and -typemax(Int).

source

Examples

julia> RR = ArbField(64)
+0.3333333333333333

Basic manipulation

Nemo.is_nonzeroMethod
is_nonzero(x::ArbFieldElem)

Return true if $x$ is certainly not equal to zero, otherwise return false.

source
Base.isfiniteMethod
isfinite(x::ArbFieldElem)

Return true if $x$ is finite, i.e. having finite midpoint and radius, otherwise return false.

source
Nemo.is_exactMethod
is_exact(x::ArbFieldElem)

Return true if $x$ is exact, i.e. has zero radius, otherwise return false.

source
Base.isintegerMethod
isinteger(x::ArbFieldElem)

Return true if $x$ is an exact integer, otherwise return false.

source
AbstractAlgebra.is_positiveMethod
is_positive(x::ArbFieldElem)

Return true if $x$ is certainly positive, otherwise return false.

source
Nemo.is_nonnegativeMethod
is_nonnegative(x::ArbFieldElem)

Return true if $x$ is certainly non-negative, otherwise return false.

source
AbstractAlgebra.is_negativeMethod
is_negative(x::ArbFieldElem)

Return true if $x$ is certainly negative, otherwise return false.

source
Nemo.is_nonpositiveMethod
is_nonpositive(x::ArbFieldElem)

Return true if $x$ is certainly nonpositive, otherwise return false.

source
Nemo.midpointMethod
midpoint(x::ArbFieldElem)

Return the midpoint of the ball $x$ as an Arb ball.

source
Nemo.radiusMethod
radius(x::ArbFieldElem)

Return the radius of the ball $x$ as an Arb ball.

source
Nemo.accuracy_bitsMethod
accuracy_bits(x::ArbFieldElem)

Return the relative accuracy of $x$ measured in bits, capped between typemax(Int) and -typemax(Int).

source

Examples

julia> RR = ArbField(64)
 Real Field with 64 bits of precision and error bounds
 
 julia> a = RR("1.2 +/- 0.001")
@@ -76,7 +76,7 @@
 [+/- 3.01]
 [1e+1 +/- 4.01]
 1.0000000000000000000
-[2.0000000037252902985 +/- 3.81e-20]

The first reason that c is not printed as [1 +/- 2] is that the midpoint does not have a greater exponent than the radius in its scientific notation. For similar reasons y is not printed as [12 +/- 2].

The second reason is that we get an additional error term after our addition. As we see, radius(c) is not equal to $2$, which when printed rounds it up to a reasonable decimal place. This is because real balls keep track of rounding errors of basic arithmetic.

Containment

It is often necessary to determine whether a given exact value or ball is contained in a given real ball or whether two balls overlap. The following functions are provided for this purpose.

Nemo.overlapsMethod
overlaps(x::ArbFieldElem, y::ArbFieldElem)

Returns true if any part of the ball $x$ overlaps any part of the ball $y$, otherwise return false.

source
Base.containsMethod
contains(x::ArbFieldElem, y::ArbFieldElem)

Returns true if the ball $x$ contains the ball $y$, otherwise return false.

source
Base.containsMethod
contains(x::ArbFieldElem, y::Integer)

Returns true if the ball $x$ contains the given integer value, otherwise return false.

source
Base.containsMethod
contains(x::ArbFieldElem, y::ZZRingElem)

Returns true if the ball $x$ contains the given integer value, otherwise return false.

source
Base.containsMethod
contains(x::ArbFieldElem, y::QQFieldElem)

Returns true if the ball $x$ contains the given rational value, otherwise return false.

source
Base.containsMethod
contains(x::ArbFieldElem, y::Rational{T}) where {T <: Integer}

Returns true if the ball $x$ contains the given rational value, otherwise return false.

source
Base.containsMethod
contains(x::ArbFieldElem, y::BigFloat)

Returns true if the ball $x$ contains the given floating point value, otherwise return false.

source

The following functions are also provided for determining if a ball intersects a certain part of the real number line.

Nemo.contains_zeroMethod
contains_zero(x::ArbFieldElem)

Returns true if the ball $x$ contains zero, otherwise return false.

source
Nemo.contains_negativeMethod
contains_negative(x::ArbFieldElem)

Returns true if the ball $x$ contains any negative value, otherwise return false.

source
Nemo.contains_positiveMethod
contains_positive(x::ArbFieldElem)

Returns true if the ball $x$ contains any positive value, otherwise return false.

source
Nemo.contains_nonnegativeMethod
contains_nonnegative(x::ArbFieldElem)

Returns true if the ball $x$ contains any non-negative value, otherwise return false.

source
Nemo.contains_nonpositiveMethod
contains_nonpositive(x::ArbFieldElem)

Returns true if the ball $x$ contains any nonpositive value, otherwise return false.

source

Examples

julia> RR = ArbField(64)
+[2.0000000037252902985 +/- 3.81e-20]

The first reason that c is not printed as [1 +/- 2] is that the midpoint does not have a greater exponent than the radius in its scientific notation. For similar reasons y is not printed as [12 +/- 2].

The second reason is that we get an additional error term after our addition. As we see, radius(c) is not equal to $2$, which when printed rounds it up to a reasonable decimal place. This is because real balls keep track of rounding errors of basic arithmetic.

Containment

It is often necessary to determine whether a given exact value or ball is contained in a given real ball or whether two balls overlap. The following functions are provided for this purpose.

Nemo.overlapsMethod
overlaps(x::ArbFieldElem, y::ArbFieldElem)

Returns true if any part of the ball $x$ overlaps any part of the ball $y$, otherwise return false.

source
Base.containsMethod
contains(x::ArbFieldElem, y::ArbFieldElem)

Returns true if the ball $x$ contains the ball $y$, otherwise return false.

source
Base.containsMethod
contains(x::ArbFieldElem, y::Integer)

Returns true if the ball $x$ contains the given integer value, otherwise return false.

source
Base.containsMethod
contains(x::ArbFieldElem, y::ZZRingElem)

Returns true if the ball $x$ contains the given integer value, otherwise return false.

source
Base.containsMethod
contains(x::ArbFieldElem, y::QQFieldElem)

Returns true if the ball $x$ contains the given rational value, otherwise return false.

source
Base.containsMethod
contains(x::ArbFieldElem, y::Rational{T}) where {T <: Integer}

Returns true if the ball $x$ contains the given rational value, otherwise return false.

source
Base.containsMethod
contains(x::ArbFieldElem, y::BigFloat)

Returns true if the ball $x$ contains the given floating point value, otherwise return false.

source

The following functions are also provided for determining if a ball intersects a certain part of the real number line.

Nemo.contains_zeroMethod
contains_zero(x::ArbFieldElem)

Returns true if the ball $x$ contains zero, otherwise return false.

source
Nemo.contains_negativeMethod
contains_negative(x::ArbFieldElem)

Returns true if the ball $x$ contains any negative value, otherwise return false.

source
Nemo.contains_positiveMethod
contains_positive(x::ArbFieldElem)

Returns true if the ball $x$ contains any positive value, otherwise return false.

source
Nemo.contains_nonnegativeMethod
contains_nonnegative(x::ArbFieldElem)

Returns true if the ball $x$ contains any non-negative value, otherwise return false.

source
Nemo.contains_nonpositiveMethod
contains_nonpositive(x::ArbFieldElem)

Returns true if the ball $x$ contains any nonpositive value, otherwise return false.

source

Examples

julia> RR = ArbField(64)
 Real Field with 64 bits of precision and error bounds
 
 julia> x = RR("1 +/- 0.001")
@@ -101,7 +101,7 @@
 false
 
 julia> contains_positive(y)
-true

Comparison

Nemo provides a full range of comparison operations for Arb balls. Note that a ball is considered less than another ball if every value in the first ball is less than every value in the second ball, etc.

In addition to the standard comparison operators, we introduce an exact equality. This is distinct from arithmetic equality implemented by ==, which merely compares up to the minimum of the precisions of its operands.

Base.isequalMethod
isequal(x::ArbFieldElem, y::ArbFieldElem)

Return true if the balls $x$ and $y$ are precisely equal, i.e. have the same midpoints and radii.

source

We also provide a full range of ad hoc comparison operators. These are implemented directly in Julia, but we document them as though isless and == were provided.

Function
==(x::ArbFieldElem, y::Integer)
==(x::Integer, y::ArbFieldElem)
==(x::ArbFieldElem, y::ZZRingElem)
==(x::ZZRingElem, y::ArbFieldElem)
==(x::ArbFieldElem, y::Float64)
==(x::Float64, y::ArbFieldElem)
isless(x::ArbFieldElem, y::Integer)
isless(x::Integer, y::ArbFieldElem)
isless(x::ArbFieldElem, y::ZZRingElem)
isless(x::ZZRingElem, y::ArbFieldElem)
isless(x::ArbFieldElem, y::Float64)
isless(x::Float64, y::ArbFieldElem)
isless(x::ArbFieldElem, y::BigFloat)
isless(x::BigFloat, y::ArbFieldElem)
isless(x::ArbFieldElem, y::QQFieldElem)
isless(x::QQFieldElem, y::ArbFieldElem)

Examples

julia> RR = ArbField(64)
+true

Comparison

Nemo provides a full range of comparison operations for Arb balls. Note that a ball is considered less than another ball if every value in the first ball is less than every value in the second ball, etc.

In addition to the standard comparison operators, we introduce an exact equality. This is distinct from arithmetic equality implemented by ==, which merely compares up to the minimum of the precisions of its operands.

Base.isequalMethod
isequal(x::ArbFieldElem, y::ArbFieldElem)

Return true if the balls $x$ and $y$ are precisely equal, i.e. have the same midpoints and radii.

source

We also provide a full range of ad hoc comparison operators. These are implemented directly in Julia, but we document them as though isless and == were provided.

Function
==(x::ArbFieldElem, y::Integer)
==(x::Integer, y::ArbFieldElem)
==(x::ArbFieldElem, y::ZZRingElem)
==(x::ZZRingElem, y::ArbFieldElem)
==(x::ArbFieldElem, y::Float64)
==(x::Float64, y::ArbFieldElem)
isless(x::ArbFieldElem, y::Integer)
isless(x::Integer, y::ArbFieldElem)
isless(x::ArbFieldElem, y::ZZRingElem)
isless(x::ZZRingElem, y::ArbFieldElem)
isless(x::ArbFieldElem, y::Float64)
isless(x::Float64, y::ArbFieldElem)
isless(x::ArbFieldElem, y::BigFloat)
isless(x::BigFloat, y::ArbFieldElem)
isless(x::ArbFieldElem, y::QQFieldElem)
isless(x::QQFieldElem, y::ArbFieldElem)

Examples

julia> RR = ArbField(64)
 Real Field with 64 bits of precision and error bounds
 
 julia> x = RR("1 +/- 0.001")
@@ -143,7 +143,7 @@
 [-2.52e+7 +/- 4.26e+4]
 
 julia> b = ldexp(x, -ZZ(15))
-[-9.16e-5 +/- 7.78e-8]

Miscellaneous operations

Nemo.add_error!Method
add_error!(x::ArbFieldElem, y::ArbFieldElem)

Adds the absolute values of the midpoint and radius of $y$ to the radius of $x$.

source
Nemo.trimMethod
trim(x::ArbFieldElem)

Return an ArbFieldElem interval containing $x$ but which may be more economical, by rounding off insignificant bits from the midpoint.

source
Nemo.unique_integerMethod
unique_integer(x::ArbFieldElem)

Return a pair where the first value is a boolean and the second is an ZZRingElem integer. The boolean indicates whether the interval $x$ contains a unique integer. If this is the case, the second return value is set to this unique integer.

source
Nemo.setunionMethod
setunion(x::ArbFieldElem, y::ArbFieldElem)

Return an ArbFieldElem containing the union of the intervals represented by $x$ and $y$.

source

Examples

julia> RR = ArbField(64)
+[-9.16e-5 +/- 7.78e-8]

Miscellaneous operations

Nemo.add_error!Method
add_error!(x::ArbFieldElem, y::ArbFieldElem)

Adds the absolute values of the midpoint and radius of $y$ to the radius of $x$.

source
Nemo.trimMethod
trim(x::ArbFieldElem)

Return an ArbFieldElem interval containing $x$ but which may be more economical, by rounding off insignificant bits from the midpoint.

source
Nemo.unique_integerMethod
unique_integer(x::ArbFieldElem)

Return a pair where the first value is a boolean and the second is an ZZRingElem integer. The boolean indicates whether the interval $x$ contains a unique integer. If this is the case, the second return value is set to this unique integer.

source
Nemo.setunionMethod
setunion(x::ArbFieldElem, y::ArbFieldElem)

Return an ArbFieldElem containing the union of the intervals represented by $x$ and $y$.

source

Examples

julia> RR = ArbField(64)
 Real Field with 64 bits of precision and error bounds
 
 julia> x = RR("-3 +/- 0.001")
@@ -159,7 +159,7 @@
 (true, -3)
 
 julia> d = setunion(x, y)
-[+/- 3.01]

Constants

Nemo.const_piMethod
const_pi(r::ArbField)

Return $\pi = 3.14159\ldots$ as an element of $r$.

source
Nemo.const_eMethod
const_e(r::ArbField)

Return $e = 2.71828\ldots$ as an element of $r$.

source
Nemo.const_log2Method
const_log2(r::ArbField)

Return $\log(2) = 0.69314\ldots$ as an element of $r$.

source
Nemo.const_log10Method
const_log10(r::ArbField)

Return $\log(10) = 2.302585\ldots$ as an element of $r$.

source
Nemo.const_eulerMethod
const_euler(r::ArbField)

Return Euler's constant $\gamma = 0.577215\ldots$ as an element of $r$.

source
Nemo.const_catalanMethod
const_catalan(r::ArbField)

Return Catalan's constant $C = 0.915965\ldots$ as an element of $r$.

source
Nemo.const_khinchinMethod
const_khinchin(r::ArbField)

Return Khinchin's constant $K = 2.685452\ldots$ as an element of $r$.

source
Nemo.const_glaisherMethod
const_glaisher(r::ArbField)

Return Glaisher's constant $A = 1.282427\ldots$ as an element of $r$.

source

Examples

julia> RR = ArbField(200)
+[+/- 3.01]

Constants

Nemo.const_piMethod
const_pi(r::ArbField)

Return $\pi = 3.14159\ldots$ as an element of $r$.

source
Nemo.const_eMethod
const_e(r::ArbField)

Return $e = 2.71828\ldots$ as an element of $r$.

source
Nemo.const_log2Method
const_log2(r::ArbField)

Return $\log(2) = 0.69314\ldots$ as an element of $r$.

source
Nemo.const_log10Method
const_log10(r::ArbField)

Return $\log(10) = 2.302585\ldots$ as an element of $r$.

source
Nemo.const_eulerMethod
const_euler(r::ArbField)

Return Euler's constant $\gamma = 0.577215\ldots$ as an element of $r$.

source
Nemo.const_catalanMethod
const_catalan(r::ArbField)

Return Catalan's constant $C = 0.915965\ldots$ as an element of $r$.

source
Nemo.const_khinchinMethod
const_khinchin(r::ArbField)

Return Khinchin's constant $K = 2.685452\ldots$ as an element of $r$.

source
Nemo.const_glaisherMethod
const_glaisher(r::ArbField)

Return Glaisher's constant $A = 1.282427\ldots$ as an element of $r$.

source

Examples

julia> RR = ArbField(200)
 Real Field with 200 bits of precision and error bounds
 
 julia> a = const_pi(RR)
@@ -172,7 +172,7 @@
 [0.577215664901532860606512090082402431042159335939923598805767 +/- 5.37e-61]
 
 julia> d = const_glaisher(RR)
-[1.28242712910062263687534256886979172776768892732500119206374 +/- 2.18e-60]

Mathematical and special functions

Nemo.rsqrtMethod
rsqrt(x::ArbFieldElem)

Return the reciprocal of the square root of $x$, i.e. $1/\sqrt{x}$.

source
Nemo.sqrt1pm1Method
sqrt1pm1(x::ArbFieldElem)

Return $\sqrt{1+x}-1$, evaluated accurately for small $x$.

source
Nemo.sqrtposMethod
sqrtpos(x::ArbFieldElem)

Return the sqrt root of $x$, assuming that $x$ represents a non-negative number. Thus any negative number in the input interval is discarded.

source
Nemo.gammaMethod
gamma(x::ArbFieldElem)

Return the Gamma function evaluated at $x$.

source
Nemo.lgammaMethod
lgamma(x::ArbFieldElem)

Return the logarithm of the Gamma function evaluated at $x$.

source
Nemo.rgammaMethod
rgamma(x::ArbFieldElem)

Return the reciprocal of the Gamma function evaluated at $x$.

source
Nemo.digammaMethod
digamma(x::ArbFieldElem)

Return the logarithmic derivative of the gamma function evaluated at $x$, i.e. $\psi(x)$.

source
Nemo.gammaMethod
gamma(s::ArbFieldElem, x::ArbFieldElem)

Return the upper incomplete gamma function $\Gamma(s,x)$.

source
Nemo.gamma_regularizedMethod
gamma_regularized(s::ArbFieldElem, x::ArbFieldElem)

Return the regularized upper incomplete gamma function $\Gamma(s,x) / \Gamma(s)$.

source
Nemo.gamma_lowerMethod
gamma_lower(s::ArbFieldElem, x::ArbFieldElem)

Return the lower incomplete gamma function $\gamma(s,x) / \Gamma(s)$.

source
Nemo.gamma_lower_regularizedMethod
gamma_lower_regularized(s::ArbFieldElem, x::ArbFieldElem)

Return the regularized lower incomplete gamma function $\gamma(s,x) / \Gamma(s)$.

source
Nemo.zetaMethod
zeta(x::ArbFieldElem)

Return the Riemann zeta function evaluated at $x$.

source
Nemo.atan2Method
atan2(y::ArbFieldElem, x::ArbFieldElem)

Return $\operatorname{atan2}(y,x) = \arg(x+yi)$. Same as atan(y, x).

source
Nemo.agmMethod
agm(x::ArbFieldElem, y::ArbFieldElem)

Return the arithmetic-geometric mean of $x$ and $y$

source
Nemo.zetaMethod
zeta(s::ArbFieldElem, a::ArbFieldElem)

Return the Hurwitz zeta function $\zeta(s,a)$.

source
AbstractAlgebra.rootMethod
root(x::ArbFieldElem, n::Int)

Return the $n$-th root of $x$. We require $x \geq 0$.

source
Base.factorialMethod
factorial(x::ArbFieldElem)

Return the factorial of $x$.

source
Base.factorialMethod
factorial(n::Int, r::ArbField)

Return the factorial of $n$ in the given Arb field.

source
Base.binomialMethod
binomial(x::ArbFieldElem, n::UInt)

Return the binomial coefficient ${x \choose n}$.

source
Base.binomialMethod
binomial(n::UInt, k::UInt, r::ArbField)

Return the binomial coefficient ${n \choose k}$ in the given Arb field.

source
Nemo.fibonacciMethod
fibonacci(n::ZZRingElem, r::ArbField)

Return the $n$-th Fibonacci number in the given Arb field.

source
Nemo.fibonacciMethod
fibonacci(n::Int, r::ArbField)

Return the $n$-th Fibonacci number in the given Arb field.

source
Nemo.gammaMethod
gamma(x::ZZRingElem, r::ArbField)

Return the Gamma function evaluated at $x$ in the given Arb field.

source
Nemo.gammaMethod
gamma(x::QQFieldElem, r::ArbField)

Return the Gamma function evaluated at $x$ in the given Arb field.

source
Nemo.zetaMethod
zeta(n::Int, r::ArbField)

Return the Riemann zeta function $\zeta(n)$ as an element of the given Arb field.

source
Nemo.bernoulliMethod
bernoulli(n::Int, r::ArbField)

Return the $n$-th Bernoulli number as an element of the given Arb field.

source
AbstractAlgebra.Generic.rising_factorialMethod
rising_factorial(x::ArbFieldElem, n::Int)

Return the rising factorial $x(x + 1)\ldots (x + n - 1)$ as an Arb.

source
AbstractAlgebra.Generic.rising_factorialMethod
rising_factorial(x::QQFieldElem, n::Int, r::ArbField)

Return the rising factorial $x(x + 1)\ldots (x + n - 1)$ as an element of the given Arb field.

source
AbstractAlgebra.Generic.rising_factorial2Method
rising_factorial2(x::ArbFieldElem, n::Int)

Return a tuple containing the rising factorial $x(x + 1)\ldots (x + n - 1)$ and its derivative.

source
Nemo.polylogMethod
polylog(s::Union{ArbFieldElem,Int}, a::ArbFieldElem)

Return the polylogarithm Li$_s(a)$.

source
AbstractAlgebra.chebyshev_tMethod
chebyshev_t(n::Int, x::ArbFieldElem)

Return the value of the Chebyshev polynomial $T_n(x)$.

source
AbstractAlgebra.chebyshev_uMethod
chebyshev_u(n::Int, x::ArbFieldElem)

Return the value of the Chebyshev polynomial $U_n(x)$.

source
Nemo.chebyshev_t2Method
chebyshev_t2(n::Int, x::ArbFieldElem)

Return the tuple $(T_{n}(x), T_{n-1}(x))$.

source
Nemo.chebyshev_u2Method
chebyshev_u2(n::Int, x::ArbFieldElem)

Return the tuple $(U_{n}(x), U_{n-1}(x))$

source
Nemo.bellMethod
bell(n::ZZRingElem, r::ArbField)

Return the Bell number $B_n$ as an element of $r$.

source
Nemo.bellMethod
bell(n::Int, r::ArbField)

Return the Bell number $B_n$ as an element of $r$.

source
Nemo.numpartMethod
numpart(n::ZZRingElem, r::ArbField)

Return the number of partitions $p(n)$ as an element of $r$.

source
Nemo.numpartMethod
numpart(n::Int, r::ArbField)

Return the number of partitions $p(n)$ as an element of $r$.

source
Nemo.airy_aiMethod
airy_ai(x::ArbFieldElem)

Return the Airy function $\operatorname{Ai}(x)$.

source
Nemo.airy_ai_primeMethod
airy_ai_prime(x::ArbFieldElem)

Return the derivative of the Airy function $\operatorname{Ai}^\prime(x)$.

source
Nemo.airy_biMethod
airy_bi(x::ArbFieldElem)

Return the Airy function $\operatorname{Bi}(x)$.

source
Nemo.airy_bi_primeMethod
airy_bi_prime(x::ArbFieldElem)

Return the derivative of the Airy function $\operatorname{Bi}^\prime(x)$.

source

Examples

julia> RR = ArbField(64)
+[1.28242712910062263687534256886979172776768892732500119206374 +/- 2.18e-60]

Mathematical and special functions

Nemo.rsqrtMethod
rsqrt(x::ArbFieldElem)

Return the reciprocal of the square root of $x$, i.e. $1/\sqrt{x}$.

source
Nemo.sqrt1pm1Method
sqrt1pm1(x::ArbFieldElem)

Return $\sqrt{1+x}-1$, evaluated accurately for small $x$.

source
Nemo.sqrtposMethod
sqrtpos(x::ArbFieldElem)

Return the sqrt root of $x$, assuming that $x$ represents a non-negative number. Thus any negative number in the input interval is discarded.

source
Nemo.gammaMethod
gamma(x::ArbFieldElem)

Return the Gamma function evaluated at $x$.

source
Nemo.lgammaMethod
lgamma(x::ArbFieldElem)

Return the logarithm of the Gamma function evaluated at $x$.

source
Nemo.rgammaMethod
rgamma(x::ArbFieldElem)

Return the reciprocal of the Gamma function evaluated at $x$.

source
Nemo.digammaMethod
digamma(x::ArbFieldElem)

Return the logarithmic derivative of the gamma function evaluated at $x$, i.e. $\psi(x)$.

source
Nemo.gammaMethod
gamma(s::ArbFieldElem, x::ArbFieldElem)

Return the upper incomplete gamma function $\Gamma(s,x)$.

source
Nemo.gamma_regularizedMethod
gamma_regularized(s::ArbFieldElem, x::ArbFieldElem)

Return the regularized upper incomplete gamma function $\Gamma(s,x) / \Gamma(s)$.

source
Nemo.gamma_lowerMethod
gamma_lower(s::ArbFieldElem, x::ArbFieldElem)

Return the lower incomplete gamma function $\gamma(s,x) / \Gamma(s)$.

source
Nemo.gamma_lower_regularizedMethod
gamma_lower_regularized(s::ArbFieldElem, x::ArbFieldElem)

Return the regularized lower incomplete gamma function $\gamma(s,x) / \Gamma(s)$.

source
Nemo.zetaMethod
zeta(x::ArbFieldElem)

Return the Riemann zeta function evaluated at $x$.

source
Nemo.atan2Method
atan2(y::ArbFieldElem, x::ArbFieldElem)

Return $\operatorname{atan2}(y,x) = \arg(x+yi)$. Same as atan(y, x).

source
Nemo.agmMethod
agm(x::ArbFieldElem, y::ArbFieldElem)

Return the arithmetic-geometric mean of $x$ and $y$

source
Nemo.zetaMethod
zeta(s::ArbFieldElem, a::ArbFieldElem)

Return the Hurwitz zeta function $\zeta(s,a)$.

source
AbstractAlgebra.rootMethod
root(x::ArbFieldElem, n::Int)

Return the $n$-th root of $x$. We require $x \geq 0$.

source
Base.factorialMethod
factorial(x::ArbFieldElem)

Return the factorial of $x$.

source
Base.factorialMethod
factorial(n::Int, r::ArbField)

Return the factorial of $n$ in the given Arb field.

source
Base.binomialMethod
binomial(x::ArbFieldElem, n::UInt)

Return the binomial coefficient ${x \choose n}$.

source
Base.binomialMethod
binomial(n::UInt, k::UInt, r::ArbField)

Return the binomial coefficient ${n \choose k}$ in the given Arb field.

source
Nemo.fibonacciMethod
fibonacci(n::ZZRingElem, r::ArbField)

Return the $n$-th Fibonacci number in the given Arb field.

source
Nemo.fibonacciMethod
fibonacci(n::Int, r::ArbField)

Return the $n$-th Fibonacci number in the given Arb field.

source
Nemo.gammaMethod
gamma(x::ZZRingElem, r::ArbField)

Return the Gamma function evaluated at $x$ in the given Arb field.

source
Nemo.gammaMethod
gamma(x::QQFieldElem, r::ArbField)

Return the Gamma function evaluated at $x$ in the given Arb field.

source
Nemo.zetaMethod
zeta(n::Int, r::ArbField)

Return the Riemann zeta function $\zeta(n)$ as an element of the given Arb field.

source
Nemo.bernoulliMethod
bernoulli(n::Int, r::ArbField)

Return the $n$-th Bernoulli number as an element of the given Arb field.

source
AbstractAlgebra.Generic.rising_factorialMethod
rising_factorial(x::ArbFieldElem, n::Int)

Return the rising factorial $x(x + 1)\ldots (x + n - 1)$ as an Arb.

source
AbstractAlgebra.Generic.rising_factorialMethod
rising_factorial(x::QQFieldElem, n::Int, r::ArbField)

Return the rising factorial $x(x + 1)\ldots (x + n - 1)$ as an element of the given Arb field.

source
AbstractAlgebra.Generic.rising_factorial2Method
rising_factorial2(x::ArbFieldElem, n::Int)

Return a tuple containing the rising factorial $x(x + 1)\ldots (x + n - 1)$ and its derivative.

source
Nemo.polylogMethod
polylog(s::Union{ArbFieldElem,Int}, a::ArbFieldElem)

Return the polylogarithm Li$_s(a)$.

source
AbstractAlgebra.chebyshev_tMethod
chebyshev_t(n::Int, x::ArbFieldElem)

Return the value of the Chebyshev polynomial $T_n(x)$.

source
AbstractAlgebra.chebyshev_uMethod
chebyshev_u(n::Int, x::ArbFieldElem)

Return the value of the Chebyshev polynomial $U_n(x)$.

source
Nemo.chebyshev_t2Method
chebyshev_t2(n::Int, x::ArbFieldElem)

Return the tuple $(T_{n}(x), T_{n-1}(x))$.

source
Nemo.chebyshev_u2Method
chebyshev_u2(n::Int, x::ArbFieldElem)

Return the tuple $(U_{n}(x), U_{n-1}(x))$

source
Nemo.bellMethod
bell(n::ZZRingElem, r::ArbField)

Return the Bell number $B_n$ as an element of $r$.

source
Nemo.bellMethod
bell(n::Int, r::ArbField)

Return the Bell number $B_n$ as an element of $r$.

source
Nemo.numpartMethod
numpart(n::ZZRingElem, r::ArbField)

Return the number of partitions $p(n)$ as an element of $r$.

source
Nemo.numpartMethod
numpart(n::Int, r::ArbField)

Return the number of partitions $p(n)$ as an element of $r$.

source
Nemo.airy_aiMethod
airy_ai(x::ArbFieldElem)

Return the Airy function $\operatorname{Ai}(x)$.

source
Nemo.airy_ai_primeMethod
airy_ai_prime(x::ArbFieldElem)

Return the derivative of the Airy function $\operatorname{Ai}^\prime(x)$.

source
Nemo.airy_biMethod
airy_bi(x::ArbFieldElem)

Return the Airy function $\operatorname{Bi}(x)$.

source
Nemo.airy_bi_primeMethod
airy_bi_prime(x::ArbFieldElem)

Return the derivative of the Airy function $\operatorname{Bi}^\prime(x)$.

source

Examples

julia> RR = ArbField(64)
 Real Field with 64 bits of precision and error bounds
 
 julia> a = floor(exp(RR(1)))
@@ -210,7 +210,7 @@
  0
  0
  0
- 1
source

Examples

julia> RR = ArbField(128)
+ 1
source

Examples

julia> RR = ArbField(128)
 Real Field with 128 bits of precision and error bounds
 
 julia> a = RR(-0.33198902958450931620250069492231652319) # real root of x^5 + 3x + 1
@@ -236,7 +236,7 @@
 Real Field with 64 bits of precision and error bounds
 
 julia> simplest_rational_inside(const_pi(RR))
-8717442233//2774848045
source

Random generation

Base.randMethod
rand(r::ArbField; randtype::Symbol=:urandom)

Return a random element in given Arb field.

The randtype default is :urandom which return an ArbFieldElem contained in $[0,1]$.

The rest of the methods return non-uniformly distributed values in order to exercise corner cases. The option :randtest will return a finite number, and :randtest_exact the same but with a zero radius. The option :randtest_precise return an ArbFieldElem with a radius around $2^{-\mathrm{prec}}$ the magnitude of the midpoint, while :randtest_wide return a radius that might be big relative to its midpoint. The :randtest_special-option might return a midpoint and radius whose values are NaN or inf.

source

Examples

RR = ArbField(100)
+8717442233//2774848045
source

Random generation

Base.randMethod
rand(r::ArbField; randtype::Symbol=:urandom)

Return a random element in given Arb field.

The randtype default is :urandom which return an ArbFieldElem contained in $[0,1]$.

The rest of the methods return non-uniformly distributed values in order to exercise corner cases. The option :randtest will return a finite number, and :randtest_exact the same but with a zero radius. The option :randtest_precise return an ArbFieldElem with a radius around $2^{-\mathrm{prec}}$ the magnitude of the midpoint, while :randtest_wide return a radius that might be big relative to its midpoint. The :randtest_special-option might return a midpoint and radius whose values are NaN or inf.

source

Examples

RR = ArbField(100)
 
 a = rand(RR)
 b = rand(RR; randtype = :null_exact)
diff --git a/dev/complex/index.html b/dev/complex/index.html
index 8e25f7f862..5bc0e30841 100644
--- a/dev/complex/index.html
+++ b/dev/complex/index.html
@@ -12,7 +12,7 @@
 0.50000000000000000000
 
 julia> d = CC(12)
-12.000000000000000000

Note that whilst one can coerce double precision floating point values into an Arb complex field, unless those values can be represented exactly in double precision the resulting ball can't be any more precise than the double precision supplied.

If instead, values can be represented precisely using decimal arithmetic then one can supply them to Arb using a string. In this case, Arb will store them to the precision specified when creating the Arb complex field.

If the values can be stored precisely as a binary floating point number, Arb will store the values exactly. See the function is_exact below for more information.

Constructors

Nemo.oneiMethod
onei(r::ComplexField)

Return exact one times $i$ in the given Arb complex field.

source

Examples

julia> c = onei(CC)
+12.000000000000000000

Note that whilst one can coerce double precision floating point values into an Arb complex field, unless those values can be represented exactly in double precision the resulting ball can't be any more precise than the double precision supplied.

If instead, values can be represented precisely using decimal arithmetic then one can supply them to Arb using a string. In this case, Arb will store them to the precision specified when creating the Arb complex field.

If the values can be stored precisely as a binary floating point number, Arb will store the values exactly. See the function is_exact below for more information.

Constructors

Nemo.oneiMethod
onei(r::ComplexField)

Return exact one times $i$ in the given Arb complex field.

source

Examples

julia> c = onei(CC)
 1.0000000000000000000*im

Basic functionality

The following basic functionality is provided by the default Arb complex field implementation in Nemo, to support construction of generic rings over complex fields. Any custom complex field implementation in Nemo should provide analogues of these functions along with the usual arithmetic operations.

parent_type(::Type{ComplexFieldElem})

Gives the type of the parent object of an Arb complex field element.

elem_type(R::ComplexField)

Given the parent object for an Arb complex field, return the type of elements of the field.

mul!(c::ComplexFieldElem, a::ComplexFieldElem, b::ComplexFieldElem)

Multiply $a$ by $b$ and set the existing Arb complex field element $c$ to the result. This function is provided for performance reasons as it saves allocating a new object for the result and eliminates associated garbage collection.

deepcopy(a::ComplexFieldElem)

Return a copy of the Arb complex field element $a$, recursively copying the internal data. Arb complex field elements are mutable in Nemo so a shallow copy is not sufficient.

Given the parent object R for an Arb complex field, the following coercion functions are provided to coerce various elements into the Arb complex field. Developers provide these by overloading the call operator for the complex field parent objects.

R()

Coerce zero into the Arb complex field.

R(n::Integer)
 R(f::ZZRingElem)
 R(q::QQFieldElem)

Coerce an integer or rational value into the Arb complex field.

R(f::Float64)
@@ -39,7 +39,7 @@
 nan
 
 julia> g = CC(RR(3))
-3.0000000000000000000

In addition to the above, developers of custom complex field types must ensure that they provide the equivalent of the function base_ring(R::ComplexField) which should return Union{}. In addition to this they should ensure that each complex field element contains a field parent specifying the parent object of the complex field element, or at least supply the equivalent of the function parent(a::ComplexFieldElem) to return the parent object of a complex field element.

Basic manipulation

Base.isfiniteMethod
isfinite(x::ComplexFieldElem)

Return true if $x$ is finite, i.e. its real and imaginary parts have finite midpoint and radius, otherwise return false.

source
Nemo.is_exactMethod
is_exact(x::ComplexFieldElem)

Return true if $x$ is exact, i.e. has its real and imaginary parts have zero radius, otherwise return false.

source
Base.isintegerMethod
isinteger(x::ComplexFieldElem)

Return true if $x$ is an exact integer, otherwise return false.

source
Nemo.accuracy_bitsMethod
accuracy_bits(x::ComplexFieldElem)

Return the relative accuracy of $x$ measured in bits, capped between typemax(Int) and -typemax(Int).

source

Examples

julia> a = CC("1.2 +/- 0.001")
+3.0000000000000000000

In addition to the above, developers of custom complex field types must ensure that they provide the equivalent of the function base_ring(R::ComplexField) which should return Union{}. In addition to this they should ensure that each complex field element contains a field parent specifying the parent object of the complex field element, or at least supply the equivalent of the function parent(a::ComplexFieldElem) to return the parent object of a complex field element.

Basic manipulation

Base.isfiniteMethod
isfinite(x::ComplexFieldElem)

Return true if $x$ is finite, i.e. its real and imaginary parts have finite midpoint and radius, otherwise return false.

source
Nemo.is_exactMethod
is_exact(x::ComplexFieldElem)

Return true if $x$ is exact, i.e. has its real and imaginary parts have zero radius, otherwise return false.

source
Base.isintegerMethod
isinteger(x::ComplexFieldElem)

Return true if $x$ is an exact integer, otherwise return false.

source
Nemo.accuracy_bitsMethod
accuracy_bits(x::ComplexFieldElem)

Return the relative accuracy of $x$ measured in bits, capped between typemax(Int) and -typemax(Int).

source

Examples

julia> a = CC("1.2 +/- 0.001")
 [1.20 +/- 1.01e-3]
 
 julia> b = CC(3)
@@ -61,7 +61,7 @@
 0
 
 julia> f = accuracy_bits(a)
-9

Containment

It is often necessary to determine whether a given exact value or box is contained in a given complex box or whether two boxes overlap. The following functions are provided for this purpose.

Nemo.overlapsMethod
overlaps(x::ComplexFieldElem, y::ComplexFieldElem)

Returns true if any part of the box $x$ overlaps any part of the box $y$, otherwise return false.

source
Base.containsMethod
contains(x::ComplexFieldElem, y::ComplexFieldElem)

Returns true if the box $x$ contains the box $y$, otherwise return false.

source
Base.containsMethod
contains(x::ComplexFieldElem, y::Integer)

Returns true if the box $x$ contains the given integer value, otherwise return false.

source
Base.containsMethod
contains(x::ComplexFieldElem, y::ZZRingElem)

Returns true if the box $x$ contains the given integer value, otherwise return false.

source
Base.containsMethod
contains(x::ComplexFieldElem, y::QQFieldElem)

Returns true if the box $x$ contains the given rational value, otherwise return false.

source

The following functions are also provided for determining if a box intersects a certain part of the complex number plane.

Nemo.contains_zeroMethod
contains_zero(x::ComplexFieldElem)

Returns true if the box $x$ contains zero, otherwise return false.

source

Examples

julia> x = CC("1 +/- 0.001")
+9

Containment

It is often necessary to determine whether a given exact value or box is contained in a given complex box or whether two boxes overlap. The following functions are provided for this purpose.

Nemo.overlapsMethod
overlaps(x::ComplexFieldElem, y::ComplexFieldElem)

Returns true if any part of the box $x$ overlaps any part of the box $y$, otherwise return false.

source
Base.containsMethod
contains(x::ComplexFieldElem, y::ComplexFieldElem)

Returns true if the box $x$ contains the box $y$, otherwise return false.

source
Base.containsMethod
contains(x::ComplexFieldElem, y::Integer)

Returns true if the box $x$ contains the given integer value, otherwise return false.

source
Base.containsMethod
contains(x::ComplexFieldElem, y::ZZRingElem)

Returns true if the box $x$ contains the given integer value, otherwise return false.

source
Base.containsMethod
contains(x::ComplexFieldElem, y::QQFieldElem)

Returns true if the box $x$ contains the given rational value, otherwise return false.

source

The following functions are also provided for determining if a box intersects a certain part of the complex number plane.

Nemo.contains_zeroMethod
contains_zero(x::ComplexFieldElem)

Returns true if the box $x$ contains zero, otherwise return false.

source

Examples

julia> x = CC("1 +/- 0.001")
 [1.00 +/- 1.01e-3]
 
 julia> y = CC("3")
@@ -80,7 +80,7 @@
 false
 
 julia> contains_zero(x)
-false

Comparison

Nemo provides a full range of comparison operations for Arb complex boxes.

In addition to the standard comparisons, we introduce an exact equality. This is distinct from arithmetic equality implemented by ==, which merely compares up to the minimum of the precisions of its operands.

Base.isequalMethod
isequal(x::ComplexFieldElem, y::ComplexFieldElem)

Return true if the boxes $x$ and $y$ are precisely equal, i.e. their real and imaginary parts have the same midpoints and radii.

source

A full range of ad hoc comparison operators is provided. These are implemented directly in Julia, but we document them as though only == were provided.

Function
==(x::ComplexFieldElem, y::Integer)
==(x::Integer, y::ComplexFieldElem)
==(x::ComplexFieldElem, y::ZZRingElem)
==(x::ZZRingElem, y::ComplexFieldElem)
==(x::ArbFieldElem, y::ZZRingElem)
==(x::ZZRingElem, y::ArbFieldElem)
==(x::ComplexFieldElem, y::Float64)
==(x::Float64, y::ComplexFieldElem)

Examples

julia> x = CC("1 +/- 0.001")
+false

Comparison

Nemo provides a full range of comparison operations for Arb complex boxes.

In addition to the standard comparisons, we introduce an exact equality. This is distinct from arithmetic equality implemented by ==, which merely compares up to the minimum of the precisions of its operands.

Base.isequalMethod
isequal(x::ComplexFieldElem, y::ComplexFieldElem)

Return true if the boxes $x$ and $y$ are precisely equal, i.e. their real and imaginary parts have the same midpoints and radii.

source

A full range of ad hoc comparison operators is provided. These are implemented directly in Julia, but we document them as though only == were provided.

Function
==(x::ComplexFieldElem, y::Integer)
==(x::Integer, y::ComplexFieldElem)
==(x::ComplexFieldElem, y::ZZRingElem)
==(x::ZZRingElem, y::ComplexFieldElem)
==(x::ArbFieldElem, y::ZZRingElem)
==(x::ZZRingElem, y::ArbFieldElem)
==(x::ComplexFieldElem, y::Float64)
==(x::Float64, y::ComplexFieldElem)

Examples

julia> x = CC("1 +/- 0.001")
 [1.00 +/- 1.01e-3]
 
 julia> y = CC("3")
@@ -110,7 +110,7 @@
 [-2.52e+7 +/- 4.26e+4]
 
 julia> b = ldexp(x, -ZZ(15))
-[-9.16e-5 +/- 7.78e-8]

Miscellaneous operations

Nemo.trimMethod
trim(x::ComplexFieldElem)

Return an ComplexFieldElem box containing $x$ but which may be more economical, by rounding off insignificant bits from midpoints.

source
Nemo.unique_integerMethod
unique_integer(x::ComplexFieldElem)

Return a pair where the first value is a boolean and the second is an ZZRingElem integer. The boolean indicates whether the box $x$ contains a unique integer. If this is the case, the second return value is set to this unique integer.

source

Examples

julia> x = CC("-3 +/- 0.001", "0.1")
+[-9.16e-5 +/- 7.78e-8]

Miscellaneous operations

Nemo.trimMethod
trim(x::ComplexFieldElem)

Return an ComplexFieldElem box containing $x$ but which may be more economical, by rounding off insignificant bits from midpoints.

source
Nemo.unique_integerMethod
unique_integer(x::ComplexFieldElem)

Return a pair where the first value is a boolean and the second is an ZZRingElem integer. The boolean indicates whether the box $x$ contains a unique integer. If this is the case, the second return value is set to this unique integer.

source

Examples

julia> x = CC("-3 +/- 0.001", "0.1")
 [-3.00 +/- 1.01e-3] + [0.100000000000000000 +/- 1.22e-20]*im
 
 julia> a = trim(x)
@@ -123,10 +123,10 @@
 [-3.00 +/- 1.01e-3] + [-0.100000000000000000 +/- 1.22e-20]*im
 
 julia> f = angle(x)
-[3.1083 +/- 3.95e-5]

Constants

Nemo.const_piMethod
const_pi(r::ComplexField)

Return $\pi = 3.14159\ldots$ as an element of $r$.

source

Examples

CC = ComplexField()
+[3.1083 +/- 3.95e-5]

Constants

Nemo.const_piMethod
const_pi(r::ComplexField)

Return $\pi = 3.14159\ldots$ as an element of $r$.

source

Examples

CC = ComplexField()
 set_precision!(ComplexField, 200) do
   a = const_pi(CC)
-end

Mathematical and special functions

Nemo.rsqrtMethod
rsqrt(x::ComplexFieldElem)

Return the reciprocal of the square root of $x$, i.e. $1/\sqrt{x}$.

source
Base.cispiMethod
cispi(x::ComplexFieldElem)

Return the exponential of $\pi i x$.

source
Nemo.root_of_unityMethod
root_of_unity(C::ComplexField, k::Int)

Return $\exp(2\pi i/k)$.

source
Nemo.log_sinpiMethod
log_sinpi(x::ComplexFieldElem)

Return $\log\sin(\pi x)$, constructed without branch cuts off the real line.

source
Nemo.gammaMethod
gamma(x::ComplexFieldElem)

Return the Gamma function evaluated at $x$.

source
Nemo.lgammaMethod
lgamma(x::ComplexFieldElem)

Return the logarithm of the Gamma function evaluated at $x$.

source
Nemo.rgammaMethod
rgamma(x::ComplexFieldElem)

Return the reciprocal of the Gamma function evaluated at $x$.

source
Nemo.digammaMethod
digamma(x::ComplexFieldElem)

Return the logarithmic derivative of the gamma function evaluated at $x$, i.e. $\psi(x)$.

source
Nemo.zetaMethod
zeta(x::ComplexFieldElem)

Return the Riemann zeta function evaluated at $x$.

source
Nemo.barnes_gMethod
barnes_g(x::ComplexFieldElem)

Return the Barnes $G$-function, evaluated at $x$.

source
Nemo.log_barnes_gMethod
log_barnes_g(x::ComplexFieldElem)

Return the logarithm of the Barnes $G$-function, evaluated at $x$.

source
Nemo.erfMethod
erf(x::ComplexFieldElem)

Return the error function evaluated at $x$.

source
Nemo.erfiMethod
erfi(x::ComplexFieldElem)

Return the imaginary error function evaluated at $x$.

source
Nemo.exp_integral_eiMethod
exp_integral_ei(x::ComplexFieldElem)

Return the exponential integral evaluated at $x$.

source
Nemo.sin_integralMethod
sin_integral(x::ComplexFieldElem)

Return the sine integral evaluated at $x$.

source
Nemo.cos_integralMethod
cos_integral(x::ComplexFieldElem)

Return the exponential cosine integral evaluated at $x$.

source
Nemo.sinh_integralMethod
sinh_integral(x::ComplexFieldElem)

Return the hyperbolic sine integral evaluated at $x$.

source
Nemo.cosh_integralMethod
cosh_integral(x::ComplexFieldElem)

Return the hyperbolic cosine integral evaluated at $x$.

source
Nemo.dedekind_etaMethod
dedekind_eta(x::ComplexFieldElem)

Return the Dedekind eta function $\eta(\tau)$ at $\tau = x$.

source
Nemo.modular_weber_fMethod
modular_weber_f(x::ComplexFieldElem)

Return the modular Weber function $\mathfrak{f}(\tau) = \frac{\eta^2(\tau)}{\eta(\tau/2)\eta(2\tau)},$ at $x$ in the complex upper half plane.

source
Nemo.modular_weber_f1Method
modular_weber_f1(x::ComplexFieldElem)

Return the modular Weber function $\mathfrak{f}_1(\tau) = \frac{\eta(\tau/2)}{\eta(\tau)},$ at $x$ in the complex upper half plane.

source
Nemo.modular_weber_f2Method
modular_weber_f2(x::ComplexFieldElem)

Return the modular Weber function $\mathfrak{f}_2(\tau) = \frac{\sqrt{2}\eta(2\tau)}{\eta(\tau)}$ at $x$ in the complex upper half plane.

source
Nemo.j_invariantMethod
j_invariant(x::ComplexFieldElem)

Return the $j$-invariant $j(\tau)$ at $\tau = x$.

source
Nemo.modular_lambdaMethod
modular_lambda(x::ComplexFieldElem)

Return the modular lambda function $\lambda(\tau)$ at $\tau = x$.

source
Nemo.modular_deltaMethod
modular_delta(x::ComplexFieldElem)

Return the modular delta function $\Delta(\tau)$ at $\tau = x$.

source
Nemo.eisenstein_gMethod
eisenstein_g(k::Int, x::ComplexFieldElem)

Return the non-normalized Eisenstein series $G_k(\tau)$ of $\mathrm{SL}_2(\mathbb{Z})$. Also defined for $\tau = i \infty$.

source
Nemo.hilbert_class_polynomialMethod
hilbert_class_polynomial(D::Int, R::ZZPolyRing)

Return in the ring $R$ the Hilbert class polynomial of discriminant $D$, which is only defined for $D < 0$ and $D \equiv 0, 1 \pmod 4$.

source
Nemo.elliptic_kMethod
elliptic_k(x::ComplexFieldElem)

Return the complete elliptic integral $K(x)$.

source
Nemo.elliptic_eMethod
elliptic_e(x::ComplexFieldElem)

Return the complete elliptic integral $E(x)$.

source
Nemo.agmMethod
agm(x::ComplexFieldElem)

Return the arithmetic-geometric mean of $1$ and $x$.

source
Nemo.agmMethod
agm(x::ComplexFieldElem, y::ComplexFieldElem)

Return the arithmetic-geometric mean of $x$ and $y$.

source
Nemo.polygammaMethod
polygamma(s::ComplexFieldElem, a::ComplexFieldElem)

Return the generalised polygamma function $\psi(s,z)$.

source
Nemo.zetaMethod
zeta(s::ComplexFieldElem, a::ComplexFieldElem)

Return the Hurwitz zeta function $\zeta(s,a)$.

source
AbstractAlgebra.Generic.rising_factorialMethod
rising_factorial(x::ComplexFieldElem, n::Int)

Return the rising factorial $x(x + 1)\ldots (x + n - 1)$ as an Acb.

source
AbstractAlgebra.Generic.rising_factorial2Method
rising_factorial2(x::ComplexFieldElem, n::Int)

Return a tuple containing the rising factorial $x(x + 1)\ldots (x + n - 1)$ and its derivative.

source
Nemo.polylogMethod
polylog(s::Union{ComplexFieldElem,Int}, a::ComplexFieldElem)

Return the polylogarithm Li$_s(a)$.

source
Nemo.log_integralMethod
log_integral(x::ComplexFieldElem)

Return the logarithmic integral, evaluated at $x$.

source
Nemo.log_integral_offsetMethod
log_integral_offset(x::ComplexFieldElem)

Return the offset logarithmic integral, evaluated at $x$.

source
Nemo.exp_integral_eMethod
exp_integral_e(s::ComplexFieldElem, x::ComplexFieldElem)

Return the generalised exponential integral $E_s(x)$.

source
Nemo.gammaMethod
gamma(s::ComplexFieldElem, x::ComplexFieldElem)

Return the upper incomplete gamma function $\Gamma(s,x)$.

source
Nemo.gamma_regularizedMethod
gamma_regularized(s::ComplexFieldElem, x::ComplexFieldElem)

Return the regularized upper incomplete gamma function $\Gamma(s,x) / \Gamma(s)$.

source
Nemo.gamma_lowerMethod
gamma_lower(s::ComplexFieldElem, x::ComplexFieldElem)

Return the lower incomplete gamma function $\gamma(s,x) / \Gamma(s)$.

source
Nemo.gamma_lower_regularizedMethod
gamma_lower_regularized(s::ComplexFieldElem, x::ComplexFieldElem)

Return the regularized lower incomplete gamma function $\gamma(s,x) / \Gamma(s)$.

source
Nemo.airy_aiMethod
airy_ai(x::ComplexFieldElem)

Return the Airy function $\operatorname{Ai}(x)$.

source
Nemo.airy_ai_primeMethod
airy_ai_prime(x::ComplexFieldElem)

Return the derivative of the Airy function $\operatorname{Ai}^\prime(x)$.

source
Nemo.airy_biMethod
airy_bi(x::ComplexFieldElem)

Return the Airy function $\operatorname{Bi}(x)$.

source
Nemo.airy_bi_primeMethod
airy_bi_prime(x::ComplexFieldElem)

Return the derivative of the Airy function $\operatorname{Bi}^\prime(x)$.

source
Nemo.bessel_jMethod
bessel_j(nu::ComplexFieldElem, x::ComplexFieldElem)

Return the Bessel function $J_{\nu}(x)$.

source
Nemo.bessel_yMethod
bessel_y(nu::ComplexFieldElem, x::ComplexFieldElem)

Return the Bessel function $Y_{\nu}(x)$.

source
Nemo.bessel_iMethod
bessel_i(nu::ComplexFieldElem, x::ComplexFieldElem)

Return the Bessel function $I_{\nu}(x)$.

source
Nemo.bessel_kMethod
bessel_k(nu::ComplexFieldElem, x::ComplexFieldElem)

Return the Bessel function $K_{\nu}(x)$.

source
Nemo.hypergeometric_1f1Method
hypergeometric_1f1(a::ComplexFieldElem, b::ComplexFieldElem, x::ComplexFieldElem)

Return the confluent hypergeometric function ${}_1F_1(a,b,x)$.

source
Nemo.hypergeometric_1f1_regularizedMethod
hypergeometric_1f1_regularized(a::ComplexFieldElem, b::ComplexFieldElem, x::ComplexFieldElem)

Return the regularized confluent hypergeometric function ${}_1F_1(a,b,x) / \Gamma(b)$.

source
Nemo.hypergeometric_uMethod
hypergeometric_u(a::ComplexFieldElem, b::ComplexFieldElem, x::ComplexFieldElem)

Return the confluent hypergeometric function $U(a,b,x)$.

source
Nemo.hypergeometric_2f1Method
hypergeometric_2f1(a::ComplexFieldElem, b::ComplexFieldElem, c::ComplexFieldElem, x::ComplexFieldElem; flags=0)

Return the Gauss hypergeometric function ${}_2F_1(a,b,c,x)$.

source
Nemo.jacobi_thetaMethod
jacobi_theta(z::ComplexFieldElem, tau::ComplexFieldElem)

Return a tuple of four elements containing the Jacobi theta function values $\theta_1, \theta_2, \theta_3, \theta_4$ evaluated at $z, \tau$.

source
Nemo.weierstrass_pMethod
weierstrass_p(z::ComplexFieldElem, tau::ComplexFieldElem)

Return the Weierstrass elliptic function $\wp(z,\tau)$.

source

Examples

julia> s = CC(1, 2)
+end

Mathematical and special functions

Nemo.rsqrtMethod
rsqrt(x::ComplexFieldElem)

Return the reciprocal of the square root of $x$, i.e. $1/\sqrt{x}$.

source
Base.cispiMethod
cispi(x::ComplexFieldElem)

Return the exponential of $\pi i x$.

source
Nemo.root_of_unityMethod
root_of_unity(C::ComplexField, k::Int)

Return $\exp(2\pi i/k)$.

source
Nemo.log_sinpiMethod
log_sinpi(x::ComplexFieldElem)

Return $\log\sin(\pi x)$, constructed without branch cuts off the real line.

source
Nemo.gammaMethod
gamma(x::ComplexFieldElem)

Return the Gamma function evaluated at $x$.

source
Nemo.lgammaMethod
lgamma(x::ComplexFieldElem)

Return the logarithm of the Gamma function evaluated at $x$.

source
Nemo.rgammaMethod
rgamma(x::ComplexFieldElem)

Return the reciprocal of the Gamma function evaluated at $x$.

source
Nemo.digammaMethod
digamma(x::ComplexFieldElem)

Return the logarithmic derivative of the gamma function evaluated at $x$, i.e. $\psi(x)$.

source
Nemo.zetaMethod
zeta(x::ComplexFieldElem)

Return the Riemann zeta function evaluated at $x$.

source
Nemo.barnes_gMethod
barnes_g(x::ComplexFieldElem)

Return the Barnes $G$-function, evaluated at $x$.

source
Nemo.log_barnes_gMethod
log_barnes_g(x::ComplexFieldElem)

Return the logarithm of the Barnes $G$-function, evaluated at $x$.

source
Nemo.erfMethod
erf(x::ComplexFieldElem)

Return the error function evaluated at $x$.

source
Nemo.erfiMethod
erfi(x::ComplexFieldElem)

Return the imaginary error function evaluated at $x$.

source
Nemo.exp_integral_eiMethod
exp_integral_ei(x::ComplexFieldElem)

Return the exponential integral evaluated at $x$.

source
Nemo.sin_integralMethod
sin_integral(x::ComplexFieldElem)

Return the sine integral evaluated at $x$.

source
Nemo.cos_integralMethod
cos_integral(x::ComplexFieldElem)

Return the exponential cosine integral evaluated at $x$.

source
Nemo.sinh_integralMethod
sinh_integral(x::ComplexFieldElem)

Return the hyperbolic sine integral evaluated at $x$.

source
Nemo.cosh_integralMethod
cosh_integral(x::ComplexFieldElem)

Return the hyperbolic cosine integral evaluated at $x$.

source
Nemo.dedekind_etaMethod
dedekind_eta(x::ComplexFieldElem)

Return the Dedekind eta function $\eta(\tau)$ at $\tau = x$.

source
Nemo.modular_weber_fMethod
modular_weber_f(x::ComplexFieldElem)

Return the modular Weber function $\mathfrak{f}(\tau) = \frac{\eta^2(\tau)}{\eta(\tau/2)\eta(2\tau)},$ at $x$ in the complex upper half plane.

source
Nemo.modular_weber_f1Method
modular_weber_f1(x::ComplexFieldElem)

Return the modular Weber function $\mathfrak{f}_1(\tau) = \frac{\eta(\tau/2)}{\eta(\tau)},$ at $x$ in the complex upper half plane.

source
Nemo.modular_weber_f2Method
modular_weber_f2(x::ComplexFieldElem)

Return the modular Weber function $\mathfrak{f}_2(\tau) = \frac{\sqrt{2}\eta(2\tau)}{\eta(\tau)}$ at $x$ in the complex upper half plane.

source
Nemo.j_invariantMethod
j_invariant(x::ComplexFieldElem)

Return the $j$-invariant $j(\tau)$ at $\tau = x$.

source
Nemo.modular_lambdaMethod
modular_lambda(x::ComplexFieldElem)

Return the modular lambda function $\lambda(\tau)$ at $\tau = x$.

source
Nemo.modular_deltaMethod
modular_delta(x::ComplexFieldElem)

Return the modular delta function $\Delta(\tau)$ at $\tau = x$.

source
Nemo.eisenstein_gMethod
eisenstein_g(k::Int, x::ComplexFieldElem)

Return the non-normalized Eisenstein series $G_k(\tau)$ of $\mathrm{SL}_2(\mathbb{Z})$. Also defined for $\tau = i \infty$.

source
Nemo.hilbert_class_polynomialMethod
hilbert_class_polynomial(D::Int, R::ZZPolyRing)

Return in the ring $R$ the Hilbert class polynomial of discriminant $D$, which is only defined for $D < 0$ and $D \equiv 0, 1 \pmod 4$.

source
Nemo.elliptic_kMethod
elliptic_k(x::ComplexFieldElem)

Return the complete elliptic integral $K(x)$.

source
Nemo.elliptic_eMethod
elliptic_e(x::ComplexFieldElem)

Return the complete elliptic integral $E(x)$.

source
Nemo.agmMethod
agm(x::ComplexFieldElem)

Return the arithmetic-geometric mean of $1$ and $x$.

source
Nemo.agmMethod
agm(x::ComplexFieldElem, y::ComplexFieldElem)

Return the arithmetic-geometric mean of $x$ and $y$.

source
Nemo.polygammaMethod
polygamma(s::ComplexFieldElem, a::ComplexFieldElem)

Return the generalised polygamma function $\psi(s,z)$.

source
Nemo.zetaMethod
zeta(s::ComplexFieldElem, a::ComplexFieldElem)

Return the Hurwitz zeta function $\zeta(s,a)$.

source
AbstractAlgebra.Generic.rising_factorialMethod
rising_factorial(x::ComplexFieldElem, n::Int)

Return the rising factorial $x(x + 1)\ldots (x + n - 1)$ as an Acb.

source
AbstractAlgebra.Generic.rising_factorial2Method
rising_factorial2(x::ComplexFieldElem, n::Int)

Return a tuple containing the rising factorial $x(x + 1)\ldots (x + n - 1)$ and its derivative.

source
Nemo.polylogMethod
polylog(s::Union{ComplexFieldElem,Int}, a::ComplexFieldElem)

Return the polylogarithm Li$_s(a)$.

source
Nemo.log_integralMethod
log_integral(x::ComplexFieldElem)

Return the logarithmic integral, evaluated at $x$.

source
Nemo.log_integral_offsetMethod
log_integral_offset(x::ComplexFieldElem)

Return the offset logarithmic integral, evaluated at $x$.

source
Nemo.exp_integral_eMethod
exp_integral_e(s::ComplexFieldElem, x::ComplexFieldElem)

Return the generalised exponential integral $E_s(x)$.

source
Nemo.gammaMethod
gamma(s::ComplexFieldElem, x::ComplexFieldElem)

Return the upper incomplete gamma function $\Gamma(s,x)$.

source
Nemo.gamma_regularizedMethod
gamma_regularized(s::ComplexFieldElem, x::ComplexFieldElem)

Return the regularized upper incomplete gamma function $\Gamma(s,x) / \Gamma(s)$.

source
Nemo.gamma_lowerMethod
gamma_lower(s::ComplexFieldElem, x::ComplexFieldElem)

Return the lower incomplete gamma function $\gamma(s,x) / \Gamma(s)$.

source
Nemo.gamma_lower_regularizedMethod
gamma_lower_regularized(s::ComplexFieldElem, x::ComplexFieldElem)

Return the regularized lower incomplete gamma function $\gamma(s,x) / \Gamma(s)$.

source
Nemo.airy_aiMethod
airy_ai(x::ComplexFieldElem)

Return the Airy function $\operatorname{Ai}(x)$.

source
Nemo.airy_ai_primeMethod
airy_ai_prime(x::ComplexFieldElem)

Return the derivative of the Airy function $\operatorname{Ai}^\prime(x)$.

source
Nemo.airy_biMethod
airy_bi(x::ComplexFieldElem)

Return the Airy function $\operatorname{Bi}(x)$.

source
Nemo.airy_bi_primeMethod
airy_bi_prime(x::ComplexFieldElem)

Return the derivative of the Airy function $\operatorname{Bi}^\prime(x)$.

source
Nemo.bessel_jMethod
bessel_j(nu::ComplexFieldElem, x::ComplexFieldElem)

Return the Bessel function $J_{\nu}(x)$.

source
Nemo.bessel_yMethod
bessel_y(nu::ComplexFieldElem, x::ComplexFieldElem)

Return the Bessel function $Y_{\nu}(x)$.

source
Nemo.bessel_iMethod
bessel_i(nu::ComplexFieldElem, x::ComplexFieldElem)

Return the Bessel function $I_{\nu}(x)$.

source
Nemo.bessel_kMethod
bessel_k(nu::ComplexFieldElem, x::ComplexFieldElem)

Return the Bessel function $K_{\nu}(x)$.

source
Nemo.hypergeometric_1f1Method
hypergeometric_1f1(a::ComplexFieldElem, b::ComplexFieldElem, x::ComplexFieldElem)

Return the confluent hypergeometric function ${}_1F_1(a,b,x)$.

source
Nemo.hypergeometric_1f1_regularizedMethod
hypergeometric_1f1_regularized(a::ComplexFieldElem, b::ComplexFieldElem, x::ComplexFieldElem)

Return the regularized confluent hypergeometric function ${}_1F_1(a,b,x) / \Gamma(b)$.

source
Nemo.hypergeometric_uMethod
hypergeometric_u(a::ComplexFieldElem, b::ComplexFieldElem, x::ComplexFieldElem)

Return the confluent hypergeometric function $U(a,b,x)$.

source
Nemo.hypergeometric_2f1Method
hypergeometric_2f1(a::ComplexFieldElem, b::ComplexFieldElem, c::ComplexFieldElem, x::ComplexFieldElem; flags=0)

Return the Gauss hypergeometric function ${}_2F_1(a,b,c,x)$.

source
Nemo.jacobi_thetaMethod
jacobi_theta(z::ComplexFieldElem, tau::ComplexFieldElem)

Return a tuple of four elements containing the Jacobi theta function values $\theta_1, \theta_2, \theta_3, \theta_4$ evaluated at $z, \tau$.

source
Nemo.weierstrass_pMethod
weierstrass_p(z::ComplexFieldElem, tau::ComplexFieldElem)

Return the Weierstrass elliptic function $\wp(z,\tau)$.

source

Examples

julia> s = CC(1, 2)
 1.0000000000000000000 + 2.0000000000000000000*im
 
 julia> z = CC("1.23", "3.45")
@@ -142,7 +142,7 @@
 [0.63189634741402481 +/- 4.85e-18] + [0.00970090757446076 +/- 4.66e-18]*im
 
 julia> d = hypergeometric_1f1(s, s+1, z)
-[-1.3355297330012291 +/- 5.83e-17] + [-0.1715020340928697 +/- 4.97e-17]*im

Linear dependence

Nemo.lindepMethod
lindep(A::Vector{ComplexFieldElem}, bits::Int)

Find a small linear combination of the entries of the array $A$ that is small (using LLL). The entries are first scaled by the given number of bits before truncating the real and imaginary parts to integers for use in LLL. This function can be used to find linear dependence between a list of complex numbers. The algorithm is heuristic only and returns an array of Nemo integers representing the linear combination.

source
Nemo.lindepMethod
lindep(A::Matrix{ComplexFieldElem}, bits::Int)

Find a (common) small linear combination of the entries in each row of the array $A$, that is small (using LLL). It is assumed that the complex numbers in each row of the array share the same linear combination. The entries are first scaled by the given number of bits before truncating the real and imaginary parts to integers for use in LLL. This function can be used to find a common linear dependence shared across a number of lists of complex numbers. The algorithm is heuristic only and returns an array of Nemo integers representing the common linear combination.

source

Examples

julia> # These are two of the roots of x^5 + 3x + 1
+[-1.3355297330012291 +/- 5.83e-17] + [-0.1715020340928697 +/- 4.97e-17]*im

Linear dependence

Nemo.lindepMethod
lindep(A::Vector{ComplexFieldElem}, bits::Int)

Find a small linear combination of the entries of the array $A$ that is small (using LLL). The entries are first scaled by the given number of bits before truncating the real and imaginary parts to integers for use in LLL. This function can be used to find linear dependence between a list of complex numbers. The algorithm is heuristic only and returns an array of Nemo integers representing the linear combination.

source
Nemo.lindepMethod
lindep(A::Matrix{ComplexFieldElem}, bits::Int)

Find a (common) small linear combination of the entries in each row of the array $A$, that is small (using LLL). It is assumed that the complex numbers in each row of the array share the same linear combination. The entries are first scaled by the given number of bits before truncating the real and imaginary parts to integers for use in LLL. This function can be used to find a common linear dependence shared across a number of lists of complex numbers. The algorithm is heuristic only and returns an array of Nemo integers representing the common linear combination.

source

Examples

julia> # These are two of the roots of x^5 + 3x + 1
 
 julia> a = CC(1.0050669478588622428791051888364775253, -0.93725915669289182697903585868761513585)
 [1.0050669478588623029 +/- 2.25e-20] - [0.93725915669289183718 +/- 1.50e-21]*im
diff --git a/dev/exact/index.html b/dev/exact/index.html
index e5174e0e7f..7b4616622d 100644
--- a/dev/exact/index.html
+++ b/dev/exact/index.html
@@ -90,7 +90,7 @@
 false
 
 julia> C(1im) > C(1im)
-false

This behavior may be changed or may become configurable in the future.

Interface

Base.iszeroMethod
iszero(a::CalciumFieldElem)

Return whether a is the number 0.

source
Base.isoneMethod
isone(a::CalciumFieldElem)

Return whether a is the number 1.

source
Nemo.is_algebraicMethod
is_algebraic(a::CalciumFieldElem)

Return whether a is an algebraic number.

source
Nemo.is_rationalMethod
is_rational(a::CalciumFieldElem)

Return whether a is a rational number.

source
Base.isintegerMethod
isinteger(a::CalciumFieldElem)

Return whether a is an integer.

source
Base.isrealMethod
isreal(a::CalciumFieldElem)

Return whether a is a real number. This returns false if a is a pure real infinity.

source
Nemo.is_imaginaryMethod
is_imaginary(a::CalciumFieldElem)

Return whether a is an imaginary number. This returns false if a is a pure imaginary infinity.

source

Infinities and special values

By default, CalciumField does not permit creating values that are not numbers, and any non-number value (unsigned infinity, signed infinity, Undefined) will result in an exception. This also applies to the special value Unknown, used in situations where Calcium is unable to prove that a value is a number. To enable special values, use extended=true.

julia> C = CalciumField()
+false

This behavior may be changed or may become configurable in the future.

Interface

Base.iszeroMethod
iszero(a::CalciumFieldElem)

Return whether a is the number 0.

source
Base.isoneMethod
isone(a::CalciumFieldElem)

Return whether a is the number 1.

source
Nemo.is_algebraicMethod
is_algebraic(a::CalciumFieldElem)

Return whether a is an algebraic number.

source
Nemo.is_rationalMethod
is_rational(a::CalciumFieldElem)

Return whether a is a rational number.

source
Base.isintegerMethod
isinteger(a::CalciumFieldElem)

Return whether a is an integer.

source
Base.isrealMethod
isreal(a::CalciumFieldElem)

Return whether a is a real number. This returns false if a is a pure real infinity.

source
Nemo.is_imaginaryMethod
is_imaginary(a::CalciumFieldElem)

Return whether a is an imaginary number. This returns false if a is a pure imaginary infinity.

source

Infinities and special values

By default, CalciumField does not permit creating values that are not numbers, and any non-number value (unsigned infinity, signed infinity, Undefined) will result in an exception. This also applies to the special value Unknown, used in situations where Calcium is unable to prove that a value is a number. To enable special values, use extended=true.

julia> C = CalciumField()
 Exact complex field
 
 julia> 1 // C(0)
@@ -102,7 +102,7 @@
 Exact complex field (extended)
 
 julia> 1 // Cext(0)
-UnsignedInfinity

Note that special values do not satisfy the properties of a mathematical ring or field. You will likely get meaningless results if you put infinities in matrices or polynomials.

Nemo.unsigned_infinityMethod
unsigned_infinity(C::CalciumField)

Return unsigned infinity ($\hat \infty$) as an element of C. This throws an exception if C does not allow special values.

source
Nemo.infinityMethod
infinity(C::CalciumField)

Return positive infinity ($+\infty$) as an element of C. This throws an exception if C does not allow special values.

source
Nemo.infinityMethod
infinity(a::CalciumFieldElem)

Return the signed infinity ($a \cdot \infty$). This throws an exception if the parent of a does not allow special values.

source
Nemo.undefinedMethod
undefined(C::CalciumField)

Return the special value Undefined as an element of C. This throws an exception if C does not allow special values.

source
Nemo.unknownMethod
unknown(C::CalciumField)

Return the special meta-value Unknown as an element of C. This throws an exception if C does not allow special values.

source
Nemo.is_numberMethod
is_number(a::CalciumFieldElem)

Return whether a is a number, i.e. not an infinity or undefined.

source
Nemo.is_undefinedMethod
is_undefined(a::CalciumFieldElem)

Return whether a is the special value Undefined.

source
Base.isinfMethod
isinf(a::CalciumFieldElem)

Return whether a is any infinity (signed or unsigned).

source
Nemo.is_uinfMethod
is_uinf(a::CalciumFieldElem)

Return whether a is unsigned infinity.

source
Nemo.is_signed_infMethod
is_signed_inf(a::CalciumFieldElem)

Return whether a is any signed infinity.

source
Nemo.is_unknownMethod
is_unknown(a::CalciumFieldElem)

Return whether a is the special value Unknown. This is a representation property and not a mathematical predicate.

source

Complex parts

Functions for computing components of real and complex numbers will perform automatic symbolic simplifications in special cases. In general, such operations will introduce new extension numbers.

julia> real(C(2+3im))
+UnsignedInfinity

Note that special values do not satisfy the properties of a mathematical ring or field. You will likely get meaningless results if you put infinities in matrices or polynomials.

Nemo.unsigned_infinityMethod
unsigned_infinity(C::CalciumField)

Return unsigned infinity ($\hat \infty$) as an element of C. This throws an exception if C does not allow special values.

source
Nemo.infinityMethod
infinity(C::CalciumField)

Return positive infinity ($+\infty$) as an element of C. This throws an exception if C does not allow special values.

source
Nemo.infinityMethod
infinity(a::CalciumFieldElem)

Return the signed infinity ($a \cdot \infty$). This throws an exception if the parent of a does not allow special values.

source
Nemo.undefinedMethod
undefined(C::CalciumField)

Return the special value Undefined as an element of C. This throws an exception if C does not allow special values.

source
Nemo.unknownMethod
unknown(C::CalciumField)

Return the special meta-value Unknown as an element of C. This throws an exception if C does not allow special values.

source
Nemo.is_numberMethod
is_number(a::CalciumFieldElem)

Return whether a is a number, i.e. not an infinity or undefined.

source
Nemo.is_undefinedMethod
is_undefined(a::CalciumFieldElem)

Return whether a is the special value Undefined.

source
Base.isinfMethod
isinf(a::CalciumFieldElem)

Return whether a is any infinity (signed or unsigned).

source
Nemo.is_uinfMethod
is_uinf(a::CalciumFieldElem)

Return whether a is unsigned infinity.

source
Nemo.is_signed_infMethod
is_signed_inf(a::CalciumFieldElem)

Return whether a is any signed infinity.

source
Nemo.is_unknownMethod
is_unknown(a::CalciumFieldElem)

Return whether a is the special value Unknown. This is a representation property and not a mathematical predicate.

source

Complex parts

Functions for computing components of real and complex numbers will perform automatic symbolic simplifications in special cases. In general, such operations will introduce new extension numbers.

julia> real(C(2+3im))
 2
 
 julia> sign(C(2im))
@@ -124,7 +124,7 @@
 5.18785e+49 {51878483143196131920862615246303013562686760680405}
 
 julia> ZZ(floor(C(pi) ^ 100))
-51878483143196131920862615246303013562686760680405

Interface

Base.realMethod
real(a::CalciumFieldElem)

Return the real part of a.

source
Base.imagMethod
imag(a::CalciumFieldElem)

Return the imaginary part of a.

source
Base.angleMethod
angle(a::CalciumFieldElem)

Return the complex argument of a.

source
Nemo.csgnMethod
csgn(a::CalciumFieldElem)

Return the extension of the real sign function taking the value 1 strictly in the right half plane, -1 strictly in the left half plane, and the sign of the imaginary part when on the imaginary axis. Equivalently, $\operatorname{csgn}(x) = x / \sqrt{x^2}$ except that the value is 0 at zero.

source
Base.signMethod
sign(a::CalciumFieldElem)

Return the complex sign of a, defined as zero if a is zero and as $a / |a|$ for any other complex number. This function also extracts the sign when a is a signed infinity.

source
Base.absMethod
abs(a::CalciumFieldElem)

Return the absolute value of a.

source
Base.conjMethod
conj(a::CalciumFieldElem; form::Symbol=:default)

Return the complex conjugate of a. The optional form argument allows specifying the representation. In :shallow form, $\overline{a}$ is introduced as a new extension number if it no straightforward simplifications are possible. In :deep form, complex conjugation is performed recursively.

source
Base.floorMethod
floor(a::CalciumFieldElem)

Return the floor function of a.

source
Base.ceilMethod
ceil(a::CalciumFieldElem)

Return the ceiling function of a.

source

Elementary and special functions

Elementary and special functions generally create new extension numbers. In special cases, simplifications occur automatically.

julia> exp(C(1))
+51878483143196131920862615246303013562686760680405

Interface

Base.realMethod
real(a::CalciumFieldElem)

Return the real part of a.

source
Base.imagMethod
imag(a::CalciumFieldElem)

Return the imaginary part of a.

source
Base.angleMethod
angle(a::CalciumFieldElem)

Return the complex argument of a.

source
Nemo.csgnMethod
csgn(a::CalciumFieldElem)

Return the extension of the real sign function taking the value 1 strictly in the right half plane, -1 strictly in the left half plane, and the sign of the imaginary part when on the imaginary axis. Equivalently, $\operatorname{csgn}(x) = x / \sqrt{x^2}$ except that the value is 0 at zero.

source
Base.signMethod
sign(a::CalciumFieldElem)

Return the complex sign of a, defined as zero if a is zero and as $a / |a|$ for any other complex number. This function also extracts the sign when a is a signed infinity.

source
Base.absMethod
abs(a::CalciumFieldElem)

Return the absolute value of a.

source
Base.conjMethod
conj(a::CalciumFieldElem; form::Symbol=:default)

Return the complex conjugate of a. The optional form argument allows specifying the representation. In :shallow form, $\overline{a}$ is introduced as a new extension number if it no straightforward simplifications are possible. In :deep form, complex conjugation is performed recursively.

source
Base.floorMethod
floor(a::CalciumFieldElem)

Return the floor function of a.

source
Base.ceilMethod
ceil(a::CalciumFieldElem)

Return the ceiling function of a.

source

Elementary and special functions

Elementary and special functions generally create new extension numbers. In special cases, simplifications occur automatically.

julia> exp(C(1))
 2.71828 {a where a = 2.71828 [Exp(1)]}
 
 julia> exp(C(0))
@@ -173,4 +173,4 @@
 julia> sin(3*a) == 4 * sin(a) * sin(C(pi)//3 - a) * sin(C(pi)//3 + a)
 ERROR: Unable to perform operation (failed deciding truth of a predicate): isequal
 [...]

A possible workaround is to fall back on a numerical comparison:

julia> abs(cos(a) + cos(2*a) + cos(3*a) - (sin(7*a//2)//(2*sin(a//2)) - C(1)//2)) <= C(10)^-100
-true

Of course, this is not a rigorous proof that the numbers are equal, and CalciumField is overkill here; it would be far more efficient to use ArbField directly to check that the numbers are approximately equal.

Interface

Nemo.const_piMethod
const_pi(C::CalciumField)

Return the constant $\pi$ as an element of C.

source
Nemo.const_eulerMethod
const_euler(C::CalciumField)

Return Euler's constant $\gamma$ as an element of C.

source
Nemo.oneiMethod
onei(C::CalciumField)

Return the imaginary unit $i$ as an element of C.

source
Base.sqrtMethod
Base.sqrt(a::CalciumFieldElem; check::Bool=true)

Return the principal square root of a.

source
Base.expMethod
exp(a::CalciumFieldElem)

Return the exponential function of a.

source
Base.logMethod
log(a::CalciumFieldElem)

Return the natural logarithm of a.

source
Nemo.powMethod
pow(a::CalciumFieldElem, b::Int; form::Symbol=:default)

Return a raised to the integer power b. The optional form argument allows specifying the representation. In :default form, this is equivalent to a ^ b, which may create a new extension number $a^b$ if the exponent b is too large (as determined by the parent option :pow_limit or :prec_limit depending on the case). In :arithmetic form, the exponentiation is performed arithmetically in the field of a, regardless of the size of the exponent b.

source
Base.sinMethod
sin(a::CalciumFieldElem; form::Symbol=:default)

Return the sine of a. The optional form argument allows specifying the representation. In :default form, the result is determined by the :trig_form option of the parent object. In :exponential form, the value is represented using complex exponentials. In :tangent form, the value is represented using tangents. In :direct form, the value is represented directly using a sine or cosine.

source
Base.cosMethod
cos(a::CalciumFieldElem; form::Symbol=:default)

Return the cosine of a. The optional form argument allows specifying the representation. In :default form, the result is determined by the :trig_form option of the parent object. In :exponential form, the value is represented using complex exponentials. In :tangent form, the value is represented using tangents. In :direct form, the value is represented directly using a sine or cosine.

source
Base.tanMethod
tan(a::CalciumFieldElem; form::Symbol=:default)

Return the tangent of a. The optional form argument allows specifying the representation. In :default form, the result is determined by the :trig_form option of the parent object. In :exponential form, the value is represented using complex exponentials. In :direct or :tangent form, the value is represented directly using tangents. In :sine_cosine form, the value is represented using sines or cosines.

source
Base.atanMethod
atan(a::CalciumFieldElem; form::Symbol=:default)

Return the inverse tangent of a. The optional form argument allows specifying the representation. In :default form, the result is determined by the :trig_form option of the parent object. In :logarithm form, the value is represented using complex logarithms. In :direct or :arctangent form, the value is represented directly using arctangents.

source
Base.asinMethod
asin(a::CalciumFieldElem; form::Symbol=:default)

Return the inverse sine of a. The optional form argument allows specifying the representation. In :default form, the result is determined by the :trig_form option of the parent object. In :logarithm form, the value is represented using complex logarithms. In :direct form, the value is represented directly using an inverse sine or cosine.

source
Base.acosMethod
acos(a::CalciumFieldElem; form::Symbol=:default)

Return the inverse cosine of a. The optional form argument allows specifying the representation. In :default form, the result is determined by the :trig_form option of the parent object. In :logarithm form, the value is represented using complex logarithms. In :direct form, the value is represented directly using an inverse sine or cosine.

source
Nemo.gammaMethod
gamma(a::CalciumFieldElem)

Return the gamma function of a.

source
Nemo.erfMethod
erf(a::CalciumFieldElem)

Return the error function of a.

source
Nemo.erfiMethod
erfi(a::CalciumFieldElem)

Return the imaginary error function of a.

source
Nemo.erfcMethod
erfc(a::CalciumFieldElem)

Return the complementary error function of a.

source

Rewriting and simplification

Nemo.complex_normal_formMethod
complex_normal_form(a::CalciumFieldElem, deep::Bool=true)

Returns the input rewritten using standardizing transformations over the complex numbers:

  • Elementary functions are rewritten in terms of exponentials, roots and logarithms.

  • Complex parts are rewritten using logarithms, square roots, and (deep) complex conjugates.

  • Algebraic numbers are rewritten in terms of cyclotomic fields where applicable.

If deep is set, the rewriting is applied recursively to the tower of extension numbers; otherwise, the rewriting is only applied to the top-level extension numbers.

The result is not a normal form in the strong sense (the same number can have many possible representations even after applying this transformation), but this transformation can nevertheless be a useful heuristic for simplification.

source
+true

Of course, this is not a rigorous proof that the numbers are equal, and CalciumField is overkill here; it would be far more efficient to use ArbField directly to check that the numbers are approximately equal.

Interface

Nemo.const_piMethod
const_pi(C::CalciumField)

Return the constant $\pi$ as an element of C.

source
Nemo.const_eulerMethod
const_euler(C::CalciumField)

Return Euler's constant $\gamma$ as an element of C.

source
Nemo.oneiMethod
onei(C::CalciumField)

Return the imaginary unit $i$ as an element of C.

source
Base.sqrtMethod
Base.sqrt(a::CalciumFieldElem; check::Bool=true)

Return the principal square root of a.

source
Base.expMethod
exp(a::CalciumFieldElem)

Return the exponential function of a.

source
Base.logMethod
log(a::CalciumFieldElem)

Return the natural logarithm of a.

source
Nemo.powMethod
pow(a::CalciumFieldElem, b::Int; form::Symbol=:default)

Return a raised to the integer power b. The optional form argument allows specifying the representation. In :default form, this is equivalent to a ^ b, which may create a new extension number $a^b$ if the exponent b is too large (as determined by the parent option :pow_limit or :prec_limit depending on the case). In :arithmetic form, the exponentiation is performed arithmetically in the field of a, regardless of the size of the exponent b.

source
Base.sinMethod
sin(a::CalciumFieldElem; form::Symbol=:default)

Return the sine of a. The optional form argument allows specifying the representation. In :default form, the result is determined by the :trig_form option of the parent object. In :exponential form, the value is represented using complex exponentials. In :tangent form, the value is represented using tangents. In :direct form, the value is represented directly using a sine or cosine.

source
Base.cosMethod
cos(a::CalciumFieldElem; form::Symbol=:default)

Return the cosine of a. The optional form argument allows specifying the representation. In :default form, the result is determined by the :trig_form option of the parent object. In :exponential form, the value is represented using complex exponentials. In :tangent form, the value is represented using tangents. In :direct form, the value is represented directly using a sine or cosine.

source
Base.tanMethod
tan(a::CalciumFieldElem; form::Symbol=:default)

Return the tangent of a. The optional form argument allows specifying the representation. In :default form, the result is determined by the :trig_form option of the parent object. In :exponential form, the value is represented using complex exponentials. In :direct or :tangent form, the value is represented directly using tangents. In :sine_cosine form, the value is represented using sines or cosines.

source
Base.atanMethod
atan(a::CalciumFieldElem; form::Symbol=:default)

Return the inverse tangent of a. The optional form argument allows specifying the representation. In :default form, the result is determined by the :trig_form option of the parent object. In :logarithm form, the value is represented using complex logarithms. In :direct or :arctangent form, the value is represented directly using arctangents.

source
Base.asinMethod
asin(a::CalciumFieldElem; form::Symbol=:default)

Return the inverse sine of a. The optional form argument allows specifying the representation. In :default form, the result is determined by the :trig_form option of the parent object. In :logarithm form, the value is represented using complex logarithms. In :direct form, the value is represented directly using an inverse sine or cosine.

source
Base.acosMethod
acos(a::CalciumFieldElem; form::Symbol=:default)

Return the inverse cosine of a. The optional form argument allows specifying the representation. In :default form, the result is determined by the :trig_form option of the parent object. In :logarithm form, the value is represented using complex logarithms. In :direct form, the value is represented directly using an inverse sine or cosine.

source
Nemo.gammaMethod
gamma(a::CalciumFieldElem)

Return the gamma function of a.

source
Nemo.erfMethod
erf(a::CalciumFieldElem)

Return the error function of a.

source
Nemo.erfiMethod
erfi(a::CalciumFieldElem)

Return the imaginary error function of a.

source
Nemo.erfcMethod
erfc(a::CalciumFieldElem)

Return the complementary error function of a.

source

Rewriting and simplification

Nemo.complex_normal_formMethod
complex_normal_form(a::CalciumFieldElem, deep::Bool=true)

Returns the input rewritten using standardizing transformations over the complex numbers:

  • Elementary functions are rewritten in terms of exponentials, roots and logarithms.

  • Complex parts are rewritten using logarithms, square roots, and (deep) complex conjugates.

  • Algebraic numbers are rewritten in terms of cyclotomic fields where applicable.

If deep is set, the rewriting is applied recursively to the tower of extension numbers; otherwise, the rewriting is only applied to the top-level extension numbers.

The result is not a normal form in the strong sense (the same number can have many possible representations even after applying this transformation), but this transformation can nevertheless be a useful heuristic for simplification.

source
diff --git a/dev/ff_embedding/index.html b/dev/ff_embedding/index.html index 34aa780f5e..5a529b9aaa 100644 --- a/dev/ff_embedding/index.html +++ b/dev/ff_embedding/index.html @@ -1,5 +1,5 @@ -Finite field embeddings · Nemo.jl

Finite field embeddings

Introduction

Nemo allows the construction of finite field embeddings making use of the algorithm of Bosma, Cannon and Steel behind the scenes to ensure compatibility. Critical routines (e.g. polynomial factorization, matrix computations) are provided by the C library Flint, whereas high level tasks are written directly in Nemo.

Embedding functionality

It is possible to explicitly call the embedding embed function to create an embedding, but it is also possible to directly ask for the conversion of a finite field element x in some other finite field k via calling k(x). The resulting embedding is of type FinFieldMorphism. It is also possible to compute the preimage map of an embedding via the preimage_map function, applied to an embedding or directly to the finite fields (this actually first computes the embedding), or via conversion. An error is thrown if the element you want to compute the preimage of is not in the image of the embedding.

Computing an embedding

Nemo.embedMethod
embed(k::T, K::T) where T <: FinField

Embed $k$ in $K$, with some additional computations in order to satisfy compatibility conditions with previous and future embeddings.

source

Examples

julia> k2, x2 = finite_field(19, 2, "x2")
+Finite field embeddings · Nemo.jl

Finite field embeddings

Introduction

Nemo allows the construction of finite field embeddings making use of the algorithm of Bosma, Cannon and Steel behind the scenes to ensure compatibility. Critical routines (e.g. polynomial factorization, matrix computations) are provided by the C library Flint, whereas high level tasks are written directly in Nemo.

Embedding functionality

It is possible to explicitly call the embedding embed function to create an embedding, but it is also possible to directly ask for the conversion of a finite field element x in some other finite field k via calling k(x). The resulting embedding is of type FinFieldMorphism. It is also possible to compute the preimage map of an embedding via the preimage_map function, applied to an embedding or directly to the finite fields (this actually first computes the embedding), or via conversion. An error is thrown if the element you want to compute the preimage of is not in the image of the embedding.

Computing an embedding

Nemo.embedMethod
embed(k::T, K::T) where T <: FinField

Embed $k$ in $K$, with some additional computations in order to satisfy compatibility conditions with previous and future embeddings.

source

Examples

julia> k2, x2 = finite_field(19, 2, "x2")
 (Finite field of degree 2 and characteristic 19, x2)
 
 julia> k4, x4 = finite_field(19, 4, "x4")
@@ -14,7 +14,7 @@
 6*x4^3 + 5*x4^2 + 9*x4 + 17
 
 julia> z = k4(x2)
-6*x4^3 + 5*x4^2 + 9*x4 + 17

Computing the preimage of an embedding

AbstractAlgebra.Generic.preimage_mapMethod
preimage_map(f::FinFieldMorphism)

Compute the preimage map corresponding to the embedding $f$.

source
preimage_map(f::FinFieldPreimage)

Compute the preimage map corresponding to the preimage of the embedding $f$, i.e. return the embedding $f$.

source

Examples

julia> k7, x7 = finite_field(13, 7, "x7")
+6*x4^3 + 5*x4^2 + 9*x4 + 17

Computing the preimage of an embedding

AbstractAlgebra.Generic.preimage_mapMethod
preimage_map(f::FinFieldMorphism)

Compute the preimage map corresponding to the embedding $f$.

source
preimage_map(f::FinFieldPreimage)

Compute the preimage map corresponding to the preimage of the embedding $f$, i.e. return the embedding $f$.

source

Examples

julia> k7, x7 = finite_field(13, 7, "x7")
 (Finite field of degree 7 and characteristic 13, x7)
 
 julia> k21, x21 = finite_field(13, 21, "x21")
diff --git a/dev/finitefield/index.html b/dev/finitefield/index.html
index 55ce028ee9..0641dafb8f 100644
--- a/dev/finitefield/index.html
+++ b/dev/finitefield/index.html
@@ -10,7 +10,7 @@
 julia> Kx, x = K["x"];
 
 julia> L, b = finite_field(x^3 + x^2 + x + 2, "b")
-(Finite field of degree 3 over GF(3, 2), b)
source
Nemo.GFFunction
GF(p::IntegerUnion, d::Int, s::VarName = :o; cached::Bool = true, check::Bool = true)
+(Finite field of degree 3 over GF(3, 2), b)
source
Nemo.GFFunction
GF(p::IntegerUnion, d::Int, s::VarName = :o; cached::Bool = true, check::Bool = true)
 GF(q::IntegerUnion, s::VarName = :o; cached::Bool = true, check::Bool = true)
 GF(f::FqPolyRingElem, s::VarName = :o; cached::Bool = true, check::Bool = true)

Return a finite field $K$ of order $q = p^d$, where $p$ is a prime. The identifier $s$ is used to designate how the finite field generator will be printed.

If a polynomial $f \in k[X]$ over a finite field $k$ is specified, the finite field $K = k[X]/(f)$ will be constructed as a finite field with base field $k$.

See also finite_field which additionally returns a finite field generator of $K$.

Examples

julia> K = GF(3, 2, "a")
 Finite field of degree 2 and characteristic 3
@@ -21,7 +21,7 @@
 julia> Kx, x = K["x"];
 
 julia> L = GF(x^3 + x^2 + x + 2, "b")
-Finite field of degree 3 over GF(3, 2)
source

Field functionality

AbstractAlgebra.degreeMethod
degree(K::FqField) -> Int

Return the degree of the given finite field over the base field.

Examples

julia> K, a = finite_field(3, 2, "a");
+Finite field of degree 3 over GF(3, 2)
source

Field functionality

AbstractAlgebra.degreeMethod
degree(K::FqField) -> Int

Return the degree of the given finite field over the base field.

Examples

julia> K, a = finite_field(3, 2, "a");
 
 julia> degree(K)
 2
@@ -31,7 +31,7 @@
 julia> L, b = finite_field(x^3 + x^2 + x + 2, "b");
 
 julia> degree(L)
-3
source
Nemo.is_absoluteMethod
is_absolute(F::FqField)

Return whether the base field of $F$ is a prime field.

source
AbstractAlgebra.Generic.defining_polynomialMethod
defining_polynomial([R::FqPolyRing], K::FqField)

Return the defining polynomial of K as a polynomial over the base field of K.

If the polynomial ring R is specified, the polynomial will be an element of R.

Examples

julia> K, a = finite_field(9, "a");
+3
source
Nemo.is_absoluteMethod
is_absolute(F::FqField)

Return whether the base field of $F$ is a prime field.

source
AbstractAlgebra.Generic.defining_polynomialMethod
defining_polynomial([R::FqPolyRing], K::FqField)

Return the defining polynomial of K as a polynomial over the base field of K.

If the polynomial ring R is specified, the polynomial will be an element of R.

Examples

julia> K, a = finite_field(9, "a");
 
 julia> defining_polynomial(K)
 x^2 + 2*x + 2
@@ -41,7 +41,7 @@
 julia> L, b = finite_field(y^3 + y^2 + y + 2, "b");
 
 julia> defining_polynomial(L)
-y^3 + y^2 + y + 2
source

Element functionality

AbstractAlgebra.genMethod
gen(L::FqField)

Return a $K$-algebra generator a of the finite field $L$, where $K$ is the base field of $L$. The element a satisfies defining_polyomial(a) == 0.

Note that this is in general not a multiplicative generator and can be zero, if $L/K$ is an extension of degree one.

source
AbstractAlgebra.is_genMethod
is_gen(a::FqFieldElem)

Return true if the given finite field element is the generator of the finite field over its base field, otherwise return false.

source
LinearAlgebra.trMethod
tr(x::FqFieldElem)

Return the trace of $x$. This is an element of the base field.

source
Nemo.absolute_trMethod
absolute_tr(x::FqFieldElem)

Return the absolute trace of $x$. This is an element of the prime field.

source
Nemo.absolute_normMethod
absolute_norm(x::FqFieldElem)

Return the absolute norm of $x$. This is an element of the prime field.

source
AbstractAlgebra.liftMethod
lift(R::FqPolyRing, a::FqFieldElem) -> FqPolyRingElem

Given a polynomial ring over the base field of the parent of a, return a lift such that parent(a)(lift(R, a)) == a is true.

source
AbstractAlgebra.liftMethod
lift(::ZZRing, x::FqFieldElem) -> ZZRingElem

Given an element $x$ of a prime field $\mathbf{F}_p$, return a preimage under the canonical map $\mathbf{Z} \to \mathbf{F}_p$.

Examples

julia> K = GF(19);
+y^3 + y^2 + y + 2
source

Element functionality

AbstractAlgebra.genMethod
gen(L::FqField)

Return a $K$-algebra generator a of the finite field $L$, where $K$ is the base field of $L$. The element a satisfies defining_polyomial(a) == 0.

Note that this is in general not a multiplicative generator and can be zero, if $L/K$ is an extension of degree one.

source
AbstractAlgebra.is_genMethod
is_gen(a::FqFieldElem)

Return true if the given finite field element is the generator of the finite field over its base field, otherwise return false.

source
LinearAlgebra.trMethod
tr(x::FqFieldElem)

Return the trace of $x$. This is an element of the base field.

source
Nemo.absolute_trMethod
absolute_tr(x::FqFieldElem)

Return the absolute trace of $x$. This is an element of the prime field.

source
Nemo.absolute_normMethod
absolute_norm(x::FqFieldElem)

Return the absolute norm of $x$. This is an element of the prime field.

source
AbstractAlgebra.liftMethod
lift(R::FqPolyRing, a::FqFieldElem) -> FqPolyRingElem

Given a polynomial ring over the base field of the parent of a, return a lift such that parent(a)(lift(R, a)) == a is true.

source
AbstractAlgebra.liftMethod
lift(::ZZRing, x::FqFieldElem) -> ZZRingElem

Given an element $x$ of a prime field $\mathbf{F}_p$, return a preimage under the canonical map $\mathbf{Z} \to \mathbf{F}_p$.

Examples

julia> K = GF(19);
 
 julia> lift(ZZ, K(3))
-3
source
+3source diff --git a/dev/fraction/index.html b/dev/fraction/index.html index e29500fe99..a10cb8d5a0 100644 --- a/dev/fraction/index.html +++ b/dev/fraction/index.html @@ -1,6 +1,6 @@ Fraction fields · Nemo.jl

Fraction fields

Nemo allows the creation of fraction fields over any ring $R$. We don't require $R$ to be an integral domain, however no attempt is made to deal with the general case. Two fractions $a/b$ and $c/d$ are equal in Nemo iff $ad = bc$. Thus, in practice, a greatest common divisor function is currently required for the ring $R$.

In order to make the representation $a/b$ unique for printing, we have a notion of canonical unit for elements of a ring $R$. When canonicalising $a/b$, each of the elements $a$ and $b$ is first divided by the canonical unit of $b$.

The canonical_unit function is defined for elements of every Nemo ring. It must have the properties

canonical_unit(u) == u
-canonical_unit(a*b) == canonical_unit(a)*canonical_unit(b)

for any unit $u$ of the ring in question, and $a$ and $b$ arbitrary elements of the ring.

For example, the canonical unit of an integer is its sign. Thus a fraction of integers always has positive denominator after canonicalisation.

The canonical unit of a polynomial is the canonical unit of its leading coefficient, etc.

There are two different kinds of implementation of fraction fields in Nemo: a generic one for the case where no specific implementation exists (provided by AbstractAlgebra.jl), and efficient implementations of fractions over specific rings, usually provided by C/C++ libraries.

The following table shows each of the fraction types available in Nemo, the base ring $R$, and the Julia/Nemo types for that kind of fraction (the type information is mainly of concern to developers).

Base ringLibraryElement typeParent type
Generic ring $R$AbstractAlgebra.jlGeneric.FracFieldElem{T}Generic.FracField{T}
$\mathbb{Z}$FlintQQFieldElemQQField

All fraction element types belong to the abstract type FracElem and all of the fraction field types belong to the abstract type FracField. This enables one to write generic functions that can accept any Nemo fraction type.

Fraction functionality

All fraction types in Nemo provide functionality for fields described in AbstractAlgebra.jl:

https://nemocas.github.io/AbstractAlgebra.jl/stable/field

In addition all the fraction field functionality of AbstractAlgebra.jl is provided, along with generic fractions fields as described here:

https://nemocas.github.io/AbstractAlgebra.jl/stable/fraction

Basic manipulation

Base.signMethod
sign(a::QQFieldElem)

Return the sign of $a$ ($-1$, $0$ or $1$) as a fraction.

source
Nemo.heightMethod
height(a::QQFieldElem)

Return the height of the fraction $a$, namely the largest of the absolute values of the numerator and denominator.

source
Nemo.height_bitsMethod
height_bits(a::QQFieldElem)

Return the number of bits of the height of the fraction $a$.

source
Base.:<<Method
<<(a::QQFieldElem, b::Int)

Return $a \times 2^b$.

source
Base.floorMethod
floor(a::QQFieldElem)

Return the greatest integer that is less than or equal to $a$. The result is returned as a rational with denominator $1$.

source
Base.ceilMethod
ceil(a::QQFieldElem)

Return the least integer that is greater than or equal to $a$. The result is returned as a rational with denominator $1$.

source

Examples

julia> d = abs(ZZ(11)//3)
+canonical_unit(a*b) == canonical_unit(a)*canonical_unit(b)

for any unit $u$ of the ring in question, and $a$ and $b$ arbitrary elements of the ring.

For example, the canonical unit of an integer is its sign. Thus a fraction of integers always has positive denominator after canonicalisation.

The canonical unit of a polynomial is the canonical unit of its leading coefficient, etc.

There are two different kinds of implementation of fraction fields in Nemo: a generic one for the case where no specific implementation exists (provided by AbstractAlgebra.jl), and efficient implementations of fractions over specific rings, usually provided by C/C++ libraries.

The following table shows each of the fraction types available in Nemo, the base ring $R$, and the Julia/Nemo types for that kind of fraction (the type information is mainly of concern to developers).

Base ringLibraryElement typeParent type
Generic ring $R$AbstractAlgebra.jlGeneric.FracFieldElem{T}Generic.FracField{T}
$\mathbb{Z}$FlintQQFieldElemQQField

All fraction element types belong to the abstract type FracElem and all of the fraction field types belong to the abstract type FracField. This enables one to write generic functions that can accept any Nemo fraction type.

Fraction functionality

All fraction types in Nemo provide functionality for fields described in AbstractAlgebra.jl:

https://nemocas.github.io/AbstractAlgebra.jl/stable/field

In addition all the fraction field functionality of AbstractAlgebra.jl is provided, along with generic fractions fields as described here:

https://nemocas.github.io/AbstractAlgebra.jl/stable/fraction

Basic manipulation

Base.signMethod
sign(a::QQFieldElem)

Return the sign of $a$ ($-1$, $0$ or $1$) as a fraction.

source
Nemo.heightMethod
height(a::QQFieldElem)

Return the height of the fraction $a$, namely the largest of the absolute values of the numerator and denominator.

source
Nemo.height_bitsMethod
height_bits(a::QQFieldElem)

Return the number of bits of the height of the fraction $a$.

source
Base.:<<Method
<<(a::QQFieldElem, b::Int)

Return $a \times 2^b$.

source
Base.floorMethod
floor(a::QQFieldElem)

Return the greatest integer that is less than or equal to $a$. The result is returned as a rational with denominator $1$.

source
Base.ceilMethod
ceil(a::QQFieldElem)

Return the least integer that is greater than or equal to $a$. The result is returned as a rational with denominator $1$.

source

Examples

julia> d = abs(ZZ(11)//3)
 11//3
 
 julia> 4 <= ZZ(7)//ZZ(3)
@@ -9,7 +9,7 @@
 4
 
 julia> mod(ZZ(1)//2, ZZ(5))
-3
source

Rational Reconstruction

Rational reconstruction is available for rational numbers.

Rational Reconstruction

Rational reconstruction is available for rational numbers.

Nemo.reconstructMethod
reconstruct(a::ZZRingElem, m::ZZRingElem)
 reconstruct(a::ZZRingElem, m::Integer)
 reconstruct(a::Integer, m::ZZRingElem)
 reconstruct(a::Integer, m::Integer)

Attempt to return a rational number $n/d$ such that $0 \leq |n| \leq \lfloor\sqrt{m/2}\rfloor$ and $0 < d \leq \lfloor\sqrt{m/2}\rfloor$ such that gcd$(n, d) = 1$ and $a \equiv nd^{-1} \pmod{m}$. If no solution exists, an exception is thrown.

Examples

julia> a = reconstruct(7, 13)
@@ -19,18 +19,18 @@
 -1//2
 
 julia> c = reconstruct(ZZ(123), ZZ(237))
-9//2
source
Nemo.reconstructMethod
reconstruct(a::ZZRingElem, m::ZZRingElem, N::ZZRingElem, D::ZZRingElem)

Attempt to return a rational number $n/d$ such that $0 \leq |n| \leq N$ and $0 < d \leq D$ such that $2 N D < m$, gcd$(n, d) = 1$, and $a \equiv nd^{-1} \pmod{m}$.

Returns a tuple (success, n/d), where success signals the success of reconstruction.

source

Rational enumeration

Various methods exist to enumerate rationals.

Nemo.next_minimalMethod
next_minimal(a::QQFieldElem)

Given $a$, return the next rational number in the sequence obtained by enumerating all positive denominators $q$, and for each $q$ enumerating the numerators $1 \le p < q$ in order and generating both $p/q$ and $q/p$, but skipping all gcd$(p,q) \neq 1$. Starting with zero, this generates every non-negative rational number once and only once, with the first few entries being $0, 1, 1/2, 2, 1/3, 3, 2/3, 3/2, 1/4, 4, 3/4, 4/3, \ldots$. This enumeration produces the rational numbers in order of minimal height. It has the disadvantage of being somewhat slower to compute than the Calkin-Wilf enumeration. If $a < 0$ we throw a DomainError().

Examples

julia> next_minimal(ZZ(2)//3)
-3//2
source
Nemo.next_signed_minimalMethod
next_signed_minimal(a::QQFieldElem)

Given a signed rational number $a$ assumed to be in canonical form, return the next element in the minimal-height sequence generated by next_minimal but with negative numbers interleaved. The sequence begins $0, 1, -1, 1/2, -1/2, 2, -2, 1/3, -1/3, \ldots$. Starting with zero, this generates every rational number once and only once, in order of minimal height.

Examples

julia> next_signed_minimal(-ZZ(21)//31)
-31//21
source
Nemo.next_calkin_wilfMethod
next_calkin_wilf(a::QQFieldElem)

Return the next number after $a$ in the breadth-first traversal of the Calkin-Wilf tree. Starting with zero, this generates every non-negative rational number once and only once, with the first few entries being $0, 1, 1/2, 2, 1/3, 3/2, 2/3, 3, 1/4, 4/3, 3/5, 5/2, 2/5, \ldots$. Despite the appearance of the initial entries, the Calkin-Wilf enumeration does not produce the rational numbers in order of height: some small fractions will appear late in the sequence. This order has the advantage of being faster to produce than the minimal-height order.

Examples

julia> next_calkin_wilf(ZZ(321)//113)
-113//244
source
Nemo.next_signed_calkin_wilfMethod
next_signed_calkin_wilf(a::QQFieldElem)

Given a signed rational number $a$ returns the next element in the Calkin-Wilf sequence with negative numbers interleaved. The sequence begins $0, 1, -1, 1/2, -1/2, 2, -2, 1/3, -1/3, \ldots$. Starting with zero, this generates every rational number once and only once, but not in order of minimal height.

Examples

julia> next_signed_calkin_wilf(-ZZ(51)//(17))
-1//4
source

Random generation

Nemo.rand_bitsMethod
rand_bits(::QQField, b::Int)

Return a random signed rational whose numerator and denominator both have $b$ bits before canonicalisation. Note that the resulting numerator and denominator can be smaller than $b$ bits.

source

Special functions

The following special functions are available for specific rings in Nemo.

Nemo.harmonicMethod
harmonic(n::Int)

Return the harmonic number $H_n = 1 + 1/2 + 1/3 + \cdots + 1/n$. Table lookup is used for $H_n$ whose numerator and denominator fit in a single limb. For larger $n$, a divide and conquer strategy is used.

Examples

julia> a = harmonic(12)
-86021//27720
source
Nemo.bernoulli_cacheMethod
bernoulli_cache(n::Int)

Precomputes and caches all the Bernoulli numbers up to $B_n$. This is much faster than repeatedly calling bernoulli(k). Once cached, subsequent calls to bernoulli(k) for any $k \le n$ will read from the cache, making them virtually free.

See also bernoulli.

Examples

julia> bernoulli_cache(100)
+9//2
source
Nemo.reconstructMethod
reconstruct(a::ZZRingElem, m::ZZRingElem, N::ZZRingElem, D::ZZRingElem)

Attempt to return a rational number $n/d$ such that $0 \leq |n| \leq N$ and $0 < d \leq D$ such that $2 N D < m$, gcd$(n, d) = 1$, and $a \equiv nd^{-1} \pmod{m}$.

Returns a tuple (success, n/d), where success signals the success of reconstruction.

source

Rational enumeration

Various methods exist to enumerate rationals.

Nemo.next_minimalMethod
next_minimal(a::QQFieldElem)

Given $a$, return the next rational number in the sequence obtained by enumerating all positive denominators $q$, and for each $q$ enumerating the numerators $1 \le p < q$ in order and generating both $p/q$ and $q/p$, but skipping all gcd$(p,q) \neq 1$. Starting with zero, this generates every non-negative rational number once and only once, with the first few entries being $0, 1, 1/2, 2, 1/3, 3, 2/3, 3/2, 1/4, 4, 3/4, 4/3, \ldots$. This enumeration produces the rational numbers in order of minimal height. It has the disadvantage of being somewhat slower to compute than the Calkin-Wilf enumeration. If $a < 0$ we throw a DomainError().

Examples

julia> next_minimal(ZZ(2)//3)
+3//2
source
Nemo.next_signed_minimalMethod
next_signed_minimal(a::QQFieldElem)

Given a signed rational number $a$ assumed to be in canonical form, return the next element in the minimal-height sequence generated by next_minimal but with negative numbers interleaved. The sequence begins $0, 1, -1, 1/2, -1/2, 2, -2, 1/3, -1/3, \ldots$. Starting with zero, this generates every rational number once and only once, in order of minimal height.

Examples

julia> next_signed_minimal(-ZZ(21)//31)
+31//21
source
Nemo.next_calkin_wilfMethod
next_calkin_wilf(a::QQFieldElem)

Return the next number after $a$ in the breadth-first traversal of the Calkin-Wilf tree. Starting with zero, this generates every non-negative rational number once and only once, with the first few entries being $0, 1, 1/2, 2, 1/3, 3/2, 2/3, 3, 1/4, 4/3, 3/5, 5/2, 2/5, \ldots$. Despite the appearance of the initial entries, the Calkin-Wilf enumeration does not produce the rational numbers in order of height: some small fractions will appear late in the sequence. This order has the advantage of being faster to produce than the minimal-height order.

Examples

julia> next_calkin_wilf(ZZ(321)//113)
+113//244
source
Nemo.next_signed_calkin_wilfMethod
next_signed_calkin_wilf(a::QQFieldElem)

Given a signed rational number $a$ returns the next element in the Calkin-Wilf sequence with negative numbers interleaved. The sequence begins $0, 1, -1, 1/2, -1/2, 2, -2, 1/3, -1/3, \ldots$. Starting with zero, this generates every rational number once and only once, but not in order of minimal height.

Examples

julia> next_signed_calkin_wilf(-ZZ(51)//(17))
+1//4
source

Random generation

Nemo.rand_bitsMethod
rand_bits(::QQField, b::Int)

Return a random signed rational whose numerator and denominator both have $b$ bits before canonicalisation. Note that the resulting numerator and denominator can be smaller than $b$ bits.

source

Special functions

The following special functions are available for specific rings in Nemo.

Nemo.harmonicMethod
harmonic(n::Int)

Return the harmonic number $H_n = 1 + 1/2 + 1/3 + \cdots + 1/n$. Table lookup is used for $H_n$ whose numerator and denominator fit in a single limb. For larger $n$, a divide and conquer strategy is used.

Examples

julia> a = harmonic(12)
+86021//27720
source
Nemo.bernoulli_cacheMethod
bernoulli_cache(n::Int)

Precomputes and caches all the Bernoulli numbers up to $B_n$. This is much faster than repeatedly calling bernoulli(k). Once cached, subsequent calls to bernoulli(k) for any $k \le n$ will read from the cache, making them virtually free.

See also bernoulli.

Examples

julia> bernoulli_cache(100)
 
 julia> e = bernoulli(100)
--94598037819122125295227433069493721872702841533066936133385696204311395415197247711//33330
source
Nemo.dedekind_sumMethod
dedekind_sum(h::ZZRingElem, k::ZZRingElem)

Return the Dedekind sum $s(h,k)$ for arbitrary $h$ and $k$.

Examples

julia> b = dedekind_sum(12, 13)
+-94598037819122125295227433069493721872702841533066936133385696204311395415197247711//33330
source
Nemo.dedekind_sumMethod
dedekind_sum(h::ZZRingElem, k::ZZRingElem)

Return the Dedekind sum $s(h,k)$ for arbitrary $h$ and $k$.

Examples

julia> b = dedekind_sum(12, 13)
 -11//13
 
 julia> c = dedekind_sum(-120, ZZ(1305))
--575//522
source
Nemo.simplest_betweenMethod
  simplest_between(l::QQFieldElem, r::QQFieldElem)

Return the simplest fraction in the closed interval $[l, r]$. A canonical fraction $a_1 / b_1$ is defined to be simpler than $a_2 / b_2$ if and only if $b_1 < b_2$ or $b_1 = b_2$ and $a_1 < a_2$.

Examples

julia> simplest_between(QQ(1//10), QQ(3//10))
-1//4
source
+-575//522source
Nemo.simplest_betweenMethod
  simplest_between(l::QQFieldElem, r::QQFieldElem)

Return the simplest fraction in the closed interval $[l, r]$. A canonical fraction $a_1 / b_1$ is defined to be simpler than $a_2 / b_2$ if and only if $b_1 < b_2$ or $b_1 = b_2$ and $a_1 < a_2$.

Examples

julia> simplest_between(QQ(1//10), QQ(3//10))
+1//4
source
diff --git a/dev/integer/index.html b/dev/integer/index.html index 910c74e024..33c68b3636 100644 --- a/dev/integer/index.html +++ b/dev/integer/index.html @@ -2,7 +2,7 @@ Integers · Nemo.jl

Integers

The default integer type in Nemo is provided by Flint. The associated ring of integers is represented by the constant parent object called ZZ.

For convenience we define

ZZ = ZZ

so that integers can be constructed using ZZ instead of ZZ. Note that this is the name of a specific parent object, not the name of its type.

The types of the integer ring parent objects and elements of the associated rings of integers are given in the following table according to the library providing them.

LibraryElement typeParent type
FlintZZRingElemZZRing

All integer element types belong directly to the abstract type RingElem and all the integer ring parent object types belong to the abstract type Ring.

A lot of code will want to accept both ZZRingElem integers and Julia integers, that is, subtypes of Base.Integer. Thus for convenience we define

IntegerUnion = Union{Integer,ZZRingElem}

Integer functionality

Nemo integers provide all of the ring and Euclidean ring functionality of AbstractAlgebra.jl.

https://nemocas.github.io/AbstractAlgebra.jl/stable/ring

https://nemocas.github.io/AbstractAlgebra.jl/stable/euclidean_interface

Below, we describe the functionality that is specific to the Nemo/Flint integer ring.

Constructors

ZZ(n::Integer)

Coerce a Julia integer value into the integer ring.

ZZ(n::String)

Parse the given string as an integer.

ZZ(n::Float64)
 ZZ(n::Float32)
 ZZ(n::Float16)
-ZZ(n::BigFloat)

Coerce the given floating point number into the integer ring, assuming that it can be exactly represented as an integer.

Basic manipulation

Base.signMethod
sign(a::ZZRingElem)

Return the sign of $a$, i.e. $+1$, $0$ or $-1$.

source
sign(g::Perm)

Return the sign of a permutation.

sign returns $1$ if g is even and $-1$ if g is odd. sign represents the homomorphism from the permutation group to the unit group of $\mathbb{Z}$ whose kernel is the alternating group.

Examples

julia> g = Perm([3,4,1,2,5])
+ZZ(n::BigFloat)

Coerce the given floating point number into the integer ring, assuming that it can be exactly represented as an integer.

Basic manipulation

Base.signMethod
sign(a::ZZRingElem)

Return the sign of $a$, i.e. $+1$, $0$ or $-1$.

source
sign(g::Perm)

Return the sign of a permutation.

sign returns $1$ if g is even and $-1$ if g is odd. sign represents the homomorphism from the permutation group to the unit group of $\mathbb{Z}$ whose kernel is the alternating group.

Examples

julia> g = Perm([3,4,1,2,5])
 (1,3)(2,4)
 
 julia> sign(g)
@@ -12,7 +12,7 @@
 (1,3,5)(2,4)
 
 julia> sign(g)
--1
source
Base.sizeMethod
size(a::ZZRingElem)

Return the number of limbs required to store the absolute value of $a$.

source
Nemo.fitsMethod
fits(::Type{UInt}, a::ZZRingElem)

Return true if $a$ fits into a UInt, otherwise return false.

source
Nemo.fitsMethod
fits(::Type{Int}, a::ZZRingElem)

Return true if $a$ fits into an Int, otherwise return false.

source
Base.denominatorMethod
denominator(a::ZZRingElem)

Return the denominator of $a$ thought of as a rational. Always returns $1$.

source
Base.numeratorMethod
numerator(a::ZZRingElem)

Return the numerator of $a$ thought of as a rational. Always returns $a$.

source

Examples

julia> a = ZZ(12)
+-1
source
Base.sizeMethod
size(a::ZZRingElem)

Return the number of limbs required to store the absolute value of $a$.

source
Nemo.fitsMethod
fits(::Type{UInt}, a::ZZRingElem)

Return true if $a$ fits into a UInt, otherwise return false.

source
Nemo.fitsMethod
fits(::Type{Int}, a::ZZRingElem)

Return true if $a$ fits into an Int, otherwise return false.

source
Base.denominatorMethod
denominator(a::ZZRingElem)

Return the denominator of $a$ thought of as a rational. Always returns $1$.

source
Base.numeratorMethod
numerator(a::ZZRingElem)

Return the numerator of $a$ thought of as a rational. Always returns $a$.

source

Examples

julia> a = ZZ(12)
 12
 
 julia> is_unit(a)
@@ -69,7 +69,7 @@
 false
 
 julia> cmpabs(a, b)
-1

Shifting

Base.:<<Method
<<(x::ZZRingElem, c::Int)

Return $2^cx$ where $c \geq 0$.

source
Base.:>>Method
>>(x::ZZRingElem, c::Int)

Return $x/2^c$, discarding any remainder, where $c \geq 0$.

source

Examples

julia> a = ZZ(12)
+1

Shifting

Base.:<<Method
<<(x::ZZRingElem, c::Int)

Return $2^cx$ where $c \geq 0$.

source
Base.:>>Method
>>(x::ZZRingElem, c::Int)

Return $x/2^c$, discarding any remainder, where $c \geq 0$.

source

Examples

julia> a = ZZ(12)
 12
 
 julia> a << 3
@@ -77,7 +77,7 @@
 
 julia> a >> 5
 0

Modular arithmetic

Nemo.sqrtmodMethod
sqrtmod(x::ZZRingElem, m::ZZRingElem)

Return a square root of $x (\mod m)$ if one exists. The remainder will be in the range $[0, m)$. We require that $m$ is prime, otherwise the algorithm may not terminate.

Examples

julia> sqrtmod(ZZ(12), ZZ(13))
-5
source
AbstractAlgebra.crtFunction
crt(r1::ZZRingElem, m1::ZZRingElem, r2::ZZRingElem, m2::ZZRingElem, signed=false; check::Bool=true)
+5
source
AbstractAlgebra.crtFunction
crt(r1::ZZRingElem, m1::ZZRingElem, r2::ZZRingElem, m2::ZZRingElem, signed=false; check::Bool=true)
 crt(r1::ZZRingElem, m1::ZZRingElem, r2::Union{Int, UInt}, m2::Union{Int, UInt}, signed=false; check::Bool=true)
 crt(r::Vector{ZZRingElem}, m::Vector{ZZRingElem}, signed=false; check::Bool=true)
 crt_with_lcm(r1::ZZRingElem, m1::ZZRingElem, r2::ZZRingElem, m2::ZZRingElem, signed=false; check::Bool=true)
@@ -86,28 +86,28 @@
 44
 
 julia> crt(ZZ(5), ZZ(13), 7, 37, true)
-44
source

Integer logarithm

Integer logarithm

Nemo.flogMethod
flog(x::ZZRingElem, c::ZZRingElem)
 flog(x::ZZRingElem, c::Int)

Return the floor of the logarithm of $x$ to base $c$.

Examples

julia> flog(ZZ(12), ZZ(2))
 3
 
 julia> flog(ZZ(12), 3)
 2
-
source
Nemo.clogMethod
clog(x::ZZRingElem, c::ZZRingElem)
 clog(x::ZZRingElem, c::Int)

Return the ceiling of the logarithm of $x$ to base $c$.

Examples

julia> clog(ZZ(12), ZZ(2))
 4
 
 julia> clog(ZZ(12), 3)
 3
-
source

Integer roots

Base.isqrtMethod
isqrt(x::ZZRingElem)

Return the floor of the square root of $x$.

Examples

julia> isqrt(ZZ(13))
+
source

Integer roots

Base.isqrtMethod
isqrt(x::ZZRingElem)

Return the floor of the square root of $x$.

Examples

julia> isqrt(ZZ(13))
 3
-
source
Nemo.isqrtremMethod
isqrtrem(x::ZZRingElem)

Return a tuple $s, r$ consisting of the floor $s$ of the square root of $x$ and the remainder $r$, i.e. such that $x = s^2 + r$. We require $x \geq 0$.

Examples

julia> isqrtrem(ZZ(13))
+
source
Nemo.isqrtremMethod
isqrtrem(x::ZZRingElem)

Return a tuple $s, r$ consisting of the floor $s$ of the square root of $x$ and the remainder $r$, i.e. such that $x = s^2 + r$. We require $x \geq 0$.

Examples

julia> isqrtrem(ZZ(13))
 (3, 4)
-
source
AbstractAlgebra.rootMethod
root(x::ZZRingElem, n::Int; check::Bool=true)

Return the $n$-the root of $x$. We require $n > 0$ and that $x \geq 0$ if $n$ is even. By default the function tests whether the input was a perfect $n$-th power and if not raises an exception. If check=false this check is omitted.

Examples

julia> root(ZZ(27), 3; check=true)
-3
source
AbstractAlgebra.irootMethod
iroot(x::ZZRingElem, n::Int)

Return the integer truncation of the $n$-the root of $x$ (round towards zero). We require $n > 0$ and that $x \geq 0$ if $n$ is even.

Examples

julia> iroot(ZZ(13), 3)
-2
source

Number theoretic functionality

AbstractAlgebra.is_squareMethod
is_square(f::PolyRingElem{T}) where T <: RingElement

Return true if $f$ is a perfect square.

source
is_square(a::FracElem{T}) where T <: RingElem

Return true if $a$ is a square.

source
AbstractAlgebra.rootMethod
root(x::ZZRingElem, n::Int; check::Bool=true)

Return the $n$-the root of $x$. We require $n > 0$ and that $x \geq 0$ if $n$ is even. By default the function tests whether the input was a perfect $n$-th power and if not raises an exception. If check=false this check is omitted.

Examples

julia> root(ZZ(27), 3; check=true)
+3
source
AbstractAlgebra.irootMethod
iroot(x::ZZRingElem, n::Int)

Return the integer truncation of the $n$-the root of $x$ (round towards zero). We require $n > 0$ and that $x \geq 0$ if $n$ is even.

Examples

julia> iroot(ZZ(13), 3)
+2
source

Number theoretic functionality

AbstractAlgebra.is_squareMethod
is_square(f::PolyRingElem{T}) where T <: RingElement

Return true if $f$ is a perfect square.

source
is_square(a::FracElem{T}) where T <: RingElem

Return true if $a$ is a square.

source
Nemo.is_primeMethod
is_prime(x::ZZRingElem)
 is_prime(x::Int)

Return true if $x$ is a prime number, otherwise return false.

Examples

julia> is_prime(ZZ(13))
-true
source
AbstractAlgebra.is_probable_primeMethod
is_probable_prime(x::ZZRingElem)

Return true if $x$ is very probably a prime number, otherwise return false. No counterexamples are known to this test, but it is conjectured that infinitely many exist.

source
AbstractAlgebra.factorMethod
factor(a::T) where T <: RingElement -> Fac{T}

Return a factorization of $a$ into irreducible elements, as a Fac{T}. The irreducible elements in the factorization are pairwise coprime.

source
Nemo.divisor_lenstraMethod
divisor_lenstra(n::ZZRingElem, r::ZZRingElem, m::ZZRingElem)

If $n$ has a factor which lies in the residue class $r (\mod m)$ for $0 < r < m < n$, this function returns such a factor. Otherwise it returns $0$. This is only efficient if $m$ is at least the cube root of $n$. We require gcd$(r, m) = 1$ and this condition is not checked.

source
Base.factorialMethod
factorial(x::ZZRingElem)

Return the factorial of $x$, i.e. $x! = 1.2.3\ldots x$. We require $x \geq 0$.

Examples

julia> factorial(ZZ(100))
-93326215443944152681699238856266700490715968264381621468592963895217599993229915608941463976156518286253697920827223758251185210916864000000000000000000000000
source
AbstractAlgebra.Generic.rising_factorialMethod
rising_factorial(x::RingElement, n::Integer)

Return the rising factorial of $x$, i.e. $x(x + 1)(x + 2)\cdots (x + n - 1)$. If $n < 0$ we throw a DomainError().

Examples

julia> R, x = ZZ[:x];
+true
source
AbstractAlgebra.is_probable_primeMethod
is_probable_prime(x::ZZRingElem)

Return true if $x$ is very probably a prime number, otherwise return false. No counterexamples are known to this test, but it is conjectured that infinitely many exist.

source
AbstractAlgebra.factorMethod
factor(a::T) where T <: RingElement -> Fac{T}

Return a factorization of $a$ into irreducible elements, as a Fac{T}. The irreducible elements in the factorization are pairwise coprime.

source
Nemo.divisor_lenstraMethod
divisor_lenstra(n::ZZRingElem, r::ZZRingElem, m::ZZRingElem)

If $n$ has a factor which lies in the residue class $r (\mod m)$ for $0 < r < m < n$, this function returns such a factor. Otherwise it returns $0$. This is only efficient if $m$ is at least the cube root of $n$. We require gcd$(r, m) = 1$ and this condition is not checked.

source
Base.factorialMethod
factorial(x::ZZRingElem)

Return the factorial of $x$, i.e. $x! = 1.2.3\ldots x$. We require $x \geq 0$.

Examples

julia> factorial(ZZ(100))
+93326215443944152681699238856266700490715968264381621468592963895217599993229915608941463976156518286253697920827223758251185210916864000000000000000000000000
source
AbstractAlgebra.Generic.rising_factorialMethod
rising_factorial(x::RingElement, n::Integer)

Return the rising factorial of $x$, i.e. $x(x + 1)(x + 2)\cdots (x + n - 1)$. If $n < 0$ we throw a DomainError().

Examples

julia> R, x = ZZ[:x];
 
 julia> rising_factorial(x, 1)
 x
@@ -116,8 +116,8 @@
 x^2 + x
 
 julia> rising_factorial(4, 2)
-20
source
Nemo.primorialMethod
primorial(x::ZZRingElem)

Return the primorial of $x$, i.e. the product of all primes less than or equal to $x$. If $x < 0$ we throw a DomainError().

source
Nemo.primorialMethod
primorial(x::Int)

Return the primorial of $x$, i.e. the product of all primes less than or equal to $x$. If $x < 0$ we throw a DomainError().

source
Nemo.fibonacciMethod
fibonacci(x::Int)

Return the $x$-th Fibonacci number $F_x$. We define $F_1 = 1$, $F_2 = 1$ and $F_{i + 1} = F_i + F_{i - 1}$ for all integers $i$.

source
Nemo.fibonacciMethod
fibonacci(x::ZZRingElem)

Return the $x$-th Fibonacci number $F_x$. We define $F_1 = 1$, $F_2 = 1$ and $F_{i + 1} = F_i + F_{i - 1}$ for all integers $i$.

source
Base.binomialMethod
binomial(n::ZZRingElem, k::ZZRingElem)

Return the binomial coefficient $\frac{n (n-1) \cdots (n-k+1)}{k!}$. If $k < 0$ we return $0$, and the identity binomial(n, k) == binomial(n - 1, k - 1) + binomial(n - 1, k) always holds for integers n and k.

source
Base.binomialMethod
binomial(n::UInt, k::UInt, ::ZZRing)

Return the binomial coefficient $\frac{n!}{(n - k)!k!}$ as an ZZRingElem.

source
Nemo.moebius_muMethod
moebius_mu(x::Int)

Return the Moebius mu function of $x$ as an Int. The value returned is either $-1$, $0$ or $1$. If $x \leq 0$ we throw a DomainError().

source
Nemo.moebius_muMethod
moebius_mu(x::ZZRingElem)

Return the Moebius mu function of $x$ as an Int. The value returned is either $-1$, $0$ or $1$. If $x \leq 0$ we throw a DomainError().

source
Nemo.jacobi_symbolMethod
jacobi_symbol(x::Int, y::Int)

Return the value of the Jacobi symbol $\left(\frac{x}{y}\right)$. The modulus $y$ must be odd and positive, otherwise a DomainError is thrown.

source
Nemo.jacobi_symbolMethod
jacobi_symbol(x::ZZRingElem, y::ZZRingElem)

Return the value of the Jacobi symbol $\left(\frac{x}{y}\right)$. The modulus $y$ must be odd and positive, otherwise a DomainError is thrown.

source
Nemo.kronecker_symbolMethod
kronecker_symbol(x::ZZRingElem, y::ZZRingElem)
-kronecker_symbol(x::Int, y::Int)

Return the value of the Kronecker symbol $\left(\frac{x}{y}\right)$. The definition is as per Henri Cohen's book, "A Course in Computational Algebraic Number Theory", Definition 1.4.8.

source
Nemo.primorialMethod
primorial(x::ZZRingElem)

Return the primorial of $x$, i.e. the product of all primes less than or equal to $x$. If $x < 0$ we throw a DomainError().

source
Nemo.primorialMethod
primorial(x::Int)

Return the primorial of $x$, i.e. the product of all primes less than or equal to $x$. If $x < 0$ we throw a DomainError().

source
Nemo.fibonacciMethod
fibonacci(x::Int)

Return the $x$-th Fibonacci number $F_x$. We define $F_1 = 1$, $F_2 = 1$ and $F_{i + 1} = F_i + F_{i - 1}$ for all integers $i$.

source
Nemo.fibonacciMethod
fibonacci(x::ZZRingElem)

Return the $x$-th Fibonacci number $F_x$. We define $F_1 = 1$, $F_2 = 1$ and $F_{i + 1} = F_i + F_{i - 1}$ for all integers $i$.

source
Base.binomialMethod
binomial(n::ZZRingElem, k::ZZRingElem)

Return the binomial coefficient $\frac{n (n-1) \cdots (n-k+1)}{k!}$. If $k < 0$ we return $0$, and the identity binomial(n, k) == binomial(n - 1, k - 1) + binomial(n - 1, k) always holds for integers n and k.

source
Base.binomialMethod
binomial(n::UInt, k::UInt, ::ZZRing)

Return the binomial coefficient $\frac{n!}{(n - k)!k!}$ as an ZZRingElem.

source
Nemo.moebius_muMethod
moebius_mu(x::Int)

Return the Moebius mu function of $x$ as an Int. The value returned is either $-1$, $0$ or $1$. If $x \leq 0$ we throw a DomainError().

source
Nemo.moebius_muMethod
moebius_mu(x::ZZRingElem)

Return the Moebius mu function of $x$ as an Int. The value returned is either $-1$, $0$ or $1$. If $x \leq 0$ we throw a DomainError().

source
Nemo.jacobi_symbolMethod
jacobi_symbol(x::Int, y::Int)

Return the value of the Jacobi symbol $\left(\frac{x}{y}\right)$. The modulus $y$ must be odd and positive, otherwise a DomainError is thrown.

source
Nemo.jacobi_symbolMethod
jacobi_symbol(x::ZZRingElem, y::ZZRingElem)

Return the value of the Jacobi symbol $\left(\frac{x}{y}\right)$. The modulus $y$ must be odd and positive, otherwise a DomainError is thrown.

source
Nemo.kronecker_symbolMethod
kronecker_symbol(x::ZZRingElem, y::ZZRingElem)
+kronecker_symbol(x::Int, y::Int)

Return the value of the Kronecker symbol $\left(\frac{x}{y}\right)$. The definition is as per Henri Cohen's book, "A Course in Computational Algebraic Number Theory", Definition 1.4.8.

source
Nemo.divisor_sigmaMethod
divisor_sigma(x::ZZRingElem, y::Int)
 divisor_sigma(x::ZZRingElem, y::ZZRingElem)
 divisor_sigma(x::Int, y::Int)

Return the value of the sigma function, i.e. $\sum_{0 < d \;| x} d^y$. If $x \leq 0$ or $y < 0$ we throw a DomainError().

Examples

julia> divisor_sigma(ZZ(32), 10)
 1127000493261825
@@ -126,51 +126,51 @@
 1127000493261825
 
 julia> divisor_sigma(32, 10)
-1127000493261825
source
Nemo.euler_phiMethod
euler_phi(x::ZZRingElem)
 euler_phi(x::Int)

Return the value of the Euler phi function at $x$, i.e. the number of positive integers up to $x$ (inclusive) that are coprime with $x$. An exception is raised if $x \leq 0$.

Examples

julia> euler_phi(ZZ(12480))
 3072
 
 julia> euler_phi(12480)
-3072
source
Nemo.number_of_partitionsMethod
number_of_partitions(x::Int)
 number_of_partitions(x::ZZRingElem)

Return the number of partitions of $x$.

Examples

julia> number_of_partitions(100)
 190569292
 
 julia> number_of_partitions(ZZ(1000))
-24061467864032622473692149727991
source
Nemo.is_perfect_powerMethod
is_perfect_power(a::IntegerUnion)

Return whether $a$ is a perfect power, that is, whether $a = m^r$ for some integer $m$ and $r > 1$.

source
Nemo.is_prime_power_with_dataMethod
is_prime_power_with_data(q::IntegerUnion) -> Bool, ZZRingElem, Int

Returns a flag indicating whether $q$ is a prime power and integers $e, p$ such that $q = p^e$. If $q$ is a prime power, than $p$ is a prime.

source

Digits and bases

Base.binMethod
bin(n::ZZRingElem)

Return $n$ as a binary string.

Examples

julia> bin(ZZ(12))
-"1100"
source
Base.octMethod
oct(n::ZZRingElem)

Return $n$ as a octal string.

Examples

julia> oct(ZZ(12))
-"14"
source
Base.decMethod
dec(n::ZZRingElem)

Return $n$ as a decimal string.

Examples

julia> dec(ZZ(12))
-"12"
source
Base.hexMethod
hex(n::ZZRingElem) = base(n, 16)

Return $n$ as a hexadecimal string.

Examples

julia> hex(ZZ(12))
-"c"
source
Nemo.baseMethod
base(n::ZZRingElem, b::Integer)

Return $n$ as a string in base $b$. We require $2 \leq b \leq 62$.

Examples

julia> base(ZZ(12), 13)
-"c"
source
AbstractAlgebra.number_of_digitsMethod
number_of_digits(x::ZZRingElem, b::Integer)

Return the number of digits of $x$ in the base $b$ (default is $b = 10$).

Examples

julia> number_of_digits(ZZ(12), 3)
-3
source
Nemo.nbitsMethod
nbits(x::ZZRingElem)

Return the number of binary bits of $x$. We return zero if $x = 0$.

Examples

julia> nbits(ZZ(12))
-4
source

Bit twiddling

Nemo.popcountMethod
popcount(x::ZZRingElem)

Return the number of ones in the binary representation of $x$.

Examples

julia> popcount(ZZ(12))
-2
source
Nemo.prevpow2Method
prevpow2(x::ZZRingElem)

Return the previous power of $2$ up to including $x$.

source
Nemo.nextpow2Method
nextpow2(x::ZZRingElem)

Return the next power of $2$ that is at least $x$.

Examples

julia> nextpow2(ZZ(12))
-16
source
Base.trailing_zerosMethod
trailing_zeros(x::ZZRingElem)

Return the number of trailing zeros in the binary representation of $x$.

source
Nemo.clrbit!Method
clrbit!(x::ZZRingElem, c::Int)

Clear bit $c$ of $x$, where the least significant bit is the $0$-th bit. Note that this function modifies its input in-place.

Examples

julia> a = ZZ(12)
+24061467864032622473692149727991
source
Nemo.is_perfect_powerMethod
is_perfect_power(a::IntegerUnion)

Return whether $a$ is a perfect power, that is, whether $a = m^r$ for some integer $m$ and $r > 1$.

source
Nemo.is_prime_power_with_dataMethod
is_prime_power_with_data(q::IntegerUnion) -> Bool, ZZRingElem, Int

Returns a flag indicating whether $q$ is a prime power and integers $e, p$ such that $q = p^e$. If $q$ is a prime power, than $p$ is a prime.

source

Digits and bases

Base.binMethod
bin(n::ZZRingElem)

Return $n$ as a binary string.

Examples

julia> bin(ZZ(12))
+"1100"
source
Base.octMethod
oct(n::ZZRingElem)

Return $n$ as a octal string.

Examples

julia> oct(ZZ(12))
+"14"
source
Base.decMethod
dec(n::ZZRingElem)

Return $n$ as a decimal string.

Examples

julia> dec(ZZ(12))
+"12"
source
Base.hexMethod
hex(n::ZZRingElem) = base(n, 16)

Return $n$ as a hexadecimal string.

Examples

julia> hex(ZZ(12))
+"c"
source
Nemo.baseMethod
base(n::ZZRingElem, b::Integer)

Return $n$ as a string in base $b$. We require $2 \leq b \leq 62$.

Examples

julia> base(ZZ(12), 13)
+"c"
source
AbstractAlgebra.number_of_digitsMethod
number_of_digits(x::ZZRingElem, b::Integer)

Return the number of digits of $x$ in the base $b$ (default is $b = 10$).

Examples

julia> number_of_digits(ZZ(12), 3)
+3
source
Nemo.nbitsMethod
nbits(x::ZZRingElem)

Return the number of binary bits of $x$. We return zero if $x = 0$.

Examples

julia> nbits(ZZ(12))
+4
source

Bit twiddling

Nemo.popcountMethod
popcount(x::ZZRingElem)

Return the number of ones in the binary representation of $x$.

Examples

julia> popcount(ZZ(12))
+2
source
Nemo.prevpow2Method
prevpow2(x::ZZRingElem)

Return the previous power of $2$ up to including $x$.

source
Nemo.nextpow2Method
nextpow2(x::ZZRingElem)

Return the next power of $2$ that is at least $x$.

Examples

julia> nextpow2(ZZ(12))
+16
source
Base.trailing_zerosMethod
trailing_zeros(x::ZZRingElem)

Return the number of trailing zeros in the binary representation of $x$.

source
Nemo.clrbit!Method
clrbit!(x::ZZRingElem, c::Int)

Clear bit $c$ of $x$, where the least significant bit is the $0$-th bit. Note that this function modifies its input in-place.

Examples

julia> a = ZZ(12)
 12
 
 julia> clrbit!(a, 3)
 
 julia> a
-4
source
Nemo.setbit!Method
setbit!(x::ZZRingElem, c::Int)

Set bit $c$ of $x$, where the least significant bit is the $0$-th bit. Note that this function modifies its input in-place.

Examples

julia> a = ZZ(12)
+4
source
Nemo.setbit!Method
setbit!(x::ZZRingElem, c::Int)

Set bit $c$ of $x$, where the least significant bit is the $0$-th bit. Note that this function modifies its input in-place.

Examples

julia> a = ZZ(12)
 12
 
 julia> setbit!(a, 0)
 
 julia> a
-13
source
Nemo.combit!Method
combit!(x::ZZRingElem, c::Int)

Complement bit $c$ of $x$, where the least significant bit is the $0$-th bit. Note that this function modifies its input in-place.

Examples

julia> a = ZZ(12)
+13
source
Nemo.combit!Method
combit!(x::ZZRingElem, c::Int)

Complement bit $c$ of $x$, where the least significant bit is the $0$-th bit. Note that this function modifies its input in-place.

Examples

julia> a = ZZ(12)
 12
 
 julia> combit!(a, 2)
 
 julia> a
-8
source
Nemo.tstbitMethod
tstbit(x::ZZRingElem, c::Int)

Return bit $i$ of x (numbered from 0) as true for 1 or false for 0.

Examples

julia> a = ZZ(12)
+8
source
Nemo.tstbitMethod
tstbit(x::ZZRingElem, c::Int)

Return bit $i$ of x (numbered from 0) as true for 1 or false for 0.

Examples

julia> a = ZZ(12)
 12
 
 julia> tstbit(a, 0)
 false
 
 julia> tstbit(a, 2)
-true
source

Random generation

Nemo.rand_bitsMethod
rand_bits(::ZZRing, b::Int)

Return a random signed integer whose absolute value has $b$ bits.

source
Nemo.rand_bits_primeMethod
rand_bits_prime(::ZZRing, n::Int, proved::Bool=true)

Return a random prime number with the given number of bits. If only a probable prime is required, one can pass proved=false.

source

Examples

a = rand_bits(ZZ, 23)
+true
source

Random generation

Nemo.rand_bitsMethod
rand_bits(::ZZRing, b::Int)

Return a random signed integer whose absolute value has $b$ bits.

source
Nemo.rand_bits_primeMethod
rand_bits_prime(::ZZRing, n::Int, proved::Bool=true)

Return a random prime number with the given number of bits. If only a probable prime is required, one can pass proved=false.

source

Examples

a = rand_bits(ZZ, 23)
 b = rand_bits_prime(ZZ, 7)

Complex Integers

The Gaussian integer type in Nemo is provided by a pair of Flint integers. The associated ring of integers and the fraction field can be retrieved by Nemo.GaussianIntegers() and Nemo.GaussianRationals().

Examples

julia> ZZi = Nemo.GaussianIntegers()
 Gaussian integer ring
 
diff --git a/dev/matrix/index.html b/dev/matrix/index.html
index f832b83921..e588285fa7 100644
--- a/dev/matrix/index.html
+++ b/dev/matrix/index.html
@@ -1,5 +1,5 @@
 
-Matrices · Nemo.jl

Matrices

Nemo allow the creation of dense matrices over any computable ring $R$. There are two different kinds of implementation: a generic one for the case where no specific implementation exists (provided by AbstractAlgebra.jl), and efficient implementations of matrices over numerous specific rings, usually provided by C/C++ libraries.

The following table shows each of the matrix types available in Nemo, the base ring $R$, and the Julia/Nemo types for that kind of matrix (the type information is mainly of concern to developers).

Base ringLibraryElement typeParent type
Generic ring $R$AbstractAlgebra.jlGeneric.Mat{T}Generic.MatSpace{T}
$\mathbb{Z}$FlintZZMatrixZZMatrixSpace
$\mathbb{Z}/n\mathbb{Z}$ (small $n$)FlintzzModMatrixzzModMatrixSpace
$\mathbb{Z}/n\mathbb{Z}$ (large $n$)FlintZZModMatrixZZModMatrixSpace
$\mathbb{Q}$FlintQQMatrixQQMatrixSpace
$\mathbb{Z}/p\mathbb{Z}$ (small $p$)FlintfpMatrixfpMatrixSpace
$\mathbb{F}_{p^n}$ (small $p$)FlintfqPolyRepMatrixfqPolyRepMatrixSpace
$\mathbb{F}_{p^n}$ (large $p$)FlintFqPolyRepMatrixFqPolyRepMatrixSpace
$\mathbb{R}$ (arbitrary precision)ArbRealMatrixRealMatrixSpace
$\mathbb{C}$ (arbitrary precision)ArbComplexMatrixComplexMatrixSpace
$\mathbb{R}$ (fixed precision)ArbArbMatrixArbMatrixSpace
$\mathbb{C}$ (fixed precision)ArbAcbMatrixAcbMatrixSpace

The dimensions and base ring $R$ of a generic matrix are stored in its parent object.

All matrix element types belong to the abstract type MatElem and all of the matrix space types belong to the abstract type MatSpace. This enables one to write generic functions that can accept any Nemo matrix type.

Note that the preferred way to create matrices is not to use the type constructors but to use the matrix function, see also the Matrix element constructors section of the AbstractAlgebra manual.

Matrix functionality

All matrix spaces in Nemo provide the matrix functionality of AbstractAlgebra:

https://nemocas.github.io/AbstractAlgebra.jl/stable/matrix

Some of this functionality is provided in Nemo by C libraries, such as Flint, for various specific rings.

In the following, we list the functionality which is provided in addition to the generic matrix functionality, for specific rings in Nemo.

Comparison operators

Nemo.overlapsMethod
overlaps(x::RealMatrix, y::RealMatrix)

Returns true if all entries of $x$ overlap with the corresponding entry of $y$, otherwise return false.

source
Nemo.overlapsMethod
overlaps(x::ComplexMatrix, y::ComplexMatrix)

Returns true if all entries of $x$ overlap with the corresponding entry of $y$, otherwise return false.

source
Base.containsMethod
contains(x::RealMatrix, y::RealMatrix)

Returns true if all entries of $x$ contain the corresponding entry of $y$, otherwise return false.

source
Base.containsMethod
contains(x::ComplexMatrix, y::ComplexMatrix)

Returns true if all entries of $x$ contain the corresponding entry of $y$, otherwise return false.

source

In addition we have the following ad hoc comparison operators.

Examples

julia> C = RR[1 2; 3 4]
+Matrices · Nemo.jl

Matrices

Nemo allow the creation of dense matrices over any computable ring $R$. There are two different kinds of implementation: a generic one for the case where no specific implementation exists (provided by AbstractAlgebra.jl), and efficient implementations of matrices over numerous specific rings, usually provided by C/C++ libraries.

The following table shows each of the matrix types available in Nemo, the base ring $R$, and the Julia/Nemo types for that kind of matrix (the type information is mainly of concern to developers).

Base ringLibraryElement typeParent type
Generic ring $R$AbstractAlgebra.jlGeneric.Mat{T}Generic.MatSpace{T}
$\mathbb{Z}$FlintZZMatrixZZMatrixSpace
$\mathbb{Z}/n\mathbb{Z}$ (small $n$)FlintzzModMatrixzzModMatrixSpace
$\mathbb{Z}/n\mathbb{Z}$ (large $n$)FlintZZModMatrixZZModMatrixSpace
$\mathbb{Q}$FlintQQMatrixQQMatrixSpace
$\mathbb{Z}/p\mathbb{Z}$ (small $p$)FlintfpMatrixfpMatrixSpace
$\mathbb{F}_{p^n}$ (small $p$)FlintfqPolyRepMatrixfqPolyRepMatrixSpace
$\mathbb{F}_{p^n}$ (large $p$)FlintFqPolyRepMatrixFqPolyRepMatrixSpace
$\mathbb{R}$ (arbitrary precision)ArbRealMatrixRealMatrixSpace
$\mathbb{C}$ (arbitrary precision)ArbComplexMatrixComplexMatrixSpace
$\mathbb{R}$ (fixed precision)ArbArbMatrixArbMatrixSpace
$\mathbb{C}$ (fixed precision)ArbAcbMatrixAcbMatrixSpace

The dimensions and base ring $R$ of a generic matrix are stored in its parent object.

All matrix element types belong to the abstract type MatElem and all of the matrix space types belong to the abstract type MatSpace. This enables one to write generic functions that can accept any Nemo matrix type.

Note that the preferred way to create matrices is not to use the type constructors but to use the matrix function, see also the Matrix element constructors section of the AbstractAlgebra manual.

Matrix functionality

All matrix spaces in Nemo provide the matrix functionality of AbstractAlgebra:

https://nemocas.github.io/AbstractAlgebra.jl/stable/matrix

Some of this functionality is provided in Nemo by C libraries, such as Flint, for various specific rings.

In the following, we list the functionality which is provided in addition to the generic matrix functionality, for specific rings in Nemo.

Comparison operators

Nemo.overlapsMethod
overlaps(x::RealMatrix, y::RealMatrix)

Returns true if all entries of $x$ overlap with the corresponding entry of $y$, otherwise return false.

source
Nemo.overlapsMethod
overlaps(x::ComplexMatrix, y::ComplexMatrix)

Returns true if all entries of $x$ overlap with the corresponding entry of $y$, otherwise return false.

source
Base.containsMethod
contains(x::RealMatrix, y::RealMatrix)

Returns true if all entries of $x$ contain the corresponding entry of $y$, otherwise return false.

source
Base.containsMethod
contains(x::ComplexMatrix, y::ComplexMatrix)

Returns true if all entries of $x$ contain the corresponding entry of $y$, otherwise return false.

source

In addition we have the following ad hoc comparison operators.

Examples

julia> C = RR[1 2; 3 4]
 [1.0000000000000000000   2.0000000000000000000]
 [3.0000000000000000000   4.0000000000000000000]
 
@@ -11,7 +11,7 @@
 true
 
 julia> contains(D, C)
-true

Scaling

Base.:>>Method
>>(x::ZZMatrix, y::Int)

Return $x/2^y$ where rounding is towards zero.

source

Examples

julia> A = ZZ[2 3 5; 1 4 7; 9 6 3]
+true

Scaling

Base.:>>Method
>>(x::ZZMatrix, y::Int)

Return $x/2^y$ where rounding is towards zero.

source

Examples

julia> A = ZZ[2 3 5; 1 4 7; 9 6 3]
 [2   3   5]
 [1   4   7]
 [9   6   3]
@@ -24,7 +24,7 @@
 julia> C = B>>2
 [16   24   40]
 [ 8   32   56]
-[72   48   24]

Determinant

Nemo.det_divisorMethod
det_divisor(x::ZZMatrix)

Return some positive divisor of the determinant of $x$, if the determinant is nonzero, otherwise return zero.

source
Nemo.det_given_divisorMethod
det_given_divisor(x::ZZMatrix, d::Integer, proved=true)

Return the determinant of $x$ given a positive divisor of its determinant. If proved == true (the default), the output is guaranteed to be correct, otherwise a heuristic algorithm is used.

source
Nemo.det_given_divisorMethod
det_given_divisor(x::ZZMatrix, d::ZZRingElem, proved=true)

Return the determinant of $x$ given a positive divisor of its determinant. If proved == true (the default), the output is guaranteed to be correct, otherwise a heuristic algorithm is used.

source

Examples

julia> A = ZZ[2 3 5; 1 4 7; 9 6 3]
+[72   48   24]

Determinant

Nemo.det_divisorMethod
det_divisor(x::ZZMatrix)

Return some positive divisor of the determinant of $x$, if the determinant is nonzero, otherwise return zero.

source
Nemo.det_given_divisorMethod
det_given_divisor(x::ZZMatrix, d::Integer, proved=true)

Return the determinant of $x$ given a positive divisor of its determinant. If proved == true (the default), the output is guaranteed to be correct, otherwise a heuristic algorithm is used.

source
Nemo.det_given_divisorMethod
det_given_divisor(x::ZZMatrix, d::ZZRingElem, proved=true)

Return the determinant of $x$ given a positive divisor of its determinant. If proved == true (the default), the output is guaranteed to be correct, otherwise a heuristic algorithm is used.

source

Examples

julia> A = ZZ[2 3 5; 1 4 7; 9 6 3]
 [2   3   5]
 [1   4   7]
 [9   6   3]
@@ -39,7 +39,7 @@
 [5   6   7]
 
 julia> B, d = pseudo_inv(A)
-([15 6 -3; -9 2 1; -3 -6 3], 12)
source

Nullspace

Nemo.nullspace_right_rationalMethod
nullspace_right_rational(x::ZZMatrix)

Return a tuple $(r, U)$ consisting of a matrix $U$ such that the first $r$ columns form the right rational nullspace of $x$, i.e. a set of vectors over $\mathbb{Z}$ giving a $\mathbb{Q}$-basis for the nullspace of $x$ considered as a matrix over $\mathbb{Q}$.

source

Modular reduction

Nemo.reduce_modMethod
reduce_mod(x::ZZMatrix, y::Integer)

Reduce the entries of $x$ modulo $y$ and return the result.

source
Nemo.reduce_modMethod
reduce_mod(x::ZZMatrix, y::ZZRingElem)

Reduce the entries of $x$ modulo $y$ and return the result.

source

Examples

julia> A = ZZ[2 3 5; 1 4 7; 9 2 2]
+([15 6 -3; -9 2 1; -3 -6 3], 12)
source

Nullspace

Nemo.nullspace_right_rationalMethod
nullspace_right_rational(x::ZZMatrix)

Return a tuple $(r, U)$ consisting of a matrix $U$ such that the first $r$ columns form the right rational nullspace of $x$, i.e. a set of vectors over $\mathbb{Z}$ giving a $\mathbb{Q}$-basis for the nullspace of $x$ considered as a matrix over $\mathbb{Q}$.

source

Modular reduction

Nemo.reduce_modMethod
reduce_mod(x::ZZMatrix, y::Integer)

Reduce the entries of $x$ modulo $y$ and return the result.

source
Nemo.reduce_modMethod
reduce_mod(x::ZZMatrix, y::ZZRingElem)

Reduce the entries of $x$ modulo $y$ and return the result.

source

Examples

julia> A = ZZ[2 3 5; 1 4 7; 9 2 2]
 [2   3   5]
 [1   4   7]
 [9   2   2]
@@ -52,7 +52,7 @@
 julia> reduce_mod(A, 2)
 [0   1   1]
 [1   0   1]
-[1   0   0]

Lifting

AbstractAlgebra.liftMethod
lift(a::T) where {T <: Zmodn_mat}

Return a lift of the matrix $a$ to a matrix over $\mathbb{Z}$, i.e. where the entries of the returned matrix are those of $a$ lifted to $\mathbb{Z}$.

source
AbstractAlgebra.liftMethod
lift(a::T) where {T <: Zmodn_mat}

Return a lift of the matrix $a$ to a matrix over $\mathbb{Z}$, i.e. where the entries of the returned matrix are those of $a$ lifted to $\mathbb{Z}$.

source

Examples

julia> R, = residue_ring(ZZ, 7)
+[1   0   0]

Lifting

AbstractAlgebra.liftMethod
lift(a::T) where {T <: Zmodn_mat}

Return a lift of the matrix $a$ to a matrix over $\mathbb{Z}$, i.e. where the entries of the returned matrix are those of $a$ lifted to $\mathbb{Z}$.

source
AbstractAlgebra.liftMethod
lift(a::T) where {T <: Zmodn_mat}

Return a lift of the matrix $a$ to a matrix over $\mathbb{Z}$, i.e. where the entries of the returned matrix are those of $a$ lifted to $\mathbb{Z}$.

source

Examples

julia> R, = residue_ring(ZZ, 7)
 (Integers modulo 7, Map: ZZ -> ZZ/(7))
 
 julia> a = R[4 5 6; 7 3 2; 1 4 5]
@@ -63,7 +63,7 @@
 julia> b = lift(a)
 [-3   -2   -1]
 [ 0    3    2]
-[ 1   -3   -2]

Special matrices

Nemo.hadamardMethod
hadamard(R::ZZMatrixSpace)

Return the Hadamard matrix for the given matrix space. The number of rows and columns must be equal.

source
Nemo.is_hadamardMethod
is_hadamard(x::ZZMatrix)

Return true if the given matrix is Hadamard, otherwise return false.

source
Nemo.hilbertMethod
hilbert(R::QQMatrixSpace)

Return the Hilbert matrix in the given matrix space. This is the matrix with entries $H_{i,j} = 1/(i + j - 1)$.

source

Examples

julia> hadamard(matrix_space(ZZ, 3, 3))
+[ 1   -3   -2]

Special matrices

Nemo.hadamardMethod
hadamard(R::ZZMatrixSpace)

Return the Hadamard matrix for the given matrix space. The number of rows and columns must be equal.

source
Nemo.is_hadamardMethod
is_hadamard(x::ZZMatrix)

Return true if the given matrix is Hadamard, otherwise return false.

source
Nemo.hilbertMethod
hilbert(R::QQMatrixSpace)

Return the Hilbert matrix in the given matrix space. This is the matrix with entries $H_{i,j} = 1/(i + j - 1)$.

source

Examples

julia> hadamard(matrix_space(ZZ, 3, 3))
 ERROR: Unable to create Hadamard matrix
 [...]
 
@@ -79,7 +79,7 @@
 julia> B = hilbert(matrix_space(QQ, 3, 3))
 [   1   1//2   1//3]
 [1//2   1//3   1//4]
-[1//3   1//4   1//5]

Hermite Normal Form

AbstractAlgebra.hnf_with_transformMethod
hnf_with_transform(x::ZZMatrix)

Compute a tuple $(H, T)$ where $H$ is the Hermite normal form of $x$ and $T$ is a transformation matrix so that $H = Tx$.

source
Nemo.hnf_modularMethod
hnf_modular(x::ZZMatrix, d::ZZRingElem)

Compute the Hermite normal form of $x$ given that $d$ is a multiple of the determinant of the nonzero rows of $x$.

source
Nemo.hnf_modular_eldivMethod
hnf_modular_eldiv(x::ZZMatrix, d::ZZRingElem)

Compute the Hermite normal form of $x$ given that $d$ is a multiple of the largest elementary divisor of $x$. The matrix $x$ must have full rank.

source
AbstractAlgebra.is_hnfMethod
is_hnf(x::ZZMatrix)

Return true if the given matrix is in Hermite Normal Form, otherwise return false.

source

Examples

julia> A = ZZ[2 3 5; 1 4 7; 19 3 7]
+[1//3   1//4   1//5]

Hermite Normal Form

AbstractAlgebra.hnf_with_transformMethod
hnf_with_transform(x::ZZMatrix)

Compute a tuple $(H, T)$ where $H$ is the Hermite normal form of $x$ and $T$ is a transformation matrix so that $H = Tx$.

source
Nemo.hnf_modularMethod
hnf_modular(x::ZZMatrix, d::ZZRingElem)

Compute the Hermite normal form of $x$ given that $d$ is a multiple of the determinant of the nonzero rows of $x$.

source
Nemo.hnf_modular_eldivMethod
hnf_modular_eldiv(x::ZZMatrix, d::ZZRingElem)

Compute the Hermite normal form of $x$ given that $d$ is a multiple of the largest elementary divisor of $x$. The matrix $x$ must have full rank.

source
AbstractAlgebra.is_hnfMethod
is_hnf(x::ZZMatrix)

Return true if the given matrix is in Hermite Normal Form, otherwise return false.

source

Examples

julia> A = ZZ[2 3 5; 1 4 7; 19 3 7]
 [ 2   3   5]
 [ 1   4   7]
 [19   3   7]
@@ -103,7 +103,7 @@
 [0   0   27]
 
 julia> is_hnf(M)
-true

Lattice basis reduction

Nemo provides LLL lattice basis reduction. Optionally one can specify the setup using a context object created by the following function.

LLLContext(delta::Float64, eta::Float64, rep=:zbasis, gram=:approx)

Return a LLL context object specifying LLL parameters $\delta$ and $\eta$ and specifying the representation as either :zbasis or :gram and the Gram type as either :approx or :exact.

Nemo.lllMethod
lll(x::ZZMatrix, ctx::LLLContext = LLLContext(0.99, 0.51))

Return a matrix $L$ whose rows form an LLL-reduced basis of the $\mathbb{Z}$-lattice generated by the rows of $x$. $L$ may contain additional zero rows.

By default, the LLL is performed with reduction parameters $\delta = 0.99$ and $\eta = 0.51$. These defaults can be overridden by specifying an optional context object.

See lll_gram for a function taking the Gram matrix as input.

source
Nemo.lll_with_transformMethod
lll_with_transform(x::ZZMatrix, ctx::LLLContext = LLLContext(0.99, 0.51))

Return a tuple $(L, T)$ where the rows of $L$ form an LLL-reduced basis of the $\mathbb{Z}$-lattice generated by the rows of $x$ and $T$ is a transformation matrix so that $L = Tx$. $L$ may contain additional zero rows. See lll for the used default parameters which can be overridden by supplying an optional context object.

See lll_gram_with_transform for a function taking the Gram matrix as input.

source
Nemo.lll_gramMethod
lll_gram(x::ZZMatrix, ctx::LLLContext = LLLContext(0.99, 0.51, :gram))

Return the Gram matrix $L$ of an LLL-reduced basis of the lattice given by the Gram matrix $x$. The matrix $x$ must be symmetric and non-singular.

By default, the LLL is performed with reduction parameters $\delta = 0.99$ and $\eta = 0.51$. These defaults can be overridden by specifying an optional context object.

source
Nemo.lll_gram_with_transformMethod
lll_gram_with_transform(x::ZZMatrix, ctx::LLLContext = LLLContext(0.99, 0.51, :gram))

Return a tuple $(L, T)$ where $L$ is the Gram matrix of an LLL-reduced basis of the lattice given by the Gram matrix $x$ and $T$ is a transformation matrix with $L = T^\top x T$. The matrix $x$ must be symmetric and non-singular.

See lll_gram for the used default parameters which can be overridden by supplying an optional context object.

source
Nemo.lll_with_removalMethod
lll_with_removal(x::ZZMatrix, b::ZZRingElem, ctx::LLLContext = LLLContext(0.99, 0.51))

Compute the LLL reduction of $x$ and throw away rows whose norm exceeds the given bound $b$. Return a tuple $(r, L)$ where the first $r$ rows of $L$ are the rows remaining after removal.

source
Nemo.lll_with_removal_transformMethod
lll_with_removal_transform(x::ZZMatrix, b::ZZRingElem, ctx::LLLContext = LLLContext(0.99, 0.51))

Compute a tuple $(r, L, T)$ where the first $r$ rows of $L$ are those remaining from the LLL reduction after removal of vectors with norm exceeding the bound $b$ and $T$ is a transformation matrix so that $L = Tx$.

source
Nemo.lll!Method
lll!(x::ZZMatrix, ctx::LLLContext = LLLContext(0.99, 0.51))

Compute an LLL-reduced basis of the $\mathbb{Z}$-lattice generated by the rows of $x$ inplace.

By default, the LLL is performed with reduction parameters $\delta = 0.99$ and $\eta = 0.51$. These defaults can be overridden by specifying an optional context object.

See lll_gram! for a function taking the Gram matrix as input.

source
Nemo.lll_gram!Method
lll_gram!(x::ZZMatrix, ctx::LLLContext = LLLContext(0.99, 0.51, :gram))

Compute the Gram matrix of an LLL-reduced basis of the lattice given by the Gram matrix $x$ inplace. The matrix $x$ must be symmetric and non-singular.

By default, the LLL is performed with reduction parameters $\delta = 0.99$ and $\eta = 0.51$. These defaults can be overridden by specifying an optional context object.

source

Examples

julia> A = ZZ[2 3 5; 1 4 7; 19 3 7]
+true

Lattice basis reduction

Nemo provides LLL lattice basis reduction. Optionally one can specify the setup using a context object created by the following function.

LLLContext(delta::Float64, eta::Float64, rep=:zbasis, gram=:approx)

Return a LLL context object specifying LLL parameters $\delta$ and $\eta$ and specifying the representation as either :zbasis or :gram and the Gram type as either :approx or :exact.

Nemo.lllMethod
lll(x::ZZMatrix, ctx::LLLContext = LLLContext(0.99, 0.51))

Return a matrix $L$ whose rows form an LLL-reduced basis of the $\mathbb{Z}$-lattice generated by the rows of $x$. $L$ may contain additional zero rows.

By default, the LLL is performed with reduction parameters $\delta = 0.99$ and $\eta = 0.51$. These defaults can be overridden by specifying an optional context object.

See lll_gram for a function taking the Gram matrix as input.

source
Nemo.lll_with_transformMethod
lll_with_transform(x::ZZMatrix, ctx::LLLContext = LLLContext(0.99, 0.51))

Return a tuple $(L, T)$ where the rows of $L$ form an LLL-reduced basis of the $\mathbb{Z}$-lattice generated by the rows of $x$ and $T$ is a transformation matrix so that $L = Tx$. $L$ may contain additional zero rows. See lll for the used default parameters which can be overridden by supplying an optional context object.

See lll_gram_with_transform for a function taking the Gram matrix as input.

source
Nemo.lll_gramMethod
lll_gram(x::ZZMatrix, ctx::LLLContext = LLLContext(0.99, 0.51, :gram))

Return the Gram matrix $L$ of an LLL-reduced basis of the lattice given by the Gram matrix $x$. The matrix $x$ must be symmetric and non-singular.

By default, the LLL is performed with reduction parameters $\delta = 0.99$ and $\eta = 0.51$. These defaults can be overridden by specifying an optional context object.

source
Nemo.lll_gram_with_transformMethod
lll_gram_with_transform(x::ZZMatrix, ctx::LLLContext = LLLContext(0.99, 0.51, :gram))

Return a tuple $(L, T)$ where $L$ is the Gram matrix of an LLL-reduced basis of the lattice given by the Gram matrix $x$ and $T$ is a transformation matrix with $L = T^\top x T$. The matrix $x$ must be symmetric and non-singular.

See lll_gram for the used default parameters which can be overridden by supplying an optional context object.

source
Nemo.lll_with_removalMethod
lll_with_removal(x::ZZMatrix, b::ZZRingElem, ctx::LLLContext = LLLContext(0.99, 0.51))

Compute the LLL reduction of $x$ and throw away rows whose norm exceeds the given bound $b$. Return a tuple $(r, L)$ where the first $r$ rows of $L$ are the rows remaining after removal.

source
Nemo.lll_with_removal_transformMethod
lll_with_removal_transform(x::ZZMatrix, b::ZZRingElem, ctx::LLLContext = LLLContext(0.99, 0.51))

Compute a tuple $(r, L, T)$ where the first $r$ rows of $L$ are those remaining from the LLL reduction after removal of vectors with norm exceeding the bound $b$ and $T$ is a transformation matrix so that $L = Tx$.

source
Nemo.lll!Method
lll!(x::ZZMatrix, ctx::LLLContext = LLLContext(0.99, 0.51))

Compute an LLL-reduced basis of the $\mathbb{Z}$-lattice generated by the rows of $x$ inplace.

By default, the LLL is performed with reduction parameters $\delta = 0.99$ and $\eta = 0.51$. These defaults can be overridden by specifying an optional context object.

See lll_gram! for a function taking the Gram matrix as input.

source
Nemo.lll_gram!Method
lll_gram!(x::ZZMatrix, ctx::LLLContext = LLLContext(0.99, 0.51, :gram))

Compute the Gram matrix of an LLL-reduced basis of the lattice given by the Gram matrix $x$ inplace. The matrix $x$ must be symmetric and non-singular.

By default, the LLL is performed with reduction parameters $\delta = 0.99$ and $\eta = 0.51$. These defaults can be overridden by specifying an optional context object.

source

Examples

julia> A = ZZ[2 3 5; 1 4 7; 19 3 7]
 [ 2   3   5]
 [ 1   4   7]
 [19   3   7]
@@ -128,7 +128,7 @@
 (3, [-1 1 2; -1 -2 2; 4 1 1])
 
 julia> r, L, T = lll_with_removal_transform(A, ZZ(100))
-(3, [-1 1 2; -1 -2 2; 4 1 1], [-1 1 0; -15 10 1; 3 -2 0])

Smith Normal Form

Nemo.snf_diagonalMethod
snf_diagonal(x::ZZMatrix)

Given a diagonal matrix $x$ compute the Smith normal form of $x$.

source

Examples

julia> A = ZZ[2 3 5; 1 4 7; 19 3 7]
+(3, [-1 1 2; -1 -2 2; 4 1 1], [-1 1 0; -15 10 1; 3 -2 0])

Smith Normal Form

Nemo.snf_diagonalMethod
snf_diagonal(x::ZZMatrix)

Given a diagonal matrix $x$ compute the Smith normal form of $x$.

source

Examples

julia> A = ZZ[2 3 5; 1 4 7; 19 3 7]
 [ 2   3   5]
 [ 1   4   7]
 [19   3   7]
@@ -149,7 +149,7 @@
 julia> C = snf_diagonal(B)
 [1   0    0]
 [0   2    0]
-[0   0   28]

Strong Echelon Form

Nemo.strong_echelon_formMethod
strong_echelon_form(a::zzModMatrix)

Return the strong echeleon form of $a$. The matrix $a$ must have at least as many rows as columns.

source
Nemo.strong_echelon_formMethod
strong_echelon_form(a::fpMatrix)

Return the strong echeleon form of $a$. The matrix $a$ must have at least as many rows as columns.

source

Examples

julia> R, = residue_ring(ZZ, 12);
+[0   0   28]

Strong Echelon Form

Nemo.strong_echelon_formMethod
strong_echelon_form(a::zzModMatrix)

Return the strong echeleon form of $a$. The matrix $a$ must have at least as many rows as columns.

source
Nemo.strong_echelon_formMethod
strong_echelon_form(a::fpMatrix)

Return the strong echeleon form of $a$. The matrix $a$ must have at least as many rows as columns.

source

Examples

julia> R, = residue_ring(ZZ, 12);
 
 julia> A = R[4 1 0; 0 0 5; 0 0 0 ]
 [4   1   0]
@@ -159,7 +159,7 @@
 julia> B = strong_echelon_form(A)
 [4   1   0]
 [0   3   0]
-[0   0   1]

Howell Form

AbstractAlgebra.howell_formMethod
howell_form(a::zzModMatrix)

Return the Howell normal form of $a$. The matrix $a$ must have at least as many rows as columns.

source

Examples

julia> R, = residue_ring(ZZ, 12);
+[0   0   1]

Howell Form

AbstractAlgebra.howell_formMethod
howell_form(a::zzModMatrix)

Return the Howell normal form of $a$. The matrix $a$ must have at least as many rows as columns.

source

Examples

julia> R, = residue_ring(ZZ, 12);
 
 julia> A = R[4 1 0; 0 0 5; 0 0 0 ]
 [4   1   0]
@@ -179,7 +179,7 @@
 julia> B = gram_schmidt_orthogonalisation(A)
 [4   -11//5     95//123]
 [2    22//5   -190//123]
-[0        5    209//123]
source

Exponential

Examples

julia> A = RR[2 0 0; 0 3 0; 0 0 1]
+[0        5    209//123]
source

Exponential

Examples

julia> A = RR[2 0 0; 0 3 0; 0 0 1]
 [2.0000000000000000000                       0                       0]
 [                    0   3.0000000000000000000                       0]
 [                    0                       0   1.0000000000000000000]
@@ -187,7 +187,7 @@
 julia> B = exp(A)
 [[7.389056098930650227 +/- 4.72e-19]                                     0                                     0]
 [                                  0   [20.08553692318766774 +/- 1.94e-18]                                     0]
-[                                  0                                     0   [2.718281828459045235 +/- 4.30e-19]]

Norm

Nemo.bound_inf_normMethod
bound_inf_norm(x::RealMatrix)

Returns a non-negative element $z$ of type ArbFieldElem, such that $z$ is an upper bound for the infinity norm for every matrix in $x$

source
Nemo.bound_inf_normMethod
bound_inf_norm(x::ComplexMatrix)

Returns a non-negative element $z$ of type AcbFieldElem, such that $z$ is an upper bound for the infinity norm for every matrix in $x$

source

Examples

julia> A = RR[1 2 3; 4 5 6; 7 8 9]
+[                                  0                                     0   [2.718281828459045235 +/- 4.30e-19]]

Norm

Nemo.bound_inf_normMethod
bound_inf_norm(x::RealMatrix)

Returns a non-negative element $z$ of type ArbFieldElem, such that $z$ is an upper bound for the infinity norm for every matrix in $x$

source
Nemo.bound_inf_normMethod
bound_inf_norm(x::ComplexMatrix)

Returns a non-negative element $z$ of type AcbFieldElem, such that $z$ is an upper bound for the infinity norm for every matrix in $x$

source

Examples

julia> A = RR[1 2 3; 4 5 6; 7 8 9]
 [1.0000000000000000000   2.0000000000000000000   3.0000000000000000000]
 [4.0000000000000000000   5.0000000000000000000   6.0000000000000000000]
 [7.0000000000000000000   8.0000000000000000000   9.0000000000000000000]
@@ -214,7 +214,7 @@
 
 julia> isreal(onei(CC)*A)
 false

Conversion to Julia matrices

Julia matrices use a different data structure than Nemo matrices. Conversion to Julia matrices is usually only required for interfacing with other packages. It isn't necessary to convert Nemo matrices to Julia matrices in order to manipulate them.

This conversion can be performed with standard Julia syntax, such as the following, where A is an ZZMatrix:

Matrix{Int}(A)
-Matrix{BigInt}(A)

In case the matrix cannot be converted without loss, an InexactError is thrown: in this case, cast to a matrix of BigInts rather than Ints.

Eigenvalues and Eigenvectors (experimental)

Nemo.eigenvaluesMethod
eigenvalues(A::ComplexMatrix)

Return the eigenvalues of A.

This function is experimental.

source
Nemo.eigenvalues_with_multiplicitiesMethod
eigenvalues_with_multiplicities(A::ComplexMatrix)

Return the eigenvalues of A with their algebraic multiplicities as a vector of tuples (ComplexFieldElem, Int). Each tuple (z, k) corresponds to a cluster of k eigenvalues of $A$.

This function is experimental.

source
Nemo.eigenvalues_simpleMethod
eigenvalues_simple(A::ComplexMatrix, algorithm::Symbol = :default)

Returns the eigenvalues of A as a vector of AcbFieldElem. It is assumed that A has only simple eigenvalues.

The algorithm used can be changed by setting the algorithm keyword to :vdhoeven_mourrain or :rump.

This function is experimental.

source
julia> A = CC[1 2 3; 0 4 5; 0 0 6]
+Matrix{BigInt}(A)

In case the matrix cannot be converted without loss, an InexactError is thrown: in this case, cast to a matrix of BigInts rather than Ints.

Eigenvalues and Eigenvectors (experimental)

Nemo.eigenvaluesMethod
eigenvalues(A::ComplexMatrix)

Return the eigenvalues of A.

This function is experimental.

source
Nemo.eigenvalues_with_multiplicitiesMethod
eigenvalues_with_multiplicities(A::ComplexMatrix)

Return the eigenvalues of A with their algebraic multiplicities as a vector of tuples (ComplexFieldElem, Int). Each tuple (z, k) corresponds to a cluster of k eigenvalues of $A$.

This function is experimental.

source
Nemo.eigenvalues_simpleMethod
eigenvalues_simple(A::ComplexMatrix, algorithm::Symbol = :default)

Returns the eigenvalues of A as a vector of AcbFieldElem. It is assumed that A has only simple eigenvalues.

The algorithm used can be changed by setting the algorithm keyword to :vdhoeven_mourrain or :rump.

This function is experimental.

source
julia> A = CC[1 2 3; 0 4 5; 0 0 6]
 [1.0000000000000000000   2.0000000000000000000   3.0000000000000000000]
 [                    0   4.0000000000000000000   5.0000000000000000000]
 [                    0                       0   6.0000000000000000000]
diff --git a/dev/numberfield/index.html b/dev/numberfield/index.html
index 6dac053504..462d76a488 100644
--- a/dev/numberfield/index.html
+++ b/dev/numberfield/index.html
@@ -7,7 +7,7 @@
 
 julia> K
 Number field with defining polynomial x^3 + 3*x + 1
-  over rational field
source
Nemo.cyclotomic_fieldMethod
cyclotomic_field(n::Int, s::VarName = "z_$n", t = "_\$"; cached::Bool = true)

Return a tuple $R, x$ consisting of the parent object $R$ and generator $x$ of the $n$-th cyclotomic field, $\mathbb{Q}(\zeta_n)$. The supplied string s specifies how the generator of the number field should be printed. If provided, the string t specifies how the generator of the polynomial ring from which the number field is constructed, should be printed. If it is not supplied, a default dollar sign will be used to represent the variable.

source
Nemo.cyclotomic_real_subfieldMethod
cyclotomic_real_subfield(n::Int, s::VarName = "(z_$n + 1/z_$n)", t = "\$"; cached = true)

Return a tuple $R, x$ consisting of the parent object $R$ and generator $x$ of the totally real subfield of the $n$-th cyclotomic field, $\mathbb{Q}(\zeta_n)$. The supplied string s specifies how the generator of the number field should be printed. If provided, the string t specifies how the generator of the polynomial ring from which the number field is constructed, should be printed. If it is not supplied, a default dollar sign will be used to represent the variable.

source

Here are some examples of creating number fields and making use of the resulting parent objects to coerce various elements into those fields.

Examples

julia> R, x = polynomial_ring(QQ, "x")
+  over rational field
source
Nemo.cyclotomic_fieldMethod
cyclotomic_field(n::Int, s::VarName = "z_$n", t = "_\$"; cached::Bool = true)

Return a tuple $R, x$ consisting of the parent object $R$ and generator $x$ of the $n$-th cyclotomic field, $\mathbb{Q}(\zeta_n)$. The supplied string s specifies how the generator of the number field should be printed. If provided, the string t specifies how the generator of the polynomial ring from which the number field is constructed, should be printed. If it is not supplied, a default dollar sign will be used to represent the variable.

source
Nemo.cyclotomic_real_subfieldMethod
cyclotomic_real_subfield(n::Int, s::VarName = "(z_$n + 1/z_$n)", t = "\$"; cached = true)

Return a tuple $R, x$ consisting of the parent object $R$ and generator $x$ of the totally real subfield of the $n$-th cyclotomic field, $\mathbb{Q}(\zeta_n)$. The supplied string s specifies how the generator of the number field should be printed. If provided, the string t specifies how the generator of the polynomial ring from which the number field is constructed, should be printed. If it is not supplied, a default dollar sign will be used to represent the variable.

source

Here are some examples of creating number fields and making use of the resulting parent objects to coerce various elements into those fields.

Examples

julia> R, x = polynomial_ring(QQ, "x")
 (Univariate polynomial ring in x over QQ, x)
 
 julia> K, a = number_field(x^3 + 3x + 1, "a")
@@ -32,7 +32,7 @@
 11//3
 
 julia> k = M(x)
-c

Number field element constructors

AbstractAlgebra.genMethod
gen(a::AbsSimpleNumField)

Return the generator of the given number field, i.e., a symbolic root of the defining polynomial.

source

The easiest way of constructing number field elements is to use element arithmetic with the generator, to construct the desired element by its representation as a polynomial. See the following examples for how to do this.

Examples

julia> R, x = polynomial_ring(QQ, "x")
+c

Number field element constructors

AbstractAlgebra.genMethod
gen(a::AbsSimpleNumField)

Return the generator of the given number field, i.e., a symbolic root of the defining polynomial.

source

The easiest way of constructing number field elements is to use element arithmetic with the generator, to construct the desired element by its representation as a polynomial. See the following examples for how to do this.

Examples

julia> R, x = polynomial_ring(QQ, "x")
 (Univariate polynomial ring in x over QQ, x)
 
 julia> K, a = number_field(x^3 + 3x + 1, "a")
@@ -42,7 +42,7 @@
 a
 
 julia> f = a^2 + 2a - 7
-a^2 + 2*a - 7

Basic functionality

AbstractAlgebra.mul_red!Method
mul_red!(z::AbsSimpleNumFieldElem, x::AbsSimpleNumFieldElem, y::AbsSimpleNumFieldElem, red::Bool)

Multiply $x$ by $y$ and set the existing number field element $z$ to the result. Reduction modulo the defining polynomial is only performed if red is set to true. Note that $x$ and $y$ must be reduced. This function is provided for performance reasons as it saves allocating a new object for the result and eliminates associated garbage collection.

source
AbstractAlgebra.reduce!Method
reduce!(x::AbsSimpleNumFieldElem)

Reduce the given number field element by the defining polynomial, in-place. This only needs to be done after accumulating values computed by mul_red! where reduction has not been performed. All standard Nemo number field functions automatically reduce their outputs.

source

The following coercion function is provided for a number field $R$.

R(f::QQPolyRingElem)

Coerce the given rational polynomial into the number field $R$, i.e. consider the polynomial to be the representation of a number field element and return it.

Conversely, if $R$ is the polynomial ring to which the generating polynomial of a number field belongs, then we can coerce number field elements into the ring $R$ using the following function.

R(b::AbsSimpleNumFieldElem)

Coerce the given number field element into the polynomial ring $R$ of which the number field is a quotient.

Examples

julia> R, x = polynomial_ring(QQ, "x")
+a^2 + 2*a - 7

Basic functionality

AbstractAlgebra.mul_red!Method
mul_red!(z::AbsSimpleNumFieldElem, x::AbsSimpleNumFieldElem, y::AbsSimpleNumFieldElem, red::Bool)

Multiply $x$ by $y$ and set the existing number field element $z$ to the result. Reduction modulo the defining polynomial is only performed if red is set to true. Note that $x$ and $y$ must be reduced. This function is provided for performance reasons as it saves allocating a new object for the result and eliminates associated garbage collection.

source
AbstractAlgebra.reduce!Method
reduce!(x::AbsSimpleNumFieldElem)

Reduce the given number field element by the defining polynomial, in-place. This only needs to be done after accumulating values computed by mul_red! where reduction has not been performed. All standard Nemo number field functions automatically reduce their outputs.

source

The following coercion function is provided for a number field $R$.

R(f::QQPolyRingElem)

Coerce the given rational polynomial into the number field $R$, i.e. consider the polynomial to be the representation of a number field element and return it.

Conversely, if $R$ is the polynomial ring to which the generating polynomial of a number field belongs, then we can coerce number field elements into the ring $R$ using the following function.

R(b::AbsSimpleNumFieldElem)

Coerce the given number field element into the polynomial ring $R$ of which the number field is a quotient.

Examples

julia> R, x = polynomial_ring(QQ, "x")
 (Univariate polynomial ring in x over QQ, x)
 
 julia> K, a = number_field(x^3 + 3x + 1, "a")
@@ -52,7 +52,7 @@
 x^2 + 2*x + 3
 
 julia> g = K(x^2 + 2x + 1)
-a^2 + 2*a + 1

Basic manipulation

AbstractAlgebra.varMethod
var(a::AbsSimpleNumField)

Returns the identifier (as a symbol, not a string), that is used for printing the generator of the given number field.

source
AbstractAlgebra.is_genMethod
is_gen(a::AbsSimpleNumFieldElem)

Return true if the given number field element is the generator of the number field, otherwise return false.

source
AbstractAlgebra.coeffMethod
coeff(x::AbsSimpleNumFieldElem, n::Int)

Return the $n$-th coefficient of the polynomial representation of the given number field element. Coefficients are numbered from $0$, starting with the constant coefficient.

source
Base.denominatorMethod
denominator(a::AbsSimpleNumFieldElem)

Return the denominator of the polynomial representation of the given number field element.

source
AbstractAlgebra.degreeMethod
degree(a::AbsSimpleNumField)

Return the degree of the given number field, i.e. the degree of its defining polynomial.

source

Examples

julia> R, x = polynomial_ring(QQ, "x")
+a^2 + 2*a + 1

Basic manipulation

AbstractAlgebra.varMethod
var(a::AbsSimpleNumField)

Returns the identifier (as a symbol, not a string), that is used for printing the generator of the given number field.

source
AbstractAlgebra.is_genMethod
is_gen(a::AbsSimpleNumFieldElem)

Return true if the given number field element is the generator of the number field, otherwise return false.

source
AbstractAlgebra.coeffMethod
coeff(x::AbsSimpleNumFieldElem, n::Int)

Return the $n$-th coefficient of the polynomial representation of the given number field element. Coefficients are numbered from $0$, starting with the constant coefficient.

source
Base.denominatorMethod
denominator(a::AbsSimpleNumFieldElem)

Return the denominator of the polynomial representation of the given number field element.

source
AbstractAlgebra.degreeMethod
degree(a::AbsSimpleNumField)

Return the degree of the given number field, i.e. the degree of its defining polynomial.

source

Examples

julia> R, x = polynomial_ring(QQ, "x")
 (Univariate polynomial ring in x over QQ, x)
 
 julia> K, a = number_field(x^3 + 3x + 1, "a")
@@ -71,7 +71,7 @@
 true
 
 julia> q = degree(K)
-3

Norm and trace

LinearAlgebra.normMethod
norm(a::AbsSimpleNumFieldElem)

Return the absolute norm of $a$. The result will be a rational number.

source
LinearAlgebra.trMethod
tr(a::AbsSimpleNumFieldElem)

Return the absolute trace of $a$. The result will be a rational number.

source

Examples

julia> R, x = polynomial_ring(QQ, "x")
+3

Norm and trace

LinearAlgebra.normMethod
norm(a::AbsSimpleNumFieldElem)

Return the absolute norm of $a$. The result will be a rational number.

source
LinearAlgebra.trMethod
tr(a::AbsSimpleNumFieldElem)

Return the absolute trace of $a$. The result will be a rational number.

source

Examples

julia> R, x = polynomial_ring(QQ, "x")
 (Univariate polynomial ring in x over QQ, x)
 
 julia> K, a = number_field(x^3 + 3x + 1, "a")
diff --git a/dev/padic/index.html b/dev/padic/index.html
index 68a4d19ac3..0b8c167d8b 100644
--- a/dev/padic/index.html
+++ b/dev/padic/index.html
@@ -1,6 +1,6 @@
 
 Padics · Nemo.jl

Padics

P-adic fields are provided in Nemo by Flint. This allows construction of $p$-adic fields for any prime $p$.

P-adic fields are constructed using the padic_field function.

The types of $p$-adic fields in Nemo are given in the following table, along with the libraries that provide them and the associated types of the parent objects.

LibraryFieldElement typeParent type
Flint$\mathbb{Q}_p$PadicFieldElemPadicField

All the $p$-adic field types belong to the Field abstract type and the $p$-adic field element types belong to the FieldElem abstract type.

P-adic functionality

P-adic fields in Nemo implement all the AbstractAlgebra field functionality:.

https://nemocas.github.io/AbstractAlgebra.jl/stable/field

Below, we document all the additional function that is provide by Nemo for p-adic fields.

Constructors

In order to construct $p$-adic field elements in Nemo, one must first construct the $p$-adic field itself. This is accomplished with one of the following constructors.

Nemo.padic_fieldFunction
padic_field(p::Integer; precision::Int=64, cached::Bool=true, check::Bool=true)
-padic_field(p::ZZRingElem; precision::Int=64, cached::Bool=true, check::Bool=true)

Return the $p$-adic field for the given prime $p$. The default absolute precision of elements of the field may be set with precision.

source

Here are some examples of creating $p$-adic fields and making use of the resulting parent objects to coerce various elements into those fields.

Examples

julia> R = padic_field(7, precision = 30)
+padic_field(p::ZZRingElem; precision::Int=64, cached::Bool=true, check::Bool=true)

Return the $p$-adic field for the given prime $p$. The default absolute precision of elements of the field may be set with precision.

source

Here are some examples of creating $p$-adic fields and making use of the resulting parent objects to coerce various elements into those fields.

Examples

julia> R = padic_field(7, precision = 30)
 Field of 7-adic numbers
 
 julia> S = padic_field(ZZ(65537), precision = 30)
@@ -16,7 +16,7 @@
 123*65537^0 + O(65537^30)
 
 julia> d = R(ZZ(1)//7^2)
-7^-2 + O(7^28)

Big-oh notation

Elements of p-adic fields can be constructed using the big-oh notation. For this purpose we define the following functions.

AbstractAlgebra.OMethod
O(R::PadicField, m::Integer)

Construct the value $0 + O(p^n)$ given $m = p^n$. An exception results if $m$ is not found to be a power of p = prime(R).

source
AbstractAlgebra.OMethod
O(R::PadicField, m::ZZRingElem)

Construct the value $0 + O(p^n)$ given $m = p^n$. An exception results if $m$ is not found to be a power of p = prime(R).

source
AbstractAlgebra.OMethod
O(R::PadicField, m::QQFieldElem)

Construct the value $0 + O(p^n)$ given $m = p^n$. An exception results if $m$ is not found to be a power of p = prime(R).

source

The $O(p^n)$ construction can be used to construct $p$-adic values of precision $n$ by adding it to integer values representing the $p$-adic value modulo $p^n$ as in the examples.

Examples

julia> R = padic_field(7, precision = 30)
+7^-2 + O(7^28)

Big-oh notation

Elements of p-adic fields can be constructed using the big-oh notation. For this purpose we define the following functions.

AbstractAlgebra.OMethod
O(R::PadicField, m::Integer)

Construct the value $0 + O(p^n)$ given $m = p^n$. An exception results if $m$ is not found to be a power of p = prime(R).

source
AbstractAlgebra.OMethod
O(R::PadicField, m::ZZRingElem)

Construct the value $0 + O(p^n)$ given $m = p^n$. An exception results if $m$ is not found to be a power of p = prime(R).

source
AbstractAlgebra.OMethod
O(R::PadicField, m::QQFieldElem)

Construct the value $0 + O(p^n)$ given $m = p^n$. An exception results if $m$ is not found to be a power of p = prime(R).

source

The $O(p^n)$ construction can be used to construct $p$-adic values of precision $n$ by adding it to integer values representing the $p$-adic value modulo $p^n$ as in the examples.

Examples

julia> R = padic_field(7, precision = 30)
 Field of 7-adic numbers
 
 julia> S = padic_field(ZZ(65537), precision = 30)
@@ -29,7 +29,7 @@
 13*65537^0 + 357*65537^1 + O(65537^12)
 
 julia> f = ZZ(1)//7^2 + ZZ(2)//7 + 3 + 4*7 + O(R, 7^2)
-7^-2 + 2*7^-1 + 3*7^0 + 4*7^1 + O(7^2)

Beware that the expression 1 + 2*p + 3*p^2 + O(R, p^n) is actually computed as a normal Julia expression. Therefore if Int values are used instead of ZZRingElems or Julia BigInts, overflow may result in evaluating the value.

Basic manipulation

Base.precisionMethod
precision(a::PadicFieldElem)

Return the precision of the given $p$-adic field element, i.e. if the element is known to $O(p^n)$ this function will return $n$.

source
AbstractAlgebra.valuationMethod
valuation(a::PadicFieldElem)

Return the valuation of the given $p$-adic field element, i.e. if the given element is divisible by $p^n$ but not a higher power of $p$ then the function will return $n$.

source
AbstractAlgebra.liftMethod
lift(R::ZZRing, a::PadicFieldElem)

Return a lift of the given $p$-adic field element to $\mathbb{Z}$.

source
AbstractAlgebra.liftMethod
lift(R::QQField, a::PadicFieldElem)

Return a lift of the given $p$-adic field element to $\mathbb{Q}$.

source

Examples

julia> R = padic_field(7, precision = 30)
+7^-2 + 2*7^-1 + 3*7^0 + 4*7^1 + O(7^2)

Beware that the expression 1 + 2*p + 3*p^2 + O(R, p^n) is actually computed as a normal Julia expression. Therefore if Int values are used instead of ZZRingElems or Julia BigInts, overflow may result in evaluating the value.

Basic manipulation

Base.precisionMethod
precision(a::PadicFieldElem)

Return the precision of the given $p$-adic field element, i.e. if the element is known to $O(p^n)$ this function will return $n$.

source
AbstractAlgebra.valuationMethod
valuation(a::PadicFieldElem)

Return the valuation of the given $p$-adic field element, i.e. if the given element is divisible by $p^n$ but not a higher power of $p$ then the function will return $n$.

source
AbstractAlgebra.liftMethod
lift(R::ZZRing, a::PadicFieldElem)

Return a lift of the given $p$-adic field element to $\mathbb{Z}$.

source
AbstractAlgebra.liftMethod
lift(R::QQField, a::PadicFieldElem)

Return a lift of the given $p$-adic field element to $\mathbb{Q}$.

source

Examples

julia> R = padic_field(7, precision = 30)
 Field of 7-adic numbers
 
 julia> a = 1 + 2*7 + 4*7^2 + O(R, 7^3)
@@ -79,7 +79,7 @@
 3*7^0 + 5*7^1 + 6*7^2 + 6*7^3 + 6*7^4 + 6*7^5 + 6*7^6 + 6*7^7 + 6*7^8 + 6*7^9 + 6*7^10 + 6*7^11 + 6*7^12 + 6*7^13 + 6*7^14 + 6*7^15 + 6*7^16 + 6*7^17 + 6*7^18 + 6*7^19 + 6*7^20 + 6*7^21 + 6*7^22 + 6*7^23 + 6*7^24 + 6*7^25 + 6*7^26 + 6*7^27 + 6*7^28 + 6*7^29 + O(7^30)
 
 julia> g^2 == R(121)
-true

Special functions

Base.expMethod
exp(a::PadicFieldElem)

Return the $p$-adic exponential of $a$, assuming the $p$-adic exponential function converges at $a$.

source
Base.logMethod
log(a::PadicFieldElem)

Return the $p$-adic logarithm of $a$, assuming the $p$-adic logarithm converges at $a$.

source
Nemo.teichmullerMethod
teichmuller(a::PadicFieldElem)

Return the Teichmuller lift of the $p$-adic value $a$. We require the valuation of $a$ to be non-negative. The precision of the output will be the same as the precision of the input. For convenience, if $a$ is congruent to zero modulo $p$ we return zero. If the input is not valid an exception is thrown.

source

Examples

julia> R = padic_field(7, precision = 30)
+true

Special functions

Base.expMethod
exp(a::PadicFieldElem)

Return the $p$-adic exponential of $a$, assuming the $p$-adic exponential function converges at $a$.

source
Base.logMethod
log(a::PadicFieldElem)

Return the $p$-adic logarithm of $a$, assuming the $p$-adic logarithm converges at $a$.

source
Nemo.teichmullerMethod
teichmuller(a::PadicFieldElem)

Return the Teichmuller lift of the $p$-adic value $a$. We require the valuation of $a$ to be non-negative. The precision of the output will be the same as the precision of the input. For convenience, if $a$ is congruent to zero modulo $p$ we return zero. If the input is not valid an exception is thrown.

source

Examples

julia> R = padic_field(7, precision = 30)
 Field of 7-adic numbers
 
 julia> a = 1 + 7 + 2*7^2 + O(R, 7^3)
diff --git a/dev/polynomial/index.html b/dev/polynomial/index.html
index 301c356462..210aa83730 100644
--- a/dev/polynomial/index.html
+++ b/dev/polynomial/index.html
@@ -1,5 +1,5 @@
 
-Univariate polynomials · Nemo.jl

Univariate polynomials

Introduction

Nemo allow the creation of dense, univariate polynomials over any computable ring $R$. There are two different kinds of implementation: a generic one for the case where no specific implementation exists (provided by AbstractAlgebra.jl), and efficient implementations of polynomials over numerous specific rings, usually provided by C/C++ libraries.

The following table shows each of the polynomial types available in Nemo, the base ring $R$, and the Julia/Nemo types for that kind of polynomial (the type information is mainly of concern to developers).

Base ringLibraryElement typeParent type
Generic ring $R$AbstractAlgebra.jlGeneric.Poly{T}Generic.PolyRing{T}
$\mathbb{Z}$FlintZZPolyRingElemZZPolyRing
$\mathbb{Z}/n\mathbb{Z}$ (small $n$)FlintzzModPolyRingElemzzModPolyRing
$\mathbb{Z}/n\mathbb{Z}$ (large $n$)FlintZZModPolyRingElemZZModPolyRing
$\mathbb{Q}$FlintQQPolyRingElemQQPolyRing
$\mathbb{Z}/p\mathbb{Z}$ (small prime $p$)FlintfpPolyRingElemfpPolyRing
$\mathbb{Z}/p\mathbb{Z}$ (large prime $p$)FlintFpPolyRingElemFpPolyRing
$\mathbb{F}_{p^n}$ (small $p$)FlintfqPolyRepPolyRingElemfqPolyRepPolyRing
$\mathbb{F}_{p^n}$ (large $p$)FlintFqPolyRepPolyRingElemFqPolyRepPolyRing
$\mathbb{R}$ (arbitrary precision)ArbRealPolyRingElemRealPolyRing
$\mathbb{C}$ (arbitrary precision)ArbComplexPolyRingElemComplexPolyRing
$\mathbb{R}$ (fixed precision)ArbArbPolyRingElemArbPolyRing
$\mathbb{C}$ (fixed precision)ArbAcbPolyRingElemAcbPolyRing

The string representation of the variable and the base ring $R$ of a generic polynomial is stored in its parent object.

All polynomial element types belong to the abstract type PolyRingElem and all of the polynomial ring types belong to the abstract type PolyRing. This enables one to write generic functions that can accept any Nemo univariate polynomial type.

Polynomial functionality

All univariate polynomial types in Nemo provide the AbstractAlgebra univariate polynomial functionality:

https://nemocas.github.io/AbstractAlgebra.jl/stable/polynomial

Generic polynomials are also available.

We describe here only functions that are in addition to that guaranteed by AbstractAlgebra.jl, for specific coefficient rings.

Remove and valuation

Nemo.evaluate2Method
evaluate2(x::RealPolyRingElem, y::RingElement)

Return a tuple $p, q$ consisting of the polynomial $x$ evaluated at $y$ and its derivative evaluated at $y$.

source
Nemo.evaluate2Method
evaluate2(x::ComplexPolyRingElem, y::RingElement; prec::Int = precision(Balls))

Return a tuple $p, q$ consisting of the polynomial $x$ evaluated at $y$ and its derivative evaluated at $y$.

source

Examples

julia> RR = RealField()
+Univariate polynomials · Nemo.jl

Univariate polynomials

Introduction

Nemo allow the creation of dense, univariate polynomials over any computable ring $R$. There are two different kinds of implementation: a generic one for the case where no specific implementation exists (provided by AbstractAlgebra.jl), and efficient implementations of polynomials over numerous specific rings, usually provided by C/C++ libraries.

The following table shows each of the polynomial types available in Nemo, the base ring $R$, and the Julia/Nemo types for that kind of polynomial (the type information is mainly of concern to developers).

Base ringLibraryElement typeParent type
Generic ring $R$AbstractAlgebra.jlGeneric.Poly{T}Generic.PolyRing{T}
$\mathbb{Z}$FlintZZPolyRingElemZZPolyRing
$\mathbb{Z}/n\mathbb{Z}$ (small $n$)FlintzzModPolyRingElemzzModPolyRing
$\mathbb{Z}/n\mathbb{Z}$ (large $n$)FlintZZModPolyRingElemZZModPolyRing
$\mathbb{Q}$FlintQQPolyRingElemQQPolyRing
$\mathbb{Z}/p\mathbb{Z}$ (small prime $p$)FlintfpPolyRingElemfpPolyRing
$\mathbb{Z}/p\mathbb{Z}$ (large prime $p$)FlintFpPolyRingElemFpPolyRing
$\mathbb{F}_{p^n}$ (small $p$)FlintfqPolyRepPolyRingElemfqPolyRepPolyRing
$\mathbb{F}_{p^n}$ (large $p$)FlintFqPolyRepPolyRingElemFqPolyRepPolyRing
$\mathbb{R}$ (arbitrary precision)ArbRealPolyRingElemRealPolyRing
$\mathbb{C}$ (arbitrary precision)ArbComplexPolyRingElemComplexPolyRing
$\mathbb{R}$ (fixed precision)ArbArbPolyRingElemArbPolyRing
$\mathbb{C}$ (fixed precision)ArbAcbPolyRingElemAcbPolyRing

The string representation of the variable and the base ring $R$ of a generic polynomial is stored in its parent object.

All polynomial element types belong to the abstract type PolyRingElem and all of the polynomial ring types belong to the abstract type PolyRing. This enables one to write generic functions that can accept any Nemo univariate polynomial type.

Polynomial functionality

All univariate polynomial types in Nemo provide the AbstractAlgebra univariate polynomial functionality:

https://nemocas.github.io/AbstractAlgebra.jl/stable/polynomial

Generic polynomials are also available.

We describe here only functions that are in addition to that guaranteed by AbstractAlgebra.jl, for specific coefficient rings.

Remove and valuation

Nemo.evaluate2Method
evaluate2(x::RealPolyRingElem, y::RingElement)

Return a tuple $p, q$ consisting of the polynomial $x$ evaluated at $y$ and its derivative evaluated at $y$.

source
Nemo.evaluate2Method
evaluate2(x::ComplexPolyRingElem, y::RingElement; prec::Int = precision(Balls))

Return a tuple $p, q$ consisting of the polynomial $x$ evaluated at $y$ and its derivative evaluated at $y$.

source

Examples

julia> RR = RealField()
 Real field
 
 julia> T, z = polynomial_ring(RR, "z")
@@ -12,10 +12,10 @@
 ([9e+0 +/- 0.611], [6e+0 +/- 0.201])

Signature

Nemo.signatureMethod
signature(f::ZZPolyRingElem)

Return the signature of $f$, i.e. a tuple $(r, s)$ such that $r$ is the number of real roots of $f$ and $s$ is half the number of complex roots.

Examples

julia> R, x = polynomial_ring(ZZ, "x");
 
 julia> signature(x^3 + 3x + 1)
-(1, 1)
source
Nemo.signatureMethod
signature(f::QQPolyRingElem)

Return the signature of $f$, i.e. a tuple $(r, s)$ such that $r$ is the number of real roots of $f$ and $s$ is half the number of complex roots.

Examples

julia> R, x = polynomial_ring(QQ, "x");
+(1, 1)
source
Nemo.signatureMethod
signature(f::QQPolyRingElem)

Return the signature of $f$, i.e. a tuple $(r, s)$ such that $r$ is the number of real roots of $f$ and $s$ is half the number of complex roots.

Examples

julia> R, x = polynomial_ring(QQ, "x");
 
 julia> signature(x^3 + 3x + 1)
-(1, 1)
source

Root finding

AbstractAlgebra.Generic.rootsMethod
roots(x::ComplexPolyRingElem; target=0, isolate_real=false, initial_prec=0, max_prec=0, max_iter=0)

Attempts to isolate the complex roots of the complex polynomial $x$ by iteratively refining balls in which they lie.

This is done by increasing the working precision, starting at initial_prec. The maximal number of iterations can be set using max_iter and the maximal precision can be set using max_prec.

If isolate_real is set and $x$ is strictly real, then the real roots will be isolated from the non-real roots. Every root will have either zero, positive or negative real part.

It is assumed that $x$ is squarefree.

source

Examples

julia> CC = ComplexField()
+(1, 1)
source

Root finding

AbstractAlgebra.Generic.rootsMethod
roots(x::ComplexPolyRingElem; target=0, isolate_real=false, initial_prec=0, max_prec=0, max_iter=0)

Attempts to isolate the complex roots of the complex polynomial $x$ by iteratively refining balls in which they lie.

This is done by increasing the working precision, starting at initial_prec. The maximal number of iterations can be set using max_iter and the maximal precision can be set using max_prec.

If isolate_real is set and $x$ is strictly real, then the real roots will be isolated from the non-real roots. Every root will have either zero, positive or negative real part.

It is assumed that $x$ is squarefree.

source

Examples

julia> CC = ComplexField()
 Complex field
 
 julia> C, y = polynomial_ring(CC, "y")
@@ -42,7 +42,7 @@
 julia> sort(r; by=x->(real(x), imag(x))) # sort roots to make printing consistent
 2-element Vector{ComplexFieldElem}:
  [-1.00 +/- 1.01e-4] + [-1.414 +/- 3.14e-4]*im
- [-1.00 +/- 1.01e-4] + [1.414 +/- 3.14e-4]*im

Construction from roots

Nemo.from_rootsMethod
from_roots(R::ArbPolyRing, b::Vector{ArbFieldElem})

Construct a polynomial in the given polynomial ring from a list of its roots.

source
Nemo.from_rootsMethod
from_roots(R::AcbPolyRing, b::Vector{AcbFieldElem})

Construct a polynomial in the given polynomial ring from a list of its roots.

source

Examples

julia> RR = RealField()
+ [-1.00 +/- 1.01e-4] + [1.414 +/- 3.14e-4]*im

Construction from roots

Nemo.from_rootsMethod
from_roots(R::ArbPolyRing, b::Vector{ArbFieldElem})

Construct a polynomial in the given polynomial ring from a list of its roots.

source
Nemo.from_rootsMethod
from_roots(R::AcbPolyRing, b::Vector{AcbFieldElem})

Construct a polynomial in the given polynomial ring from a list of its roots.

source

Examples

julia> RR = RealField()
 Real field
 
 julia> R, x = polynomial_ring(RR, "x")
@@ -60,7 +60,7 @@
 x^5 + [-2.283333333333333333 +/- 4.54e-19]*x^4 + [1.875000000000000000 +/- 5.10e-19]*x^3 + [-0.708333333333333333 +/- 3.99e-19]*x^2 + [0.1250000000000000000 +/- 3.69e-20]*x + [-0.00833333333333333333 +/- 4.13e-21]
 
 julia> all(x -> contains_zero(evaluate(f, x)), xs)
-true

Bounding absolute values of roots

Nemo.roots_upper_boundMethod
roots_upper_bound(x::RealPolyRingElem) -> ArbFieldElem

Returns an upper bound for the absolute value of all complex roots of $x$.

source
Nemo.roots_upper_boundMethod
roots_upper_bound(x::ComplexPolyRingElem) -> ArbFieldElem

Returns an upper bound for the absolute value of all complex roots of $x$.

source

Lifting

When working over a residue ring it is useful to be able to lift to the base ring of the residue ring, e.g. from $\mathbb{Z}/n\mathbb{Z}$ to $\mathbb{Z}$.

AbstractAlgebra.liftMethod
lift(R::ZZPolyRing, y::zzModPolyRingElem)

Lift from a polynomial over $\mathbb{Z}/n\mathbb{Z}$ to a polynomial over $\mathbb{Z}$ with minimal reduced non-negative coefficients. The ring R specifies the ring to lift into.

source
AbstractAlgebra.liftMethod
lift(R::ZZPolyRing, y::fpPolyRingElem)

Lift from a polynomial over $\mathbb{Z}/n\mathbb{Z}$ to a polynomial over $\mathbb{Z}$ with minimal reduced non-negative coefficients. The ring R specifies the ring to lift into.

source
AbstractAlgebra.liftMethod
lift(R::ZZPolyRing, y::ZZModPolyRingElem)

Lift from a polynomial over $\mathbb{Z}/n\mathbb{Z}$ to a polynomial over $\mathbb{Z}$ with minimal reduced non-negative coefficients. The ring R specifies the ring to lift into.

source
AbstractAlgebra.liftMethod
lift(R::ZZPolyRing, y::FpPolyRingElem)

Lift from a polynomial over $\mathbb{Z}/n\mathbb{Z}$ to a polynomial over $\mathbb{Z}$ with minimal reduced non-negative coefficients. The ring R specifies the ring to lift into.

source

Examples

julia> R, = residue_ring(ZZ, 123456789012345678949)
+true

Bounding absolute values of roots

Nemo.roots_upper_boundMethod
roots_upper_bound(x::RealPolyRingElem) -> ArbFieldElem

Returns an upper bound for the absolute value of all complex roots of $x$.

source
Nemo.roots_upper_boundMethod
roots_upper_bound(x::ComplexPolyRingElem) -> ArbFieldElem

Returns an upper bound for the absolute value of all complex roots of $x$.

source

Lifting

When working over a residue ring it is useful to be able to lift to the base ring of the residue ring, e.g. from $\mathbb{Z}/n\mathbb{Z}$ to $\mathbb{Z}$.

AbstractAlgebra.liftMethod
lift(R::ZZPolyRing, y::zzModPolyRingElem)

Lift from a polynomial over $\mathbb{Z}/n\mathbb{Z}$ to a polynomial over $\mathbb{Z}$ with minimal reduced non-negative coefficients. The ring R specifies the ring to lift into.

source
AbstractAlgebra.liftMethod
lift(R::ZZPolyRing, y::fpPolyRingElem)

Lift from a polynomial over $\mathbb{Z}/n\mathbb{Z}$ to a polynomial over $\mathbb{Z}$ with minimal reduced non-negative coefficients. The ring R specifies the ring to lift into.

source
AbstractAlgebra.liftMethod
lift(R::ZZPolyRing, y::ZZModPolyRingElem)

Lift from a polynomial over $\mathbb{Z}/n\mathbb{Z}$ to a polynomial over $\mathbb{Z}$ with minimal reduced non-negative coefficients. The ring R specifies the ring to lift into.

source
AbstractAlgebra.liftMethod
lift(R::ZZPolyRing, y::FpPolyRingElem)

Lift from a polynomial over $\mathbb{Z}/n\mathbb{Z}$ to a polynomial over $\mathbb{Z}$ with minimal reduced non-negative coefficients. The ring R specifies the ring to lift into.

source

Examples

julia> R, = residue_ring(ZZ, 123456789012345678949)
 (Integers modulo 123456789012345678949, Map: ZZ -> ZZ/(123456789012345678949))
 
 julia> S, x = polynomial_ring(R, "x")
@@ -73,7 +73,7 @@
 x^2 + 2*x + 1
 
 julia> a = lift(T, f)
-y^2 + 2*y + 1

Overlapping and containment

Occasionally it is useful to be able to tell when inexact polynomials overlap or contain other exact or inexact polynomials. The following functions are provided for this purpose.

Nemo.overlapsMethod
overlaps(x::RealPolyRingElem, y::RealPolyRingElem)

Return true if the coefficient balls of $x$ overlap the coefficient balls of $y$, otherwise return false.

source
Nemo.overlapsMethod
overlaps(x::ComplexPolyRingElem, y::ComplexPolyRingElem)

Return true if the coefficient boxes of $x$ overlap the coefficient boxes of $y$, otherwise return false.

source
Base.containsMethod
contains(x::RealPolyRingElem, y::RealPolyRingElem)

Return true if the coefficient balls of $x$ contain the corresponding coefficient balls of $y$, otherwise return false.

source
Base.containsMethod
contains(x::ComplexPolyRingElem, y::ComplexPolyRingElem)

Return true if the coefficient boxes of $x$ contain the corresponding coefficient boxes of $y$, otherwise return false.

source
Base.containsMethod
contains(x::RealPolyRingElem, y::ZZPolyRingElem)

Return true if the coefficient balls of $x$ contain the corresponding exact coefficients of $y$, otherwise return false.

source
Base.containsMethod
contains(x::RealPolyRingElem, y::QQPolyRingElem)

Return true if the coefficient balls of $x$ contain the corresponding exact coefficients of $y$, otherwise return false.

source
Base.containsMethod
contains(x::ComplexPolyRingElem, y::ZZPolyRingElem)

Return true if the coefficient boxes of $x$ contain the corresponding exact coefficients of $y$, otherwise return false.

source
Base.containsMethod
contains(x::ComplexPolyRingElem, y::QQPolyRingElem)

Return true if the coefficient boxes of $x$ contain the corresponding exact coefficients of $y$, otherwise return false.

source

It is sometimes also useful to be able to determine if there is a unique integer contained in the coefficient of an inexact constant polynomial.

Nemo.unique_integerMethod
unique_integer(x::RealPolyRingElem)

Return a tuple (t, z) where $t$ is true if there is a unique integer contained in each of the coefficients of $x$, otherwise sets $t$ to false. In the former case, $z$ is set to the integer polynomial.

source
Nemo.unique_integerMethod
unique_integer(x::ComplexPolyRingElem)

Return a tuple (t, z) where $t$ is true if there is a unique integer contained in the (constant) polynomial $x$, along with that integer $z$ in case it is, otherwise sets $t$ to false.

source

Examples

julia> RR = RealField()
+y^2 + 2*y + 1

Overlapping and containment

Occasionally it is useful to be able to tell when inexact polynomials overlap or contain other exact or inexact polynomials. The following functions are provided for this purpose.

Nemo.overlapsMethod
overlaps(x::RealPolyRingElem, y::RealPolyRingElem)

Return true if the coefficient balls of $x$ overlap the coefficient balls of $y$, otherwise return false.

source
Nemo.overlapsMethod
overlaps(x::ComplexPolyRingElem, y::ComplexPolyRingElem)

Return true if the coefficient boxes of $x$ overlap the coefficient boxes of $y$, otherwise return false.

source
Base.containsMethod
contains(x::RealPolyRingElem, y::RealPolyRingElem)

Return true if the coefficient balls of $x$ contain the corresponding coefficient balls of $y$, otherwise return false.

source
Base.containsMethod
contains(x::ComplexPolyRingElem, y::ComplexPolyRingElem)

Return true if the coefficient boxes of $x$ contain the corresponding coefficient boxes of $y$, otherwise return false.

source
Base.containsMethod
contains(x::RealPolyRingElem, y::ZZPolyRingElem)

Return true if the coefficient balls of $x$ contain the corresponding exact coefficients of $y$, otherwise return false.

source
Base.containsMethod
contains(x::RealPolyRingElem, y::QQPolyRingElem)

Return true if the coefficient balls of $x$ contain the corresponding exact coefficients of $y$, otherwise return false.

source
Base.containsMethod
contains(x::ComplexPolyRingElem, y::ZZPolyRingElem)

Return true if the coefficient boxes of $x$ contain the corresponding exact coefficients of $y$, otherwise return false.

source
Base.containsMethod
contains(x::ComplexPolyRingElem, y::QQPolyRingElem)

Return true if the coefficient boxes of $x$ contain the corresponding exact coefficients of $y$, otherwise return false.

source

It is sometimes also useful to be able to determine if there is a unique integer contained in the coefficient of an inexact constant polynomial.

Nemo.unique_integerMethod
unique_integer(x::RealPolyRingElem)

Return a tuple (t, z) where $t$ is true if there is a unique integer contained in each of the coefficients of $x$, otherwise sets $t$ to false. In the former case, $z$ is set to the integer polynomial.

source
Nemo.unique_integerMethod
unique_integer(x::ComplexPolyRingElem)

Return a tuple (t, z) where $t$ is true if there is a unique integer contained in the (constant) polynomial $x$, along with that integer $z$ in case it is, otherwise sets $t$ to false.

source

Examples

julia> RR = RealField()
 Real field
 
 julia> R, x = polynomial_ring(RR, "x")
@@ -114,7 +114,7 @@
 false
 
 julia> isreal(m)
-true

Factorisation

Certain polynomials can be factored (ZZPolyRingElem',zzModPolyRingElem,fpPolyRingElem,ZZModPolyRingElem,FpPolyRingElem,FqPolyRepPolyRingElem,fqPolyRepPolyRingElem`) and the interface follows the specification in AbstractAlgebra.jl. The following additional functions are available.

Nemo.factor_distinct_degMethod
factor_distinct_deg(x::zzModPolyRingElem)

Return the distinct degree factorisation of a squarefree polynomial $x$.

source
Nemo.factor_distinct_degMethod
factor_distinct_deg(x::fpPolyRingElem)

Return the distinct degree factorisation of a squarefree polynomial $x$.

source
Nemo.factor_distinct_degMethod
factor_distinct_deg(x::ZZModPolyRingElem)

Return the distinct degree factorisation of a squarefree polynomial $x$.

source
Nemo.factor_distinct_degMethod
factor_distinct_deg(x::ZZModPolyRingElem)

Return the distinct degree factorisation of a squarefree polynomial $x$.

source
Nemo.factor_distinct_degMethod
factor_distinct_deg(x::FqPolyRepPolyRingElem)

Return the distinct degree factorisation of a squarefree polynomial $x$.

source
Nemo.factor_distinct_degMethod
factor_distinct_deg(x::fqPolyRepPolyRingElem)

Return the distinct degree factorisation of a squarefree polynomial $x$.

source

Examples

julia> R, = residue_ring(ZZ, 23)
+true

Factorisation

Certain polynomials can be factored (ZZPolyRingElem',zzModPolyRingElem,fpPolyRingElem,ZZModPolyRingElem,FpPolyRingElem,FqPolyRepPolyRingElem,fqPolyRepPolyRingElem`) and the interface follows the specification in AbstractAlgebra.jl. The following additional functions are available.

Nemo.factor_distinct_degMethod
factor_distinct_deg(x::zzModPolyRingElem)

Return the distinct degree factorisation of a squarefree polynomial $x$.

source
Nemo.factor_distinct_degMethod
factor_distinct_deg(x::fpPolyRingElem)

Return the distinct degree factorisation of a squarefree polynomial $x$.

source
Nemo.factor_distinct_degMethod
factor_distinct_deg(x::ZZModPolyRingElem)

Return the distinct degree factorisation of a squarefree polynomial $x$.

source
Nemo.factor_distinct_degMethod
factor_distinct_deg(x::ZZModPolyRingElem)

Return the distinct degree factorisation of a squarefree polynomial $x$.

source
Nemo.factor_distinct_degMethod
factor_distinct_deg(x::FqPolyRepPolyRingElem)

Return the distinct degree factorisation of a squarefree polynomial $x$.

source
Nemo.factor_distinct_degMethod
factor_distinct_deg(x::fqPolyRepPolyRingElem)

Return the distinct degree factorisation of a squarefree polynomial $x$.

source

Examples

julia> R, = residue_ring(ZZ, 23)
 (Integers modulo 23, Map: ZZ -> ZZ/(23))
 
 julia> S, x = polynomial_ring(R, "x")
@@ -136,7 +136,7 @@
 Dict{Int64, zzModPolyRingElem} with 3 entries:
   4 => x^4 + 7*x^3 + 4*x^2 + 5*x + 13
   3 => x^3 + 3*x + 1
-  1 => x^2 + 17*x + 16

Special functions

Nemo.cyclotomicMethod
cyclotomic(n::Int, x::ZZPolyRingElem)

Return the $n$th cyclotomic polynomial, defined as $\Phi_n(x) = \prod_{\omega} (x-\omega),$ where $\omega$ runs over all the $n$th primitive roots of unity.

source
Nemo.swinnerton_dyerMethod
swinnerton_dyer(n::Int, x::ZZPolyRingElem)

Return the Swinnerton-Dyer polynomial $S_n$, defined as the integer polynomial $S_n = \prod (x \pm \sqrt{2} \pm \sqrt{3} \pm \sqrt{5} \pm \ldots \pm \sqrt{p_n})$ where $p_n$ denotes the $n$-th prime number and all combinations of signs are taken. This polynomial has degree $2^n$ and is irreducible over the integers (it is the minimal polynomial of $\sqrt{2} + \ldots + \sqrt{p_n}$).

source
Nemo.cos_minpolyMethod
cos_minpoly(n::Int, x::ZZPolyRingElem)

Return the minimal polynomial of $2 \cos(2 \pi / n)$. For suitable choice of $n$, this gives the minimal polynomial of $2 \cos(a \pi)$ or $2 \sin(a \pi)$ for any rational $a$.

source
Nemo.theta_qexpMethod
theta_qexp(e::Int, n::Int, x::ZZPolyRingElem)

Return the $q$-expansion to length $n$ of the Jacobi theta function raised to the power $r$, i.e. $\vartheta(q)^r$ where $\vartheta(q) = 1 + \sum_{k=1}^{\infty} q^{k^2}$.

source
Nemo.eta_qexpMethod
eta_qexp(e::Int, n::Int, x::ZZPolyRingElem)

Return the $q$-expansion to length $n$ of the Dedekind eta function (without the leading factor $q^{1/24}$) raised to the power $r$, i.e. $(q^{-1/24} \eta(q))^r = \prod_{k=1}^{\infty} (1 - q^k)^r$. In particular, $r = -1$ gives the generating function of the partition function $p(k)$, and $r = 24$ gives, after multiplication by $q$, the modular discriminant $\Delta(q)$ which generates the Ramanujan tau function $\tau(k)$.

source

Examples

julia> R, x = polynomial_ring(ZZ, "x")
+  1 => x^2 + 17*x + 16

Special functions

Nemo.cyclotomicMethod
cyclotomic(n::Int, x::ZZPolyRingElem)

Return the $n$th cyclotomic polynomial, defined as $\Phi_n(x) = \prod_{\omega} (x-\omega),$ where $\omega$ runs over all the $n$th primitive roots of unity.

source
Nemo.swinnerton_dyerMethod
swinnerton_dyer(n::Int, x::ZZPolyRingElem)

Return the Swinnerton-Dyer polynomial $S_n$, defined as the integer polynomial $S_n = \prod (x \pm \sqrt{2} \pm \sqrt{3} \pm \sqrt{5} \pm \ldots \pm \sqrt{p_n})$ where $p_n$ denotes the $n$-th prime number and all combinations of signs are taken. This polynomial has degree $2^n$ and is irreducible over the integers (it is the minimal polynomial of $\sqrt{2} + \ldots + \sqrt{p_n}$).

source
Nemo.cos_minpolyMethod
cos_minpoly(n::Int, x::ZZPolyRingElem)

Return the minimal polynomial of $2 \cos(2 \pi / n)$. For suitable choice of $n$, this gives the minimal polynomial of $2 \cos(a \pi)$ or $2 \sin(a \pi)$ for any rational $a$.

source
Nemo.theta_qexpMethod
theta_qexp(e::Int, n::Int, x::ZZPolyRingElem)

Return the $q$-expansion to length $n$ of the Jacobi theta function raised to the power $r$, i.e. $\vartheta(q)^r$ where $\vartheta(q) = 1 + \sum_{k=1}^{\infty} q^{k^2}$.

source
Nemo.eta_qexpMethod
eta_qexp(e::Int, n::Int, x::ZZPolyRingElem)

Return the $q$-expansion to length $n$ of the Dedekind eta function (without the leading factor $q^{1/24}$) raised to the power $r$, i.e. $(q^{-1/24} \eta(q))^r = \prod_{k=1}^{\infty} (1 - q^k)^r$. In particular, $r = -1$ gives the generating function of the partition function $p(k)$, and $r = 24$ gives, after multiplication by $q$, the modular discriminant $\Delta(q)$ which generates the Ramanujan tau function $\tau(k)$.

source

Examples

julia> R, x = polynomial_ring(ZZ, "x")
 (Univariate polynomial ring in x over ZZ, x)
 
 julia> h = cyclotomic(120, x)
diff --git a/dev/puiseux/index.html b/dev/puiseux/index.html
index b8b6937ed3..2d2ffa0be8 100644
--- a/dev/puiseux/index.html
+++ b/dev/puiseux/index.html
@@ -1,5 +1,5 @@
 
-Puiseux series · Nemo.jl

Puiseux series

Nemo allows the creation of Puiseux series over any computable ring $R$. Puiseux series are series of the form $a_jx^{j/m} + a_{j+1}x^{(j+1)/m} + \cdots + a_{k-1}x^{(k-1)/m} + O(x^{k/m})$ where $m$ is a positive integer, $a_i \in R$ and the relative precision $k - j$ is at most equal to some specified precision $n$.

There are two different kinds of implementation: a generic one for the case where no specific implementation exists (provided by AbstractAlgebra.jl), and efficient implementations of Puiseux series over numerous specific rings, usually provided by C/C++ libraries.

The following table shows each of the Puiseux series types available in Nemo, the base ring $R$, and the Julia/Nemo types for that kind of series (the type information is mainly of concern to developers).

Base ringLibraryElement typeParent type
Generic ring $R$AbstractAlgebra.jl`Generic.PuiseuxSeriesRingElem{T}Generic.PuiseuxSeriesRing{T}
Generic field $K$AbstractAlgebra.jl`Generic.PuiseuxSeriesFieldElem{T}Generic.PuiseuxSeriesField{T}
$\mathbb{Z}$FlintFlintPuiseuxSeriesRingElem{ZZLaurentSeriesRingElem}FlintPuiseuxSeriesRing{ZZLaurentSeriesRingElem}

For convenience, FlintPuiseuxSeriesRingElem and FlintPuiseuxSeriesFieldElem both belong to a union type called FlintPuiseuxSeriesElem.

The maximum relative precision, the string representation of the variable and the base ring $R$ of a generic power series are stored in the parent object.

Note that unlike most other Nemo types, Puiseux series are parameterised by the type of the underlying Laurent series type (which must exist before Nemo can make use of it), instead of the type of the coefficients.

Puiseux power series

Puiseux series have their maximum relative precision capped at some value prec_max. This refers to the maximum precision of the underlying Laurent series. See the description of the generic Puiseux series in AbstractAlgebra.jl for details.

There are numerous important things to be aware of when working with Puiseux series, or series in general. Please refer to the documentation of generic Puiseux series and series in general in AbstractAlgebra.jl for details.

Puiseux series functionality

Puiseux series rings in Nemo implement all the same functionality that is available for AbstractAlgebra series rings, with the exception of the pol_length and polcoeff functions:

https://nemocas.github.io/AbstractAlgebra.jl/stable/series

In addition, generic Puiseux series are provided by AbstractAlgebra.jl

We list below only the functionality that differs from that described in AbstractAlgebra, for specific rings provided by Nemo.

Special functions

Base.sqrtMethod
Base.sqrt(f::PolyRingElem{T}; check::Bool=true) where T <: RingElement

Return the square root of $f$. By default the function checks the input is square and raises an exception if not. If check=false this check is omitted.

source
Base.sqrt(a::FracElem{T}; check::Bool=true) where T <: RingElem

Return the square root of $a$. By default the function will throw an exception if the input is not square. If check=false this test is omitted.

source
sqrt(a::Generic.PuiseuxSeriesElem{T}; check::Bool=true) where T <: RingElement

Return the square root of the given Puiseux series $a$. By default the function will throw an exception if the input is not square. If check=false this test is omitted.

source
Base.expMethod
exp(a::AbsPowerSeriesRingElem)

Return the exponential of the power series $a$.

source
exp(a::RelPowerSeriesRingElem)

Return the exponential of the power series $a$.

source
exp(a::Generic.LaurentSeriesElem)

Return the exponential of the power series $a$.

source
exp(a::Generic.PuiseuxSeriesElem{T}) where T <: RingElement

Return the exponential of the given Puiseux series $a$.

source
Nemo.eta_qexpMethod
eta_qexp(x::FlintPuiseuxSeriesElem{ZZLaurentSeriesRingElem})

Return the $q$-series for eta evaluated at $x$, which must currently be a rational power of the generator of the Puiseux series ring.

source

Examples

julia> S, z = puiseux_series_ring(ZZ, 30, "z")
+Puiseux series · Nemo.jl

Puiseux series

Nemo allows the creation of Puiseux series over any computable ring $R$. Puiseux series are series of the form $a_jx^{j/m} + a_{j+1}x^{(j+1)/m} + \cdots + a_{k-1}x^{(k-1)/m} + O(x^{k/m})$ where $m$ is a positive integer, $a_i \in R$ and the relative precision $k - j$ is at most equal to some specified precision $n$.

There are two different kinds of implementation: a generic one for the case where no specific implementation exists (provided by AbstractAlgebra.jl), and efficient implementations of Puiseux series over numerous specific rings, usually provided by C/C++ libraries.

The following table shows each of the Puiseux series types available in Nemo, the base ring $R$, and the Julia/Nemo types for that kind of series (the type information is mainly of concern to developers).

Base ringLibraryElement typeParent type
Generic ring $R$AbstractAlgebra.jl`Generic.PuiseuxSeriesRingElem{T}Generic.PuiseuxSeriesRing{T}
Generic field $K$AbstractAlgebra.jl`Generic.PuiseuxSeriesFieldElem{T}Generic.PuiseuxSeriesField{T}
$\mathbb{Z}$FlintFlintPuiseuxSeriesRingElem{ZZLaurentSeriesRingElem}FlintPuiseuxSeriesRing{ZZLaurentSeriesRingElem}

For convenience, FlintPuiseuxSeriesRingElem and FlintPuiseuxSeriesFieldElem both belong to a union type called FlintPuiseuxSeriesElem.

The maximum relative precision, the string representation of the variable and the base ring $R$ of a generic power series are stored in the parent object.

Note that unlike most other Nemo types, Puiseux series are parameterised by the type of the underlying Laurent series type (which must exist before Nemo can make use of it), instead of the type of the coefficients.

Puiseux power series

Puiseux series have their maximum relative precision capped at some value prec_max. This refers to the maximum precision of the underlying Laurent series. See the description of the generic Puiseux series in AbstractAlgebra.jl for details.

There are numerous important things to be aware of when working with Puiseux series, or series in general. Please refer to the documentation of generic Puiseux series and series in general in AbstractAlgebra.jl for details.

Puiseux series functionality

Puiseux series rings in Nemo implement all the same functionality that is available for AbstractAlgebra series rings, with the exception of the pol_length and polcoeff functions:

https://nemocas.github.io/AbstractAlgebra.jl/stable/series

In addition, generic Puiseux series are provided by AbstractAlgebra.jl

We list below only the functionality that differs from that described in AbstractAlgebra, for specific rings provided by Nemo.

Special functions

Base.sqrtMethod
Base.sqrt(f::PolyRingElem{T}; check::Bool=true) where T <: RingElement

Return the square root of $f$. By default the function checks the input is square and raises an exception if not. If check=false this check is omitted.

source
Base.sqrt(a::FracElem{T}; check::Bool=true) where T <: RingElem

Return the square root of $a$. By default the function will throw an exception if the input is not square. If check=false this test is omitted.

source
sqrt(a::Generic.PuiseuxSeriesElem{T}; check::Bool=true) where T <: RingElement

Return the square root of the given Puiseux series $a$. By default the function will throw an exception if the input is not square. If check=false this test is omitted.

source
Base.expMethod
exp(a::AbsPowerSeriesRingElem)

Return the exponential of the power series $a$.

source
exp(a::RelPowerSeriesRingElem)

Return the exponential of the power series $a$.

source
exp(a::Generic.LaurentSeriesElem)

Return the exponential of the power series $a$.

source
exp(a::Generic.PuiseuxSeriesElem{T}) where T <: RingElement

Return the exponential of the given Puiseux series $a$.

source
Nemo.eta_qexpMethod
eta_qexp(x::FlintPuiseuxSeriesElem{ZZLaurentSeriesRingElem})

Return the $q$-series for eta evaluated at $x$, which must currently be a rational power of the generator of the Puiseux series ring.

source

Examples

julia> S, z = puiseux_series_ring(ZZ, 30, "z")
 (Puiseux series ring in z over ZZ, z + O(z^31))
 
 julia> a = 1 + z + 3z^2 + O(z^5)
diff --git a/dev/qadic/index.html b/dev/qadic/index.html
index d3fadcd5ad..ca32aa6181 100644
--- a/dev/qadic/index.html
+++ b/dev/qadic/index.html
@@ -1,6 +1,6 @@
 
 Qadics · Nemo.jl

Qadics

Q-adic fields, that is, unramified extensions of p-adic fields, are provided in Nemo by Flint. This allows construction of $q$-adic fields for any prime power $q$.

Q-adic fields are constructed using the qadic_field function.

The types of $q$-adic fields in Nemo are given in the following table, along with the libraries that provide them and the associated types of the parent objects.

LibraryFieldElement typeParent type
Flint$\mathbb{Q}_q$QadicFieldElemQadicField

All the $q$-adic field types belong to the Field abstract type and the $q$-adic field element types belong to the FieldElem abstract type.

P-adic functionality

Q-adic fields in Nemo provide all the functionality described in AbstractAlgebra for fields:.

https://nemocas.github.io/AbstractAlgebra.jl/stable/field

Below, we document all the additional function that is provide by Nemo for q-adic fields.

Constructors

In order to construct $q$-adic field elements in Nemo, one must first construct the $q$-adic field itself. This is accomplished with one of the following constructors.

Nemo.qadic_fieldFunction
qadic_field(p::Integer, d::Int, var::String = "a"; precision::Int=64, cached::Bool=true, check::Bool=true)
-qadic_field(p::ZZRingElem, d::Int, var::String = "a"; precision::Int=64, cached::Bool=true, check::Bool=true)

Return an unramified extension $K$ of degree $d$ of a $p$-adic field for the given prime $p$. The generator of $K$ is printed as var.

The default absolute precision of elements of $K$ may be set with precision.

See also unramified_extension.

source
Nemo.unramified_extensionFunction
unramified_extension(Qp::PadicField, d::Int, var::String = "a"; precision::Int=64, cached::Bool=true)

Return an unramified extension $K$ of degree $d$ of the given $p$-adic field Qp. The generator of $K$ is printed as var.

The default absolute precision of elements of $K$ may be set with precision.

source

Here are some examples of creating $q$-adic fields and making use of the resulting parent objects to coerce various elements into those fields.

Examples

julia> R, p = qadic_field(7, 1, precision = 30);
+qadic_field(p::ZZRingElem, d::Int, var::String = "a"; precision::Int=64, cached::Bool=true, check::Bool=true)

Return an unramified extension $K$ of degree $d$ of a $p$-adic field for the given prime $p$. The generator of $K$ is printed as var.

The default absolute precision of elements of $K$ may be set with precision.

See also unramified_extension.

source
Nemo.unramified_extensionFunction
unramified_extension(Qp::PadicField, d::Int, var::String = "a"; precision::Int=64, cached::Bool=true)

Return an unramified extension $K$ of degree $d$ of the given $p$-adic field Qp. The generator of $K$ is printed as var.

The default absolute precision of elements of $K$ may be set with precision.

source

Here are some examples of creating $q$-adic fields and making use of the resulting parent objects to coerce various elements into those fields.

Examples

julia> R, p = qadic_field(7, 1, precision = 30);
 
 julia> S, _ = qadic_field(ZZ(65537), 1, precision = 30);
 
@@ -14,7 +14,7 @@
 123*65537^0 + O(65537^30)
 
 julia> d = R(ZZ(1)//7^2)
-7^-2 + O(7^28)

Big-oh notation

Elements of p-adic fields can be constructed using the big-oh notation. For this purpose we define the following functions.

AbstractAlgebra.OMethod
O(R::QadicField, m::Integer)

Construct the value $0 + O(p^n)$ given $m = p^n$. An exception results if $m$ is not found to be a power of p = prime(R).

source
AbstractAlgebra.OMethod
O(R::QadicField, m::ZZRingElem)

Construct the value $0 + O(p^n)$ given $m = p^n$. An exception results if $m$ is not found to be a power of p = prime(R).

source
AbstractAlgebra.OMethod
O(R::QadicField, m::QQFieldElem)

Construct the value $0 + O(p^n)$ given $m = p^n$. An exception results if $m$ is not found to be a power of p = prime(R).

source

The $O(p^n)$ construction can be used to construct $q$-adic values of precision $n$ by adding it to integer values representing the $q$-adic value modulo $p^n$ as in the examples.

Examples

julia> R, _ = qadic_field(7, 1, precision = 30);
+7^-2 + O(7^28)

Big-oh notation

Elements of p-adic fields can be constructed using the big-oh notation. For this purpose we define the following functions.

AbstractAlgebra.OMethod
O(R::QadicField, m::Integer)

Construct the value $0 + O(p^n)$ given $m = p^n$. An exception results if $m$ is not found to be a power of p = prime(R).

source
AbstractAlgebra.OMethod
O(R::QadicField, m::ZZRingElem)

Construct the value $0 + O(p^n)$ given $m = p^n$. An exception results if $m$ is not found to be a power of p = prime(R).

source
AbstractAlgebra.OMethod
O(R::QadicField, m::QQFieldElem)

Construct the value $0 + O(p^n)$ given $m = p^n$. An exception results if $m$ is not found to be a power of p = prime(R).

source

The $O(p^n)$ construction can be used to construct $q$-adic values of precision $n$ by adding it to integer values representing the $q$-adic value modulo $p^n$ as in the examples.

Examples

julia> R, _ = qadic_field(7, 1, precision = 30);
 
 julia> S, _ = qadic_field(ZZ(65537), 1, precision = 30);
 
@@ -25,7 +25,7 @@
 13*65537^0 + 357*65537^1 + O(65537^12)
 
 julia> f = ZZ(1)//7^2 + ZZ(2)//7 + 3 + 4*7 + O(R, 7^2)
-7^-2 + 2*7^-1 + 3*7^0 + 4*7^1 + O(7^2)

Beware that the expression 1 + 2*p + 3*p^2 + O(R, p^n) is actually computed as a normal Julia expression. Therefore if {Int} values are used instead of Flint integers or Julia bignums, overflow may result in evaluating the value.

Basic manipulation

Base.precisionMethod
precision(a::QadicFieldElem)

Return the precision of the given $q$-adic field element, i.e. if the element is known to $O(p^n)$ this function will return $n$.

source
AbstractAlgebra.valuationMethod
valuation(a::QadicFieldElem)

Return the valuation of the given $q$-adic field element, i.e. if the given element is divisible by $p^n$ but not a higher power of $q$ then the function will return $n$.

source
AbstractAlgebra.liftMethod
lift(R::QQPolyRing, a::QadicFieldElem)

Return a lift of the given $q$-adic field element to $\mathbb{Q}[x]$.

source
AbstractAlgebra.liftMethod
lift(R::ZZPolyRing, a::QadicFieldElem)

Return a lift of the given $q$-adic field element to $\mathbb{Z}[x]$ if possible.

source

Examples

R, _ = qadic_field(7, 1, precision = 30);
+7^-2 + 2*7^-1 + 3*7^0 + 4*7^1 + O(7^2)

Beware that the expression 1 + 2*p + 3*p^2 + O(R, p^n) is actually computed as a normal Julia expression. Therefore if {Int} values are used instead of Flint integers or Julia bignums, overflow may result in evaluating the value.

Basic manipulation

Base.precisionMethod
precision(a::QadicFieldElem)

Return the precision of the given $q$-adic field element, i.e. if the element is known to $O(p^n)$ this function will return $n$.

source
AbstractAlgebra.valuationMethod
valuation(a::QadicFieldElem)

Return the valuation of the given $q$-adic field element, i.e. if the given element is divisible by $p^n$ but not a higher power of $q$ then the function will return $n$.

source
AbstractAlgebra.liftMethod
lift(R::QQPolyRing, a::QadicFieldElem)

Return a lift of the given $q$-adic field element to $\mathbb{Q}[x]$.

source
AbstractAlgebra.liftMethod
lift(R::ZZPolyRing, a::QadicFieldElem)

Return a lift of the given $q$-adic field element to $\mathbb{Z}[x]$ if possible.

source

Examples

R, _ = qadic_field(7, 1, precision = 30);
 
 a = 1 + 2*7 + 4*7^2 + O(R, 7^3)
 b = 7^2 + 3*7^3 + O(R, 7^5)
@@ -58,7 +58,7 @@
 7^1 + 7^2 + O(7^3)
 
 julia> g = sqrt(R(121))
-4*7^0 + 7^1 + O(7^30)

Special functions

Base.expMethod
exp(a::QadicFieldElem)

Return the $p$-adic exponential of $a$, assuming the $p$-adic exponential function converges at $a$.

source
Base.logMethod
log(a::QadicFieldElem)

Return the $p$-adic logarithm of $a$, assuming the $p$-adic logarithm converges at $a$.

source
Nemo.teichmullerMethod
teichmuller(a::QadicFieldElem)

Return the Teichmuller lift of the $q$-adic value $a$. We require the valuation of $a$ to be non-negative. The precision of the output will be the same as the precision of the input. For convenience, if $a$ is congruent to zero modulo $q$ we return zero. If the input is not valid an exception is thrown.

source
Nemo.frobeniusMethod
frobenius(a::QadicFieldElem, e::Int = 1)

Return the image of the $e$-th power of Frobenius on the $q$-adic value $a$. The precision of the output will be the same as the precision of the input.

source

Examples

julia> R, _ = qadic_field(7, 1, precision = 30);
+4*7^0 + 7^1 + O(7^30)

Special functions

Base.expMethod
exp(a::QadicFieldElem)

Return the $p$-adic exponential of $a$, assuming the $p$-adic exponential function converges at $a$.

source
Base.logMethod
log(a::QadicFieldElem)

Return the $p$-adic logarithm of $a$, assuming the $p$-adic logarithm converges at $a$.

source
Nemo.teichmullerMethod
teichmuller(a::QadicFieldElem)

Return the Teichmuller lift of the $q$-adic value $a$. We require the valuation of $a$ to be non-negative. The precision of the output will be the same as the precision of the input. For convenience, if $a$ is congruent to zero modulo $q$ we return zero. If the input is not valid an exception is thrown.

source
Nemo.frobeniusMethod
frobenius(a::QadicFieldElem, e::Int = 1)

Return the image of the $e$-th power of Frobenius on the $q$-adic value $a$. The precision of the output will be the same as the precision of the input.

source

Examples

julia> R, _ = qadic_field(7, 1, precision = 30);
 
 julia> a = 1 + 7 + 2*7^2 + O(R, 7^3)
 7^0 + 7^1 + 2*7^2 + O(7^3)
diff --git a/dev/real/index.html b/dev/real/index.html
index 10ae112781..73741fb2a8 100644
--- a/dev/real/index.html
+++ b/dev/real/index.html
@@ -1,10 +1,10 @@
 
 Arbitrary precision real balls · Nemo.jl

Arbitrary precision real balls

Arbitrary precision real ball arithmetic is supplied by Arb which provides a ball representation which tracks error bounds rigorously. Real numbers are represented in mid-rad interval form $[m \pm r] = [m-r, m+r]$.

The types of real balls in Nemo are given in the following table, along with the libraries that provide them and the associated types of the parent objects.

LibraryFieldElement typeParent type
Arb$\mathbb{R}$ (balls)RealFieldElemRealField

The real field types belong to the Field abstract type and the types of elements in this field, i.e. balls in this case, belong to the FieldElem abstract type.

Real ball functionality

Real balls in Nemo provide all the field functionality described in AbstractAlgebra:

https://nemocas.github.io/AbstractAlgebra.jl/stable/field

Below, we document the additional functionality provided for real balls.

Precision management

Precision for ball arithmetic and creation of elements can be controlled using the functions:

Base.precisionMethod
precision(::Type{Balls})

Return the precision for ball arithmetic.

Examples

julia> set_precision!(Balls, 200); precision(Balls)
-200
source
AbstractAlgebra.set_precision!Method
set_precision!(::Type{Balls}, n::Int)

Set the precision for all ball arithmetic to be n.

Examples

julia> const_pi(RealField())
 [3.141592653589793239 +/- 5.96e-19]
 
 julia> set_precision!(Balls, 200); const_pi(RealField())
-[3.14159265358979323846264338327950288419716939937510582097494 +/- 5.73e-60]
source
AbstractAlgebra.set_precision!Method
set_precision!(f, ::Type{Balls}, n::Int)

Change ball arithmetic precision to n for the duration of f..

Examples

julia> set_precision!(Balls, 4) do
+[3.14159265358979323846264338327950288419716939937510582097494 +/- 5.73e-60]
source
AbstractAlgebra.set_precision!Method
set_precision!(f, ::Type{Balls}, n::Int)

Change ball arithmetic precision to n for the duration of f..

Examples

julia> set_precision!(Balls, 4) do
          const_pi(RealField())
        end
 [3e+0 +/- 0.376]
@@ -12,7 +12,7 @@
 julia> set_precision!(Balls, 200) do
          const_pi(RealField())
        end
-[3.1415926535897932385 +/- 3.74e-20]
source
Info

This functions are not thread-safe.

Constructors

In order to construct real balls in Nemo, one must first construct the Arb real field itself. This is accomplished with the following constructor.

RealField()

Here is an example of creating the real field and using the resulting parent object to coerce values into the resulting field.

Examples

julia> RR = RealField()
+[3.1415926535897932385 +/- 3.74e-20]
source
Info

This functions are not thread-safe.

Constructors

In order to construct real balls in Nemo, one must first construct the Arb real field itself. This is accomplished with the following constructor.

RealField()

Here is an example of creating the real field and using the resulting parent object to coerce values into the resulting field.

Examples

julia> RR = RealField()
 Real field
 
 julia> a = RR("0.25")
@@ -34,7 +34,7 @@
 
 julia> d = RR(1//3, precision=4)
 [0.3 +/- 0.0438]

Conversions

julia> convert(Float64, RR(1//3))
-0.3333333333333333

Basic manipulation

Nemo.is_nonzeroMethod
is_nonzero(x::RealFieldElem)

Return true if $x$ is certainly not equal to zero, otherwise return false.

source
Base.isfiniteMethod
isfinite(x::RealFieldElem)

Return true if $x$ is finite, i.e. having finite midpoint and radius, otherwise return false.

source
Nemo.is_exactMethod
is_exact(x::RealFieldElem)

Return true if $x$ is exact, i.e. has zero radius, otherwise return false.

source
Base.isintegerMethod
isinteger(x::RealFieldElem)

Return true if $x$ is an exact integer, otherwise return false.

source
Nemo.is_nonnegativeMethod
is_nonnegative(x::RealFieldElem)

Return true if $x$ is certainly non-negative, otherwise return false.

source
Nemo.is_nonpositiveMethod
is_nonpositive(x::RealFieldElem)

Return true if $x$ is certainly nonpositive, otherwise return false.

source
Nemo.midpointMethod
midpoint(x::RealFieldElem)

Return the midpoint of the ball $x$ as an Arb ball.

source
Nemo.radiusMethod
radius(x::RealFieldElem)

Return the radius of the ball $x$ as an Arb ball.

source
Nemo.accuracy_bitsMethod
accuracy_bits(x::RealFieldElem)

Return the relative accuracy of $x$ measured in bits, capped between typemax(Int) and -typemax(Int).

source

Examples

julia> RR = RealField()
+0.3333333333333333

Basic manipulation

Nemo.is_nonzeroMethod
is_nonzero(x::RealFieldElem)

Return true if $x$ is certainly not equal to zero, otherwise return false.

source
Base.isfiniteMethod
isfinite(x::RealFieldElem)

Return true if $x$ is finite, i.e. having finite midpoint and radius, otherwise return false.

source
Nemo.is_exactMethod
is_exact(x::RealFieldElem)

Return true if $x$ is exact, i.e. has zero radius, otherwise return false.

source
Base.isintegerMethod
isinteger(x::RealFieldElem)

Return true if $x$ is an exact integer, otherwise return false.

source
Nemo.is_nonnegativeMethod
is_nonnegative(x::RealFieldElem)

Return true if $x$ is certainly non-negative, otherwise return false.

source
Nemo.is_nonpositiveMethod
is_nonpositive(x::RealFieldElem)

Return true if $x$ is certainly nonpositive, otherwise return false.

source
Nemo.midpointMethod
midpoint(x::RealFieldElem)

Return the midpoint of the ball $x$ as an Arb ball.

source
Nemo.radiusMethod
radius(x::RealFieldElem)

Return the radius of the ball $x$ as an Arb ball.

source
Nemo.accuracy_bitsMethod
accuracy_bits(x::RealFieldElem)

Return the relative accuracy of $x$ measured in bits, capped between typemax(Int) and -typemax(Int).

source

Examples

julia> RR = RealField()
 Real field
 
 julia> a = RR("1.2 +/- 0.001")
@@ -87,7 +87,7 @@
 [+/- 3.01]
 [1e+1 +/- 4.01]
 1.0000000000000000000
-[2.0000000037252902985 +/- 3.81e-20]

The first reason that c is not printed as [1 +/- 2] is that the midpoint does not have a greater exponent than the radius in its scientific notation. For similar reasons y is not printed as [12 +/- 2].

The second reason is that we get an additional error term after our addition. As we see, radius(c) is not equal to $2$, which when printed rounds it up to a reasonable decimal place. This is because real balls keep track of rounding errors of basic arithmetic.

Containment

It is often necessary to determine whether a given exact value or ball is contained in a given real ball or whether two balls overlap. The following functions are provided for this purpose.

Nemo.overlapsMethod
overlaps(x::RealFieldElem, y::RealFieldElem)

Returns true if any part of the ball $x$ overlaps any part of the ball $y$, otherwise return false.

source
Base.containsMethod
contains(x::RealFieldElem, y::RealFieldElem)

Returns true if the ball $x$ contains the ball $y$, otherwise return false.

source
Base.containsMethod
contains(x::RealFieldElem, y::Integer)

Returns true if the ball $x$ contains the given integer value, otherwise return false.

source
Base.containsMethod
contains(x::RealFieldElem, y::ZZRingElem)

Returns true if the ball $x$ contains the given integer value, otherwise return false.

source
Base.containsMethod
contains(x::RealFieldElem, y::QQFieldElem)

Returns true if the ball $x$ contains the given rational value, otherwise return false.

source
Base.containsMethod
contains(x::RealFieldElem, y::Rational{T}) where {T <: Integer}

Returns true if the ball $x$ contains the given rational value, otherwise return false.

source
Base.containsMethod
contains(x::RealFieldElem, y::BigFloat)

Returns true if the ball $x$ contains the given floating point value, otherwise return false.

source

The following functions are also provided for determining if a ball intersects a certain part of the real number line.

Nemo.contains_zeroMethod
contains_zero(x::RealFieldElem)

Returns true if the ball $x$ contains zero, otherwise return false.

source
Nemo.contains_negativeMethod
contains_negative(x::RealFieldElem)

Returns true if the ball $x$ contains any negative value, otherwise return false.

source
Nemo.contains_positiveMethod
contains_positive(x::RealFieldElem)

Returns true if the ball $x$ contains any positive value, otherwise return false.

source
Nemo.contains_nonnegativeMethod
contains_nonnegative(x::RealFieldElem)

Returns true if the ball $x$ contains any non-negative value, otherwise return false.

source
Nemo.contains_nonpositiveMethod
contains_nonpositive(x::RealFieldElem)

Returns true if the ball $x$ contains any nonpositive value, otherwise return false.

source

Examples

julia> x = RR("1 +/- 0.001")
+[2.0000000037252902985 +/- 3.81e-20]

The first reason that c is not printed as [1 +/- 2] is that the midpoint does not have a greater exponent than the radius in its scientific notation. For similar reasons y is not printed as [12 +/- 2].

The second reason is that we get an additional error term after our addition. As we see, radius(c) is not equal to $2$, which when printed rounds it up to a reasonable decimal place. This is because real balls keep track of rounding errors of basic arithmetic.

Containment

It is often necessary to determine whether a given exact value or ball is contained in a given real ball or whether two balls overlap. The following functions are provided for this purpose.

Nemo.overlapsMethod
overlaps(x::RealFieldElem, y::RealFieldElem)

Returns true if any part of the ball $x$ overlaps any part of the ball $y$, otherwise return false.

source
Base.containsMethod
contains(x::RealFieldElem, y::RealFieldElem)

Returns true if the ball $x$ contains the ball $y$, otherwise return false.

source
Base.containsMethod
contains(x::RealFieldElem, y::Integer)

Returns true if the ball $x$ contains the given integer value, otherwise return false.

source
Base.containsMethod
contains(x::RealFieldElem, y::ZZRingElem)

Returns true if the ball $x$ contains the given integer value, otherwise return false.

source
Base.containsMethod
contains(x::RealFieldElem, y::QQFieldElem)

Returns true if the ball $x$ contains the given rational value, otherwise return false.

source
Base.containsMethod
contains(x::RealFieldElem, y::Rational{T}) where {T <: Integer}

Returns true if the ball $x$ contains the given rational value, otherwise return false.

source
Base.containsMethod
contains(x::RealFieldElem, y::BigFloat)

Returns true if the ball $x$ contains the given floating point value, otherwise return false.

source

The following functions are also provided for determining if a ball intersects a certain part of the real number line.

Nemo.contains_zeroMethod
contains_zero(x::RealFieldElem)

Returns true if the ball $x$ contains zero, otherwise return false.

source
Nemo.contains_negativeMethod
contains_negative(x::RealFieldElem)

Returns true if the ball $x$ contains any negative value, otherwise return false.

source
Nemo.contains_positiveMethod
contains_positive(x::RealFieldElem)

Returns true if the ball $x$ contains any positive value, otherwise return false.

source
Nemo.contains_nonnegativeMethod
contains_nonnegative(x::RealFieldElem)

Returns true if the ball $x$ contains any non-negative value, otherwise return false.

source
Nemo.contains_nonpositiveMethod
contains_nonpositive(x::RealFieldElem)

Returns true if the ball $x$ contains any nonpositive value, otherwise return false.

source

Examples

julia> x = RR("1 +/- 0.001")
 [1.00 +/- 1.01e-3]
 
 julia> y = RR("3")
@@ -109,7 +109,7 @@
 false
 
 julia> contains_positive(y)
-true

Comparison

Nemo provides a full range of comparison operations for Arb balls. Note that a ball is considered less than another ball if every value in the first ball is less than every value in the second ball, etc.

In addition to the standard comparison operators, we introduce an exact equality. This is distinct from arithmetic equality implemented by ==, which merely compares up to the minimum of the precisions of its operands.

Base.isequalMethod
isequal(x::RealFieldElem, y::RealFieldElem)

Return true if the balls $x$ and $y$ are precisely equal, i.e. have the same midpoints and radii.

source

We also provide a full range of ad hoc comparison operators. These are implemented directly in Julia, but we document them as though isless and == were provided.

Function
==(x::RealFieldElem, y::Integer)
==(x::Integer, y::RealFieldElem)
==(x::RealFieldElem, y::ZZRingElem)
==(x::ZZRingElem, y::RealFieldElem)
==(x::RealFieldElem, y::Float64)
==(x::Float64, y::RealFieldElem)
isless(x::RealFieldElem, y::Integer)
isless(x::Integer, y::RealFieldElem)
isless(x::RealFieldElem, y::ZZRingElem)
isless(x::ZZRingElem, y::RealFieldElem)
isless(x::RealFieldElem, y::Float64)
isless(x::Float64, y::RealFieldElem)
isless(x::RealFieldElem, y::BigFloat)
isless(x::BigFloat, y::RealFieldElem)
isless(x::RealFieldElem, y::QQFieldElem)
isless(x::QQFieldElem, y::RealFieldElem)

Examples

julia> x = RR("1 +/- 0.001")
+true

Comparison

Nemo provides a full range of comparison operations for Arb balls. Note that a ball is considered less than another ball if every value in the first ball is less than every value in the second ball, etc.

In addition to the standard comparison operators, we introduce an exact equality. This is distinct from arithmetic equality implemented by ==, which merely compares up to the minimum of the precisions of its operands.

Base.isequalMethod
isequal(x::RealFieldElem, y::RealFieldElem)

Return true if the balls $x$ and $y$ are precisely equal, i.e. have the same midpoints and radii.

source

We also provide a full range of ad hoc comparison operators. These are implemented directly in Julia, but we document them as though isless and == were provided.

Function
==(x::RealFieldElem, y::Integer)
==(x::Integer, y::RealFieldElem)
==(x::RealFieldElem, y::ZZRingElem)
==(x::ZZRingElem, y::RealFieldElem)
==(x::RealFieldElem, y::Float64)
==(x::Float64, y::RealFieldElem)
isless(x::RealFieldElem, y::Integer)
isless(x::Integer, y::RealFieldElem)
isless(x::RealFieldElem, y::ZZRingElem)
isless(x::ZZRingElem, y::RealFieldElem)
isless(x::RealFieldElem, y::Float64)
isless(x::Float64, y::RealFieldElem)
isless(x::RealFieldElem, y::BigFloat)
isless(x::BigFloat, y::RealFieldElem)
isless(x::RealFieldElem, y::QQFieldElem)
isless(x::QQFieldElem, y::RealFieldElem)

Examples

julia> x = RR("1 +/- 0.001")
 [1.00 +/- 1.01e-3]
 
 julia> y = RR("3")
@@ -139,7 +139,7 @@
 [-2.52e+7 +/- 4.26e+4]
 
 julia> b = ldexp(x, -ZZ(15))
-[-9.16e-5 +/- 7.78e-8]

Miscellaneous operations

Nemo.add_error!Method
add_error!(x::RealFieldElem, y::RealFieldElem)

Adds the absolute values of the midpoint and radius of $y$ to the radius of $x$.

source
Nemo.trimMethod
trim(x::RealFieldElem)

Return an RealFieldElem interval containing $x$ but which may be more economical, by rounding off insignificant bits from the midpoint.

source
Nemo.unique_integerMethod
unique_integer(x::RealFieldElem)

Return a pair where the first value is a boolean and the second is an ZZRingElem integer. The boolean indicates whether the interval $x$ contains a unique integer. If this is the case, the second return value is set to this unique integer.

source
Nemo.setunionMethod
setunion(x::RealFieldElem, y::RealFieldElem)

Return an ArbFieldElem containing the union of the intervals represented by $x$ and $y$.

source

Examples

julia> x = RR("-3 +/- 0.001")
+[-9.16e-5 +/- 7.78e-8]

Miscellaneous operations

Nemo.add_error!Method
add_error!(x::RealFieldElem, y::RealFieldElem)

Adds the absolute values of the midpoint and radius of $y$ to the radius of $x$.

source
Nemo.trimMethod
trim(x::RealFieldElem)

Return an RealFieldElem interval containing $x$ but which may be more economical, by rounding off insignificant bits from the midpoint.

source
Nemo.unique_integerMethod
unique_integer(x::RealFieldElem)

Return a pair where the first value is a boolean and the second is an ZZRingElem integer. The boolean indicates whether the interval $x$ contains a unique integer. If this is the case, the second return value is set to this unique integer.

source
Nemo.setunionMethod
setunion(x::RealFieldElem, y::RealFieldElem)

Return an ArbFieldElem containing the union of the intervals represented by $x$ and $y$.

source

Examples

julia> x = RR("-3 +/- 0.001")
 [-3.00 +/- 1.01e-3]
 
 julia> y = RR("2 +/- 0.5")
@@ -152,7 +152,7 @@
 (true, -3)
 
 julia> d = setunion(x, y)
-[+/- 3.01]

Constants

Nemo.const_piMethod
const_pi(r::RealField)

Return $\pi = 3.14159\ldots$ as an element of $r$.

source
Nemo.const_eMethod
const_e(r::RealField)

Return $e = 2.71828\ldots$ as an element of $r$.

source
Nemo.const_log2Method
const_log2(r::RealField)

Return $\log(2) = 0.69314\ldots$ as an element of $r$.

source
Nemo.const_log10Method
const_log10(r::RealField)

Return $\log(10) = 2.302585\ldots$ as an element of $r$.

source
Nemo.const_eulerMethod
const_euler(r::RealField)

Return Euler's constant $\gamma = 0.577215\ldots$ as an element of $r$.

source
Nemo.const_catalanMethod
const_catalan(r::RealField)

Return Catalan's constant $C = 0.915965\ldots$ as an element of $r$.

source
Nemo.const_khinchinMethod
const_khinchin(r::RealField)

Return Khinchin's constant $K = 2.685452\ldots$ as an element of $r$.

source
Nemo.const_glaisherMethod
const_glaisher(r::RealField)

Return Glaisher's constant $A = 1.282427\ldots$ as an element of $r$.

source

Examples

julia> a = const_pi(RR)
+[+/- 3.01]

Constants

Nemo.const_piMethod
const_pi(r::RealField)

Return $\pi = 3.14159\ldots$ as an element of $r$.

source
Nemo.const_eMethod
const_e(r::RealField)

Return $e = 2.71828\ldots$ as an element of $r$.

source
Nemo.const_log2Method
const_log2(r::RealField)

Return $\log(2) = 0.69314\ldots$ as an element of $r$.

source
Nemo.const_log10Method
const_log10(r::RealField)

Return $\log(10) = 2.302585\ldots$ as an element of $r$.

source
Nemo.const_eulerMethod
const_euler(r::RealField)

Return Euler's constant $\gamma = 0.577215\ldots$ as an element of $r$.

source
Nemo.const_catalanMethod
const_catalan(r::RealField)

Return Catalan's constant $C = 0.915965\ldots$ as an element of $r$.

source
Nemo.const_khinchinMethod
const_khinchin(r::RealField)

Return Khinchin's constant $K = 2.685452\ldots$ as an element of $r$.

source
Nemo.const_glaisherMethod
const_glaisher(r::RealField)

Return Glaisher's constant $A = 1.282427\ldots$ as an element of $r$.

source

Examples

julia> a = const_pi(RR)
 [3.141592653589793239 +/- 5.96e-19]
 
 julia> b = const_e(RR)
@@ -162,7 +162,7 @@
 [0.5772156649015328606 +/- 4.35e-20]
 
 julia> d = const_glaisher(RR)
-[1.282427129100622637 +/- 3.01e-19]

Mathematical and special functions

Nemo.rsqrtMethod
rsqrt(x::RealFieldElem)

Return the reciprocal of the square root of $x$, i.e. $1/\sqrt{x}$.

source
Nemo.sqrt1pm1Method
sqrt1pm1(x::RealFieldElem)

Return $\sqrt{1+x}-1$, evaluated accurately for small $x$.

source
Nemo.sqrtposMethod
sqrtpos(x::RealFieldElem)

Return the sqrt root of $x$, assuming that $x$ represents a non-negative number. Thus any negative number in the input interval is discarded.

source
Nemo.gammaMethod
gamma(x::RealFieldElem)

Return the Gamma function evaluated at $x$.

source
Nemo.lgammaMethod
lgamma(x::RealFieldElem)

Return the logarithm of the Gamma function evaluated at $x$.

source
Nemo.rgammaMethod
rgamma(x::RealFieldElem)

Return the reciprocal of the Gamma function evaluated at $x$.

source
Nemo.digammaMethod
digamma(x::RealFieldElem)

Return the logarithmic derivative of the gamma function evaluated at $x$, i.e. $\psi(x)$.

source
Nemo.gammaMethod
gamma(s::RealFieldElem, x::RealFieldElem)

Return the upper incomplete gamma function $\Gamma(s,x)$.

source
Nemo.gamma_regularizedMethod
gamma_regularized(s::RealFieldElem, x::RealFieldElem)

Return the regularized upper incomplete gamma function $\Gamma(s,x) / \Gamma(s)$.

source
Nemo.gamma_lowerMethod
gamma_lower(s::RealFieldElem, x::RealFieldElem)

Return the lower incomplete gamma function $\gamma(s,x) / \Gamma(s)$.

source
Nemo.gamma_lower_regularizedMethod
gamma_lower_regularized(s::RealFieldElem, x::RealFieldElem)

Return the regularized lower incomplete gamma function $\gamma(s,x) / \Gamma(s)$.

source
Nemo.zetaMethod
zeta(x::RealFieldElem)

Return the Riemann zeta function evaluated at $x$.

source
Nemo.atan2Method
atan2(y::RealFieldElem, x::RealFieldElem)

Return $\operatorname{atan2}(y,x) = \arg(x+yi)$. Same as atan(y, x).

source
Nemo.agmMethod
agm(x::RealFieldElem, y::RealFieldElem)

Return the arithmetic-geometric mean of $x$ and $y$

source
Nemo.zetaMethod
zeta(s::RealFieldElem, a::RealFieldElem)

Return the Hurwitz zeta function $\zeta(s,a)$.

source
Base.factorialMethod
factorial(n::Int, r::RealField)

Return the factorial of $n$ in the given Arb field.

source
Base.binomialMethod
binomial(x::RealFieldElem, n::UInt)

Return the binomial coefficient ${x \choose n}$.

source
Base.binomialMethod
binomial(n::UInt, k::UInt, r::RealField)

Return the binomial coefficient ${n \choose k}$ in the given Arb field.

source
Nemo.fibonacciMethod
fibonacci(n::ZZRingElem, r::RealField)

Return the $n$-th Fibonacci number in the given Arb field.

source
Nemo.fibonacciMethod
fibonacci(n::Int, r::RealField)

Return the $n$-th Fibonacci number in the given Arb field.

source
Nemo.gammaMethod
gamma(x::ZZRingElem, r::RealField)

Return the Gamma function evaluated at $x$ in the given Arb field.

source
Nemo.gammaMethod
gamma(x::QQFieldElem, r::RealField)

Return the Gamma function evaluated at $x$ in the given Arb field.

source
Nemo.zetaMethod
zeta(n::Int, r::RealField)

Return the Riemann zeta function $\zeta(n)$ as an element of the given Arb field.

source
Nemo.bernoulliMethod
bernoulli(n::Int, r::RealField)

Return the $n$-th Bernoulli number as an element of the given Arb field.

source
AbstractAlgebra.Generic.rising_factorialMethod
rising_factorial(x::RealFieldElem, n::Int)

Return the rising factorial $x(x + 1)\ldots (x + n - 1)$ as an Arb.

source
rising_factorial(x::RingElement, n::Integer)

Return the rising factorial of $x$, i.e. $x(x + 1)(x + 2)\cdots (x + n - 1)$. If $n < 0$ we throw a DomainError().

Examples

julia> R, x = ZZ[:x];
+[1.282427129100622637 +/- 3.01e-19]

Mathematical and special functions

Nemo.rsqrtMethod
rsqrt(x::RealFieldElem)

Return the reciprocal of the square root of $x$, i.e. $1/\sqrt{x}$.

source
Nemo.sqrt1pm1Method
sqrt1pm1(x::RealFieldElem)

Return $\sqrt{1+x}-1$, evaluated accurately for small $x$.

source
Nemo.sqrtposMethod
sqrtpos(x::RealFieldElem)

Return the sqrt root of $x$, assuming that $x$ represents a non-negative number. Thus any negative number in the input interval is discarded.

source
Nemo.gammaMethod
gamma(x::RealFieldElem)

Return the Gamma function evaluated at $x$.

source
Nemo.lgammaMethod
lgamma(x::RealFieldElem)

Return the logarithm of the Gamma function evaluated at $x$.

source
Nemo.rgammaMethod
rgamma(x::RealFieldElem)

Return the reciprocal of the Gamma function evaluated at $x$.

source
Nemo.digammaMethod
digamma(x::RealFieldElem)

Return the logarithmic derivative of the gamma function evaluated at $x$, i.e. $\psi(x)$.

source
Nemo.gammaMethod
gamma(s::RealFieldElem, x::RealFieldElem)

Return the upper incomplete gamma function $\Gamma(s,x)$.

source
Nemo.gamma_regularizedMethod
gamma_regularized(s::RealFieldElem, x::RealFieldElem)

Return the regularized upper incomplete gamma function $\Gamma(s,x) / \Gamma(s)$.

source
Nemo.gamma_lowerMethod
gamma_lower(s::RealFieldElem, x::RealFieldElem)

Return the lower incomplete gamma function $\gamma(s,x) / \Gamma(s)$.

source
Nemo.gamma_lower_regularizedMethod
gamma_lower_regularized(s::RealFieldElem, x::RealFieldElem)

Return the regularized lower incomplete gamma function $\gamma(s,x) / \Gamma(s)$.

source
Nemo.zetaMethod
zeta(x::RealFieldElem)

Return the Riemann zeta function evaluated at $x$.

source
Nemo.atan2Method
atan2(y::RealFieldElem, x::RealFieldElem)

Return $\operatorname{atan2}(y,x) = \arg(x+yi)$. Same as atan(y, x).

source
Nemo.agmMethod
agm(x::RealFieldElem, y::RealFieldElem)

Return the arithmetic-geometric mean of $x$ and $y$

source
Nemo.zetaMethod
zeta(s::RealFieldElem, a::RealFieldElem)

Return the Hurwitz zeta function $\zeta(s,a)$.

source
Base.factorialMethod
factorial(n::Int, r::RealField)

Return the factorial of $n$ in the given Arb field.

source
Base.binomialMethod
binomial(x::RealFieldElem, n::UInt)

Return the binomial coefficient ${x \choose n}$.

source
Base.binomialMethod
binomial(n::UInt, k::UInt, r::RealField)

Return the binomial coefficient ${n \choose k}$ in the given Arb field.

source
Nemo.fibonacciMethod
fibonacci(n::ZZRingElem, r::RealField)

Return the $n$-th Fibonacci number in the given Arb field.

source
Nemo.fibonacciMethod
fibonacci(n::Int, r::RealField)

Return the $n$-th Fibonacci number in the given Arb field.

source
Nemo.gammaMethod
gamma(x::ZZRingElem, r::RealField)

Return the Gamma function evaluated at $x$ in the given Arb field.

source
Nemo.gammaMethod
gamma(x::QQFieldElem, r::RealField)

Return the Gamma function evaluated at $x$ in the given Arb field.

source
Nemo.zetaMethod
zeta(n::Int, r::RealField)

Return the Riemann zeta function $\zeta(n)$ as an element of the given Arb field.

source
Nemo.bernoulliMethod
bernoulli(n::Int, r::RealField)

Return the $n$-th Bernoulli number as an element of the given Arb field.

source
AbstractAlgebra.Generic.rising_factorialMethod
rising_factorial(x::RealFieldElem, n::Int)

Return the rising factorial $x(x + 1)\ldots (x + n - 1)$ as an Arb.

source
rising_factorial(x::RingElement, n::Integer)

Return the rising factorial of $x$, i.e. $x(x + 1)(x + 2)\cdots (x + n - 1)$. If $n < 0$ we throw a DomainError().

Examples

julia> R, x = ZZ[:x];
 
 julia> rising_factorial(x, 1)
 x
@@ -171,7 +171,7 @@
 x^2 + x
 
 julia> rising_factorial(4, 2)
-20
source
AbstractAlgebra.Generic.rising_factorial2Method
rising_factorial2(x::RealFieldElem, n::Int)

Return a tuple containing the rising factorial $x(x + 1)\ldots (x + n - 1)$ and its derivative.

source
rising_factorial2(x::RingElement, n::Integer)

Return a tuple containing the rising factorial $x(x + 1)\cdots (x + n - 1)$ and its derivative. If $n < 0$ we throw a DomainError().

Examples

julia> R, x = ZZ[:x];
+20
source
AbstractAlgebra.Generic.rising_factorial2Method
rising_factorial2(x::RealFieldElem, n::Int)

Return a tuple containing the rising factorial $x(x + 1)\ldots (x + n - 1)$ and its derivative.

source
rising_factorial2(x::RingElement, n::Integer)

Return a tuple containing the rising factorial $x(x + 1)\cdots (x + n - 1)$ and its derivative. If $n < 0$ we throw a DomainError().

Examples

julia> R, x = ZZ[:x];
 
 julia> rising_factorial2(x, 1)
 (x, 1)
@@ -180,7 +180,7 @@
 (x^2 + x, 2*x + 1)
 
 julia> rising_factorial2(4, 2)
-(20, 9)
source
Nemo.polylogMethod
polylog(s::Union{RealFieldElem,Int}, a::RealFieldElem)

Return the polylogarithm Li$_s(a)$.

source
Nemo.bellMethod
bell(n::ZZRingElem, r::RealField)

Return the Bell number $B_n$ as an element of $r$.

source
Nemo.bellMethod
bell(n::Int, r::RealField)

Return the Bell number $B_n$ as an element of $r$.

source
Nemo.numpartMethod
numpart(n::ZZRingElem, r::RealField)

Return the number of partitions $p(n)$ as an element of $r$.

source
Nemo.numpartMethod
numpart(n::Int, r::RealField)

Return the number of partitions $p(n)$ as an element of $r$.

source
Nemo.airy_aiMethod
airy_ai(x::RealFieldElem)

Return the Airy function $\operatorname{Ai}(x)$.

source
Nemo.airy_ai_primeMethod
airy_ai_prime(x::RealFieldElem)

Return the derivative of the Airy function $\operatorname{Ai}^\prime(x)$.

source
Nemo.airy_biMethod
airy_bi(x::RealFieldElem)

Return the Airy function $\operatorname{Bi}(x)$.

source
Nemo.airy_bi_primeMethod
airy_bi_prime(x::RealFieldElem)

Return the derivative of the Airy function $\operatorname{Bi}^\prime(x)$.

source

Examples

julia> a = floor(exp(RR(1)))
+(20, 9)
source
Nemo.polylogMethod
polylog(s::Union{RealFieldElem,Int}, a::RealFieldElem)

Return the polylogarithm Li$_s(a)$.

source
Nemo.bellMethod
bell(n::ZZRingElem, r::RealField)

Return the Bell number $B_n$ as an element of $r$.

source
Nemo.bellMethod
bell(n::Int, r::RealField)

Return the Bell number $B_n$ as an element of $r$.

source
Nemo.numpartMethod
numpart(n::ZZRingElem, r::RealField)

Return the number of partitions $p(n)$ as an element of $r$.

source
Nemo.numpartMethod
numpart(n::Int, r::RealField)

Return the number of partitions $p(n)$ as an element of $r$.

source
Nemo.airy_aiMethod
airy_ai(x::RealFieldElem)

Return the Airy function $\operatorname{Ai}(x)$.

source
Nemo.airy_ai_primeMethod
airy_ai_prime(x::RealFieldElem)

Return the derivative of the Airy function $\operatorname{Ai}^\prime(x)$.

source
Nemo.airy_biMethod
airy_bi(x::RealFieldElem)

Return the Airy function $\operatorname{Bi}(x)$.

source
Nemo.airy_bi_primeMethod
airy_bi_prime(x::RealFieldElem)

Return the derivative of the Airy function $\operatorname{Bi}^\prime(x)$.

source

Examples

julia> a = floor(exp(RR(1)))
 2.0000000000000000000
 
 julia> b = sinpi(QQ(5,6), RR)
@@ -215,11 +215,11 @@
  0
  0
  0
- 1
source
Nemo.simplest_rational_insideMethod
  simplest_rational_inside(x::RealFieldElem)

Return the simplest fraction inside the ball $x$. A canonical fraction $a_1/b_1$ is defined to be simpler than $a_2/b_2$ iff $b_1 < b_2$ or $b_1 = b_2$ and $a_1 < a_2$.

Examples

julia> RR = RealField()
+ 1
source
Nemo.simplest_rational_insideMethod
  simplest_rational_inside(x::RealFieldElem)

Return the simplest fraction inside the ball $x$. A canonical fraction $a_1/b_1$ is defined to be simpler than $a_2/b_2$ iff $b_1 < b_2$ or $b_1 = b_2$ and $a_1 < a_2$.

Examples

julia> RR = RealField()
 Real field
 
 julia> simplest_rational_inside(const_pi(RR))
-8717442233//2774848045
source

Random generation

Base.randMethod
rand(r::RealField; randtype::Symbol=:urandom)

Return a random element in given Arb field.

The randtype default is :urandom which return an ArbFieldElem contained in $[0,1]$.

The rest of the methods return non-uniformly distributed values in order to exercise corner cases. The option :randtest will return a finite number, and :randtest_exact the same but with a zero radius. The option :randtest_precise return an ArbFieldElem with a radius around $2^{-\mathrm{prec}}$ the magnitude of the midpoint, while :randtest_wide return a radius that might be big relative to its midpoint. The :randtest_special-option might return a midpoint and radius whose values are NaN or inf.

source
rand([rng=GLOBAL_RNG,] G::SymmetricGroup)

Return a random permutation from G.

source

Examples

a = rand(RR)
+8717442233//2774848045
source

Random generation

Base.randMethod
rand(r::RealField; randtype::Symbol=:urandom)

Return a random element in given Arb field.

The randtype default is :urandom which return an ArbFieldElem contained in $[0,1]$.

The rest of the methods return non-uniformly distributed values in order to exercise corner cases. The option :randtest will return a finite number, and :randtest_exact the same but with a zero radius. The option :randtest_precise return an ArbFieldElem with a radius around $2^{-\mathrm{prec}}$ the magnitude of the midpoint, while :randtest_wide return a radius that might be big relative to its midpoint. The :randtest_special-option might return a midpoint and radius whose values are NaN or inf.

source
rand([rng=GLOBAL_RNG,] G::SymmetricGroup)

Return a random permutation from G.

source

Examples

a = rand(RR)
 b = rand(RR; randtype = :null_exact)
 c = rand(RR; randtype = :exact)
 d = rand(RR; randtype = :special)
diff --git a/dev/residue/index.html b/dev/residue/index.html index 33dfcc65be..bfbe23eca3 100644 --- a/dev/residue/index.html +++ b/dev/residue/index.html @@ -1,5 +1,5 @@ -Residue rings · Nemo.jl

Residue rings

Nemo allows the creation of residue rings of the form $R/(a)$ for an element $a$ of a ring $R$.

We don't require $(a)$ to be a prime or maximal ideal. Instead, we allow the creation of the residue ring $R/(a)$ for any nonzero $a$ and simply raise an exception if an impossible inverse is encountered during computations involving elements of $R/(a)$. Of course, a GCD function must be available for the base ring $R$.

There is a generic implementation of residue rings of this form in AbstractAlgebra.jl, which accepts any ring $R$ as base ring.

The associated types of parent object and elements for each kind of residue rings in Nemo are given in the following table.

Base ringLibraryElement typeParent type
Generic ring $R$AbstractAlgebra.jlEuclideanRingResidueRingElem{T}EuclideanRingResidueRing{T}
$\mathbb{Z}$ (Int modulus)FlintzzModRingElemzzModRing
$\mathbb{Z}$ (ZZ modulus)FlintZZModRingElemZZModRing

The modulus $a$ of a residue ring is stored in its parent object.

All residue element types belong to the abstract type ResElem and all the residue ring parent object types belong to the abstract type ResidueRing. This enables one to write generic functions that accept any Nemo residue type.

Residue functionality

All the residue rings in Nemo provide the functionality described in AbstractAlgebra for residue rings:

https://nemocas.github.io/AbstractAlgebra.jl/stable/residue

In addition, generic residue rings are available.

We describe Nemo specific residue ring functionality below.

GCD

Base.gcdxMethod
gcdx(a::zzModRingElem, b::zzModRingElem)

Compute the extended gcd with the Euclidean structure inherited from $\mathbb{Z}$.

source
Base.gcdxMethod
gcdx(a::ZZModRingElem, b::ZZModRingElem)

Compute the extended gcd with the Euclidean structure inherited from $\mathbb{Z}$.

source

Examples

julia> R, = residue_ring(ZZ, 123456789012345678949);
+Residue rings · Nemo.jl

Residue rings

Nemo allows the creation of residue rings of the form $R/(a)$ for an element $a$ of a ring $R$.

We don't require $(a)$ to be a prime or maximal ideal. Instead, we allow the creation of the residue ring $R/(a)$ for any nonzero $a$ and simply raise an exception if an impossible inverse is encountered during computations involving elements of $R/(a)$. Of course, a GCD function must be available for the base ring $R$.

There is a generic implementation of residue rings of this form in AbstractAlgebra.jl, which accepts any ring $R$ as base ring.

The associated types of parent object and elements for each kind of residue rings in Nemo are given in the following table.

Base ringLibraryElement typeParent type
Generic ring $R$AbstractAlgebra.jlEuclideanRingResidueRingElem{T}EuclideanRingResidueRing{T}
$\mathbb{Z}$ (Int modulus)FlintzzModRingElemzzModRing
$\mathbb{Z}$ (ZZ modulus)FlintZZModRingElemZZModRing

The modulus $a$ of a residue ring is stored in its parent object.

All residue element types belong to the abstract type ResElem and all the residue ring parent object types belong to the abstract type ResidueRing. This enables one to write generic functions that accept any Nemo residue type.

Residue functionality

All the residue rings in Nemo provide the functionality described in AbstractAlgebra for residue rings:

https://nemocas.github.io/AbstractAlgebra.jl/stable/residue

In addition, generic residue rings are available.

We describe Nemo specific residue ring functionality below.

GCD

Base.gcdxMethod
gcdx(a::zzModRingElem, b::zzModRingElem)

Compute the extended gcd with the Euclidean structure inherited from $\mathbb{Z}$.

source
Base.gcdxMethod
gcdx(a::ZZModRingElem, b::ZZModRingElem)

Compute the extended gcd with the Euclidean structure inherited from $\mathbb{Z}$.

source

Examples

julia> R, = residue_ring(ZZ, 123456789012345678949);
 
 julia> g, s, t = gcdx(R(123), R(456))
 (1, 123456789012345678928, 41152263004115226322)