-
Notifications
You must be signed in to change notification settings - Fork 1
/
app.py
260 lines (230 loc) · 10.1 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
import random
import os
from urllib.parse import urlencode
import streamlit as st
import streamlit.components.v1 as components
import torch
from transformers import pipeline, set_seed
from transformers import AutoTokenizer, AutoModelForCausalLM
HF_AUTH_TOKEN = os.environ.get("HF_AUTH_TOKEN", None)
DEVICE = os.environ.get("DEVICE", "cpu") # cuda:0
DTYPE = torch.float32 if DEVICE == "cpu" else torch.float16
MODEL_NAME = os.environ.get("MODEL_NAME", "NbAiLab/nb-gpt-j-6B")
MAX_LENGTH = int(os.environ.get("MAX_LENGTH", 256))
HEADER_INFO = """
# NB-GPT-J-6B
Norwegian GPT-J-6B Model.
""".strip()
LOGO = "https://s3.amazonaws.com/moonup/production/uploads/1644417861130-5ef3829e518622264685b0cd.webp"
SIDEBAR_INFO = f"""
<div align=center>
<img src="{LOGO}" width=100/>
# NB-GPT-J-6B
</div>
NB-GPT-J-6B is a GTP-3-like model Norwegian by the [National Library of Norway AI-Lab](https://ai.nb.no).
This model has been trained with [Mesh Transformer JAX](https://github.com/kingoflolz/mesh-transformer-jax) using TPUs provided by Google through the Tensor Research Cloud program, starting off the [GPT-J-6B model weigths from EleutherAI](https://huggingface.co/EleutherAI/gpt-j-6B), and trained on the [Norwegian Colossal Corpus](https://huggingface.co/datasets/NbAiLab/NCC) and other Internet sources. *This demo runs on {DEVICE.split(':')[0].upper()}*.
For more information, visit the [model repository](https://huggingface.co/NbAiLab/nb-gpt-j-6B).
## Configuration
""".strip()
PROMPT_BOX = "Enter your text..."
EXAMPLES = [
"Hvem tror dere det er lurest å stemme på til høstens Stortingsvalg?",
"Hva er verdens beste fotballag?",
"Vi er en familie på fire med to små barn på 4 og 6. Vi bor i en liten leilighet, men er alle veldig glade i å gå på tur. Nå ønsker vi å skaffe oss hund, men er veldig i tvil om hvilken rase. Er det noen som har noen erfaringer å dele?",
"Jeg er sikker på at aliens allerede har invadert jorden og lever her iblant oss. Mistenker veldig sterkt av naboen er en alien. Setter stor pris på om noen kan gi noen tips om hvordan jeg kan finne ut av det.",
]
def style():
st.markdown("""
<link href="https://fonts.googleapis.com/css2?family=Roboto:wght@300&display=swap%22%20rel=%22stylesheet%22" rel="stylesheet">
<style>
.ltr,
textarea {
font-family: Roboto !important;
text-align: left;
direction: ltr !important;
}
.ltr-box {
border-bottom: 1px solid #ddd;
padding-bottom: 20px;
}
.rtl {
text-align: left;
direction: ltr !important;
}
span.result-text {
padding: 3px 3px;
line-height: 32px;
}
span.generated-text {
background-color: rgb(118 200 147 / 13%);
}
</style>""", unsafe_allow_html=True)
class Normalizer:
def remove_repetitions(self, text):
"""Remove repetitions"""
first_ocurrences = []
for sentence in text.split("."):
if sentence not in first_ocurrences:
first_ocurrences.append(sentence)
return '.'.join(first_ocurrences)
def trim_last_sentence(self, text):
"""Trim last sentence if incomplete"""
return text[:text.rfind(".") + 1]
def clean_txt(self, text):
return self.trim_last_sentence(self.remove_repetitions(text))
class TextGeneration:
def __init__(self):
self.tokenizer = None
self.generator = None
self.task = "text-generation"
self.model_name_or_path = MODEL_NAME
set_seed(42)
def load(self):
print("Loading model... ", end="")
self.tokenizer = AutoTokenizer.from_pretrained(
self.model_name_or_path, use_auth_token=HF_AUTH_TOKEN if HF_AUTH_TOKEN else None,
)
self.model = AutoModelForCausalLM.from_pretrained(
self.model_name_or_path, use_auth_token=HF_AUTH_TOKEN if HF_AUTH_TOKEN else None,
pad_token_id=self.tokenizer.eos_token_id, eos_token_id=self.tokenizer.eos_token_id,
torch_dtype=DTYPE, low_cpu_mem_usage=False if DEVICE == "cpu" else True
).to(device=DEVICE, non_blocking=True)
_ = self.model.eval()
device_number = -1 if DEVICE == "cpu" else int(DEVICE.split(":")[-1])
self.generator = pipeline(self.task, model=self.model, tokenizer=self.tokenizer, device=device_number)
print("Done")
# with torch.no_grad():
# tokens = tokenizer.encode(prompt, return_tensors='pt').to(device=device, non_blocking=True)
# gen_tokens = self.model.generate(tokens, do_sample=True, temperature=0.8, max_length=128)
# generated = tokenizer.batch_decode(gen_tokens)[0]
# return generated
def generate(self, prompt, generation_kwargs):
max_length = len(self.tokenizer(prompt)["input_ids"]) + generation_kwargs["max_length"]
generation_kwargs["max_length"] = min(max_length, self.model.config.n_positions)
# generation_kwargs["num_return_sequences"] = 1
# generation_kwargs["return_full_text"] = False
return self.generator(
prompt,
**generation_kwargs,
)[0]["generated_text"]
#@st.cache(allow_output_mutation=True, hash_funcs={AutoModelForCausalLM: lambda _: None})
@st.cache(allow_output_mutation=True, hash_funcs={TextGeneration: lambda _: None})
def load_text_generator():
generator = TextGeneration()
generator.load()
return generator
def main():
st.set_page_config(
page_title="NB-GPT-J-6B",
page_icon="🇳🇴",
layout="wide",
initial_sidebar_state="expanded"
)
style()
with st.spinner('Loading the model. Please, wait...'):
generator = load_text_generator()
st.sidebar.markdown(SIDEBAR_INFO, unsafe_allow_html=True)
query_params = st.experimental_get_query_params()
if query_params:
st.experimental_set_query_params(**dict())
max_length = st.sidebar.slider(
label='Max words to generate',
help="The maximum length of the sequence to be generated.",
min_value=1,
max_value=MAX_LENGTH,
value=int(query_params.get("max_length", [50])[0]),
step=1
)
top_k = st.sidebar.slider(
label='Top-k',
help="The number of highest probability vocabulary tokens to keep for top-k-filtering",
min_value=40,
max_value=80,
value=int(query_params.get("top_k", [50])[0]),
step=1
)
top_p = st.sidebar.slider(
label='Top-p',
help="Only the most probable tokens with probabilities that add up to `top_p` or higher are kept for "
"generation.",
min_value=0.0,
max_value=1.0,
value=float(query_params.get("top_p", [0.95])[0]),
step=0.01
)
temperature = st.sidebar.slider(
label='Temperature',
help="The value used to module the next token probabilities",
min_value=0.1,
max_value=10.0,
value=float(query_params.get("temperature", [0.8])[0]),
step=0.05
)
do_sample = st.sidebar.selectbox(
label='Sampling?',
options=(False, True),
help="Whether or not to use sampling; use greedy decoding otherwise.",
index=int(query_params.get("do_sample", ["true"])[0].lower()[0] in ("t", "y", "1")),
)
do_clean = st.sidebar.selectbox(
label='Clean text?',
options=(False, True),
help="Whether or not to remove repeated words and trim unfinished last sentences.",
index=int(query_params.get("do_clean", ["true"])[0].lower()[0] in ("t", "y", "1")),
)
generation_kwargs = {
"max_length": max_length,
"top_k": top_k,
"top_p": top_p,
"temperature": temperature,
"do_sample": do_sample,
"do_clean": do_clean,
}
st.markdown(HEADER_INFO)
prompts = EXAMPLES + ["Custom"]
prompt = st.selectbox('Examples', prompts, index=len(prompts) - 1)
if prompt == "Custom":
prompt_box = query_params.get("text", [PROMPT_BOX])[0].strip()
else:
prompt_box = prompt
text = st.text_area("Enter text", prompt_box)
generation_kwargs_ph = st.empty()
cleaner = Normalizer()
if st.button("Generate!") or text != PROMPT_BOX:
output = st.empty()
with st.spinner(text="Generating..."):
generation_kwargs_ph.markdown(", ".join([f"`{k}`: {v}" for k, v in generation_kwargs.items()]))
if text:
share_args = {"text": text, **generation_kwargs}
st.experimental_set_query_params(**share_args)
for _ in range(5):
generated_text = generator.generate(text, generation_kwargs)
if do_clean:
generated_text = cleaner.clean_txt(generated_text)
if generated_text.strip().startswith(text):
generated_text = generated_text.replace(text, "", 1).strip()
output.markdown(
f'<p class="ltr ltr-box">'
f'<span class="result-text">{text} <span>'
f'<span class="result-text generated-text">{generated_text}</span>'
f'</p>',
unsafe_allow_html=True
)
if generated_text.strip():
components.html(
f"""
<a class="twitter-share-button"
data-text="Check my prompt using NB-GPT-J-6B!🇳🇴 https://ai.nb.no/demo/nb-gpt-j-6B/?{urlencode(share_args)}"
data-show-count="false">
data-size="Small"
data-hashtags="nb,gpt-j"
Tweet
</a>
<script async src="https://platform.twitter.com/widgets.js" charset="utf-8"></script>
"""
)
break
if not generated_text.strip():
st.markdown("*Tried 5 times but did not produce any result. Try again!*")
if __name__ == '__main__':
main()