Skip to content

Latest commit

 

History

History
69 lines (53 loc) · 2.85 KB

File metadata and controls

69 lines (53 loc) · 2.85 KB

Univariate-Time-Series-Prediction-using-Deep-Learning

0. Overview

This repository provides Univariate Time Series Prediction. It supports;

  • using various deep learning models including DNN, CNN, RNN, LSTM, GRU, and Attentional LSTM.
  • using single-step and multi-step prediction.

The dataset used is Appliances Energy Prediction Data Set and can be found here.

1. Quantitative Analysis

According to the table below, CNN using 1D Convolutional layer outperformed the other models on single-step time series prediction.

Model MAE↓ MSE↓ RMSE↓ MPE↓ MAPE↓ R Squared↑
DNN 29.3038 3673.7921 57.0114 -15.6800 26.4763 0.3820
CNN 27.5182 3614.1634 56.1604 -11.2039 23.7301 0.4057
RNN 29.1327 3627.1491 56.7243 -16.2193 26.9323 0.3809
LSTM 29.6157 3575.5541 56.4002 -16.7178 27.9683 0.3771
GRU 29.0402 3564.9701 56.2790 -16.9984 26.9390 0.3872
Attentional LSTM 28.9658 3603.0751 56.3838 -16.8199 26.3129 0.3898

According to the table below, DNN outperformed the other models on multi-step time series prediction.

Model MAE↓ MSE↓ RMSE↓ MPE↓ MAPE↓ R Squared↑
DNN 31.3555 2913.6521 49.3946 -16.7329 29.1459 0.1775
CNN 32.9762 2893.2201 49.5900 -21.7513 32.3016 0.1206
RNN 32.9153 2951.9055 50.0931 -20.7460 32.2081 0.1223
LSTM 32.8141 2955.5278 50.1237 -20.5471 32.0873 0.1191
GRU 33.0092 2927.5575 49.9503 -21.2869 32.5345 0.1177
Attentional LSTM 32.2182 2920.8744 49.7972 -19.1188 30.8223 0.1347

2. Qualitative Analysis

It definitely suffers from the typical lagging issue. Also, I averaged multi-step for plotting thus it looks to be smoothed.

3. Run the Codes

1) Train

If you want to train Attention LSTM,

python main.py --model 'attention'

If you want to train with multi-step with time step of 5,

python main.py --model 'attention' --multi_step True --output_size 5

2) Test

python main.py --model 'attention' --mode 'test'

To handle more arguments, you can refer to here.

Development Environment

- Windows 10 Home
- NVIDIA GFORCE RTX 2060
- CUDA 10.2
- torch 1.6.0
- torchvision 0.7.0
- etc