The ClimateBackend system is designed as a modular, microservices-oriented architecture that integrates multiple data sources for climate monitoring. The system is built using Django and follows REST principles for API design.
- Manages automated weather station data
- Handles rainfall predictions
- Processes station alerts and warnings
- Integrates with machine learning models for predictions
- Manages traditional weather station data
- Tracks water levels and station status
- Handles station image processing and storage
- Provides historical water level analysis
- Manages user-submitted flood reports
- Handles location-based data collection
- Provides data validation and verification
- Integrates with mapping services
- Provides centralized data access layer
- Handles cross-source data integration
- Implements data validation and processing
- Manages system health monitoring
- Unified data visualization interface
- Server-side data filtering and processing
- Multi-source data integration
- Export capabilities for all data sources
┌─────────────────┐
│ │
┌────► AWS Stations │
│ │ │
│ └────────┬────────┘
│ │
┌─────────────────┐ ┌─────┴─────┐ │
│ │ │ │ │
│ External ├─────► DB ◄──────┤
│ Requests │ │ Middleware│ │
│ │ │ │ │
└─────────────────┘ └─────┬─────┘ │
│ │
│ ┌────────┴────────┐
│ │ │
└────►Weather Stations │
│ │ │
│ └────────┬────────┘
│ │
│ ┌────────┴────────┐
│ │ │
└────► Crowdsource │
│ │ │
│ └────────┬────────┘
│ │
│ ┌────────┴────────┐
│ │ │
└────► Dashboard │
│ │
└─────────────────┘
Each module exposes its own REST API endpoints:
/dashboard/
- Main dashboard interface/aws/*
- AWS stations endpoints/weather/*
- Weather station endpoints/cs/*
- Crowdsource endpoints/db/*
- Database middleware endpoints
The system uses PostgreSQL with the following main tables:
aws_station
- Station informationrainfall_data
- Rainfall measurementspredictions
- Rainfall predictions
weather_station
- Station informationwater_level
- Water level measurementsstation_images
- Station monitoring images
flood_report
- User-submitted reportslocation_data
- Geographical information
- JWT-based authentication
- Role-based access control
- Input validation and sanitization
- Rate limiting on API endpoints
- CORS configuration for web clients
- Server-side data filtering and processing
- Fixed data container sizes
- Database query optimization
- Caching with Redis
- Asynchronous task processing with Celery
- Efficient file storage and retrieval
- API response pagination
- System health monitoring
- Error tracking and logging
- Performance metrics collection
- API usage statistics
- Database query monitoring
The system is designed to be deployed using:
- Docker containers
- Kubernetes orchestration
- Load balancing
- Auto-scaling capabilities
- Continuous integration/deployment
- Enhanced machine learning integration
- Real-time data processing
- Advanced analytics dashboard
- Mobile app integration
- Extended API capabilities