-
Notifications
You must be signed in to change notification settings - Fork 144
/
Copy pathutils.py
63 lines (50 loc) · 1.68 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
"""
Functions that use multiple times
"""
from torch import nn
import torch
import numpy as np
def v_wrap(np_array, dtype=np.float32):
if np_array.dtype != dtype:
np_array = np_array.astype(dtype)
return torch.from_numpy(np_array)
def set_init(layers):
for layer in layers:
nn.init.normal_(layer.weight, mean=0., std=0.1)
nn.init.constant_(layer.bias, 0.)
def push_and_pull(opt, lnet, gnet, done, s_, bs, ba, br, gamma):
if done:
v_s_ = 0. # terminal
else:
v_s_ = lnet.forward(v_wrap(s_[None, :]))[-1].data.numpy()[0, 0]
buffer_v_target = []
for r in br[::-1]: # reverse buffer r
v_s_ = r + gamma * v_s_
buffer_v_target.append(v_s_)
buffer_v_target.reverse()
loss = lnet.loss_func(
v_wrap(np.vstack(bs)),
v_wrap(np.array(ba), dtype=np.int64) if ba[0].dtype == np.int64 else v_wrap(np.vstack(ba)),
v_wrap(np.array(buffer_v_target)[:, None]))
# calculate local gradients and push local parameters to global
opt.zero_grad()
loss.backward()
for lp, gp in zip(lnet.parameters(), gnet.parameters()):
gp._grad = lp.grad
opt.step()
# pull global parameters
lnet.load_state_dict(gnet.state_dict())
def record(global_ep, global_ep_r, ep_r, res_queue, name):
with global_ep.get_lock():
global_ep.value += 1
with global_ep_r.get_lock():
if global_ep_r.value == 0.:
global_ep_r.value = ep_r
else:
global_ep_r.value = global_ep_r.value * 0.99 + ep_r * 0.01
res_queue.put(global_ep_r.value)
print(
name,
"Ep:", global_ep.value,
"| Ep_r: %.0f" % global_ep_r.value,
)