This repository has been archived by the owner on Feb 12, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Base64.java
576 lines (495 loc) · 22.7 KB
/
Base64.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
/* We set this so it can be used privately */
package com.mainstreetsoftworks;
import java.util.Arrays;
/** A very fast and memory efficient class to encode and decode to and from BASE64 in full accordance
* with RFC 2045.<br><br>
* On Windows XP sp1 with 1.4.2_04 and later ;), this encoder and decoder is about 10 times faster
* on small arrays (10 - 1000 bytes) and 2-3 times as fast on larger arrays (10000 - 1000000 bytes)
* compared to <code>sun.misc.Encoder()/Decoder()</code>.<br><br>
*
* On byte arrays the encoder is about 20% faster than Jakarta Commons Base64 Codec for encode and
* about 50% faster for decoding large arrays. This implementation is about twice as fast on very small
* arrays (< 30 bytes). If source/destination is a <code>String</code> this
* version is about three times as fast due to the fact that the Commons Codec result has to be recoded
* to a <code>String</code> from <code>byte[]</code>, which is very expensive.<br><br>
*
* This encode/decode algorithm doesn't create any temporary arrays as many other codecs do, it only
* allocates the resulting array. This produces less garbage and it is possible to handle arrays twice
* as large as algorithms that create a temporary array. (E.g. Jakarta Commons Codec). It is unknown
* whether Sun's <code>sun.misc.Encoder()/Decoder()</code> produce temporary arrays but since performance
* is quite low it probably does.<br><br>
*
* The encoder produces the same output as the Sun one except that the Sun's encoder appends
* a trailing line separator if the last character isn't a pad. Unclear why but it only adds to the
* length and is probably a side effect. Both are in conformance with RFC 2045 though.<br>
* Commons codec seem to always att a trailing line separator.<br><br>
*
* <b>Note!</b>
* The encode/decode method pairs (types) come in three versions with the <b>exact</b> same algorithm and
* thus a lot of code redundancy. This is to not create any temporary arrays for transcoding to/from different
* format types. The methods not used can simply be commented out.<br><br>
*
* There is also a "fast" version of all decode methods that works the same way as the normal ones, but
* har a few demands on the decoded input. Normally though, these fast verions should be used if the source if
* the input is known and it hasn't bee tampered with.<br><br>
*
* If you find the code useful or you find a bug, please send me a note at base64 @ miginfocom . com.
*
* Licence (BSD):
* ==============
*
* Copyright (c) 2004, Mikael Grev, MiG InfoCom AB. (base64 @ miginfocom . com)
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met:
* Redistributions of source code must retain the above copyright notice, this list
* of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright notice, this
* list of conditions and the following disclaimer in the documentation and/or other
* materials provided with the distribution.
* Neither the name of the MiG InfoCom AB nor the names of its contributors may be
* used to endorse or promote products derived from this software without specific
* prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
* INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA,
* OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY
* OF SUCH DAMAGE.
*
* @version 2.2
* @author Mikael Grev
* Date: 2004-aug-02
* Time: 11:31:11
*/
public class Base64
{
private static final char[] CA = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/".toCharArray();
private static final int[] IA = new int[256];
static {
Arrays.fill(IA, -1);
for (int i = 0, iS = CA.length; i < iS; i++)
IA[CA[i]] = i;
IA['='] = 0;
}
// ****************************************************************************************
// * char[] version
// ****************************************************************************************
/** Encodes a raw byte array into a BASE64 <code>char[]</code> representation i accordance with RFC 2045.
* @param sArr The bytes to convert. If <code>null</code> or length 0 an empty array will be returned.
* @param lineSep Optional "\r\n" after 76 characters, unless end of file.<br>
* No line separator will be in breach of RFC 2045 which specifies max 76 per line but will be a
* little faster.
* @return A BASE64 encoded array. Never <code>null</code>.
*/
public final static char[] encodeToChar(byte[] sArr, boolean lineSep)
{
// Check special case
int sLen = sArr != null ? sArr.length : 0;
if (sLen == 0)
return new char[0];
int eLen = (sLen / 3) * 3; // Length of even 24-bits.
int cCnt = ((sLen - 1) / 3 + 1) << 2; // Returned character count
int dLen = cCnt + (lineSep ? (cCnt - 1) / 76 << 1 : 0); // Length of returned array
char[] dArr = new char[dLen];
// Encode even 24-bits
for (int s = 0, d = 0, cc = 0; s < eLen;) {
// Copy next three bytes into lower 24 bits of int, paying attension to sign.
int i = (sArr[s++] & 0xff) << 16 | (sArr[s++] & 0xff) << 8 | (sArr[s++] & 0xff);
// Encode the int into four chars
dArr[d++] = CA[(i >>> 18) & 0x3f];
dArr[d++] = CA[(i >>> 12) & 0x3f];
dArr[d++] = CA[(i >>> 6) & 0x3f];
dArr[d++] = CA[i & 0x3f];
// Add optional line separator
if (lineSep && ++cc == 19 && d < dLen - 2) {
dArr[d++] = '\r';
dArr[d++] = '\n';
cc = 0;
}
}
// Pad and encode last bits if source isn't even 24 bits.
int left = sLen - eLen; // 0 - 2.
if (left > 0) {
// Prepare the int
int i = ((sArr[eLen] & 0xff) << 10) | (left == 2 ? ((sArr[sLen - 1] & 0xff) << 2) : 0);
// Set last four chars
dArr[dLen - 4] = CA[i >> 12];
dArr[dLen - 3] = CA[(i >>> 6) & 0x3f];
dArr[dLen - 2] = left == 2 ? CA[i & 0x3f] : '=';
dArr[dLen - 1] = '=';
}
return dArr;
}
/** Decodes a BASE64 encoded char array. All illegal characters will be ignored and can handle both arrays with
* and without line separators.
* @param sArr The source array. <code>null</code> or length 0 will return an empty array.
* @return The decoded array of bytes. May be of length 0. Will be <code>null</code> if the legal characters
* (including '=') isn't divideable by 4. (I.e. definitely corrupted).
*/
public final static byte[] decode(char[] sArr)
{
// Check special case
int sLen = sArr != null ? sArr.length : 0;
if (sLen == 0)
return new byte[0];
// Count illegal characters (including '\r', '\n') to know what size the returned array will be,
// so we don't have to reallocate & copy it later.
int sepCnt = 0; // Number of separator characters. (Actually illegal characters, but that's a bonus...)
for (int i = 0; i < sLen; i++) // If input is "pure" (I.e. no line separators or illegal chars) base64 this loop can be commented out.
if (IA[sArr[i]] < 0)
sepCnt++;
// Check so that legal chars (including '=') are evenly divideable by 4 as specified in RFC 2045.
if ((sLen - sepCnt) % 4 != 0)
return null;
int pad = 0;
for (int i = sLen; i > 1 && IA[sArr[--i]] <= 0;)
if (sArr[i] == '=')
pad++;
int len = ((sLen - sepCnt) * 6 >> 3) - pad;
byte[] dArr = new byte[len]; // Preallocate byte[] of exact length
for (int s = 0, d = 0; d < len;) {
// Assemble three bytes into an int from four "valid" characters.
int i = 0;
for (int j = 0; j < 4; j++) { // j only increased if a valid char was found.
int c = IA[sArr[s++]];
if (c >= 0)
i |= c << (18 - j * 6);
else
j--;
}
// Add the bytes
dArr[d++] = (byte) (i >> 16);
if (d < len) {
dArr[d++]= (byte) (i >> 8);
if (d < len)
dArr[d++] = (byte) i;
}
}
return dArr;
}
/** Decodes a BASE64 encoded char array that is known to be resonably well formatted. The method is about twice as
* fast as {@link #decode(char[])}. The preconditions are:<br>
* + The array must have a line length of 76 chars OR no line separators at all (one line).<br>
* + Line separator must be "\r\n", as specified in RFC 2045
* + The array must not contain illegal characters within the encoded string<br>
* + The array CAN have illegal characters at the beginning and end, those will be dealt with appropriately.<br>
* @param sArr The source array. Length 0 will return an empty array. <code>null</code> will throw an exception.
* @return The decoded array of bytes. May be of length 0.
*/
public final static byte[] decodeFast(char[] sArr)
{
// Check special case
int sLen = sArr.length;
if (sLen == 0)
return new byte[0];
int sIx = 0, eIx = sLen - 1; // Start and end index after trimming.
// Trim illegal chars from start
while (sIx < eIx && IA[sArr[sIx]] < 0)
sIx++;
// Trim illegal chars from end
while (eIx > 0 && IA[sArr[eIx]] < 0)
eIx--;
// get the padding count (=) (0, 1 or 2)
int pad = sArr[eIx] == '=' ? (sArr[eIx - 1] == '=' ? 2 : 1) : 0; // Count '=' at end.
int cCnt = eIx - sIx + 1; // Content count including possible separators
int sepCnt = sLen > 76 ? (sArr[76] == '\r' ? cCnt / 78 : 0) << 1 : 0;
int len = ((cCnt - sepCnt) * 6 >> 3) - pad; // The number of decoded bytes
byte[] dArr = new byte[len]; // Preallocate byte[] of exact length
// Decode all but the last 0 - 2 bytes.
int d = 0;
for (int cc = 0, eLen = (len / 3) * 3; d < eLen;) {
// Assemble three bytes into an int from four "valid" characters.
int i = IA[sArr[sIx++]] << 18 | IA[sArr[sIx++]] << 12 | IA[sArr[sIx++]] << 6 | IA[sArr[sIx++]];
// Add the bytes
dArr[d++] = (byte) (i >> 16);
dArr[d++] = (byte) (i >> 8);
dArr[d++] = (byte) i;
// If line separator, jump over it.
if (sepCnt > 0 && ++cc == 19) {
sIx += 2;
cc = 0;
}
}
if (d < len) {
// Decode last 1-3 bytes (incl '=') into 1-3 bytes
int i = 0;
for (int j = 0; sIx <= eIx - pad; j++)
i |= IA[sArr[sIx++]] << (18 - j * 6);
for (int r = 16; d < len; r -= 8)
dArr[d++] = (byte) (i >> r);
}
return dArr;
}
// ****************************************************************************************
// * byte[] version
// ****************************************************************************************
/** Encodes a raw byte array into a BASE64 <code>byte[]</code> representation i accordance with RFC 2045.
* @param sArr The bytes to convert. If <code>null</code> or length 0 an empty array will be returned.
* @param lineSep Optional "\r\n" after 76 characters, unless end of file.<br>
* No line separator will be in breach of RFC 2045 which specifies max 76 per line but will be a
* little faster.
* @return A BASE64 encoded array. Never <code>null</code>.
*/
public final static byte[] encodeToByte(byte[] sArr, boolean lineSep)
{
// Check special case
int sLen = sArr != null ? sArr.length : 0;
if (sLen == 0)
return new byte[0];
int eLen = (sLen / 3) * 3; // Length of even 24-bits.
int cCnt = ((sLen - 1) / 3 + 1) << 2; // Returned character count
int dLen = cCnt + (lineSep ? (cCnt - 1) / 76 << 1 : 0); // Length of returned array
byte[] dArr = new byte[dLen];
// Encode even 24-bits
for (int s = 0, d = 0, cc = 0; s < eLen;) {
// Copy next three bytes into lower 24 bits of int, paying attension to sign.
int i = (sArr[s++] & 0xff) << 16 | (sArr[s++] & 0xff) << 8 | (sArr[s++] & 0xff);
// Encode the int into four chars
dArr[d++] = (byte) CA[(i >>> 18) & 0x3f];
dArr[d++] = (byte) CA[(i >>> 12) & 0x3f];
dArr[d++] = (byte) CA[(i >>> 6) & 0x3f];
dArr[d++] = (byte) CA[i & 0x3f];
// Add optional line separator
if (lineSep && ++cc == 19 && d < dLen - 2) {
dArr[d++] = '\r';
dArr[d++] = '\n';
cc = 0;
}
}
// Pad and encode last bits if source isn't an even 24 bits.
int left = sLen - eLen; // 0 - 2.
if (left > 0) {
// Prepare the int
int i = ((sArr[eLen] & 0xff) << 10) | (left == 2 ? ((sArr[sLen - 1] & 0xff) << 2) : 0);
// Set last four chars
dArr[dLen - 4] = (byte) CA[i >> 12];
dArr[dLen - 3] = (byte) CA[(i >>> 6) & 0x3f];
dArr[dLen - 2] = left == 2 ? (byte) CA[i & 0x3f] : (byte) '=';
dArr[dLen - 1] = '=';
}
return dArr;
}
/** Decodes a BASE64 encoded byte array. All illegal characters will be ignored and can handle both arrays with
* and without line separators.
* @param sArr The source array. Length 0 will return an empty array. <code>null</code> will throw an exception.
* @return The decoded array of bytes. May be of length 0. Will be <code>null</code> if the legal characters
* (including '=') isn't divideable by 4. (I.e. definitely corrupted).
*/
public final static byte[] decode(byte[] sArr)
{
// Check special case
int sLen = sArr.length;
// Count illegal characters (including '\r', '\n') to know what size the returned array will be,
// so we don't have to reallocate & copy it later.
int sepCnt = 0; // Number of separator characters. (Actually illegal characters, but that's a bonus...)
for (int i = 0; i < sLen; i++) // If input is "pure" (I.e. no line separators or illegal chars) base64 this loop can be commented out.
if (IA[sArr[i] & 0xff] < 0)
sepCnt++;
// Check so that legal chars (including '=') are evenly divideable by 4 as specified in RFC 2045.
if ((sLen - sepCnt) % 4 != 0)
return null;
int pad = 0;
for (int i = sLen; i > 1 && IA[sArr[--i] & 0xff] <= 0;)
if (sArr[i] == '=')
pad++;
int len = ((sLen - sepCnt) * 6 >> 3) - pad;
byte[] dArr = new byte[len]; // Preallocate byte[] of exact length
for (int s = 0, d = 0; d < len;) {
// Assemble three bytes into an int from four "valid" characters.
int i = 0;
for (int j = 0; j < 4; j++) { // j only increased if a valid char was found.
int c = IA[sArr[s++] & 0xff];
if (c >= 0)
i |= c << (18 - j * 6);
else
j--;
}
// Add the bytes
dArr[d++] = (byte) (i >> 16);
if (d < len) {
dArr[d++]= (byte) (i >> 8);
if (d < len)
dArr[d++] = (byte) i;
}
}
return dArr;
}
/** Decodes a BASE64 encoded byte array that is known to be resonably well formatted. The method is about twice as
* fast as {@link #decode(byte[])}. The preconditions are:<br>
* + The array must have a line length of 76 chars OR no line separators at all (one line).<br>
* + Line separator must be "\r\n", as specified in RFC 2045
* + The array must not contain illegal characters within the encoded string<br>
* + The array CAN have illegal characters at the beginning and end, those will be dealt with appropriately.<br>
* @param sArr The source array. Length 0 will return an empty array. <code>null</code> will throw an exception.
* @return The decoded array of bytes. May be of length 0.
*/
public final static byte[] decodeFast(byte[] sArr)
{
// Check special case
int sLen = sArr.length;
if (sLen == 0)
return new byte[0];
int sIx = 0, eIx = sLen - 1; // Start and end index after trimming.
// Trim illegal chars from start
while (sIx < eIx && IA[sArr[sIx] & 0xff] < 0)
sIx++;
// Trim illegal chars from end
while (eIx > 0 && IA[sArr[eIx] & 0xff] < 0)
eIx--;
// get the padding count (=) (0, 1 or 2)
int pad = sArr[eIx] == '=' ? (sArr[eIx - 1] == '=' ? 2 : 1) : 0; // Count '=' at end.
int cCnt = eIx - sIx + 1; // Content count including possible separators
int sepCnt = sLen > 76 ? (sArr[76] == '\r' ? cCnt / 78 : 0) << 1 : 0;
int len = ((cCnt - sepCnt) * 6 >> 3) - pad; // The number of decoded bytes
byte[] dArr = new byte[len]; // Preallocate byte[] of exact length
// Decode all but the last 0 - 2 bytes.
int d = 0;
for (int cc = 0, eLen = (len / 3) * 3; d < eLen;) {
// Assemble three bytes into an int from four "valid" characters.
int i = IA[sArr[sIx++]] << 18 | IA[sArr[sIx++]] << 12 | IA[sArr[sIx++]] << 6 | IA[sArr[sIx++]];
// Add the bytes
dArr[d++] = (byte) (i >> 16);
dArr[d++] = (byte) (i >> 8);
dArr[d++] = (byte) i;
// If line separator, jump over it.
if (sepCnt > 0 && ++cc == 19) {
sIx += 2;
cc = 0;
}
}
if (d < len) {
// Decode last 1-3 bytes (incl '=') into 1-3 bytes
int i = 0;
for (int j = 0; sIx <= eIx - pad; j++)
i |= IA[sArr[sIx++]] << (18 - j * 6);
for (int r = 16; d < len; r -= 8)
dArr[d++] = (byte) (i >> r);
}
return dArr;
}
// ****************************************************************************************
// * String version
// ****************************************************************************************
/** Encodes a raw byte array into a BASE64 <code>String</code> representation i accordance with RFC 2045.
* @param sArr The bytes to convert. If <code>null</code> or length 0 an empty array will be returned.
* @param lineSep Optional "\r\n" after 76 characters, unless end of file.<br>
* No line separator will be in breach of RFC 2045 which specifies max 76 per line but will be a
* little faster.
* @return A BASE64 encoded array. Never <code>null</code>.
*/
public final static String encodeToString(byte[] sArr, boolean lineSep)
{
// Reuse char[] since we can't create a String incrementally anyway and StringBuffer/Builder would be slower.
return new String(encodeToChar(sArr, lineSep));
}
/** Decodes a BASE64 encoded <code>String</code>. All illegal characters will be ignored and can handle both strings with
* and without line separators.<br>
* <b>Note!</b> It can be up to about 2x the speed to call <code>decode(str.toCharArray())</code> instead. That
* will create a temporary array though. This version will use <code>str.charAt(i)</code> to iterate the string.
* @param str The source string. <code>null</code> or length 0 will return an empty array.
* @return The decoded array of bytes. May be of length 0. Will be <code>null</code> if the legal characters
* (including '=') isn't divideable by 4. (I.e. definitely corrupted).
*/
public final static byte[] decode(String str)
{
// Check special case
int sLen = str != null ? str.length() : 0;
if (sLen == 0)
return new byte[0];
// Count illegal characters (including '\r', '\n') to know what size the returned array will be,
// so we don't have to reallocate & copy it later.
int sepCnt = 0; // Number of separator characters. (Actually illegal characters, but that's a bonus...)
for (int i = 0; i < sLen; i++) // If input is "pure" (I.e. no line separators or illegal chars) base64 this loop can be commented out.
if (IA[str.charAt(i)] < 0)
sepCnt++;
// Check so that legal chars (including '=') are evenly divideable by 4 as specified in RFC 2045.
if ((sLen - sepCnt) % 4 != 0)
return null;
// Count '=' at end
int pad = 0;
for (int i = sLen; i > 1 && IA[str.charAt(--i)] <= 0;)
if (str.charAt(i) == '=')
pad++;
int len = ((sLen - sepCnt) * 6 >> 3) - pad;
byte[] dArr = new byte[len]; // Preallocate byte[] of exact length
for (int s = 0, d = 0; d < len;) {
// Assemble three bytes into an int from four "valid" characters.
int i = 0;
for (int j = 0; j < 4; j++) { // j only increased if a valid char was found.
int c = IA[str.charAt(s++)];
if (c >= 0)
i |= c << (18 - j * 6);
else
j--;
}
// Add the bytes
dArr[d++] = (byte) (i >> 16);
if (d < len) {
dArr[d++]= (byte) (i >> 8);
if (d < len)
dArr[d++] = (byte) i;
}
}
return dArr;
}
/** Decodes a BASE64 encoded string that is known to be resonably well formatted. The method is about twice as
* fast as {@link #decode(String)}. The preconditions are:<br>
* + The array must have a line length of 76 chars OR no line separators at all (one line).<br>
* + Line separator must be "\r\n", as specified in RFC 2045
* + The array must not contain illegal characters within the encoded string<br>
* + The array CAN have illegal characters at the beginning and end, those will be dealt with appropriately.<br>
* @param s The source string. Length 0 will return an empty array. <code>null</code> will throw an exception.
* @return The decoded array of bytes. May be of length 0.
*/
public final static byte[] decodeFast(String s)
{
// Check special case
int sLen = s.length();
if (sLen == 0)
return new byte[0];
int sIx = 0, eIx = sLen - 1; // Start and end index after trimming.
// Trim illegal chars from start
while (sIx < eIx && IA[s.charAt(sIx) & 0xff] < 0)
sIx++;
// Trim illegal chars from end
while (eIx > 0 && IA[s.charAt(eIx) & 0xff] < 0)
eIx--;
// get the padding count (=) (0, 1 or 2)
int pad = s.charAt(eIx) == '=' ? (s.charAt(eIx - 1) == '=' ? 2 : 1) : 0; // Count '=' at end.
int cCnt = eIx - sIx + 1; // Content count including possible separators
int sepCnt = sLen > 76 ? (s.charAt(76) == '\r' ? cCnt / 78 : 0) << 1 : 0;
int len = ((cCnt - sepCnt) * 6 >> 3) - pad; // The number of decoded bytes
byte[] dArr = new byte[len]; // Preallocate byte[] of exact length
// Decode all but the last 0 - 2 bytes.
int d = 0;
for (int cc = 0, eLen = (len / 3) * 3; d < eLen;) {
// Assemble three bytes into an int from four "valid" characters.
int i = IA[s.charAt(sIx++)] << 18 | IA[s.charAt(sIx++)] << 12 | IA[s.charAt(sIx++)] << 6 | IA[s.charAt(sIx++)];
// Add the bytes
dArr[d++] = (byte) (i >> 16);
dArr[d++] = (byte) (i >> 8);
dArr[d++] = (byte) i;
// If line separator, jump over it.
if (sepCnt > 0 && ++cc == 19) {
sIx += 2;
cc = 0;
}
}
if (d < len) {
// Decode last 1-3 bytes (incl '=') into 1-3 bytes
int i = 0;
for (int j = 0; sIx <= eIx - pad; j++)
i |= IA[s.charAt(sIx++)] << (18 - j * 6);
for (int r = 16; d < len; r -= 8)
dArr[d++] = (byte) (i >> r);
}
return dArr;
}
}