-
Notifications
You must be signed in to change notification settings - Fork 43
/
Copy pathmain_qm9.py
307 lines (266 loc) · 13.6 KB
/
main_qm9.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
# Rdkit import should be first, do not move it
try:
from rdkit import Chem
except ModuleNotFoundError:
pass
import copy
import utils
import argparse
import wandb
from configs.datasets_config import get_dataset_info
from os.path import join
from qm9 import dataset
from qm9.models import get_optim, get_model, get_autoencoder, get_latent_diffusion
from equivariant_diffusion import en_diffusion
from equivariant_diffusion.utils import assert_correctly_masked
from equivariant_diffusion import utils as flow_utils
import torch
import time
import pickle
from qm9.utils import prepare_context, compute_mean_mad
from train_test import train_epoch, test, analyze_and_save
parser = argparse.ArgumentParser(description='E3Diffusion')
parser.add_argument('--exp_name', type=str, default='debug_10')
# Latent Diffusion args
parser.add_argument('--train_diffusion', action='store_true',
help='Train second stage LatentDiffusionModel model')
parser.add_argument('--ae_path', type=str, default=None,
help='Specify first stage model path')
parser.add_argument('--trainable_ae', action='store_true',
help='Train first stage AutoEncoder model')
# VAE args
parser.add_argument('--latent_nf', type=int, default=4,
help='number of latent features')
parser.add_argument('--kl_weight', type=float, default=0.01,
help='weight of KL term in ELBO')
parser.add_argument('--model', type=str, default='egnn_dynamics',
help='our_dynamics | schnet | simple_dynamics | '
'kernel_dynamics | egnn_dynamics |gnn_dynamics')
parser.add_argument('--probabilistic_model', type=str, default='diffusion',
help='diffusion')
# Training complexity is O(1) (unaffected), but sampling complexity is O(steps).
parser.add_argument('--diffusion_steps', type=int, default=500)
parser.add_argument('--diffusion_noise_schedule', type=str, default='polynomial_2',
help='learned, cosine')
parser.add_argument('--diffusion_noise_precision', type=float, default=1e-5,
)
parser.add_argument('--diffusion_loss_type', type=str, default='l2',
help='vlb, l2')
parser.add_argument('--n_epochs', type=int, default=200)
parser.add_argument('--batch_size', type=int, default=128)
parser.add_argument('--lr', type=float, default=2e-4)
parser.add_argument('--brute_force', type=eval, default=False,
help='True | False')
parser.add_argument('--actnorm', type=eval, default=True,
help='True | False')
parser.add_argument('--break_train_epoch', type=eval, default=False,
help='True | False')
parser.add_argument('--dp', type=eval, default=True,
help='True | False')
parser.add_argument('--condition_time', type=eval, default=True,
help='True | False')
parser.add_argument('--clip_grad', type=eval, default=True,
help='True | False')
parser.add_argument('--trace', type=str, default='hutch',
help='hutch | exact')
# EGNN args -->
parser.add_argument('--n_layers', type=int, default=6,
help='number of layers')
parser.add_argument('--inv_sublayers', type=int, default=1,
help='number of layers')
parser.add_argument('--nf', type=int, default=128,
help='number of layers')
parser.add_argument('--tanh', type=eval, default=True,
help='use tanh in the coord_mlp')
parser.add_argument('--attention', type=eval, default=True,
help='use attention in the EGNN')
parser.add_argument('--norm_constant', type=float, default=1,
help='diff/(|diff| + norm_constant)')
parser.add_argument('--sin_embedding', type=eval, default=False,
help='whether using or not the sin embedding')
# <-- EGNN args
parser.add_argument('--ode_regularization', type=float, default=1e-3)
parser.add_argument('--dataset', type=str, default='qm9',
help='qm9 | qm9_second_half (train only on the last 50K samples of the training dataset)')
parser.add_argument('--datadir', type=str, default='qm9/temp',
help='qm9 directory')
parser.add_argument('--filter_n_atoms', type=int, default=None,
help='When set to an integer value, QM9 will only contain molecules of that amount of atoms')
parser.add_argument('--dequantization', type=str, default='argmax_variational',
help='uniform | variational | argmax_variational | deterministic')
parser.add_argument('--n_report_steps', type=int, default=1)
parser.add_argument('--wandb_usr', type=str)
parser.add_argument('--no_wandb', action='store_true', help='Disable wandb')
parser.add_argument('--online', type=bool, default=True, help='True = wandb online -- False = wandb offline')
parser.add_argument('--no-cuda', action='store_true', default=False,
help='enables CUDA training')
parser.add_argument('--save_model', type=eval, default=True,
help='save model')
parser.add_argument('--generate_epochs', type=int, default=1,
help='save model')
parser.add_argument('--num_workers', type=int, default=0, help='Number of worker for the dataloader')
parser.add_argument('--test_epochs', type=int, default=10)
parser.add_argument('--data_augmentation', type=eval, default=False, help='use attention in the EGNN')
parser.add_argument("--conditioning", nargs='+', default=[],
help='arguments : homo | lumo | alpha | gap | mu | Cv' )
parser.add_argument('--resume', type=str, default=None,
help='')
parser.add_argument('--start_epoch', type=int, default=0,
help='')
parser.add_argument('--ema_decay', type=float, default=0.999,
help='Amount of EMA decay, 0 means off. A reasonable value'
' is 0.999.')
parser.add_argument('--augment_noise', type=float, default=0)
parser.add_argument('--n_stability_samples', type=int, default=500,
help='Number of samples to compute the stability')
parser.add_argument('--normalize_factors', type=eval, default=[1, 4, 1],
help='normalize factors for [x, categorical, integer]')
parser.add_argument('--remove_h', action='store_true')
parser.add_argument('--include_charges', type=eval, default=True,
help='include atom charge or not')
parser.add_argument('--visualize_every_batch', type=int, default=1e8,
help="Can be used to visualize multiple times per epoch")
parser.add_argument('--normalization_factor', type=float, default=1,
help="Normalize the sum aggregation of EGNN")
parser.add_argument('--aggregation_method', type=str, default='sum',
help='"sum" or "mean"')
args = parser.parse_args()
dataset_info = get_dataset_info(args.dataset, args.remove_h)
atom_encoder = dataset_info['atom_encoder']
atom_decoder = dataset_info['atom_decoder']
# args, unparsed_args = parser.parse_known_args()
args.wandb_usr = utils.get_wandb_username(args.wandb_usr)
args.cuda = not args.no_cuda and torch.cuda.is_available()
device = torch.device("cuda" if args.cuda else "cpu")
dtype = torch.float32
if args.resume is not None:
exp_name = args.exp_name + '_resume'
start_epoch = args.start_epoch
resume = args.resume
wandb_usr = args.wandb_usr
normalization_factor = args.normalization_factor
aggregation_method = args.aggregation_method
with open(join(args.resume, 'args.pickle'), 'rb') as f:
args = pickle.load(f)
args.resume = resume
args.break_train_epoch = False
args.exp_name = exp_name
args.start_epoch = start_epoch
args.wandb_usr = wandb_usr
# Careful with this -->
if not hasattr(args, 'normalization_factor'):
args.normalization_factor = normalization_factor
if not hasattr(args, 'aggregation_method'):
args.aggregation_method = aggregation_method
print(args)
utils.create_folders(args)
# print(args)
# Wandb config
if args.no_wandb:
mode = 'disabled'
else:
mode = 'online' if args.online else 'offline'
kwargs = {'entity': args.wandb_usr, 'name': args.exp_name, 'project': 'e3_diffusion_qm9', 'config': args,
'settings': wandb.Settings(_disable_stats=True), 'reinit': True, 'mode': mode}
wandb.init(**kwargs)
wandb.save('*.txt')
# Retrieve QM9 dataloaders
dataloaders, charge_scale = dataset.retrieve_dataloaders(args)
data_dummy = next(iter(dataloaders['train']))
if len(args.conditioning) > 0:
print(f'Conditioning on {args.conditioning}')
property_norms = compute_mean_mad(dataloaders, args.conditioning, args.dataset)
context_dummy = prepare_context(args.conditioning, data_dummy, property_norms)
context_node_nf = context_dummy.size(2)
else:
context_node_nf = 0
property_norms = None
args.context_node_nf = context_node_nf
# Create Latent Diffusion Model or Audoencoder
if args.train_diffusion:
model, nodes_dist, prop_dist = get_latent_diffusion(args, device, dataset_info, dataloaders['train'])
else:
model, nodes_dist, prop_dist = get_autoencoder(args, device, dataset_info, dataloaders['train'])
if prop_dist is not None:
prop_dist.set_normalizer(property_norms)
model = model.to(device)
optim = get_optim(args, model)
# print(model)
gradnorm_queue = utils.Queue()
gradnorm_queue.add(3000) # Add large value that will be flushed.
def check_mask_correct(variables, node_mask):
for variable in variables:
if len(variable) > 0:
assert_correctly_masked(variable, node_mask)
def main():
if args.resume is not None:
flow_state_dict = torch.load(join(args.resume, 'flow.npy'))
optim_state_dict = torch.load(join(args.resume, 'optim.npy'))
model.load_state_dict(flow_state_dict)
optim.load_state_dict(optim_state_dict)
# Initialize dataparallel if enabled and possible.
if args.dp and torch.cuda.device_count() > 1:
print(f'Training using {torch.cuda.device_count()} GPUs')
model_dp = torch.nn.DataParallel(model.cpu())
model_dp = model_dp.cuda()
else:
model_dp = model
# Initialize model copy for exponential moving average of params.
if args.ema_decay > 0:
model_ema = copy.deepcopy(model)
ema = flow_utils.EMA(args.ema_decay)
if args.dp and torch.cuda.device_count() > 1:
model_ema_dp = torch.nn.DataParallel(model_ema)
else:
model_ema_dp = model_ema
else:
ema = None
model_ema = model
model_ema_dp = model_dp
best_nll_val = 1e8
best_nll_test = 1e8
for epoch in range(args.start_epoch, args.n_epochs):
start_epoch = time.time()
train_epoch(args=args, loader=dataloaders['train'], epoch=epoch, model=model, model_dp=model_dp,
model_ema=model_ema, ema=ema, device=device, dtype=dtype, property_norms=property_norms,
nodes_dist=nodes_dist, dataset_info=dataset_info,
gradnorm_queue=gradnorm_queue, optim=optim, prop_dist=prop_dist)
print(f"Epoch took {time.time() - start_epoch:.1f} seconds.")
if epoch % args.test_epochs == 0:
if isinstance(model, en_diffusion.EnVariationalDiffusion):
wandb.log(model.log_info(), commit=True)
if not args.break_train_epoch and args.train_diffusion:
analyze_and_save(args=args, epoch=epoch, model_sample=model_ema, nodes_dist=nodes_dist,
dataset_info=dataset_info, device=device,
prop_dist=prop_dist, n_samples=args.n_stability_samples)
nll_val = test(args=args, loader=dataloaders['valid'], epoch=epoch, eval_model=model_ema_dp,
partition='Val', device=device, dtype=dtype, nodes_dist=nodes_dist,
property_norms=property_norms)
nll_test = test(args=args, loader=dataloaders['test'], epoch=epoch, eval_model=model_ema_dp,
partition='Test', device=device, dtype=dtype,
nodes_dist=nodes_dist, property_norms=property_norms)
if nll_val < best_nll_val:
best_nll_val = nll_val
best_nll_test = nll_test
if args.save_model:
args.current_epoch = epoch + 1
utils.save_model(optim, 'outputs/%s/optim.npy' % args.exp_name)
utils.save_model(model, 'outputs/%s/generative_model.npy' % args.exp_name)
if args.ema_decay > 0:
utils.save_model(model_ema, 'outputs/%s/generative_model_ema.npy' % args.exp_name)
with open('outputs/%s/args.pickle' % args.exp_name, 'wb') as f:
pickle.dump(args, f)
if args.save_model:
utils.save_model(optim, 'outputs/%s/optim_%d.npy' % (args.exp_name, epoch))
utils.save_model(model, 'outputs/%s/generative_model_%d.npy' % (args.exp_name, epoch))
if args.ema_decay > 0:
utils.save_model(model_ema, 'outputs/%s/generative_model_ema_%d.npy' % (args.exp_name, epoch))
with open('outputs/%s/args_%d.pickle' % (args.exp_name, epoch), 'wb') as f:
pickle.dump(args, f)
print('Val loss: %.4f \t Test loss: %.4f' % (nll_val, nll_test))
print('Best val loss: %.4f \t Best test loss: %.4f' % (best_nll_val, best_nll_test))
wandb.log({"Val loss ": nll_val}, commit=True)
wandb.log({"Test loss ": nll_test}, commit=True)
wandb.log({"Best cross-validated test loss ": best_nll_test}, commit=True)
if __name__ == "__main__":
main()