-
Notifications
You must be signed in to change notification settings - Fork 0
/
basic_geometry.h
692 lines (575 loc) · 17.1 KB
/
basic_geometry.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
// Copyright (c) 2021 Mathema GmbH
// SPDX-License-Identifier: BSD-3-Clause
// Author: Günter Woigk (Kio!)
// Copyright (c) 2021 [email protected]
// BSD 2-clause license
#pragma once
#include <cmath>
#include <ostream>
#include "cdefs.h"
/*
* Template for Data Type to Represent a Distance in 2-dimensional Space.
*/
template<typename T>
struct TDist
{
T dx = 0, dy = 0;
// Default c'tor: create Dist with dx = dy = 0
TDist(){}
// c'tor with initial values
TDist (T dx, T dy) : dx(dx), dy(dy) {}
// Calculate Length
T length() const noexcept { return sqrt(dx*dx+dy*dy); } // <cmath>
// Calculate direction:
T direction() const noexcept { return atan(dy/dx); }
// normalize to length 1:
TDist normalized () { return TDist(*this) / length(); }
// Add two Distances
TDist& operator+= (const TDist& q) { dx+=q.dx; dy+=q.dy; return *this; }
TDist operator+ (TDist q) const { return q += *this; }
TDist& operator-= (const TDist& q) { dx-=q.dx; dy-=q.dy; return *this; }
TDist operator- (const TDist& q) const { return TDist{dx-q.dx,dy-q.dy}; }
// Multiply Distance with Factor.
TDist& operator*= (T f) { dx*=f; dy*=f; return *this; }
TDist operator* (T f) const { return TDist{dx*f,dy*f}; }
// Divide Distance by Divisor.
TDist& operator/= (T f) { dx/=f; dy/=f; return *this; }
TDist operator/ (T d) const { return TDist{dx/d,dy/d}; }
// Compare two distances for Equality.
friend bool operator== (const TDist& lhs, const TDist& rhs)
{
return lhs.dx == rhs.dx && lhs.dy == rhs.dy;
}
friend bool operator!= (const TDist& lhs, const TDist& rhs)
{
return lhs.dx != rhs.dx || lhs.dy != rhs.dy;
}
TDist& rotate(T rad) // CCW
{
const T sinus = sin(rad);
const T cosin = cos(rad);
const T x = cosin * dx - sinus * dy;
const T y = cosin * dy + sinus * dx;
dx = x;
dy = y;
return *this;
}
TDist& rotate(T sinus, T cosin)
{
const T x = cosin * dx - sinus * dy;
const T y = cosin * dy + sinus * dx;
dx = x;
dy = y;
return *this;
}
};
/*
* Template for Data Type to Represent a Point in 2-dimensional Space.
*/
template<typename T>
struct TPoint
{
T x = 0, y = 0;
// Default c'tor: x = y = 0.
TPoint(){}
// Create point with initial values.
TPoint(T x, T y) : x(x), y(y) {}
// Create point from another point with different underlying type.
template<typename Q>
explicit TPoint(const Q &q) : x(q.x), y(q.y) {}
// Move Point by Distance: add Distance to Point.
TPoint operator+ (const TDist<T> &d) const
{
return TPoint(x + d.dx, y + d.dy);
}
TPoint& operator+= (const TDist<T> &d)
{
x += d.dx;
y += d.dy;
return *this;
}
// Move Point by Distance: subtract Distance from Point.
TPoint operator- (const TDist<T>& d) const
{
return TPoint(x - d.dx, y - d.dy);
}
TPoint& operator-= (const TDist<T> &d)
{
x -= d.dx;
y -= d.dy;
return *this;
}
// Calculate Distance between 2 Points.
TDist<T> operator- (const TPoint &d) const
{
return TDist<T>(x - d.x, y - d.y);
}
// Multiply Point with Factor.
// This scales the Image tho which this Point belongs
// by this factor with the origin as the center.
TPoint operator* (T a) const
{
return TPoint(x * a, y * a);
}
TPoint& operator*= (T a)
{
x *= a;
y *= a;
return *this;
}
// Divide Point by Divisor.
// This scales the Image tho which this Point belongs
// by this factor with the origin as the center.
TPoint operator/ (T a) const
{
return TPoint(x / a, y / a);
}
TPoint& operator/= (T a)
{
x /= a;
y /= a;
return *this;
}
// Multiply Point by a Power of 2.
// Evtl. this is only possible for Points based on integer types.
// Used to convert int16 to int32 based Points.
TPoint operator<< (int n) const
{
return TPoint(x << n, y << n);
}
// Divide Point by a Power of 2.
// Evtl. this is only possible for Points based on integer types.
// Used to convert int32 to int16 based Points.
TPoint operator>> (int n) const
{
return TPoint(x >> n, y >> n);
}
// Compare 2 Points for non-equality
bool operator!= (const TPoint& q) const noexcept
{
return x != q.x || y != q.y;
}
// Compare 2 Points for Equality
friend bool operator== (const TPoint& lhs, const TPoint& rhs)
{
return lhs.x == rhs.x && lhs.y == rhs.y;
}
TPoint& rotate_cw (T sin, T cos)
{
T px = x * cos + y * sin;
T py = y * cos - x * sin;
x = px;
y = py;
return *this;
}
TPoint& rotate_ccw (T sin, T cos)
{
T px = x * cos - y * sin;
T py = y * cos + x * sin;
x = px;
y = py;
return *this;
}
};
/*
* Template for Data Type to Represent a Rectangle in 2-dim Space.
*/
template<typename T>
struct TRect
{
T top = 0, left = 0, bottom = 0, right = 0;
// Default c'tor: create empty Rect with all corners set to 0,0
TRect(){}
// Create Rect with initial values from 4 Coordinates.
TRect(T top, T left, T bottom, T right) :
top(top), left(left), bottom(bottom), right(right) {}
// Create Rect with initial values from 2 Points.
TRect(const TPoint<T> &topleft, const TPoint<T> &bottomright) :
top(topleft.y), left(topleft.x), bottom(bottomright.y), right(bottomright.x) {}
// Move Rect by adding a Dist.
TRect operator+ (const TDist<T> &d) const noexcept
{
return TRect(top + d.dy, left + d.dx, bottom + d.dy, right + d.dx);
}
// Move Rect by subtracting a Dist.
TRect operator- (const TDist<T> &d) const noexcept
{
return TRect(top - d.dy, left - d.dx, bottom - d.dy, right - d.dx);
}
// Scale Rect by a Factor.
// Scales the Rect by this factor with the origin as the center.
TRect operator* (T f) const noexcept // scaled from origin
{
return TRect( top * f, left * f, bottom * f, right * f);
}
// Calculate the Bounding box of two Rects.
void uniteWith (const TRect& q)
{
if (q.top > top) top = q.top;
if (q.bottom < bottom) bottom = q.bottom;
if (q.left < left) left = q.left;
if (q.right > right) right = q.right;
}
// Compare 2 Rects for Equality
friend bool operator==(const TRect& lhs, const TRect& rhs)
{
return lhs.left == rhs.left && lhs.top == rhs.top &&
lhs.right == rhs.right && lhs.bottom == rhs.bottom;
}
// Get Width of this Rect
T width() const noexcept { return right - left; }
// Get Height of this Rect
T height() const noexcept { return top - bottom; }
// Get bottom-left Point of this Rect
TPoint<T> bottom_left() const noexcept { return TPoint<T>{left,bottom}; }
// Get bottom-right Point of this Rect
TPoint<T> bottom_right() const noexcept { return TPoint<T>{right,bottom}; }
// Get top-left Point of this Rect
TPoint<T> top_left() const noexcept { return TPoint<T>{left,top}; }
// Get top-right Point of this Rect
TPoint<T> top_right() const noexcept { return TPoint<T>{right,top}; }
// Get Center of this Rect
TPoint<T> center() const noexcept { return TPoint<T>{(left+right)/2,(bottom+top)/2}; }
// Test whether this Rect is empty.
// A Rect is non-empty if width and height are > 0.
bool isEmpty() const noexcept { return right <= left || top <= bottom; }
// Test whether this Rect fully encloses another Rect.
// @param q: the other Rect
bool encloses(const TRect& q) const noexcept
{
return left<=q.left && right>=q.right && bottom<=q.bottom && top>=q.top;
}
// Test whether a Point lies inside (or on an edge of) this Rect.
bool contains(const TPoint<T>& p) const noexcept
{
return left<=p.x && right>=p.x && bottom<=p.y && top>=p.y;
}
// Calculate the Union of this Rect and a Point.
// Grows the Rect so that it encloses the Point.
TRect unitedWith (const TPoint<T>& p) const noexcept
{
return TRect(max(top,p.y),min(left,p.x),min(bottom,p.y),max(right,p.x));
}
// Force a Point inside this Rect.
// If the Point is inside this Rect then it is returned unmodified.
// Else it is moved to the nearest boundary of this Rect.
TPoint<T> forcedInside(const TPoint<T>& p) const noexcept
{
return TPoint<T>(minmax(left,p.x,right),minmax(bottom,p.y,top));
}
// Grow this Rect so that it encloses the Point.
// Calculates the Union of this Rect and a Point.
// Note: there is also method @ref unitedWith() which does not modify this Rect
// but returns the resulting Rect.
void uniteWith (const TPoint<T>& p) noexcept
{
if (p.y > top) top = p.y;
if (p.y < bottom) bottom = p.y;
if (p.x < left) left = p.x;
if (p.x > right) right = p.x;
}
// Grow this Rect at all sides by a certain distance.
// If the Dist is negative then the Rect will shrink.
void grow (T d) noexcept { left-=d; right+=d; bottom-=d; top+=d; }
// Shrink this Rect at all sides by a certain distance.
// If the Dist is negative then the Rect will grow.
void shrink (T d) noexcept { grow(-d); }
};
template<typename T>
struct TTransformation
{
// A Transformation contains a 3 x 3 matrix:
//
// [ m11 m12 m13 ] [ fx sy px ]
// [ m21 m22 m23 ] = [ sx fy py ]
// [ m31 m32 m33 ] [ dx dy pz ]
//
// dx, dy: horizontal and vertical translation
// fx, fy: horizontal and vertical scaling
// sx, sy: horizontal and vertical shearing
// px, py: horizontal and vertical projection
// pz: additional projection factor.
// The coordinates are transformed using the following formula:
//
// x' = fx*x + sx*y + dx
// y' = fy*y + sy*x + dy
//
// if (is_projected)
// w' = px*x + py*y + pz
// x' /= w'
// y' /= w'
FLOAT fx=1, fy=1, sx=0, sy=0, dx=0, dy=0;
FLOAT px=0, py=0, pz=1;
bool is_projected = false; // must be last
TTransformation()=default;
TTransformation(T fx,T fy,T sx,T sy, T dx, T dy) : fx(fx),fy(fy),sx(sx),sy(sy),dx(dx),dy(dy){}
TTransformation(T fx,T fy,T sx,T sy, T dx, T dy,T px,T py,T pz=1) :
fx(fx),fy(fy),sx(sx),sy(sy),dx(dx),dy(dy),px(px),py(py),pz(pz),is_projected(px||py||pz!=1){}
// ==========================
// transform Point p
//
void transform (TPoint<T>& p)
{
T x = p.x;
T y = p.y;
p.x = fx*x + sx*y + dx;
p.y = fy*y + sy*x + dy;
if (is_projected)
{
T q = px*x + py*y + pz;
p.x /= q;
p.y /= q;
}
}
// ==========================
// return transformed Point p
//
TPoint<T> transformed (const TPoint<T>& p) const
{
T x = p.x;
T y = p.y;
TPoint<T> z { fx*x + sx*y + dx, fy*y + sy*x + dy };
return is_projected ? z / (px*x + py*y + pz) : z;
}
TTransformation& addTransformation (T fx1, T fy1, T sx1, T sy1, T dx1, T dy1)
{
// calculate a combined transformation where the supplied transformation t1 is applied first:
// dx = dx2 + dx1*fx2 + dy1*sx2 fx = fx1*fx2 + sy1*sx2 sx = sx1*fx2 + fy1*sx2
// dy = dy2 + dx1*sy2 + dy1*fy2 sy = fx1*sy2 + sy1*fy2 fy = sx1*sy2 + fy1*fy2
const T dx2=dx, dy2=dy, fx2=fx, fy2=fy, sx2=sx, sy2=sy;
const T dx = dx2 + dx1*fx2 + dy1*sx2;
const T dy = dy2 + dx1*sy2 + dy1*fy2;
const T fx = fx1*fx2 + sy1*sx2;
const T sy = fx1*sy2 + sy1*fy2;
const T sx = sx1*fx2 + fy1*sx2;
const T fy = sx1*sy2 + fy1*fy2;
new(this) TTransformation(fx,fy,sx,sy,dx,dy);
return *this;
}
TTransformation& addTransformation (const TTransformation& t)
{
// calculate a combined transformation where the supplied transformation t1 is applied first:
return addTransformation(t.fx,t.fy,t.sx,t.sy,t.dx,t.dy);
}
TTransformation& operator+= (const TTransformation& t)
{
// calculate a combined transformation where the supplied transformation t1 is applied first:
return addTransformation(t.fx,t.fy,t.sx,t.sy,t.dx,t.dy);
}
TTransformation operator+ (const TTransformation& t)
{
// calculate a combined transformation where the supplied transformation t1 is applied first:
return TTransformation(*this) += t;
}
TTransformation& invert()
{
// quot = 1 / (fy*fx - sx*sy)
// dx' = (dy*sx - dx*fy)*quot fx' = fy*quot sx' = -sx*quot
// dy' = (dx*sy - dy*fx)*quot sy' = -sy*quot fy' = fx*quot
// check: (alt. calc.)
// quot = (sy*sx - fx*fy)
// dx' = (dx*fy-dy*sx)/quot fx' = -fy/quot sx' = sx/quot
// dy' = (dy*fx-dx*sy)/quot sy' = sy/quot fy' = -fx/quot
const T dx=this->dx, dy=this->dy, fx=this->fx, fy=this->fy, sx=this->sx, sy=this->sy;
const T quot = 1 / (fy*fx - sx*sy);
this->dx = (dy*sx - dx*fy)*quot;
this->dy = (dx*sy - dy*fx)*quot;
this->fx = fy*quot;
this->fy = fx*quot;
this->sx = -sx*quot;
this->sy = -sy*quot;
is_projected = false; // can't handle (yet?)
return *this;
}
TTransformation inverted()
{
return TTransformation(*this).invert();
}
// NOTE:
// If Y-axis is pointing up, then Rotation is CCW
// If Y-axis is pointing down, then Rotation is CW
TTransformation& setScale (T scale)
{
if (sx) sx *= scale / fx; fx = scale;
if (sy) sy *= scale / fy; fy = scale;
return *this;
}
TTransformation& scale (T scale)
{
if (sx) sx *= scale; fx *= scale;
if (sy) sy *= scale; fy *= scale;
return *this;
}
TTransformation scaled (T scale)
{
return TTransformation(*this).scale(scale);
}
TTransformation& setScale (T x, T y)
{
if (sx) sx *= x / fx; fx = x;
if (sy) sy *= y / fy; fy = y;
return *this;
}
TTransformation& scale (T x, T y)
{
if (sx) sx *= x; fx *= x;
if (sy) sy *= y; fy *= y;
return *this;
}
TTransformation scaled (T x, T y)
{
return TTransformation(*this).scale(x,y);
}
TTransformation& setRotation (T rad) // resets scale and shear
{
const T sinus = sin(rad);
const T cosin = cos(rad);
fx = cosin; sx = -sinus;
fy = cosin; sy = +sinus;
return *this;
}
TTransformation& rotate (T rad)
{
// Add rotation around the input origin
// not around the output origin of the Transformation
// => dx and dy are preserved and not rotated.
if (rad != 0)
{
const T sinus = sin(rad);
const T cosin = cos(rad);
const T fx2=fx, fy2=fy, sx2=sx, sy2=sy;
fx = cosin*fx2 + sinus*sx2;
sy = cosin*sy2 + sinus*fy2;
sx = cosin*sx2 - sinus*fx2;
fy = cosin*fy2 - sinus*sy2;
}
return *this;
}
TTransformation rotated (T rad)
{
return TTransformation(*this).rotate(rad);
}
TTransformation& setRotationAndScale (T rad, T scale) // resets shear
{
const T sinus = sin(rad) * scale;
const T cosin = cos(rad) * scale;
fx = cosin; sx = -sinus;
fy = cosin; sy = +sinus;
return *this;
}
TTransformation& setRotationAndScale (T rad, T x, T y) // resets shear
{
const T sinus = sin(rad);
const T cosin = cos(rad);
fx = x*cosin; sx = -x*sinus;
fy = y*cosin; sy = +y*sinus;
return *this;
}
TTransformation& rotateAndScale (T rad, T scale)
{
const T sinus = sin(rad) * scale;
const T cosin = cos(rad) * scale;
const T fx = cosin, sx = -sinus, dx = 0;
const T fy = cosin, sy = +sinus, dy = 0;
operator+=(TTransformation(fx,fy,sx,sy,dx,dy)); // TODO: optimize
return *this;
}
TTransformation& rotateAndScale (T rad, T x, T y)
{
const T sinus = sin(rad);
const T cosin = cos(rad);
const T fx = x*cosin, sx = -x*sinus, dx = 0;
const T fy = y*cosin, sy = +y*sinus, dy = 0;
operator+=(TTransformation(fx,fy,sx,sy,dx,dy)); // TODO: optimize
return *this;
}
TTransformation rotatedAndScaled (T rad, T scale)
{
return TTransformation(*this).rotateAndScale(rad, scale);
}
TTransformation rotatedAndScaled (T rad, T x, T y)
{
return TTransformation(*this).rotateAndScale(rad,x,y);
}
TTransformation& setShear (T x, T y)
{
sx = x;
sy = y;
return *this;
}
TTransformation& shear (T x, T y)
{
operator += (TTransformation(1,1,x,y,0,0)); // TODO: optimize
return *this;
}
TTransformation sheared (T sx, T sy)
{
return TTransformation(*this).shear(sx,sy);
}
TTransformation& setOffset (T dx, T dy)
{
this->dx = dx;
this->dy = dy;
return *this;
}
TTransformation& setOffset (const TDist<T>& d)
{
dx = d.dx;
dy = d.dy;
return *this;
}
TTransformation& setOffset (const TPoint<T>& p)
{
dx = p.x;
dy = p.y;
return *this;
}
TTransformation& addOffset (T dx, T dy)
{
this->dx += dx;
this->dy += dy;
return *this;
}
TTransformation& addOffset (const TDist<T>& d)
{
dx += d.dx;
dy += d.dy;
return *this;
}
TTransformation& setProjection (T px, T py, T pz=1)
{
this->px=px;
this->py=py;
this->pz=pz;
is_projected = px||py||pz!=1;
return *this;
}
TTransformation& resetProjection ()
{
px = py = pz = 0;
is_projected = false;
return *this;
}
TTransformation& reset()
{
new(this) TTransformation();
return *this;
}
TTransformation& set (T fx, T fy, T sx, T sy, T dx, T dy)
{
new(this) TTransformation(fx,fy,sx,sy,dx,dy);
return *this;
}
TTransformation& set (T fx, T fy, T sx, T sy, T dx, T dy, T px, T py, T pz=1)
{
new(this) TTransformation(fx,fy,sx,sy,dx,dy,px,py,pz);
return *this;
}
};
typedef struct TPoint<FLOAT> Point;
typedef struct TDist<FLOAT> Dist;
typedef struct TRect<FLOAT> Rect;
typedef struct TTransformation<FLOAT> Transformation;
typedef struct TPoint<int32> IntPoint;
typedef struct TDist<int32> IntDist;
typedef struct TRect<int32> IntRect;