-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathautostereogram.py
204 lines (170 loc) · 7.02 KB
/
autostereogram.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
import numpy as np
import cv2
import os
import subprocess
def generate_autostereogram(depth_map, pattern, shift_factor=20, ):
"""
Generate autostereogram
:param depth_map: depth map image, if you don't have depth map image,
try using binarized image to substitute
:param pattern: background pattern image
:param shift_factor: number of pixels shifted
:return output
"""
height, width = depth_map.shape
pattern_height, pattern_width, channels = pattern.shape
# tile pattern by height to align with depth map
if pattern_height < height:
pattern = tile_image(pattern, height, pattern_width)
pattern_height = height
# copy pattern to the left region of output autostereogram
output = np.zeros((height, width, channels), dtype=np.uint8)
output[:, :pattern_width] = pattern
y_indices, x_indices = np.meshgrid(np.arange(height), np.arange(width), indexing="ij")
depth_prop = depth_map.astype(float) / 255
shift = (x_indices - pattern_width + depth_prop * shift_factor).astype(int)
# iterate through each column and apply the autostereogram algorithm
for x in range(pattern_width, width):
mask = shift[:, x] >= 0
output[mask, x] = output[y_indices[mask, x], shift[mask, x]]
return output
def tile_image(img, new_height, new_width):
"""
Tile image to the given new_height and new_width
:param new_height: height of tiled image
:param new_width: width of tiled image
:return output
"""
height, width, channels = img.shape
num_repeat_x = int(np.ceil(new_width / width))
num_repeat_y = int(np.ceil(new_height / height))
output = np.tile(img, (num_repeat_y, num_repeat_x, 1))[:new_height, :new_width]
return output
def generate_pattern(height, width):
"""
Generate random white noise pattern
In order to avoid the loss of high-frequency information due to compression,
an image of 1/2 of the given height and width is generated
and then resized to the given size
:param height: height of pattern
:param width: width of pattern
:return pattern
"""
pattern = np.random.rand(int(height / 2), int(width / 2))
pattern = cv2.resize(pattern, (int(width), int(height)))*255
pattern = np.dstack((pattern, pattern, pattern))
return pattern
# def generate_pattern(height, width, num_circles, radius_range):
# """
# Generate random circles with random color and radius
# """
# pattern = np.zeros((height, width, 3), dtype=np.uint8)
# pattern.fill(255)
# for i in range(int(num_circles)):
# x = np.random.randint(0, width-1)
# y = np.random.randint(0, height-1)
# r = np.random.randint(radius_range[0], radius_range[1])
# color = (np.random.randint(0, 255), np.random.randint(0, 255), np.random.randint(0, 255))
# cv2.circle(pattern, (x, y), r, color, -1, cv2.LINE_AA)
# return pattern
def asg_img(img_dir, output_dir, num_clips=8):
"""
Generate autostereogram image and save to .png
:param img_dir: input image file directory
:param output_dir: output image file directory
:param num_clips: the number of times the pattern is repeated
:return None
"""
file_name = os.path.basename(img_dir)
file_prefix = os.path.splitext(file_name)[0]
# read image as gray scale image
img = cv2.imread(img_dir, 0)
height, width = img.shape
pattern = generate_pattern(height, int(width / num_clips))
img_asg = generate_autostereogram(img, pattern)
cv2.imwrite(f'{output_dir}\\{file_prefix}_asg.png', img_asg)
return
def asg_video(video_dir, output_dir, num_clips=8, crf=25):
"""
Generate autostereogram video and save to .avi
:param img_dir: input image file directory
:param output_dir: output image file directory
:param num_clips: the number of times the pattern is repeated
:param crf: the quality of video, the smaller the better, but the size is larger
:return None
"""
print('reading video...')
video = cv2.VideoCapture(video_dir)
fps = video.get(cv2.CAP_PROP_FPS)
width = int(video.get(cv2.CAP_PROP_FRAME_WIDTH))
height = int(video.get(cv2.CAP_PROP_FRAME_HEIGHT))
video_name = os.path.splitext(os.path.basename(video_dir))[0]
output_dir = os.path.join(output_dir, f'{video_name}_asg_outputs')
if not os.path.exists(output_dir):
os.mkdir(output_dir)
print('autostereogram processing...')
# process and write to the folder frame by frame
i = 0
while True:
success, frame = video.read()
if not success:
break
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
pattern = generate_pattern(height, int(width / num_clips))
frame_asg = generate_autostereogram(frame, pattern)
frame_asg *= 255
cv2.imwrite(os.path.join(output_dir, f'{i}.png'), frame_asg)
i += 1
video.release()
print('ffmpeg from img to video...')
# call ffmpeg to stitch pictures into video, using h264 encoding
cmd = ['ffmpeg', '-r', f'{fps}', '-f', 'image2',
'-i', f'{output_dir}\\%d.png',
'-vcodec', 'libx264', '-crf', f'{crf}',
f'{output_dir}\\{video_name}_asg.avi']
subprocess.Popen(cmd)
print('autostereogram video generated.')
return
def binarize_image(img):
"""
Binarize image
:param img: input image
:return output: binarized image
"""
output = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
_, output = cv2.threshold(output, 128, 255, cv2.THRESH_BINARY)
return output
def binarize_video(video_dir, output_dir, crf=25):
"""
Binarize video
:param img: input image
:return output: binarized image
"""
print('reading video...')
video = cv2.VideoCapture(video_dir)
fps = video.get(cv2.CAP_PROP_FPS)
width = int(video.get(cv2.CAP_PROP_FRAME_WIDTH))
height = int(video.get(cv2.CAP_PROP_FRAME_HEIGHT))
video_name = os.path.splitext(os.path.basename(video_dir))[0]
output_dir = os.path.join(output_dir, f'{video_name}_binarized')
if not os.path.exists(output_dir):
os.mkdir(output_dir)
print('binarizing video...')
# process and write to the folder frame by frame
i = 0
while True:
success, frame = video.read()
if not success:
break
frame = binarize_image(frame)
cv2.imwrite(os.path.join(output_dir, f'{i}.png'), frame)
i += 1
video.release()
print('ffmpeg from img to video...')
# call ffmpeg to stitch pictures into video, using h264 encoding
cmd = ['ffmpeg', '-r', f'{fps}', '-f', 'image2',
'-i', f'{output_dir}\\%d.png',
'-vcodec', 'libx264', '-crf', f'{crf}',
f'{output_dir}\\{video_name}_binarized.avi']
subprocess.Popen(cmd)
print('binarize video complete.')