-
Notifications
You must be signed in to change notification settings - Fork 1
/
utils.py
788 lines (736 loc) · 35.5 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
#!python3
import os
import cooler
import pyBigWig
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import matplotlib.colors as colors
from matplotlib.ticker import MultipleLocator
from tqdm import tqdm
from scipy import sparse
from sklearn import metrics as metrics
def getBigwigFileList(pDirectory):
#returns a list of bigwig files in pDirectory
retList = []
for file in sorted(os.listdir(pDirectory)):
if file.endswith(".bigwig") or file.endswith("bigWig") or file.endswith(".bw"):
retList.append(pDirectory + file)
return retList
def getChromSizesFromBigwig(pBigwigFileName):
#returns the chrom sizes from a bigwig file in form of a dict
chromSizeDict = dict()
try:
bigwigFile = pyBigWig.open(pBigwigFileName)
chromSizeDict = bigwigFile.chroms()
for entry in chromSizeDict:
chromSizeDict[entry] = int(chromSizeDict[entry])
except Exception as e:
print(e)
return chromSizeDict
def getMatrixFromCooler(pCoolerFilePath, pChromNameStr):
#returns sparse csr matrix from cooler file for given chromosome name
sparseMatrix = None
binSizeInt = 0
try:
coolerMatrix = cooler.Cooler(pCoolerFilePath)
sparseMatrix = coolerMatrix.matrix(sparse=True,balance=False).fetch(pChromNameStr)
sparseMatrix = sparseMatrix.tocsr() #so it can be sliced later
binSizeInt = int(coolerMatrix.binsize)
except Exception as e:
print(e)
return sparseMatrix, binSizeInt
def getChromSizesFromCooler(pCoolerFilePath):
#get the sizes of the chromosomes present in a cooler matrix
chromSizes = dict()
try:
coolerMatrix = cooler.Cooler(pCoolerFilePath)
chromSizes = coolerMatrix.chromsizes.to_dict()
except Exception as e:
print(e)
return chromSizes
def binChromatinFactor(pBigwigFileName, pBinSizeInt, pChromStr, pChromSize=None):
#bin chromatin factor loaded from bigwig file pBigwigFileName with bin size pBinSizeInt for chromosome pChromStr
binArray = None
properFileType = False
try:
bigwigFile = pyBigWig.open(pBigwigFileName)
properFileType = bigwigFile.isBigWig()
except Exception as e:
print(e)
if properFileType:
chrom = pChromStr
if chrom not in bigwigFile.chroms():
msg = "Chromosome {:s} not present in bigwigfile {:s}"
msg = msg.format(chrom, pBigwigFileName)
raise SystemExit(msg)
#compute signal values (stats) over resolution-sized bins
if pChromSize is None:
chromsize = bigwigFile.chroms(chrom)
else:
chromsize = pChromSize
chromStartList = list(range(0,chromsize,pBinSizeInt))
chromEndList = list(range(pBinSizeInt,chromsize,pBinSizeInt))
chromEndList.append(chromsize)
mergeType = 'mean'
binArray = np.array(bigwigFile.stats(chrom, 0, chromsize, nBins=len(chromStartList), type=mergeType)).astype("float32")
nr_nan = np.count_nonzero(np.isnan(binArray))
nr_inf = np.count_nonzero(np.isinf(binArray))
if nr_inf != 0 or nr_nan != 0:
binArray = np.nan_to_num(binArray, nan=0.0, posinf=np.nanmax(binArray[binArray != np.inf]),neginf=0.0)
if nr_inf != 0:
msg_inf = "Warning: replaced {:d} infinity values in {:s} by 0/max. numeric value in data"
msg_inf = msg_inf.format(nr_inf, pBigwigFileName)
print(msg_inf)
if nr_nan != 0:
msg_nan = "Warning: replaced {:d} NANs in {:s} by 0."
msg_nan = msg_nan.format(nr_nan, pBigwigFileName)
print(msg_nan)
return binArray
def scaleArray(pArray):
'''
min-max scaling for numpy arrays and sparse csr matrices
Parameters:
pArray (np.ndarray or sparse.csr_matrix): array to scale
Returns:
array scaled to value range [0..1]
'''
if pArray is None or pArray.size == 0:
msg = "cannot normalize empty array"
print(msg)
return pArray
if pArray.max() - pArray.min() != 0:
normArray = (pArray - pArray.min()) / (pArray.max() - pArray.min())
elif pArray.max() > 0: #min = max >0
normArray = pArray / pArray.max()
else: #min=max <= 0
normArray = np.zeros_like(pArray)
return normArray
def showMatrix(pMatrix):
#test function to show matrices
#debug only, not for production use
print(pMatrix.max())
plotmatrix = pMatrix + 1
plt.matshow(plotmatrix, cmap="Reds", norm=colors.LogNorm())
plt.show()
def plotMatrix(pMatrix, pFilename, pTitle):
'''
helper function to plot dense numpy 2D matrices in logscale to a file
Parameters:
pMatrix (numpy.ndarray): The matrix to plot, must be 2D
pFilename (str): The filename for the plot, should have file extension .png, .pdf or .svg
pTitle (str): A title that will appear on the plot
Returns:
None
'''
if not isinstance(pMatrix, np.ndarray) \
or len(pMatrix.shape) != 2:
return
fig1, ax1 = plt.subplots()
cs = ax1.matshow(pMatrix, cmap="RdYlBu_r", norm=colors.LogNorm())
ax1.set_title(str(pTitle))
fig1.colorbar(cs)
fig1.savefig(pFilename)
plt.close(fig1)
del fig1, ax1
def plotLoss(pGeneratorLossValueLists, pDiscLossValueLists, pGeneratorLossNameList, pDiscLossNameList, pFilename, useLogscaleList=[False, False]):
#plot loss and validation loss over epoch numbers
fig1, ax1 = plt.subplots(figsize=(6,4.5))
nr_epochs = len(pGeneratorLossValueLists[0])
x_vals = np.arange(nr_epochs) + 1
for generatorLossVals, _ in zip(pGeneratorLossValueLists, pGeneratorLossNameList):
ax1.plot(x_vals, generatorLossVals)
ax1.set_title('model loss')
ax1.set_ylabel('generator loss')
ax1.set_xlabel('epoch')
if useLogscaleList[0]:
ax1.set_yscale('log')
ax2 = ax1.twinx()
for discLossVals, _ in zip(pDiscLossValueLists, pDiscLossNameList):
ax2.plot(x_vals, discLossVals, ":")
ax2.set_ylabel("discriminator loss")
if useLogscaleList[1]:
ax2.set_yscale('log')
locVal = 0
if nr_epochs <= 25:
locVal = 1
elif nr_epochs <= 50:
locVal = 5
elif nr_epochs <= 100:
locVal = 10
elif nr_epochs <= 500:
locVal = 50
elif nr_epochs <= 1000:
locVal = 100
elif nr_epochs <= 3000:
locVal = 500
elif nr_epochs <= 5000:
locVal = 600
else:
locVal = 1000
ax1.xaxis.set_major_locator(MultipleLocator(locVal))
ax1.grid(True, which="both")
if len(pGeneratorLossNameList) > 1:
ax1.legend(pGeneratorLossNameList, loc='upper right', title="Generator")
if len(pDiscLossNameList) > 1:
ax2.legend(pDiscLossNameList, loc="lower right", title="Discriminator")
fig1.tight_layout()
fig1.savefig(pFilename)
plt.close(fig1)
del fig1, ax1, ax2
def rebuildMatrix(pArrayOfTriangles, pWindowSize, pFlankingSize=None, pMaxDist=None, pStepsize=1):
#rebuilds the interaction matrix (a trapezoid along its diagonal)
#by taking the mean of all overlapping triangles
#returns an interaction matrix as a numpy ndarray
if pFlankingSize == None:
flankingSize = pWindowSize
else:
flankingSize = pFlankingSize
nr_matrices = pArrayOfTriangles.shape[0]
sum_matrix = np.zeros( (nr_matrices - 1 + (pWindowSize+2*flankingSize), nr_matrices - 1 + (pWindowSize+2*flankingSize)) )
count_matrix = np.zeros_like(sum_matrix,dtype=int)
mean_matrix = np.zeros_like(sum_matrix,dtype="float32")
if pMaxDist is None or pMaxDist == pWindowSize:
stepsize = 1
else:
#trapezoid, compute the stepsize such that the overlap is minimized
stepsize = max(pStepsize, 1)
stepsize = min(stepsize, pWindowSize - pMaxDist + 1) #the largest possible value such that predictions are available for all bins
#sum up all the triangular or trapezoidal matrices, shifting by one along the diag. for each matrix
for i in tqdm(range(0, nr_matrices, stepsize), desc="rebuilding matrix"):
j = i + flankingSize
k = j + pWindowSize
if pMaxDist is None or pMaxDist == pWindowSize: #triangles
sum_matrix[j:k,j:k][np.triu_indices(pWindowSize)] += pArrayOfTriangles[i]
else: #trapezoids
sum_matrix[j:k,j:k][np.mask_indices(pWindowSize, maskFunc, pMaxDist)] += pArrayOfTriangles[i]
count_matrix[j:k,j:k] += np.ones((pWindowSize,pWindowSize),dtype=int) #keep track of how many matrices have contributed to each position
mean_matrix[count_matrix!=0] = sum_matrix[count_matrix!=0] / count_matrix[count_matrix!=0]
return mean_matrix
def writeCooler(pMatrixList, pBinSizeInt, pOutfile, pChromosomeList, pChromSizeList=None, pMetadata=None):
#takes a matrix as numpy array or sparse matrix and writes a cooler matrix from it
#modified from study project such that multiple chroms can be written to a single matrix
def pixelGenerator(pMatrixList, pOffsetList):
'''
yields pixel dataframes per Matrix
Parameters:
pMatrixList: list of matrices as np.ndarray or sparse.csr_matrix
pOffsetList: list of integers that specify the offset into the bins dataframe
Yields:
pixels: pixels dataframe for all Hi-C matrices in the input list
'''
for matrix, offset in zip(pMatrixList, pOffsetList):
#create the pixels for cooler
triu_Indices = np.triu_indices(matrix.shape[0])
pixels_tmp = pd.DataFrame(columns=['bin1_id','bin2_id','count'])
pixels_tmp['bin1_id'] = (triu_Indices[0] + offset).astype("uint32")
pixels_tmp['bin2_id'] = (triu_Indices[1] + offset).astype("uint32")
readCounts = matrix[triu_Indices]
if sparse.isspmatrix_csr(matrix): #for sparse matrices, slicing is different
readCounts = np.transpose(readCounts)
pixels_tmp['count'] = np.float64(readCounts)
pixels_tmp.sort_values(by=['bin1_id','bin2_id'],inplace=True)
yield pixels_tmp
if pMatrixList is None or pChromosomeList is None or pBinSizeInt is None or pOutfile is None:
msg = "input empty. No cooler matrix written"
print(msg)
return
if len(pMatrixList) != len(pChromosomeList):
msg = "number of input arrays and chromosomes must be the same"
print(msg)
return
if pChromSizeList is not None and len(pChromSizeList) != len(pChromosomeList):
msg = "if chrom sizes are given, they must be provided for ALL chromosomes"
print(msg)
return
bins = pd.DataFrame(columns=['chrom','start','end'])
offsetList = [0]
for i, (matrix, chrom) in enumerate(zip(pMatrixList,pChromosomeList)):
#the chromosome size may not be integer-divisible by the bin size
#so specifying the real chrom size is possible, but the
#number of bins must still correspond to the matrix size
chromSizeInt = int(matrix.shape[0] * pBinSizeInt)
if pChromSizeList is not None \
and pChromSizeList[i] is not None \
and pChromSizeList[i] > (chromSizeInt - pBinSizeInt)\
and pChromSizeList[i] < chromSizeInt:
chromSizeInt = int(pChromSizeList[0])
#create the bins for cooler
bins_tmp = pd.DataFrame(columns=['chrom','start','end'])
binStartList = list(range(0, chromSizeInt, int(pBinSizeInt)))
binEndList = list(range(int(pBinSizeInt), chromSizeInt, int(pBinSizeInt)))
binEndList.append(chromSizeInt)
bins_tmp['start'] = np.uint32(binStartList)
bins_tmp['end'] = np.uint32(binEndList)
bins_tmp["chrom"] = str(chrom)
bins = bins.append(bins_tmp, ignore_index=True)
offsetList.append(offsetList[-1] + bins_tmp.shape[0])
#correct dtypes for joint dataframe
bins["start"] = bins["start"].astype("uint32")
bins["end"] = bins["end"].astype("uint32")
offsetList = offsetList[:-1] #don't need the last one, no more matrix to follow
#write out the cooler
cooler.create_cooler(pOutfile, bins=bins, pixels=pixelGenerator(pMatrixList=pMatrixList, pOffsetList=offsetList), dtypes={'count': np.float64}, ordered=True, metadata=pMetadata)
def distanceNormalize(pSparseCsrMatrix, pWindowSize_bins):
#compute the means along the diagonals (= same distance)
#and divide all values on the diagonals by their respective mean
diagList = []
for i in range(pWindowSize_bins):
diagArr = sparse.csr_matrix.diagonal(pSparseCsrMatrix,i)
diagList.append(diagArr/diagArr.mean())
distNormalizedMatrix = sparse.diags(diagList,np.arange(pWindowSize_bins),format="csr")
return distNormalizedMatrix
def plotChromatinFactors(pFactorArray, pFeatureNameList,
pChromatinFolder, pChrom, pBinsize, pStartbin,
pOutputPath, pPlotType, pFigureType="png"):
#plot box- or line plots of the chromatin factors stored in pFactorDict
#the matrices are required to determine the binsize for the line plots
if pPlotType == "box":
plotFn = plotChromatinFactors_boxplots
elif pPlotType == "line":
plotFn = plotChromatinFactors_lineplots
else:
return
filename = "chromFactors_{:s}_{:s}_{:s}.{:s}".format(pPlotType, pChromatinFolder.rstrip("/").replace("/","-"), str(pChrom), pFigureType)
filename = os.path.join(pOutputPath,filename)
plotTitle = "Chromosome {:s} | Dir. {:s}".format(str(pChrom),pChromatinFolder)
plotFn(pChromFactorArray=pFactorArray,
pFilename=filename,
pBinSize=pBinsize,
pStartbin=pStartbin,
pAxTitle=plotTitle,
pFactorNames=pFeatureNameList)
def plotChromatinFactors_boxplots(pChromFactorArray, pFilename, pBinSize=None, pStartbin=None, pAxTitle=None, pFactorNames=None):
#store box plots of the chromatin factors in the array
fig1, ax1 = plt.subplots()
toPlotList = []
for i in range(pChromFactorArray.shape[1]):
toPlotList.append(pChromFactorArray[:,i])
ax1.boxplot(toPlotList)
fig1.suptitle("Chromatin factor boxplots")
if pAxTitle is not None:
ax1.set_title(str(pAxTitle))
if pFactorNames is not None \
and isinstance(pFactorNames,list) \
and len(pFactorNames) == pChromFactorArray.shape[1]:
ax1.set_xticklabels(pFactorNames, rotation=90)
ax1.set_xlabel("Chromatin factor")
ax1.set_ylabel("Chromatin factor signal value")
fig1.tight_layout()
fig1.savefig(pFilename)
plt.close(fig1)
del fig1, ax1
def plotChromatinFactors_lineplots(pChromFactorArray, pFilename, pBinSize, pStartbin, pAxTitle=None, pFactorNames=None):
#plot chromatin factors line plots
#for debugging purposes only, not for production use
winsize = pChromFactorArray.shape[0]
nr_subplots = pChromFactorArray.shape[1]
x_axis_values = np.arange(winsize) * pBinSize
figsizeX = max(30, int(max(x_axis_values)/2000000))
figsizeX = min(100, figsizeX)
figsizeY = max(6, 3*nr_subplots)
figsizeY = min(100, figsizeY)
if isinstance(pStartbin, int):
x_axis_values += pStartbin * pBinSize
fig1, axs1 = plt.subplots(nr_subplots, 1, sharex = True, figsize=(figsizeX, figsizeY))
for i in range(nr_subplots):
axs1[i].plot(x_axis_values, pChromFactorArray[:,i])
axs1[i].grid(True)
#try to plot a reasonable number of major x-axis ticks
if max(x_axis_values) < 1000000:
locVal = 50000
elif max(x_axis_values) < 10000000:
locVal = 500000
elif max(x_axis_values) < 50000000:
locVal = 2500000
elif max(x_axis_values) < 100000000:
locVal = 5000000
else:
locVal = 10000000
axs1[i].xaxis.set_major_locator(MultipleLocator(locVal))
if pFactorNames is not None \
and isinstance(pFactorNames,list) \
and len(pFactorNames) == nr_subplots:
axs1[i].set_xlabel(pFactorNames[i])
if pAxTitle is not None:
fig1.text(0.5, 0.04, str(pAxTitle), ha='center')
axs1[0].set_xlim([min(x_axis_values), max(x_axis_values)])
fig1.tight_layout()
fig1.text(0.04, 0.5, 'signal value', va='center', rotation='vertical')
fig1.suptitle("Chromatin factors")
fig1.savefig(pFilename)
plt.close(fig1)
del fig1, axs1
def clampArray(pArray):
#clamp all values in pArray to be within
#lowerQuartile - 1.5xInterquartile ... upperQuartile + 1.5xInterquartile
clampedArray = pArray.copy()
upperQuartile = np.quantile(pArray,0.75)
lowerQuartile = np.quantile(pArray,0.25)
interQuartile = upperQuartile - lowerQuartile
if interQuartile > 1.0:
upperClampingBound = upperQuartile + 1.5*interQuartile
lowerClampingBound = lowerQuartile - 1.5*interQuartile
clampedArray[clampedArray < lowerClampingBound] = lowerClampingBound
clampedArray[clampedArray > upperClampingBound] = upperClampingBound
return clampedArray
def computePearsonCorrelation(pCoolerFile1, pCoolerFile2,
pWindowsize_bp,
pModelChromList, pTargetChromStr,
pModelCellLineList, pTargetCellLineStr,
pPlotOutputFile=None, pCsvOutputFile=None):
'''
compute distance-stratified pearson correlation for target chromosome
directly from cooler files and plot or write to file
Parameters:
pCoolerFile1 (str): Path to cooler file 1
pCoolerFile2 (str): Path to cooler file 2
pWindowsize_bp (int): Windowsize in basepairs for which correlations shall be computed
pModelChromList (list): List of strings, will appear in plot title
pModelCellLineList (list): List of strings, will appear in plot title
pTargetChromStr (str): the target chromosome, e.g. >chr10< or >10<
pTargetCellLineStr (str): the target cell line, will appear in plot title
pPlotOutputFile (str): filename of correlation plot
pCsvOutputFile (str): filename of correlation csv file
Returns:
None
'''
sparseMatrix1, binsize1 = getMatrixFromCooler(pCoolerFile1, pTargetChromStr)
sparseMatrix2, binsize2 = getMatrixFromCooler(pCoolerFile2, pTargetChromStr)
errorMsg = ""
if sparseMatrix1 is None:
errorMsg += "Chrom {:s} could not be loaded from {:s}\n"
errorMsg = errorMsg.format(str(pTargetChromStr), pCoolerFile1)
if sparseMatrix2 is None:
errorMsg += "Chrom {:s} could not be loaded from {:s}\n"
errorMsg = errorMsg.format(str(pTargetChromStr), pCoolerFile2)
if errorMsg != "":
errorMsg += "Potential reasons: Wrong file format, wrong chromosome naming scheme or chromosome missing"
raise SystemExit(errorMsg)
if binsize1 != binsize2:
errorMsg = "Aborting. Binsizes of matrices are not equal\n"
errorMsg += "{:s} -- {:d}bp\n"
errorMsg += "{:s} -- {:d}bp\n"
errorMsg = errorMsg.format(pCoolerFile1,binsize1, pCoolerFile2, binsize2)
raise SystemExit(errorMsg)
resultsDf = computePearsonCorrelationSparse(pSparseCsrMatrix1= sparseMatrix1,
pSparseCsrMatrix2= sparseMatrix2,
pBinsize= binsize1,
pWindowsize_bp= pWindowsize_bp,
pModelChromList= pModelChromList,
pTargetChromStr= pTargetChromStr,
pModelCellLineList= pModelCellLineList,
pTargetCellLineStr= pTargetCellLineStr)
if pCsvOutputFile is not None:
resultsDf.to_csv(pCsvOutputFile)
if pPlotOutputFile is not None:
plotPearsonCorrelationDf(pResultsDfList=[resultsDf],
pLegendList=["Pearson corr."],
pOutfile=pPlotOutputFile,
pMethod="pearson")
return resultsDf
def computePearsonCorrelationSparse(pSparseCsrMatrix1, pSparseCsrMatrix2,
pBinsize, pWindowsize_bp,
pModelChromList, pTargetChromStr,
pModelCellLineList, pTargetCellLineStr):
'''
compute distance-stratified Pearson correlation from two sparse matrices
Parameters:
pSparseCsrMatrix1 (scipy.sparse.csr_matrix): sparse csr matrix 1
pSparseCsrMatrix2 (scipy.sparse.csr_matrix): sparse csr matrix 2
pBinsize (int): the binsize of each bin in the sparse matrices
pWindowsize_bp (int): the windowsize in basepairs for which correlations shall be computed
pModelChromList (list): list of strings, will appear in plot title
pTargetChromStr (str): the target chromosome, e.g. >chr10< or >10<
pTargetCellLineStr (str): the target cell line, will appear in plot title
pModelCellLineList (list): List of strings, will appear in plot title
Returns:
(pandas.DataFrame): Pandas dataframe containing the correlations per distance
'''
numberOfDiagonals = int(np.round(pWindowsize_bp/pBinsize))
if numberOfDiagonals < 1:
msg = "Window size must be larger than bin size of matrices.\n"
msg += "Remember to specify window in basepairs, not bins."
raise SystemExit(msg)
shape1 = pSparseCsrMatrix1.shape
shape2 = pSparseCsrMatrix2.shape
if shape1 != shape2:
msg = "Aborting. Shapes of matrices are not equal.\n"
msg += "Shape 1: ({:d},{:d}); Shape 2: ({:d},{:d})"
msg = msg.format(shape1[0],shape1[1],shape2[0],shape2[1])
raise SystemExit(msg)
if numberOfDiagonals > shape1[0]-1:
msg = "Aborting. Window size {0:d} larger than matrix size {:d}"
msg = msg.format(numberOfDiagonals, shape1[0]-1)
raise SystemExit(msg)
trapezIndices = np.mask_indices(shape1[0],maskFunc,k=numberOfDiagonals)
reads1 = np.array(pSparseCsrMatrix1[trapezIndices])[0]
reads2 = np.array(pSparseCsrMatrix2[trapezIndices])[0]
matrixDf = pd.DataFrame(columns=['first','second','distance','reads1','reads2'])
matrixDf['first'] = np.uint32(trapezIndices[0])
matrixDf['second'] = np.uint32(trapezIndices[1])
matrixDf['distance'] = np.uint32(matrixDf['second'] - matrixDf['first'])
matrixDf['reads1'] = np.float32(reads1)
matrixDf['reads2'] = np.float32(reads2)
matrixDf.fillna(0, inplace=True)
pearsonAucIndices, pearsonAucValues = getCorrelation(matrixDf,'distance', 'reads1', 'reads2', 'pearson')
pearsonAucScore = metrics.auc(pearsonAucIndices, pearsonAucValues)
spearmanAucIncides, spearmanAucValues = getCorrelation(matrixDf,'distance', 'reads1', 'reads2', 'spearman')
spearmanAucScore = metrics.auc(spearmanAucIncides, spearmanAucValues)
print("PearsonAUC: {:.3f}".format(pearsonAucScore))
print("SpearmanAUC: {:.3f}".format(spearmanAucScore))
columns = ["corrMeth", "modelChroms", "targetChrom",
"modelCellLines", "targetCellLine",
"R2", "MSE", "MAE", "MSLE", "AUC",
"binsize", "windowsize"]
columns.extend(sorted(list(matrixDf.distance.unique())))
resultsDf = pd.DataFrame(columns=columns)
resultsDf["corrMeth"] = ["pearson", "spearman"]
resultsDf.set_index("corrMeth", inplace=True)
resultsDf.loc[:, 'modelChroms'] = ", ".join([str(x) for x in pModelChromList])
resultsDf.loc[:, 'targetChrom'] = pTargetChromStr
resultsDf.loc[:, 'modelCellLines'] = ", ".join([str(x) for x in pModelCellLineList])
resultsDf.loc[:, 'targetCellLine'] = pTargetCellLineStr
resultsDf.loc[:, "R2"] = metrics.r2_score(matrixDf['reads2'], matrixDf['reads1'])
resultsDf.loc[:, 'MSE'] = metrics.mean_squared_error( matrixDf['reads2'], matrixDf['reads1'])
resultsDf.loc[:, 'MAE'] = metrics.mean_absolute_error( matrixDf['reads2'], matrixDf['reads1'])
resultsDf.loc[:, 'MSLE'] = metrics.mean_squared_log_error(matrixDf['reads2'], matrixDf['reads1'])
resultsDf.loc['pearson', 'AUC'] = pearsonAucScore
resultsDf.loc['spearman', 'AUC'] = spearmanAucScore
resultsDf.loc[:, 'binsize'] = pBinsize
resultsDf.loc[:, 'windowsize'] = pWindowsize_bp
for pearsonIndex, corrValue in zip(pearsonAucIndices,pearsonAucValues):
columnName = int(round(pearsonIndex * matrixDf.distance.max()))
resultsDf.loc["pearson", columnName] = corrValue
for spearmanIndex, corrValue in zip(spearmanAucIncides,spearmanAucValues):
columnName = int(round(spearmanIndex * matrixDf.distance.max()))
resultsDf.loc["spearman", columnName] = corrValue
return resultsDf
def plotPearsonCorrelationDf(pResultsDfList, pLegendList, pOutfile, pMethod="pearson"):
#helper function to plot distance-stratified Pearson correlation stored in pandas dataframes
if pMethod not in ["pearson", "spearman"]:
print("plotting only supported for 'pearson' and 'spearman' correlation methods")
return
if pResultsDfList is None or pLegendList is None:
return
if not isinstance(pResultsDfList,list) or not isinstance(pLegendList,list):
return
legendStrList = [str(x) for x in pLegendList]
if len(pResultsDfList) != len(legendStrList):
msg = "can't plot, too many / too few legends\n"
msg += "no. of legend entries should be: {:d}, given {:d}"
msg = msg.format(len(pResultsDfList), len(legendStrList))
print(msg)
return
fig1, ax1 = plt.subplots()
ax1.set_ylabel("{:s} correlation".format(pMethod[0].upper() + pMethod[1:] ))
ax1.set_xlabel("Genomic distance / Mbp")
trainChromSet = set()
targetChromSet = set()
trainCellLineSet = set()
targetCellLineSet = set()
maxXVal = 0
for i, resultsDf in enumerate(pResultsDfList):
try:
resolutionInt = int(resultsDf.loc[pMethod, 'binsize'])
windowsize_bp = int(resultsDf.loc[pMethod, 'windowsize'])
trainChromSet.add(resultsDf.loc[pMethod, 'modelChroms'])
targetChromSet.add(resultsDf.loc[pMethod, 'targetChrom'])
trainCellLineSet.add(resultsDf.loc[pMethod, 'modelCellLines'])
targetCellLineSet.add(resultsDf.loc[pMethod, 'targetCellLine'])
area_under_corr_curve = resultsDf.loc[pMethod, 'AUC']
maxDist_bp = int(windowsize_bp / resolutionInt)
columnNameList = [x for x in range(maxDist_bp)]
corrXValues = np.arange(maxDist_bp) * resolutionInt / 1000000
corrYValues = resultsDf.loc[pMethod, columnNameList].values.astype("float32")
except Exception as e:
msg = str(e) + "\n"
msg += "results dataframe {:d} does not contain all relevant fields (binsize, distance stratified pearson correlation data etc.)"
msg = msg.format(i)
print(msg)
label = pLegendList[i]
if label is None:
label = pMethod + " / AUC: {:.3f}".format(area_under_corr_curve)
else:
label = label + " / AUC: {:.3f}".format(area_under_corr_curve)
ax1.plot(corrXValues, corrYValues, label = label)
maxXVal = max(maxXVal, corrXValues[-1])
titleStr = "Pearson correlation vs. genomic distance"
if len(trainChromSet) == len(targetChromSet) == len(trainCellLineSet) == len(targetCellLineSet) == 1:
titleStr += "\n {:s}, {:s} on {:s}, {:s}"
titleStr = titleStr.format(list(trainCellLineSet)[0], list(trainChromSet)[0], list(targetCellLineSet)[0], list(targetChromSet)[0])
ax1.set_title(titleStr)
ax1.set_ylim([0,1])
ax1.set_xlim([0,maxXVal])
ax1.grid(True)
ax1.legend(frameon=False, loc="upper right")
if pOutfile is None:
outfile = "correlation.png"
fig1.savefig(outfile)
else:
outfile = pOutfile
if os.path.splitext(outfile)[1] not in ['.png', '.svg', '.pdf']:
outfile = os.path.splitext(pOutfile)[0] + '.png'
msg = "Outfile must have png, pdf or svg file extension.\n"
msg += "Renamed outfile to {:s}".format(outfile)
print(msg)
fig1.savefig(outfile)
plt.close(fig1)
del fig1, ax1
def maskFunc(pArray, pWindowSize=0):
#mask a trapezoid along the (main) diagonal of a 2D array
#this code is copied from the study project by Ralf Krauth
#https://github.com/MasterprojectRK/HiCPrediction/blob/master/hicprediction/createTrainingSet.py
maskArray = np.zeros(pArray.shape)
upperTriaInd = np.triu_indices(maskArray.shape[0]) # pylint: disable=unsubscriptable-object
notRequiredTriaInd = np.triu_indices(maskArray.shape[0], k=pWindowSize) # pylint: disable=unsubscriptable-object
maskArray[upperTriaInd] = 1
maskArray[notRequiredTriaInd] = 0
return maskArray
def getCorrelation(pData, pDistanceField, pTargetField, pPredictionField, pCorrMethod):
"""
Helper method to calculate correlation
This method has originally been written by Andre Bajorat during his study project,
licensed under the MIT License:
https://github.com/abajorat/HiCPrediction/blob/master/hicprediction/predict.py
It has been adapted by Ralf Krauth during his study project:
https://github.com/MasterprojectRK/HiCPrediction/blob/master/hicprediction/predict.py
Parameters:
pData (pandas.DataFrame): Pandas dataframe with read counts / distances
pDistanceField (str): the column name of the distance Field in the dataframe
pTargetField (str): the column name of the target read counts in the dataframe
pPredictionField (str): column name of the predicted read counts in the dataframe
pCorrMethod (str): any of the correlation methods supported by pandas DataFrame corr method
Returns:
indices (list): integer list of index values
values (list): float list of correlation values
"""
new = pData.groupby(pDistanceField, group_keys=False)[[pTargetField,
pPredictionField]].corr(method=pCorrMethod)
new = new.iloc[0::2,-1]
#sometimes there is no variation in prediction / target per distance, then correlation is NaN
#need to drop these, otherwise AUC will be NaN, too.
new.dropna(inplace=True)
values = new.values
indices = new.index.tolist()
indices = list(map(lambda x: x[0], indices))
indices = np.array(indices)
div = pData[pDistanceField].max()
indices = indices / div
return indices, values
def getChromPrefixBigwig(pBigwigFileName):
'''
check if the chromosome names in the bigwig file
start with 'chr' or not; e.g. 'chr10' vs. '10'
'''
try:
bigwigFile = pyBigWig.open(pBigwigFileName)
chromSizeDict = bigwigFile.chroms()
chromNameList = [entry for entry in chromSizeDict]
except Exception as e:
raise(e)
prefix = None
if chromNameList is not None and len(chromNameList) > 0 and str(chromNameList[0]).startswith("chr"):
prefix = "chr"
elif chromNameList is not None and len(chromNameList) > 0:
prefix = ""
else:
msg = "No valid entries found in bigwig file {:s}"
msg = msg.format(pBigwigFileName)
raise ValueError(msg)
return prefix
def getChromPrefixCooler(pCoolerFileName):
'''
check if the chromosomes in the cooler file
start with 'chr' or not; e.g. 'chr10' vs. '10'
'''
try:
coolerMatrix = cooler.Cooler(pCoolerFileName)
chromSizes = coolerMatrix.chromsizes.to_dict()
chromNameList = [entry for entry in chromSizes]
except Exception as e:
raise(e)
prefix = None
if chromNameList is not None and len(chromNameList) > 0 and str(chromNameList[0]).startswith("chr"):
prefix = "chr"
elif chromNameList is not None and len(chromNameList) > 0:
prefix = ""
else:
msg = "No valid entries found in cooler file {:s}"
msg = msg.format(pCoolerFileName)
raise ValueError(msg)
return prefix
def getDiamondIndices(pMatsize, pDiamondsize):
nr_diamonds = pMatsize - 2*pDiamondsize
if nr_diamonds <= 1:
msg = "Diamondsize too large for Matsize"
raise ValueError(msg)
start_offset = pDiamondsize
rowEndList = [i + start_offset for i in range(nr_diamonds)]
rowStartList = [i-pDiamondsize for i in rowEndList]
columnStartList = [i+1 for i in rowEndList]
columnEndList = [i+pDiamondsize for i in columnStartList]
return rowStartList, rowEndList, columnStartList, columnEndList
def saveInsulationScoreToBedgraph(scoreArrayList, binsize, diamondsize, chromosomeList, filename, chromSizeList=None, startbinList=None):
if not isinstance(scoreArrayList, list) \
or not isinstance(chromosomeList, list):
msg = "Warning: not saving insulation scores to bedgraph. Wrong input format"
print(msg)
return
if len(scoreArrayList) != len(chromSizeList):
msg = "Warning: not saving insulation scores to bedgraph. Inconsistent input lengths"
print(msg)
return
if startbinList is not None and not isinstance(startbinList,list) \
or (isinstance(startbinList, list) and len(startbinList) != len(scoreArrayList)):
msg = "Warning: not saving insulation scores to bedgraph. Bad startbin list"
print(msg)
return
if chromSizeList is not None and not isinstance(chromSizeList, list) \
or (isinstance(chromSizeList, list) and len(chromSizeList) != len(scoreArrayList)):
msg = "Warning: not saving insulation scores to bedgraph. Bad chromsize list"
print(msg)
return
if not isinstance(binsize, int) or not isinstance(diamondsize, int):
msg = "binsize and diamondsize must be int"
print(msg)
return
if startbinList is None:
startbinList = [0]*len(scoreArrayList)
if chromSizeList is None:
chromSizeList = [(score.shape[0] + 2*diamondsize)*binsize for score in scoreArrayList]
dfList = []
for chromSize, scoreArray, chromosome, startbin in zip(chromSizeList, scoreArrayList, chromosomeList, startbinList):
posList = [i for i in range(0,chromSize,binsize)] + [chromSize]
startList = [i for i, j in zip(posList, posList[1:])]
endList = [j for i, j in zip(posList, posList[1:])]
scores = [0]*diamondsize + list(scoreArray) + [0]*diamondsize
if len(scores) != len(startList):
msg = "Score Array wrong size"
print(msg)
continue
df = pd.DataFrame(columns=["chrom", "chromStart", "chromEnd", "dataValue"])
df["chromStart"] = startList
df["chromEnd"] = endList
df["dataValue"] = scores
df["chrom"] = chromosome
if isinstance(startbin, int):
df["chromStart"] += (startbin * binsize)
df["chromEnd"] += (startbin * binsize)
dfList.append(df)
df = pd.concat(dfList, ignore_index=True)
with open(filename, "w") as bgf:
bgf.write("track type=bedGraph\n")
df.to_csv(bgf, sep="\t", header=False, index=False)
def computeScore(pMatrix, pDiamondsize):
if not isinstance(pDiamondsize, int):
msg = "Warning: Cannot compute score; size for score computation must be integer"
print(msg)
return
if not isinstance(pMatrix, np.ndarray) or len(pMatrix.shape) != 2 or pMatrix.shape[0] - 2*pDiamondsize <= 1:
msg = "Warning: Cannot compute score; matrix wrong format or bad input shape or score size too large"
print(msg)
return
rowStartList, rowEndList, columnStartList, columnEndList = getDiamondIndices(pMatsize=pMatrix.shape[0], pDiamondsize=pDiamondsize)
l = [ pMatrix[i:j,k:l] for i,j,k,l in zip(rowStartList,rowEndList,columnStartList,columnEndList) ]
return np.array([ np.mean(i) for i in l ]).astype("float32")