forked from tensorflow/models
-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathmodel.py
911 lines (819 loc) · 36.2 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
# Lint as: python2, python3
# Copyright 2018 The TensorFlow Authors All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
r"""Provides DeepLab model definition and helper functions.
DeepLab is a deep learning system for semantic image segmentation with
the following features:
(1) Atrous convolution to explicitly control the resolution at which
feature responses are computed within Deep Convolutional Neural Networks.
(2) Atrous spatial pyramid pooling (ASPP) to robustly segment objects at
multiple scales with filters at multiple sampling rates and effective
fields-of-views.
(3) ASPP module augmented with image-level feature and batch normalization.
(4) A simple yet effective decoder module to recover the object boundaries.
See the following papers for more details:
"Encoder-Decoder with Atrous Separable Convolution for Semantic Image
Segmentation"
Liang-Chieh Chen, Yukun Zhu, George Papandreou, Florian Schroff, Hartwig Adam.
(https://arxiv.org/abs/1802.02611)
"Rethinking Atrous Convolution for Semantic Image Segmentation,"
Liang-Chieh Chen, George Papandreou, Florian Schroff, Hartwig Adam
(https://arxiv.org/abs/1706.05587)
"DeepLab: Semantic Image Segmentation with Deep Convolutional Nets,
Atrous Convolution, and Fully Connected CRFs",
Liang-Chieh Chen*, George Papandreou*, Iasonas Kokkinos, Kevin Murphy,
Alan L Yuille (* equal contribution)
(https://arxiv.org/abs/1606.00915)
"Semantic Image Segmentation with Deep Convolutional Nets and Fully Connected
CRFs"
Liang-Chieh Chen*, George Papandreou*, Iasonas Kokkinos, Kevin Murphy,
Alan L. Yuille (* equal contribution)
(https://arxiv.org/abs/1412.7062)
"""
import tensorflow as tf
from tensorflow.contrib import slim as contrib_slim
from deeplab.core import dense_prediction_cell
from deeplab.core import feature_extractor
from deeplab.core import utils
slim = contrib_slim
LOGITS_SCOPE_NAME = 'logits'
MERGED_LOGITS_SCOPE = 'merged_logits'
IMAGE_POOLING_SCOPE = 'image_pooling'
ASPP_SCOPE = 'aspp'
CONCAT_PROJECTION_SCOPE = 'concat_projection'
DECODER_SCOPE = 'decoder'
META_ARCHITECTURE_SCOPE = 'meta_architecture'
PROB_SUFFIX = '_prob'
_resize_bilinear = utils.resize_bilinear
scale_dimension = utils.scale_dimension
split_separable_conv2d = utils.split_separable_conv2d
def get_extra_layer_scopes(last_layers_contain_logits_only=False):
"""Gets the scopes for extra layers.
Args:
last_layers_contain_logits_only: Boolean, True if only consider logits as
the last layer (i.e., exclude ASPP module, decoder module and so on)
Returns:
A list of scopes for extra layers.
"""
if last_layers_contain_logits_only:
return [LOGITS_SCOPE_NAME]
else:
return [
LOGITS_SCOPE_NAME,
IMAGE_POOLING_SCOPE,
ASPP_SCOPE,
CONCAT_PROJECTION_SCOPE,
DECODER_SCOPE,
META_ARCHITECTURE_SCOPE,
]
def predict_labels_multi_scale(images,
model_options,
eval_scales=(1.0,),
add_flipped_images=False):
"""Predicts segmentation labels.
Args:
images: A tensor of size [batch, height, width, channels].
model_options: A ModelOptions instance to configure models.
eval_scales: The scales to resize images for evaluation.
add_flipped_images: Add flipped images for evaluation or not.
Returns:
A dictionary with keys specifying the output_type (e.g., semantic
prediction) and values storing Tensors representing predictions (argmax
over channels). Each prediction has size [batch, height, width].
"""
outputs_to_predictions = {
output: []
for output in model_options.outputs_to_num_classes
}
for i, image_scale in enumerate(eval_scales):
with tf.variable_scope(tf.get_variable_scope(), reuse=True if i else None):
outputs_to_scales_to_logits = multi_scale_logits(
images,
model_options=model_options,
image_pyramid=[image_scale],
is_training=False,
fine_tune_batch_norm=False)
if add_flipped_images:
with tf.variable_scope(tf.get_variable_scope(), reuse=True):
outputs_to_scales_to_logits_reversed = multi_scale_logits(
tf.reverse_v2(images, [2]),
model_options=model_options,
image_pyramid=[image_scale],
is_training=False,
fine_tune_batch_norm=False)
for output in sorted(outputs_to_scales_to_logits):
scales_to_logits = outputs_to_scales_to_logits[output]
logits = _resize_bilinear(
scales_to_logits[MERGED_LOGITS_SCOPE],
tf.shape(images)[1:3],
scales_to_logits[MERGED_LOGITS_SCOPE].dtype)
outputs_to_predictions[output].append(
tf.expand_dims(tf.nn.softmax(logits), 4))
if add_flipped_images:
scales_to_logits_reversed = (
outputs_to_scales_to_logits_reversed[output])
logits_reversed = _resize_bilinear(
tf.reverse_v2(scales_to_logits_reversed[MERGED_LOGITS_SCOPE], [2]),
tf.shape(images)[1:3],
scales_to_logits_reversed[MERGED_LOGITS_SCOPE].dtype)
outputs_to_predictions[output].append(
tf.expand_dims(tf.nn.softmax(logits_reversed), 4))
for output in sorted(outputs_to_predictions):
predictions = outputs_to_predictions[output]
# Compute average prediction across different scales and flipped images.
predictions = tf.reduce_mean(tf.concat(predictions, 4), axis=4)
outputs_to_predictions[output] = tf.argmax(predictions, 3)
outputs_to_predictions[output + PROB_SUFFIX] = tf.nn.softmax(predictions)
return outputs_to_predictions
def predict_labels(images, model_options, image_pyramid=None):
"""Predicts segmentation labels.
Args:
images: A tensor of size [batch, height, width, channels].
model_options: A ModelOptions instance to configure models.
image_pyramid: Input image scales for multi-scale feature extraction.
Returns:
A dictionary with keys specifying the output_type (e.g., semantic
prediction) and values storing Tensors representing predictions (argmax
over channels). Each prediction has size [batch, height, width].
"""
outputs_to_scales_to_logits = multi_scale_logits(
images,
model_options=model_options,
image_pyramid=image_pyramid,
is_training=False,
fine_tune_batch_norm=False)
predictions = {}
for output in sorted(outputs_to_scales_to_logits):
scales_to_logits = outputs_to_scales_to_logits[output]
logits = scales_to_logits[MERGED_LOGITS_SCOPE]
# There are two ways to obtain the final prediction results: (1) bilinear
# upsampling the logits followed by argmax, or (2) argmax followed by
# nearest neighbor upsampling. The second option may introduce the "blocking
# effect" but is computationally efficient.
if model_options.prediction_with_upsampled_logits:
logits = _resize_bilinear(logits,
tf.shape(images)[1:3],
scales_to_logits[MERGED_LOGITS_SCOPE].dtype)
predictions[output] = tf.argmax(logits, 3)
predictions[output + PROB_SUFFIX] = tf.nn.softmax(logits)
else:
argmax_results = tf.argmax(logits, 3)
argmax_results = tf.image.resize_nearest_neighbor(
tf.expand_dims(argmax_results, 3),
tf.shape(images)[1:3],
align_corners=True,
name='resize_prediction')
predictions[output] = tf.squeeze(argmax_results, 3)
predictions[output + PROB_SUFFIX] = tf.image.resize_bilinear(
tf.nn.softmax(logits),
tf.shape(images)[1:3],
align_corners=True,
name='resize_prob')
return predictions
def multi_scale_logits(images,
model_options,
image_pyramid,
weight_decay=0.0001,
is_training=False,
fine_tune_batch_norm=False,
nas_training_hyper_parameters=None):
"""Gets the logits for multi-scale inputs.
The returned logits are all downsampled (due to max-pooling layers)
for both training and evaluation.
Args:
images: A tensor of size [batch, height, width, channels].
model_options: A ModelOptions instance to configure models.
image_pyramid: Input image scales for multi-scale feature extraction.
weight_decay: The weight decay for model variables.
is_training: Is training or not.
fine_tune_batch_norm: Fine-tune the batch norm parameters or not.
nas_training_hyper_parameters: A dictionary storing hyper-parameters for
training nas models. Its keys are:
- `drop_path_keep_prob`: Probability to keep each path in the cell when
training.
- `total_training_steps`: Total training steps to help drop path
probability calculation.
Returns:
outputs_to_scales_to_logits: A map of maps from output_type (e.g.,
semantic prediction) to a dictionary of multi-scale logits names to
logits. For each output_type, the dictionary has keys which
correspond to the scales and values which correspond to the logits.
For example, if `scales` equals [1.0, 1.5], then the keys would
include 'merged_logits', 'logits_1.00' and 'logits_1.50'.
Raises:
ValueError: If model_options doesn't specify crop_size and its
add_image_level_feature = True, since add_image_level_feature requires
crop_size information.
"""
# Setup default values.
if not image_pyramid:
image_pyramid = [1.0]
crop_height = (
model_options.crop_size[0]
if model_options.crop_size else tf.shape(images)[1])
crop_width = (
model_options.crop_size[1]
if model_options.crop_size else tf.shape(images)[2])
if model_options.image_pooling_crop_size:
image_pooling_crop_height = model_options.image_pooling_crop_size[0]
image_pooling_crop_width = model_options.image_pooling_crop_size[1]
# Compute the height, width for the output logits.
if model_options.decoder_output_stride:
logits_output_stride = min(model_options.decoder_output_stride)
else:
logits_output_stride = model_options.output_stride
logits_height = scale_dimension(
crop_height,
max(1.0, max(image_pyramid)) / logits_output_stride)
logits_width = scale_dimension(
crop_width,
max(1.0, max(image_pyramid)) / logits_output_stride)
# Compute the logits for each scale in the image pyramid.
outputs_to_scales_to_logits = {
k: {}
for k in model_options.outputs_to_num_classes
}
num_channels = images.get_shape().as_list()[-1]
for image_scale in image_pyramid:
if image_scale != 1.0:
scaled_height = scale_dimension(crop_height, image_scale)
scaled_width = scale_dimension(crop_width, image_scale)
scaled_crop_size = [scaled_height, scaled_width]
scaled_images = _resize_bilinear(images, scaled_crop_size, images.dtype)
if model_options.crop_size:
scaled_images.set_shape(
[None, scaled_height, scaled_width, num_channels])
# Adjust image_pooling_crop_size accordingly.
scaled_image_pooling_crop_size = None
if model_options.image_pooling_crop_size:
scaled_image_pooling_crop_size = [
scale_dimension(image_pooling_crop_height, image_scale),
scale_dimension(image_pooling_crop_width, image_scale)]
else:
scaled_crop_size = model_options.crop_size
scaled_images = images
scaled_image_pooling_crop_size = model_options.image_pooling_crop_size
updated_options = model_options._replace(
crop_size=scaled_crop_size,
image_pooling_crop_size=scaled_image_pooling_crop_size)
outputs_to_logits = _get_logits(
scaled_images,
updated_options,
weight_decay=weight_decay,
reuse=tf.AUTO_REUSE,
is_training=is_training,
fine_tune_batch_norm=fine_tune_batch_norm,
nas_training_hyper_parameters=nas_training_hyper_parameters)
# Resize the logits to have the same dimension before merging.
for output in sorted(outputs_to_logits):
outputs_to_logits[output] = _resize_bilinear(
outputs_to_logits[output], [logits_height, logits_width],
outputs_to_logits[output].dtype)
# Return when only one input scale.
if len(image_pyramid) == 1:
for output in sorted(model_options.outputs_to_num_classes):
outputs_to_scales_to_logits[output][
MERGED_LOGITS_SCOPE] = outputs_to_logits[output]
return outputs_to_scales_to_logits
# Save logits to the output map.
for output in sorted(model_options.outputs_to_num_classes):
outputs_to_scales_to_logits[output][
'logits_%.2f' % image_scale] = outputs_to_logits[output]
# Merge the logits from all the multi-scale inputs.
for output in sorted(model_options.outputs_to_num_classes):
# Concatenate the multi-scale logits for each output type.
all_logits = [
tf.expand_dims(logits, axis=4)
for logits in outputs_to_scales_to_logits[output].values()
]
all_logits = tf.concat(all_logits, 4)
merge_fn = (
tf.reduce_max
if model_options.merge_method == 'max' else tf.reduce_mean)
outputs_to_scales_to_logits[output][MERGED_LOGITS_SCOPE] = merge_fn(
all_logits, axis=4)
return outputs_to_scales_to_logits
def extract_features(images,
model_options,
weight_decay=0.0001,
reuse=None,
is_training=False,
fine_tune_batch_norm=False,
nas_training_hyper_parameters=None):
"""Extracts features by the particular model_variant.
Args:
images: A tensor of size [batch, height, width, channels].
model_options: A ModelOptions instance to configure models.
weight_decay: The weight decay for model variables.
reuse: Reuse the model variables or not.
is_training: Is training or not.
fine_tune_batch_norm: Fine-tune the batch norm parameters or not.
nas_training_hyper_parameters: A dictionary storing hyper-parameters for
training nas models. Its keys are:
- `drop_path_keep_prob`: Probability to keep each path in the cell when
training.
- `total_training_steps`: Total training steps to help drop path
probability calculation.
Returns:
concat_logits: A tensor of size [batch, feature_height, feature_width,
feature_channels], where feature_height/feature_width are determined by
the images height/width and output_stride.
end_points: A dictionary from components of the network to the corresponding
activation.
"""
features, end_points = feature_extractor.extract_features(
images,
output_stride=model_options.output_stride,
multi_grid=model_options.multi_grid,
model_variant=model_options.model_variant,
depth_multiplier=model_options.depth_multiplier,
divisible_by=model_options.divisible_by,
weight_decay=weight_decay,
reuse=reuse,
is_training=is_training,
preprocessed_images_dtype=model_options.preprocessed_images_dtype,
fine_tune_batch_norm=fine_tune_batch_norm,
nas_architecture_options=model_options.nas_architecture_options,
nas_training_hyper_parameters=nas_training_hyper_parameters,
use_bounded_activation=model_options.use_bounded_activation)
if not model_options.aspp_with_batch_norm:
return features, end_points
else:
if model_options.dense_prediction_cell_config is not None:
tf.logging.info('Using dense prediction cell config.')
dense_prediction_layer = dense_prediction_cell.DensePredictionCell(
config=model_options.dense_prediction_cell_config,
hparams={
'conv_rate_multiplier': 16 // model_options.output_stride,
})
concat_logits = dense_prediction_layer.build_cell(
features,
output_stride=model_options.output_stride,
crop_size=model_options.crop_size,
image_pooling_crop_size=model_options.image_pooling_crop_size,
weight_decay=weight_decay,
reuse=reuse,
is_training=is_training,
fine_tune_batch_norm=fine_tune_batch_norm)
return concat_logits, end_points
else:
# The following codes employ the DeepLabv3 ASPP module. Note that we
# could express the ASPP module as one particular dense prediction
# cell architecture. We do not do so but leave the following codes
# for backward compatibility.
batch_norm_params = utils.get_batch_norm_params(
decay=0.9997,
epsilon=1e-5,
scale=True,
is_training=(is_training and fine_tune_batch_norm),
sync_batch_norm_method=model_options.sync_batch_norm_method)
batch_norm = utils.get_batch_norm_fn(
model_options.sync_batch_norm_method)
activation_fn = (
tf.nn.relu6 if model_options.use_bounded_activation else tf.nn.relu)
with slim.arg_scope(
[slim.conv2d, slim.separable_conv2d],
weights_regularizer=slim.l2_regularizer(weight_decay),
activation_fn=activation_fn,
normalizer_fn=batch_norm,
padding='SAME',
stride=1,
reuse=reuse):
with slim.arg_scope([batch_norm], **batch_norm_params):
depth = model_options.aspp_convs_filters
branch_logits = []
if model_options.add_image_level_feature:
if model_options.crop_size is not None:
image_pooling_crop_size = model_options.image_pooling_crop_size
# If image_pooling_crop_size is not specified, use crop_size.
if image_pooling_crop_size is None:
image_pooling_crop_size = model_options.crop_size
pool_height = scale_dimension(
image_pooling_crop_size[0],
1. / model_options.output_stride)
pool_width = scale_dimension(
image_pooling_crop_size[1],
1. / model_options.output_stride)
image_feature = slim.avg_pool2d(
features, [pool_height, pool_width],
model_options.image_pooling_stride, padding='VALID')
resize_height = scale_dimension(
model_options.crop_size[0],
1. / model_options.output_stride)
resize_width = scale_dimension(
model_options.crop_size[1],
1. / model_options.output_stride)
else:
# If crop_size is None, we simply do global pooling.
pool_height = tf.shape(features)[1]
pool_width = tf.shape(features)[2]
image_feature = tf.reduce_mean(
features, axis=[1, 2], keepdims=True)
resize_height = pool_height
resize_width = pool_width
image_feature_activation_fn = tf.nn.relu
image_feature_normalizer_fn = batch_norm
if model_options.aspp_with_squeeze_and_excitation:
image_feature_activation_fn = tf.nn.sigmoid
if model_options.image_se_uses_qsigmoid:
image_feature_activation_fn = utils.q_sigmoid
image_feature_normalizer_fn = None
image_feature = slim.conv2d(
image_feature, depth, 1,
activation_fn=image_feature_activation_fn,
normalizer_fn=image_feature_normalizer_fn,
scope=IMAGE_POOLING_SCOPE)
image_feature = _resize_bilinear(
image_feature,
[resize_height, resize_width],
image_feature.dtype)
# Set shape for resize_height/resize_width if they are not Tensor.
if isinstance(resize_height, tf.Tensor):
resize_height = None
if isinstance(resize_width, tf.Tensor):
resize_width = None
image_feature.set_shape([None, resize_height, resize_width, depth])
if not model_options.aspp_with_squeeze_and_excitation:
branch_logits.append(image_feature)
# Employ a 1x1 convolution.
branch_logits.append(slim.conv2d(features, depth, 1,
scope=ASPP_SCOPE + str(0)))
if model_options.atrous_rates:
# Employ 3x3 convolutions with different atrous rates.
for i, rate in enumerate(model_options.atrous_rates, 1):
scope = ASPP_SCOPE + str(i)
if model_options.aspp_with_separable_conv:
aspp_features = split_separable_conv2d(
features,
filters=depth,
rate=rate,
weight_decay=weight_decay,
scope=scope)
else:
aspp_features = slim.conv2d(
features, depth, 3, rate=rate, scope=scope)
branch_logits.append(aspp_features)
# Merge branch logits.
concat_logits = tf.concat(branch_logits, 3)
if model_options.aspp_with_concat_projection:
concat_logits = slim.conv2d(
concat_logits, depth, 1, scope=CONCAT_PROJECTION_SCOPE)
concat_logits = slim.dropout(
concat_logits,
keep_prob=0.9,
is_training=is_training,
scope=CONCAT_PROJECTION_SCOPE + '_dropout')
if (model_options.add_image_level_feature and
model_options.aspp_with_squeeze_and_excitation):
concat_logits *= image_feature
return concat_logits, end_points
def _get_logits(images,
model_options,
weight_decay=0.0001,
reuse=None,
is_training=False,
fine_tune_batch_norm=False,
nas_training_hyper_parameters=None):
"""Gets the logits by atrous/image spatial pyramid pooling.
Args:
images: A tensor of size [batch, height, width, channels].
model_options: A ModelOptions instance to configure models.
weight_decay: The weight decay for model variables.
reuse: Reuse the model variables or not.
is_training: Is training or not.
fine_tune_batch_norm: Fine-tune the batch norm parameters or not.
nas_training_hyper_parameters: A dictionary storing hyper-parameters for
training nas models. Its keys are:
- `drop_path_keep_prob`: Probability to keep each path in the cell when
training.
- `total_training_steps`: Total training steps to help drop path
probability calculation.
Returns:
outputs_to_logits: A map from output_type to logits.
"""
features, end_points = extract_features(
images,
model_options,
weight_decay=weight_decay,
reuse=reuse,
is_training=is_training,
fine_tune_batch_norm=fine_tune_batch_norm,
nas_training_hyper_parameters=nas_training_hyper_parameters)
if model_options.decoder_output_stride:
crop_size = model_options.crop_size
if crop_size is None:
crop_size = [tf.shape(images)[1], tf.shape(images)[2]]
features = refine_by_decoder(
features,
end_points,
crop_size=crop_size,
decoder_output_stride=model_options.decoder_output_stride,
decoder_use_separable_conv=model_options.decoder_use_separable_conv,
decoder_use_sum_merge=model_options.decoder_use_sum_merge,
decoder_filters=model_options.decoder_filters,
decoder_output_is_logits=model_options.decoder_output_is_logits,
model_variant=model_options.model_variant,
weight_decay=weight_decay,
reuse=reuse,
is_training=is_training,
fine_tune_batch_norm=fine_tune_batch_norm,
use_bounded_activation=model_options.use_bounded_activation)
outputs_to_logits = {}
for output in sorted(model_options.outputs_to_num_classes):
if model_options.decoder_output_is_logits:
outputs_to_logits[output] = tf.identity(features,
name=output)
else:
outputs_to_logits[output] = get_branch_logits(
features,
model_options.outputs_to_num_classes[output],
model_options.atrous_rates,
aspp_with_batch_norm=model_options.aspp_with_batch_norm,
kernel_size=model_options.logits_kernel_size,
weight_decay=weight_decay,
reuse=reuse,
scope_suffix=output)
return outputs_to_logits
def refine_by_decoder(features,
end_points,
crop_size=None,
decoder_output_stride=None,
decoder_use_separable_conv=False,
decoder_use_sum_merge=False,
decoder_filters=256,
decoder_output_is_logits=False,
model_variant=None,
weight_decay=0.0001,
reuse=None,
is_training=False,
fine_tune_batch_norm=False,
use_bounded_activation=False,
sync_batch_norm_method='None'):
"""Adds the decoder to obtain sharper segmentation results.
Args:
features: A tensor of size [batch, features_height, features_width,
features_channels].
end_points: A dictionary from components of the network to the corresponding
activation.
crop_size: A tuple [crop_height, crop_width] specifying whole patch crop
size.
decoder_output_stride: A list of integers specifying the output stride of
low-level features used in the decoder module.
decoder_use_separable_conv: Employ separable convolution for decoder or not.
decoder_use_sum_merge: Boolean, decoder uses simple sum merge or not.
decoder_filters: Integer, decoder filter size.
decoder_output_is_logits: Boolean, using decoder output as logits or not.
model_variant: Model variant for feature extraction.
weight_decay: The weight decay for model variables.
reuse: Reuse the model variables or not.
is_training: Is training or not.
fine_tune_batch_norm: Fine-tune the batch norm parameters or not.
use_bounded_activation: Whether or not to use bounded activations. Bounded
activations better lend themselves to quantized inference.
sync_batch_norm_method: String, method used to sync batch norm. Currently
only support `None` (no sync batch norm) and `tpu` (use tpu code to
sync batch norm).
Returns:
Decoder output with size [batch, decoder_height, decoder_width,
decoder_channels].
Raises:
ValueError: If crop_size is None.
"""
if crop_size is None:
raise ValueError('crop_size must be provided when using decoder.')
batch_norm_params = utils.get_batch_norm_params(
decay=0.9997,
epsilon=1e-5,
scale=True,
is_training=(is_training and fine_tune_batch_norm),
sync_batch_norm_method=sync_batch_norm_method)
batch_norm = utils.get_batch_norm_fn(sync_batch_norm_method)
decoder_depth = decoder_filters
projected_filters = 48
if decoder_use_sum_merge:
# When using sum merge, the projected filters must be equal to decoder
# filters.
projected_filters = decoder_filters
if decoder_output_is_logits:
# Overwrite the setting when decoder output is logits.
activation_fn = None
normalizer_fn = None
conv2d_kernel = 1
# Use original conv instead of separable conv.
decoder_use_separable_conv = False
else:
# Default setting when decoder output is not logits.
activation_fn = tf.nn.relu6 if use_bounded_activation else tf.nn.relu
normalizer_fn = batch_norm
conv2d_kernel = 3
with slim.arg_scope(
[slim.conv2d, slim.separable_conv2d],
weights_regularizer=slim.l2_regularizer(weight_decay),
activation_fn=activation_fn,
normalizer_fn=normalizer_fn,
padding='SAME',
stride=1,
reuse=reuse):
with slim.arg_scope([batch_norm], **batch_norm_params):
with tf.variable_scope(DECODER_SCOPE, DECODER_SCOPE, [features]):
decoder_features = features
decoder_stage = 0
scope_suffix = ''
for output_stride in decoder_output_stride:
feature_list = feature_extractor.networks_to_feature_maps[
model_variant][
feature_extractor.DECODER_END_POINTS][output_stride]
# If only one decoder stage, we do not change the scope name in
# order for backward compactibility.
if decoder_stage:
scope_suffix = '_{}'.format(decoder_stage)
for i, name in enumerate(feature_list):
decoder_features_list = [decoder_features]
# MobileNet and NAS variants use different naming convention.
if ('mobilenet' in model_variant or
model_variant.startswith('mnas') or
model_variant.startswith('nas')):
feature_name = name
else:
feature_name = '{}/{}'.format(
feature_extractor.name_scope[model_variant], name)
decoder_features_list.append(
slim.conv2d(
end_points[feature_name],
projected_filters,
1,
scope='feature_projection' + str(i) + scope_suffix))
# Determine the output size.
decoder_height = scale_dimension(crop_size[0], 1.0 / output_stride)
decoder_width = scale_dimension(crop_size[1], 1.0 / output_stride)
# Resize to decoder_height/decoder_width.
for j, feature in enumerate(decoder_features_list):
decoder_features_list[j] = _resize_bilinear(
feature, [decoder_height, decoder_width], feature.dtype)
h = (None if isinstance(decoder_height, tf.Tensor)
else decoder_height)
w = (None if isinstance(decoder_width, tf.Tensor)
else decoder_width)
decoder_features_list[j].set_shape([None, h, w, None])
if decoder_use_sum_merge:
decoder_features = _decoder_with_sum_merge(
decoder_features_list,
decoder_depth,
conv2d_kernel=conv2d_kernel,
decoder_use_separable_conv=decoder_use_separable_conv,
weight_decay=weight_decay,
scope_suffix=scope_suffix)
else:
if not decoder_use_separable_conv:
scope_suffix = str(i) + scope_suffix
decoder_features = _decoder_with_concat_merge(
decoder_features_list,
decoder_depth,
decoder_use_separable_conv=decoder_use_separable_conv,
weight_decay=weight_decay,
scope_suffix=scope_suffix)
decoder_stage += 1
return decoder_features
def _decoder_with_sum_merge(decoder_features_list,
decoder_depth,
conv2d_kernel=3,
decoder_use_separable_conv=True,
weight_decay=0.0001,
scope_suffix=''):
"""Decoder with sum to merge features.
Args:
decoder_features_list: A list of decoder features.
decoder_depth: Integer, the filters used in the convolution.
conv2d_kernel: Integer, the convolution kernel size.
decoder_use_separable_conv: Boolean, use separable conv or not.
weight_decay: Weight decay for the model variables.
scope_suffix: String, used in the scope suffix.
Returns:
decoder features merged with sum.
Raises:
RuntimeError: If decoder_features_list have length not equal to 2.
"""
if len(decoder_features_list) != 2:
raise RuntimeError('Expect decoder_features has length 2.')
# Only apply one convolution when decoder use sum merge.
if decoder_use_separable_conv:
decoder_features = split_separable_conv2d(
decoder_features_list[0],
filters=decoder_depth,
rate=1,
weight_decay=weight_decay,
scope='decoder_split_sep_conv0'+scope_suffix) + decoder_features_list[1]
else:
decoder_features = slim.conv2d(
decoder_features_list[0],
decoder_depth,
conv2d_kernel,
scope='decoder_conv0'+scope_suffix) + decoder_features_list[1]
return decoder_features
def _decoder_with_concat_merge(decoder_features_list,
decoder_depth,
decoder_use_separable_conv=True,
weight_decay=0.0001,
scope_suffix=''):
"""Decoder with concatenation to merge features.
This decoder method applies two convolutions to smooth the features obtained
by concatenating the input decoder_features_list.
This decoder module is proposed in the DeepLabv3+ paper.
Args:
decoder_features_list: A list of decoder features.
decoder_depth: Integer, the filters used in the convolution.
decoder_use_separable_conv: Boolean, use separable conv or not.
weight_decay: Weight decay for the model variables.
scope_suffix: String, used in the scope suffix.
Returns:
decoder features merged with concatenation.
"""
if decoder_use_separable_conv:
decoder_features = split_separable_conv2d(
tf.concat(decoder_features_list, 3),
filters=decoder_depth,
rate=1,
weight_decay=weight_decay,
scope='decoder_conv0'+scope_suffix)
decoder_features = split_separable_conv2d(
decoder_features,
filters=decoder_depth,
rate=1,
weight_decay=weight_decay,
scope='decoder_conv1'+scope_suffix)
else:
num_convs = 2
decoder_features = slim.repeat(
tf.concat(decoder_features_list, 3),
num_convs,
slim.conv2d,
decoder_depth,
3,
scope='decoder_conv'+scope_suffix)
return decoder_features
def get_branch_logits(features,
num_classes,
atrous_rates=None,
aspp_with_batch_norm=False,
kernel_size=1,
weight_decay=0.0001,
reuse=None,
scope_suffix=''):
"""Gets the logits from each model's branch.
The underlying model is branched out in the last layer when atrous
spatial pyramid pooling is employed, and all branches are sum-merged
to form the final logits.
Args:
features: A float tensor of shape [batch, height, width, channels].
num_classes: Number of classes to predict.
atrous_rates: A list of atrous convolution rates for last layer.
aspp_with_batch_norm: Use batch normalization layers for ASPP.
kernel_size: Kernel size for convolution.
weight_decay: Weight decay for the model variables.
reuse: Reuse model variables or not.
scope_suffix: Scope suffix for the model variables.
Returns:
Merged logits with shape [batch, height, width, num_classes].
Raises:
ValueError: Upon invalid input kernel_size value.
"""
# When using batch normalization with ASPP, ASPP has been applied before
# in extract_features, and thus we simply apply 1x1 convolution here.
if aspp_with_batch_norm or atrous_rates is None:
if kernel_size != 1:
raise ValueError('Kernel size must be 1 when atrous_rates is None or '
'using aspp_with_batch_norm. Gets %d.' % kernel_size)
atrous_rates = [1]
with slim.arg_scope(
[slim.conv2d],
weights_regularizer=slim.l2_regularizer(weight_decay),
weights_initializer=tf.truncated_normal_initializer(stddev=0.01),
reuse=reuse):
with tf.variable_scope(LOGITS_SCOPE_NAME, LOGITS_SCOPE_NAME, [features]):
branch_logits = []
for i, rate in enumerate(atrous_rates):
scope = scope_suffix
if i:
scope += '_%d' % i
branch_logits.append(
slim.conv2d(
features,
num_classes,
kernel_size=kernel_size,
rate=rate,
activation_fn=None,
normalizer_fn=None,
scope=scope))
return tf.add_n(branch_logits)