-
Notifications
You must be signed in to change notification settings - Fork 158
/
resnet18.py
257 lines (228 loc) · 8.26 KB
/
resnet18.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
# pylint: disable=invalid-name
"""ResNet v2 models for Keras.
Reference:
- [Identity Mappings in Deep Residual Networks]
(https://arxiv.org/abs/1603.05027) (CVPR 2016)
"""
import os
from tensorflow.python.keras.applications import imagenet_utils
from tensorflow.python.keras.applications import resnet
from tensorflow.python.util.tf_export import keras_export
@keras_export('keras.applications.resnet_v2.ResNet18V2',
'keras.applications.ResNet18V2')
def ResNet18V2(
include_top=True,
weights='imagenet',
input_tensor=None,
input_shape=None,
pooling=None,
classes=1000,
classifier_activation='softmax'):
"""Instantiates the ResNet50V2 architecture."""
def stack_fn(x):
x = resnet.stack2(x, 64, 2, name='conv2')
x = resnet.stack2(x, 128, 2, name='conv3')
x = resnet.stack2(x, 256, 2, name='conv4')
return resnet.stack2(x, 512, 2, stride1=1, name='conv5')
return resnet.ResNet(
stack_fn,
True,
True,
'resnet50v2',
include_top,
weights,
input_tensor,
input_shape,
pooling,
classes,
classifier_activation=classifier_activation)
@keras_export('keras.applications.resnet_v2.ResNet50V2',
'keras.applications.ResNet50V2')
def ResNet50V2(
include_top=True,
weights='imagenet',
input_tensor=None,
input_shape=None,
pooling=None,
classes=1000,
classifier_activation='softmax'):
"""Instantiates the ResNet50V2 architecture."""
def stack_fn(x):
x = resnet.stack2(x, 64, 3, name='conv2')
x = resnet.stack2(x, 128, 4, name='conv3')
x = resnet.stack2(x, 256, 6, name='conv4')
return resnet.stack2(x, 512, 3, stride1=1, name='conv5')
return resnet.ResNet(
stack_fn,
True,
True,
'resnet50v2',
include_top,
weights,
input_tensor,
input_shape,
pooling,
classes,
classifier_activation=classifier_activation)
@keras_export('keras.applications.resnet_v2.ResNet101V2',
'keras.applications.ResNet101V2')
def ResNet101V2(
include_top=True,
weights='imagenet',
input_tensor=None,
input_shape=None,
pooling=None,
classes=1000,
classifier_activation='softmax'):
"""Instantiates the ResNet101V2 architecture."""
def stack_fn(x):
x = resnet.stack2(x, 64, 3, name='conv2')
x = resnet.stack2(x, 128, 4, name='conv3')
x = resnet.stack2(x, 256, 23, name='conv4')
return resnet.stack2(x, 512, 3, stride1=1, name='conv5')
return resnet.ResNet(
stack_fn,
True,
True,
'resnet101v2',
include_top,
weights,
input_tensor,
input_shape,
pooling,
classes,
classifier_activation=classifier_activation)
@keras_export('keras.applications.resnet_v2.ResNet152V2',
'keras.applications.ResNet152V2')
def ResNet152V2(
include_top=True,
weights='imagenet',
input_tensor=None,
input_shape=None,
pooling=None,
classes=1000,
classifier_activation='softmax'):
"""Instantiates the ResNet152V2 architecture."""
def stack_fn(x):
x = resnet.stack2(x, 64, 3, name='conv2')
x = resnet.stack2(x, 128, 8, name='conv3')
x = resnet.stack2(x, 256, 36, name='conv4')
return resnet.stack2(x, 512, 3, stride1=1, name='conv5')
return resnet.ResNet(
stack_fn,
True,
True,
'resnet152v2',
include_top,
weights,
input_tensor,
input_shape,
pooling,
classes,
classifier_activation=classifier_activation)
@keras_export('keras.applications.resnet_v2.preprocess_input')
def preprocess_input(x, data_format=None):
return imagenet_utils.preprocess_input(
x, data_format=data_format, mode='tf')
@keras_export('keras.applications.resnet_v2.decode_predictions')
def decode_predictions(preds, top=5):
return imagenet_utils.decode_predictions(preds, top=top)
preprocess_input.__doc__ = imagenet_utils.PREPROCESS_INPUT_DOC.format(
mode='',
ret=imagenet_utils.PREPROCESS_INPUT_RET_DOC_TF,
error=imagenet_utils.PREPROCESS_INPUT_ERROR_DOC)
decode_predictions.__doc__ = imagenet_utils.decode_predictions.__doc__
DOC = """
Reference:
- [Identity Mappings in Deep Residual Networks]
(https://arxiv.org/abs/1603.05027) (CVPR 2016)
For image classification use cases, see
[this page for detailed examples](
https://keras.io/api/applications/#usage-examples-for-image-classification-models).
For transfer learning use cases, make sure to read the
[guide to transfer learning & fine-tuning](
https://keras.io/guides/transfer_learning/).
Note: each Keras Application expects a specific kind of input preprocessing.
For ResNetV2, call `tf.keras.applications.resnet_v2.preprocess_input` on your
inputs before passing them to the model.
`resnet_v2.preprocess_input` will scale input pixels between -1 and 1.
Args:
include_top: whether to include the fully-connected
layer at the top of the network.
weights: one of `None` (random initialization),
'imagenet' (pre-training on ImageNet),
or the path to the weights file to be loaded.
input_tensor: optional Keras tensor (i.e. output of `layers.Input()`)
to use as image input for the model.
input_shape: optional shape tuple, only to be specified
if `include_top` is False (otherwise the input shape
has to be `(224, 224, 3)` (with `'channels_last'` data format)
or `(3, 224, 224)` (with `'channels_first'` data format).
It should have exactly 3 inputs channels,
and width and height should be no smaller than 32.
E.g. `(200, 200, 3)` would be one valid value.
pooling: Optional pooling mode for feature extraction
when `include_top` is `False`.
- `None` means that the output of the model will be
the 4D tensor output of the
last convolutional block.
- `avg` means that global average pooling
will be applied to the output of the
last convolutional block, and thus
the output of the model will be a 2D tensor.
- `max` means that global max pooling will
be applied.
classes: optional number of classes to classify images
into, only to be specified if `include_top` is True, and
if no `weights` argument is specified.
classifier_activation: A `str` or callable. The activation function to use
on the "top" layer. Ignored unless `include_top=True`. Set
`classifier_activation=None` to return the logits of the "top" layer.
When loading pretrained weights, `classifier_activation` can only
be `None` or `"softmax"`.
Returns:
A `keras.Model` instance.
"""
setattr(ResNet50V2, '__doc__', ResNet50V2.__doc__ + DOC)
setattr(ResNet101V2, '__doc__', ResNet101V2.__doc__ + DOC)
setattr(ResNet152V2, '__doc__', ResNet152V2.__doc__ + DOC)
if __name__ == "__main__":
import time
import numpy as np
print("begin ...")
gpu_num = "1"
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID" # see issue #152
os.environ["CUDA_VISIBLE_DEVICES"] = gpu_num
input_test = np.random.randn(1,256,256,3)
num_classes = 1000
net = ResNet18V2(include_top=True,
weights=None,
input_tensor=None,
input_shape=None,
pooling=None,
classes=num_classes,
classifier_activation='softmax')
out = net(input_test)
print('\ndummy.\n')
n = 1000
s_t = time.time()
for i in range(n):
net(input_test)
e_t = time.time()
t_t = (e_t - s_t) * 1000
print('total time: {} ms / {}, average time: {} ms'.format(t_t, n, t_t/(n+1e-6)))
print("\ndone!")