-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathexample_13.py
156 lines (118 loc) · 5.15 KB
/
example_13.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
from os.path import dirname, abspath, exists, join
from sys import exit
import cv2
import numpy as np
WINDOW_WIDTH: int = 1152
WINDOW_HEIGHT: int = 720
FPS: int = 30
MARKER_SIZE: float = 0.035
ARUCO_DICT_ID: int = cv2.aruco.DICT_4X4_50
OBJ_POINTS: np.ndarray = np.array([
[0, 0, 0],
[MARKER_SIZE, 0, 0],
[MARKER_SIZE, MARKER_SIZE, 0],
[0, MARKER_SIZE, 0]
], dtype=np.float32)
FILE_PARAMS_PATH: str = "src/camera_params.npz"
FONT_COLOR: tuple = (25, 25, 25)
FONT_SCALE: float = 0.75
FONT_THICKNESS: int = 2
def camera_calibration(current_path: str) -> tuple:
"""
Performs camera calibration by loading camera matrix and distortion
coefficients from a specified file path. If the file does not exist,
it returns default intrinsic parameters and zero distortion coefficients.
:param current_path: File path where camera parameters file is located.
:type current_path: str
:return: A tuple containing the camera matrix and distortion coefficients.
:rtype: tuple
"""
param_file = join(current_path, FILE_PARAMS_PATH)
if exists(param_file):
print(f"[INFO] Loading camera parameters from: {param_file}")
params = np.load(param_file)
return params["camera_matrix"].astype(np.float32), params["dist_coefficients"].astype(np.float32)
else:
print("[INFO] Camera parameters file not found. Using default values.")
return np.array([[800, 0, 320], [0, 800, 240], [0, 0, 1]], dtype=np.float32), np.zeros(5)
def aruco_detector() -> cv2.aruco.ArucoDetector:
"""
Initializes and returns an ArUco detector configured with a predefined
dictionary and default detection parameters.
:return: A configured ArUcoDetector instance ready to detect markers.
:rtype: cv2.aruco.ArucoDetector
"""
aruco_dict = cv2.aruco.getPredefinedDictionary(ARUCO_DICT_ID)
aruco_params = cv2.aruco.DetectorParameters()
aruco_params.cornerRefinementMethod = cv2.aruco.CORNER_REFINE_SUBPIX
return cv2.aruco.ArucoDetector(aruco_dict, aruco_params)
def calculate_distance(point1: tuple[float, float], point2: tuple[float, float]) -> float:
"""
Calculate the Euclidean distance between two points.
:param point1: First point (x, y).
:type point1: tuple[float, float]
:param point2: Second point (x, y).
:type point2: tuple[float, float]
:return: Distance between the two points.
:rtype: float
"""
return np.linalg.norm(np.array(point1) - np.array(point2))
if __name__ == "__main__":
current_file_path = dirname(abspath(__file__))
matrix, coefficients = camera_calibration(current_path=current_file_path)
detector = aruco_detector()
marker_colors = {}
saved_positions = {}
gray_template = None
cap = cv2.VideoCapture(0)
cap.set(cv2.CAP_PROP_FRAME_WIDTH, WINDOW_WIDTH)
cap.set(cv2.CAP_PROP_FRAME_HEIGHT, WINDOW_HEIGHT)
cap.set(cv2.CAP_PROP_FPS, FPS)
cap.set(cv2.CAP_PROP_BUFFERSIZE, 1)
if not cap.isOpened():
print("[ERROR] Error opening video stream.")
exit(1)
else:
print("[INFO] Place ArUco markers in front of the camera.")
print("[INFO] Press 'q' or 'ESC' to quit.")
print("[INFO] Press 'm' to save marker position, 'd' to clear all saved positions.")
while True:
ret, frame = cap.read()
if not ret:
break
if frame is None or frame.size == 0:
print("[WARNING] Empty frame. Skipping...")
continue
if gray_template is None:
gray_template = np.zeros((frame.shape[0], frame.shape[1]), dtype=np.uint8)
cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY, dst=gray_template)
corners, ids, _ = detector.detectMarkers(gray_template)
if ids is not None:
for i in range(len(ids)):
marker_id = ids[i][0]
corner = corners[i][0].astype(int)
if marker_id not in marker_colors:
marker_colors[marker_id] = tuple(np.random.randint(0, 255, 3).tolist())
color = marker_colors[marker_id]
cv2.polylines(frame, [corner], True, color, 2)
current_pos = tuple(np.mean(corner, axis=0).astype(int))
if marker_id in saved_positions:
saved_pos = saved_positions[marker_id]
cv2.circle(frame, saved_pos, 5, color, -1)
cv2.circle(frame, current_pos, 5, color, -1)
cv2.line(frame, saved_pos, current_pos, (0, 0, 0), 2)
key = cv2.waitKey(1) & 0xFF
if key == ord('q') or key == 27:
break
if key == ord('m') and ids is not None:
for i in range(len(ids)):
marker_id = ids[i][0]
corner = corners[i][0].astype(int)
saved_positions[marker_id] = tuple(np.mean(corner, axis=0).astype(int))
print(f"[INFO] Save marker {marker_id} position.")
elif key == ord('d'):
saved_positions.clear()
print("[INFO] All saved positions cleared.")
cv2.imshow("AR Marker Detection: pose estimation and marker tracking", frame)
cap.release()
cv2.destroyAllWindows()