Skip to content

Latest commit

 

History

History
23 lines (17 loc) · 745 Bytes

README.md

File metadata and controls

23 lines (17 loc) · 745 Bytes

The pytorch implementation of "FUGNN: Harmonizing Fairness and Utility in Graph Neural Networks"

first choose parameter and then python preprocess_data.py

second python main.py

More detailed information, please see the paper video

cite this paper:

@inproceedings{luo2024fugnn,
  title={FUGNN: Harmonizing Fairness and Utility in Graph Neural Networks},
  author={Luo, Renqiang and Huang, Huafei and Yu, Shuo and Han, Zhuoyang and He, Estrid and Zhang, Xiuzhen and Xia, Feng},
  booktitle={Proceedings of the {ACM} {SIGKDD} Conference on Knowledge Discovery and Data Mining, {KDD}, Barcelona, Spain, August 25-29, 2024},
  doi={10.1145/3637528.3671834}
  publisher = {{ACM}},
  year={2024}
}