-
Notifications
You must be signed in to change notification settings - Fork 0
/
train.py
72 lines (55 loc) · 2.52 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
from tkinter import *
from tkinter import ttk
from PIL import Image, ImageTk
from tkinter import messagebox
import mysql.connector
import cv2
import os
import numpy as np
class Train:
def __init__(self, root):
self.root = root
self.root.geometry("1540x790+0+0")
self.root.title("Face Recognition System")
self.root.iconbitmap('assets/logo_PI6_icon.ico')
title_lbl = Label(self.root,text="TRAINING THE ALGORITHM",font=("times new roman",25,"bold"),bg="white",fg="red")
title_lbl.place(x=0,y=0,width=1540,height=45)
img_top = Image.open(r".\assets\facialrecognition.png")
img_top = img_top.resize((1540,325),Image.LANCZOS)
self.photoimg_top = ImageTk.PhotoImage(img_top)
f_lbl = Label(self.root, image=self.photoimg_top)
f_lbl.place(x=0,y=55,width=1540,height=325)
# button
Back_Button = Button(title_lbl, text="Back", command=self.root.destroy, font=("times new roman",11,"bold"),width=17,bg="darkblue",fg="white")
Back_Button.pack(side=RIGHT)
b1_l = Button(self.root,text="TRAIN ALGORITHM", command=self.train_classifier, cursor="hand2",font=("times new roman",30,"bold"),bg="red",fg="white")
b1_l.place(x=0,y=380,width=1540,height=60)
img_bottom = Image.open(r".\assets\facial_recognition_action.jpg")
img_bottom = img_bottom.resize((1540,350),Image.LANCZOS)
self.photoimg_bottom = ImageTk.PhotoImage(img_bottom)
f_lbl = Label(self.root, image=self.photoimg_bottom)
f_lbl.place(x=0,y=440,width=1540,height=350)
def train_classifier(self):
data_dir= ("data")
path=[os.path.join(data_dir, file) for file in os.listdir(data_dir)] #list comprehension
faces=[]
ids=[]
for image in path:
img = Image.open(image).convert('L') #Gray Scale conversion
imageNp = np.array(img,'uint8')
id = int(os.path.split(image)[1].split('.')[1])
faces.append(imageNp)
ids.append(id)
cv2.imshow("Training",imageNp)
cv2.waitKey(1)==13
ids=np.array(ids)
# Train the classifier and save
clf = cv2.face.LBPHFaceRecognizer_create() # Local Binary Patterns Histograms
clf.train(faces,ids)
clf.write("classifier.xml")
cv2.destroyAllWindows()
messagebox.showinfo("Success","Training of the LBPH algorithm is completed successfully.")
if __name__ == "__main__":
root = Tk()
obj = Train(root)
root.mainloop()