forked from facebookincubator/AITemplate
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathverification.py
164 lines (145 loc) · 4.97 KB
/
verification.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
# Copyright (c) Meta Platforms, Inc. and affiliates.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import click
import numpy as np
import torch
from aitemplate.compiler import compile_model
from aitemplate.frontend import Tensor
from aitemplate.testing import detect_target
from modeling.vision_transformer import VisionTransformer
from timm.models.vision_transformer import vit_base_patch16_224, vit_large_patch16_384
from weight_utils import export_to_torch_tensor
def mark_output(y):
if type(y) is not tuple:
y = (y,)
for i in range(len(y)):
y[i]._attrs["is_output"] = True
y[i]._attrs["name"] = "output_%d" % (i)
y_shape = [d._attrs["values"][0] for d in y[i]._attrs["shape"]]
print("output_{} shape: {}".format(i, y_shape))
USE_CUDA = detect_target().name() == "cuda"
def compile_vit(
batch_size=128,
img_size=224,
patch_size=16,
embed_dim=768,
num_heads=12,
depth=12,
class_token=True,
global_pool="token",
use_fp16_acc=True,
):
seqlen = (img_size // patch_size) ** 2 + (1 if class_token else 0)
ait_model = VisionTransformer(
batch_size=batch_size,
img_size=img_size,
class_token=class_token,
global_pool=global_pool,
num_heads=num_heads,
embed_dim=embed_dim,
patch_size=patch_size,
depth=depth,
act_layer="GELU",
)
ait_model.name_parameter_tensor()
inputs_ait = Tensor(
[batch_size, img_size, img_size, 3], name="input0", is_input=True
)
Y = ait_model(inputs_ait)
mark_output(Y)
target = detect_target(use_fp16_acc=use_fp16_acc)
exe_module = compile_model(
Y, target, "./tmp", "vision_transformer_bs%d_seq%d" % (batch_size, seqlen)
)
return exe_module
def verification(
model_name,
batch_size=3,
use_fp16_acc=True,
):
img_size = 224
embed_dim = 768
depth = 12
patch_size = 16
num_heads = 12
class_token = True
global_pool = "token"
if model_name == "vit_base_patch16_224":
img_size = 224
embed_dim = 768
depth = 12
patch_size = 16
num_heads = 12
pt_mod = vit_base_patch16_224(pretrained=True).cuda().half()
elif model_name == "vit_large_patch16_384":
img_size = 384
embed_dim = 1024
depth = 24
patch_size = 16
num_heads = 16
pt_mod = vit_large_patch16_384(pretrained=True).cuda().half()
seqlen = (img_size // patch_size) ** 2 + (1 if class_token else 0)
input_pt = torch.randn([batch_size, 3, img_size, img_size]).cuda().half() * 255
pt_ys = pt_mod(input_pt)
pt_ys = pt_ys.reshape((batch_size, 1, -1))
ait_mod = compile_vit(
batch_size=batch_size,
img_size=img_size,
patch_size=patch_size,
embed_dim=embed_dim,
num_heads=num_heads,
depth=depth,
class_token=True,
global_pool=global_pool,
use_fp16_acc=use_fp16_acc,
)
# convert weights
params_ait = export_to_torch_tensor(model_name, True)
params_ait["cls_token_mask"] = torch.zeros((batch_size, 1, embed_dim)).cuda().half()
if detect_target().name() == "cuda":
ait_key = "attn_cu_length"
for i in range(depth):
prefix = "blocks_%d" % (i)
cu_len = np.cumsum([0] + [seqlen] * batch_size).astype("int32")
params_ait[f"{prefix}_{ait_key}"] = torch.from_numpy(cu_len).cuda()
# set weights
ait_mod.set_many_constants_with_tensors(params_ait)
ait_mod.fold_constants(sync=True)
inputs = [input_pt.permute((0, 2, 3, 1)).contiguous()]
ys = []
num_outputs = len(ait_mod.get_output_name_to_index_map())
for i in range(num_outputs):
shape = ait_mod.get_output_maximum_shape(i)
ys.append(torch.empty(shape).cuda().half())
ait_mod.run_with_tensors(inputs, ys)
eps = 1e-1
np.testing.assert_allclose(
pt_ys.detach().cpu().numpy(),
ys[0].cpu().numpy(),
atol=eps,
rtol=eps,
)
print("vision transformer verification pass")
@click.command()
@click.option("--model-name", type=str, default="vit_base_patch16_224")
@click.option("--use-fp16-acc", type=bool, default=True)
def main(model_name, use_fp16_acc):
if model_name not in ("vit_base_patch16_224", "vit_large_patch16_384"):
raise ValueError(
"model name should be vit_base_patch16_224 or vit_large_patch16_384"
)
verification(model_name, use_fp16_acc=use_fp16_acc)
if __name__ == "__main__":
main()