forked from facebookincubator/AITemplate
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_correctness.py
184 lines (164 loc) · 5.88 KB
/
test_correctness.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
# Copyright (c) Meta Platforms, Inc. and affiliates.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import io
import unittest
import numpy as np
import torch
from aitemplate.compiler import compile_model
from aitemplate.compiler.base import Tensor
from aitemplate.testing import detect_target
try:
from libfb.py.asyncio.await_utils import await_sync
from manifold.clients.python import ManifoldClient
except ImportError:
ManifoldClient = None
from parameterized import parameterized
from timm.models.vision_transformer import vit_base_patch16_224, vit_large_patch16_384
from .modeling.vision_transformer import VisionTransformer
def mark_output(y):
if type(y) is not tuple:
y = (y,)
for i in range(len(y)):
y[i]._attrs["is_output"] = True
y[i]._attrs["name"] = "output_%d" % (i)
y_shape = [d._attrs["values"][0] for d in y[i]._attrs["shape"]]
print("output_{} shape: {}".format(i, y_shape))
def compile_vit(
batch_size=128,
img_size=224,
patch_size=16,
embed_dim=768,
num_heads=12,
depth=12,
class_token=True,
global_pool="token",
use_fp16_acc=True,
):
seqlen = (img_size // patch_size) ** 2 + (1 if class_token else 0)
ait_model = VisionTransformer(
batch_size=batch_size,
img_size=img_size,
class_token=class_token,
global_pool=global_pool,
num_heads=num_heads,
embed_dim=embed_dim,
patch_size=patch_size,
depth=depth,
act_layer="GELU",
)
ait_model.name_parameter_tensor()
inputs_ait = Tensor(
[batch_size, img_size, img_size, 3], name="input0", is_input=True
)
Y = ait_model(inputs_ait)
mark_output(Y)
target = detect_target(use_fp16_acc=use_fp16_acc)
exe_module = compile_model(
Y, target, "./tmp", "vision_transformer_bs%d_seq%d" % (batch_size, seqlen)
)
return exe_module
class VITVerification(unittest.TestCase):
@parameterized.expand(["vit_base_patch16_224", "vit_large_patch16_384"])
def test_vit(self, model_name):
if model_name == "vit_base_patch16_224":
img_size = 224
depth = 12
embed_dim = 768
num_heads = 12
global_pool = "token"
vit_pt_def = vit_base_patch16_224
path = "tree/aitemplate/vit-pt/vit_base_patch16_224.pt"
elif model_name == "vit_large_patch16_384":
img_size = 384
depth = 24
embed_dim = 1024
num_heads = 16
vit_pt_def = vit_large_patch16_384
path = "tree/aitemplate/vit-pt/vit_large_patch16_384.pt"
if ManifoldClient is None:
vit_pt = vit_pt_def(pretrained=True)
else:
stream = io.BytesIO()
with ManifoldClient.get_client(bucket="glow_test_data") as client:
await_sync(
client.get(
path,
stream,
)
)
stream.seek(0)
vit_pt = vit_pt_def(pretrained=False)
vit_pt.load_state_dict(torch.load(stream))
global_pool = "token"
patch_size = 16
vit_pt = vit_pt.cuda().half()
batch_size = 1
vit_ait = compile_vit(
batch_size=batch_size,
img_size=img_size,
patch_size=patch_size,
embed_dim=embed_dim,
num_heads=num_heads,
depth=depth,
class_token=True,
global_pool=global_pool,
use_fp16_acc=False,
)
nc = 3
seqlen = (img_size // patch_size) ** 2 + 1
# prepare params
params_pt = vit_pt.named_parameters()
params_ait = {}
for key, arr in params_pt:
ait_key = key.replace(".", "_")
if len(arr.shape) == 4:
arr = arr.permute((0, 2, 3, 1)).contiguous()
if detect_target().name() == "cuda":
conv0_w_pad = (
torch.zeros((embed_dim, patch_size, patch_size, 4))
.cuda()
.half()
)
conv0_w_pad[:, :, :, :3] = arr
arr = conv0_w_pad
params_ait[f"{ait_key}"] = arr
params_ait["cls_token_mask"] = (
torch.zeros((batch_size, 1, embed_dim)).cuda().half()
)
if detect_target().name() == "cuda":
ait_key = "attn_cu_length"
for i in range(depth):
prefix = "blocks_%d" % (i)
cu_len = np.cumsum([0] + [seqlen] * batch_size).astype("int32")
params_ait[f"{prefix}_{ait_key}"] = torch.from_numpy(cu_len).cuda()
# set weights
for name, weight in params_ait.items():
vit_ait.set_constant_with_tensor(name, weight)
with torch.no_grad():
x_pt = (
torch.rand(
(batch_size, nc, img_size, img_size),
dtype=torch.float16,
device="cuda",
)
* 255
)
x_ait = x_pt.permute(0, 2, 3, 1).contiguous()
y_pt = vit_pt(x_pt).reshape(batch_size, 1, -1)
y_ait = torch.empty_like(y_pt)
vit_ait.run_with_tensors([x_ait], [y_ait])
torch.testing.assert_close(y_ait, y_pt, atol=1e-1, rtol=1e-1)
if __name__ == "__main__":
unittest.main()