forked from MycroftAI/sonopy
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcomparison.py
127 lines (107 loc) · 4.29 KB
/
comparison.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
#!/usr/bin/env python3
# Copyright 2018 Mycroft AI Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from time import sleep, time
import numpy as np
from io import BytesIO
try:
import requests
import wavio
from arriz import Arriz
import speechpy
import python_speech_features
import librosa
import sonopy
except ImportError as e:
raise ValueError('Install extra dependencies with pip install sonopy[examples]: ' + str(e))
sample_rate = 16000
num_coeffs = 13
num_filts = 20
low_freq = 0
high_freq = 8000
# name: str, calc_mfcc: Callable, get_args: Callable
libraries = [
('Speechpy', speechpy.feature.mfcc, lambda signal, hop_t, fft_size: dict(
signal=signal, sampling_frequency=sample_rate, frame_stride=hop_t, frame_length=hop_t,
num_cepstral=num_coeffs, num_filters=num_filts, fft_length=fft_size, low_frequency=low_freq,
high_frequency=high_freq, dc_elimination=True
)),
('Python Speech Features', python_speech_features.mfcc,
lambda signal, hop_t, fft_size: dict(
signal=signal, samplerate=sample_rate, winlen=hop_t, winstep=hop_t, numcep=num_coeffs,
nfilt=num_filts, nfft=fft_size, lowfreq=low_freq, highfreq=high_freq, preemph=0,
ceplifter=0, appendEnergy=True
)),
('Librosa', librosa.feature.mfcc, lambda signal, hop_t, fft_size: dict(
y=signal, sr=sample_rate, hop_length=int(hop_t * sample_rate), n_mels=num_filts,
n_mfcc=num_coeffs, n_fft=fft_size, fmin=low_freq, fmax=high_freq, norm=None
)),
('Sonopy', sonopy.mfcc_spec, lambda signal, hop_t, fft_size: dict(
audio=signal, sample_rate=sample_rate,
window_stride=(int(hop_t * sample_rate), int(hop_t * sample_rate)),
fft_size=fft_size, num_filt=num_filts, num_coeffs=num_coeffs
))
]
# length, hop_t, fft_size, loops
params = [
(30 * sample_rate, 0.01, 2048, 20),
(15 * sample_rate, 0.05, 2048, 200),
(1 * sample_rate, 0.1, 2048, 2000),
(1 * sample_rate, 0.1, 512, 20000),
]
demo_audio = 'https://raw.githubusercontent.com/MycroftAI/mycroft-core/' \
'9ae13be1d46eea4f90db2b9377953101ce2139f9/test/unittests/client/data/record.wav'
def show_audio(url):
signal = np.squeeze(wavio.read(BytesIO(requests.get(url).content)).data).astype('f')
signal /= signal.max()
for name, calc_mfcc, get_args in libraries:
res = calc_mfcc(**get_args(signal, 0.01, 512))
if len(res) < len(res[0]):
res = np.rot90(res)
Arriz.show(name, res[:, 1:])
def calculate_deltas(params):
deltas = {}
for i, (length, hop_t, fft_size, loops) in enumerate(params):
print('===', chr(ord('A') + i), '===')
signal = np.zeros(length)
for name, calc_mfcc, get_args in libraries:
begin = time()
args = get_args(signal, hop_t, fft_size)
for i in range(loops):
calc_mfcc(**args)
delta = time() - begin
deltas.setdefault(name, []).append(delta)
print(name + ':', delta)
return deltas
def print_chart(lib_deltas):
print()
print('\t' + '\t'.join(chr(ord('A') + i) for i in range(len(params))))
for name, deltas in lib_deltas.items():
print('\t'.join(map(str, [name] + deltas)))
print()
print('\t'.join(['Param Set', 'Audio Len', 'Stride', 'Window', 'FFT Size', 'Sample Rate',
'Ceptral Coeffs', 'Num Filters', 'Loops']))
for i, (length, hop_t, fft_size, loops) in enumerate(params):
print('\t'.join(map(str, [
chr(ord('A') + i), length, hop_t, hop_t, fft_size,
sample_rate, num_coeffs, num_filts, loops
])))
def main():
show_audio(demo_audio)
lib_deltas = calculate_deltas(params)
print_chart(lib_deltas)
while Arriz.windows:
sleep(0.5)
if __name__ == '__main__':
main()