-
Notifications
You must be signed in to change notification settings - Fork 0
/
start1.py
124 lines (103 loc) · 3.8 KB
/
start1.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
from __future__ import absolute_import, division, print_function, unicode_literals
import ExploreTheData as etd
import DataExamples as dtex
import tfmodel as md
# TensorFlow and tf.keras
import tensorflow as tf
from tensorflow import keras
# Libraries
import numpy as np
from prettytable import PrettyTable
import os
import time
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
################################ Init #################################
print(tf.__version__)
ex = 0
fashion_mnist = keras.datasets.fashion_mnist
(train_images, train_labels), (test_images, test_labels) = fashion_mnist.load_data()
# 10 types of clothing
class_names = ['T-shirt/top', 'Trouser', 'Pullover', 'Dress', 'Coat', 'Sandal', 'Shirt', 'Sneaker', 'Bag', 'Ankle boot']
#######################################################################
while ex==0:
import subprocess as sp
tmp = sp.call('clear',shell=True)
print("TensorFlow Tutorial\n\n")
print("1 - Explore the Data")
print("2 - PreProcess Data and Training Data Example")
print("3 - Model Setup")
print("4 - Model Training")
print("5 - Accuracy")
print("6 - Predictions")
print("7 - Exit")
while True:
try:
response = int(raw_input("What do you want to do (1-6)? "))
break
except ValueError:
print('Oops! That was no valid number. Try again...')
if response == 1 :
tmp = sp.call('clear',shell=True)
etd.explore(train_images, train_labels, test_images, test_labels)
elif response == 2 :
tmp = sp.call('clear',shell=True)
train_images, test_images = dtex.preprocessdata(train_images, train_labels, test_images, class_names)
elif response == 3 :
tmp = sp.call('clear',shell=True)
model = md.modelSetup(train_images, train_labels)
elif response == 4 :
try:
model
except NameError:
print("\nYou need to setup the model!")
time.sleep(2)
else:
tmp = sp.call('clear',shell=True)
model = md.modelTraining(model, train_images, train_labels)
elif response == 5 :
try:
model
except NameError:
print("\nYou need to setup the model!")
time.sleep(2)
else:
tmp = sp.call('clear',shell=True)
md.aculoss(model, train_images, train_labels, test_images, test_labels)
elif response == 6 :
try:
model
except NameError:
print("\nYou need to setup the model!")
time.sleep(2)
else:
tmp = sp.call('clear',shell=True)
md.predictions(model, test_images, class_names, test_labels)
elif response == 7 :
ex = 1
exit()
else:
print("ERROR!")
time.sleep(2)
# @title MIT License
#
# Copyright (c) 2017 Francois Chollet
#
# Permission is hereby granted, free of charge, to any person obtaining a
# copy of this software and associated documentation files (the "Software"),
# to deal in the Software without restriction, including without limitation
# the rights to use, copy, modify, merge, publish, distribute, sublicense,
# and/or sell copies of the Software, and to permit persons to whom the
# Software is furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in
# all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
# THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
# FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
# DEALINGS IN THE SOFTWARE.