-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtest.py
105 lines (92 loc) · 4.03 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
import argparse
import os
import csv
from torchvision import transforms
from torchvision.datasets import ImageFolder
from torch.utils.data import DataLoader
from torchvision.utils import make_grid
from torchvision import models, transforms, datasets
from utils.generate_model import ImageModel
from torch import nn
from torch import optim
import time
import pandas as pd
import scipy.misc
import torch
import numpy as np
from config.config import cifar100_classes
from matplotlib import pyplot as plt
from utils.attack_setting import load_pgen
parser = argparse.ArgumentParser(description='PyTorch Black Attack Test')
parser.add_argument('--data', metavar='DIR', default="./output", help='path to dataset')
parser.add_argument('--arch', '-a', metavar='ARCH', default='resnet152')
parser.add_argument('--dataset', default='imagenet', help='use trained model')
parser.add_argument('--attack_type', type=str, choices=['targeted', 'untargeted'], default='untargeted')
parser.add_argument('--batch_size', type=int, default=10)
args = parser.parse_args()
print(args)
def generate_csv(path):
csv_file = open("./data/imagenet.csv", "w", newline="")
writer = csv.writer(csv_file, dialect='excel')
for root, dirs, files in os.walk(path):
for d in dirs:
for root2, dirs2, files2 in os.walk(os.path.join(path, d)):
for f in files2:
list = []
str = os.path.join(os.path.join(root, d), f)
list.append(str.replace('\\', '/'))
list.append(d)
writer.writerows([list])
csv_file.close()
def print_format(title, number):
print("| {:20} | {:<10}|".format(title, number))
def imshow(img):
npimg = img.numpy()
plt.imshow(np.transpose(npimg, (1, 2, 0)))
plt.show()
def load_data(path, time):
df = pd.read_excel(path)
for i in range(4):
if df.loc[i * 3, 1] == 'center':
queries = df.loc[i * 3 + 1, :].values
distance = df.loc[i * 3 + 2, :].values
np.save(f'npy/{time}_center_distance.npy', distance)
np.save(f'npy/{time}_center_queries.npy', queries)
elif df.loc[i * 3, 1] == 'DCT':
queries = df.loc[i * 3 + 1, :].values
distance = df.loc[i * 3 + 2, :].values
np.save(f'npy/{time}_DCT_distance.npy', distance)
np.save(f'npy/{time}_DCT_queries.npy', queries)
elif df.loc[i * 3, 1] == 'resize':
queries = df.loc[i * 3 + 1, :].values
distance = df.loc[i * 3 + 2, :].values
np.save(f'npy/{time}_resize_distance.npy', distance)
np.save(f'npy/{time}_resize_queries.npy', queries)
elif df.loc[i * 3, 1] == 'random':
queries = df.loc[i * 3 + 1, :].values
distance = df.loc[i * 3 + 2, :].values
np.save(f'npy/{time}_random_distance.npy', distance)
np.save(f'npy/{time}_random_queries.npy', queries)
if __name__ == '__main__':
# p1 = torch.randn((5, 3, 224, 224))
# # [scipy.misc.imsave(f'./config/original_{i}.png', img.permute(1, 2, 0).numpy()) for i, img in enumerate(p1)]
# p_gen = load_pgen("cifar", 'resize', 'l2')
# result = p_gen.generate_ps(p1, 5)
# result = torch.mean(result * 0.6, 0).unsqueeze(0)
# [scipy.misc.imsave(f'./config/{i}.png', img.permute(1, 2, 0).numpy()) for i, img in enumerate(result)]
# time = 'second'
# load_data(f'csv/{time}.xlsx', time)
# pass
# dataset = datasets.MNIST(root='./data/', download=True, train=True, transform=transforms.Compose([
# transforms.ToTensor()]))
dataset = datasets.CIFAR100(root='./data/', download=True, train=True, transform=transforms.Compose([
transforms.ToTensor()]))
data_loader = DataLoader(dataset, shuffle=False, batch_size=16, num_workers=0)
target, label = next(iter(data_loader))
classes = [cifar100_classes[i.item()] for i in label]
imshow(make_grid(target))
model = ImageModel("resnet", "cifar100")
target = target.cuda()
pred = model.predict(target)
print(pred)
print(label)