-
Notifications
You must be signed in to change notification settings - Fork 0
/
DESCRIPTION
40 lines (40 loc) · 1.6 KB
/
DESCRIPTION
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
Note: -*- Encoding: utf-8 -*-
Package: stepmixr
Type: Package
Title: Interface to 'Python' Package 'StepMix'
Version: 0.1.2
Date: 2024-01-03
Authors@R: c(
person("Éric", "Lacourse", role="aut"),
person("Roxane", "de la Sablonnière", role="aut"),
person("Charles-Édouard", "Giguère", role=c("aut", "cre"),
email = "[email protected]"),
person("Sacha", "Morin", role="aut"),
person("Robin", "Legault", role="aut"),
person("Félix", "Laliberté", role = "aut"),
person("Zsusza", "Bakk", role="ctb") )
Author:
Éric Lacourse [aut],
Roxane de la Sablonnière [aut],
Charles-Édouard Giguère [aut, cre],
Sacha Morin [aut],
Robin Legault [aut],
Félix Laliberté [aut],
Zsusza Bakk [ctb]
Maintainer: Charles-Édouard Giguère <[email protected]>
Depends: R (>= 4.0.0)
Imports: reticulate (>= 1.8)
Description: This is an interface for the 'Python' package
'StepMix'. It is a 'Python' package following the scikit-learn API for
model-based clustering and generalized mixture modeling (latent class/profile
analysis) of continuous and categorical data. 'StepMix' handles missing values
through Full Information Maximum Likelihood (FIML) and provides multiple stepwise
Expectation-Maximization (EM) estimation methods based on pseudolikelihood
theory. Additional features include support for covariates and distal outcomes,
various simulation utilities, and non-parametric bootstrapping, which allows
inference in semi-supervised and unsupervised settings.
License: GPL-2
Encoding: UTF-8
LazyLoad: TRUE
URL: https://github.com/Labo-Lacourse/StepMixr
NeedsCompilation: no