-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfig3b.py
205 lines (172 loc) · 6.96 KB
/
fig3b.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
"""
Habituation experiment shows that the output sparsity encodes information
about the input data distribution (frequency of encountering).
"""
import matplotlib as mpl
import math
import matplotlib.pyplot as plt
import numpy as np
from matplotlib.ticker import MaxNLocator
from pathlib import Path
from tqdm import trange
from kwta import iWTA, iWTA_history
from metrics import compute_convergence
from permanence import *
mpl.rcParams['savefig.dpi'] = 300
mpl.rcParams['savefig.format'] = 'png'
mpl.rcParams['font.size'] = 13
mpl.rcParams['legend.fontsize'] = 12
mpl.rcParams['figure.titlesize'] = 14
# Fix the random seed to reproduce the results
np.random.seed(0)
# The dimensionality of input vector 'x' and output populations 'h' and 'y'
N_x = N_h = N_y = 200
# The sparsity of input vectors 'x'
s_x = 0.2
# The initial sparsity of the weights
s_w_xy = s_w_xh = s_w_hy = s_w_hh = 0.05
s_w_yy = s_w_yh = 0.01
# Repeat the experiment N times
N_REPEATS = 5
# N_CHOOSE defines the number of synapses to update from a sample pair.
# It controls how much the boolean matrix 'm' is filled.
# Set to None to update all active synapses.
N_CHOOSE = 10
# The learning rate
LEARNING_RATE = 0.01
# Settings to generate input data for the habituation experiment:
N_SAMPLES_TOTAL = 10 # 2 samples of x_0 and x_1 and 6 of x_2
px = [0.2, 0.2, 0.6] # probability of encountering x_0, x_1, and x_2
def generate_k_active(n, k):
"""
Sample a random binary vector of size `n` with exactly `k` ones.
Parameters
----------
n : int
The size of a vector.
k : int
The number of non-zero values.
Returns
-------
x : (n,) np.ndarray
A binary vector.
"""
x = np.zeros(n, dtype=np.int32)
active = np.random.choice(n, size=k, replace=False)
x[active] = 1
return x
def sample_from_distribution(px, n_neurons, n_samples, k):
"""
Sample `n_samples` vectors of size `n_neurons` from the `px` distribution.
Each binary vector has exactly `k` ones.
Parameters
----------
px : list
The probability of encountering specific `x_i` stimulus from a set
of input stimuli.
n_neurons : int
The vector size.
n_samples : int
The number of samples to generate.
k : int
The number of non-zero entries in a vector.
Returns
-------
x : (n_neurons, n_samples) np.ndarray
Data samples with duplicate vectors.
"""
px = np.array(px)
assert np.isclose(px.sum(), 1), "Probabilities must sum up to 1"
x = np.array([generate_k_active(n_neurons, k) for pxi in px])
labels = []
for i, pxi in enumerate(px):
repeats = math.ceil(pxi * n_samples)
labels_repeated = np.full(repeats, fill_value=i)
labels.append(labels_repeated)
labels = np.hstack(labels)
# Shuffling is not required; we do this to illustrate that the obtained
# results are not due to the sequential nature of the input data.
np.random.shuffle(labels)
x = x[labels].T
return x, labels
for perm_cls in (PermanenceVaryingSparsity, SimpleHebb, PermanenceFixedSparsity, PermanenceVogels):
N_ITERS = 6 if perm_cls is SimpleHebb else 15
y_sparsity = np.zeros((N_REPEATS, N_ITERS, len(px)), dtype=np.float32)
convergence = np.zeros((N_REPEATS, N_ITERS))
weight_sparsity = {"w_hy": np.zeros(N_REPEATS)}
y_unique = None
for repeat in trange(N_REPEATS, desc=perm_cls.__name__):
x, labels = sample_from_distribution(px=px, n_neurons=N_x,
n_samples=N_SAMPLES_TOTAL,
k=int(s_x * N_x))
w_xy = np.random.binomial(1, s_w_xy, size=(N_y, N_x))
w_xh = np.random.binomial(1, s_w_xh, size=(N_h, N_x))
w_hy = np.random.binomial(1, s_w_hy, size=(N_y, N_h))
w_hh = np.random.binomial(1, s_w_hh, size=(N_h, N_h))
w_yy = np.random.binomial(1, s_w_yy, size=(N_y, N_y))
w_yh = np.random.binomial(1, s_w_yh, size=(N_h, N_y))
# Train w_hy only
w_hy = perm_cls(w_hy, excitatory=False)
y_prev = None
for iter_id in range(N_ITERS):
if perm_cls is PermanenceVogels:
z_h, z_y = iWTA_history(x, w_xh=w_xh, w_xy=w_xy, w_hy=w_hy, w_hh=w_hh, w_yy=w_yy, w_yh=w_yh)
w_hy.update(x_pre=z_h, x_post=z_y, n_choose=N_CHOOSE, lr=LEARNING_RATE)
h, y = z_h[0], z_y[0]
for i in range(1, len(z_h)):
h |= z_h[i]
y |= z_y[i]
else:
h, y = iWTA(x, w_xh=w_xh, w_xy=w_xy, w_hy=w_hy, w_hh=w_hh, w_yy=w_yy, w_yh=w_yh)
w_hy.update(x_pre=h, x_post=y, n_choose=N_CHOOSE, lr=LEARNING_RATE)
y_sparsity_i = y.mean(axis=0)
for label in range(len(px)):
mask = labels == label
y_sparsity[repeat, iter_id, label] = y_sparsity_i[mask].mean()
convergence[repeat, iter_id] = compute_convergence(y, y_prev)
y_prev = y.copy()
if repeat == 0:
_, idx_unique = np.unique(labels, return_index=True)
y_unique = y_prev.T[idx_unique]
weight_sparsity["w_hy"][repeat] = w_hy.mean()
for w_name, w_sparsity in weight_sparsity.items():
print(f"{w_name} final sparsity: {w_sparsity.mean():.3f}")
results_dir = Path("results") / "habituation"
results_dir.mkdir(exist_ok=True, parents=True)
fig, ax = plt.subplots(figsize=(8, 3))
ax.set_aspect(15)
ax.eventplot([y.nonzero()[0] for y in y_unique], colors='black', linelengths=0.8)
ax.set_yticks(range(len(px)))
ax.set_yticklabels([f"$y(x_{i})$" for i in range(len(px))])
ax.set_xticks([0, N_y - 1])
ax.set_xticklabels(['1', str(N_y)])
ax.set_title("Habituation raster plot")
ax.set_xlabel("Neuron")
ax.xaxis.set_label_coords(0.5, -0.03)
fig.savefig(results_dir / f"rasterplot {perm_cls.__name__}.png", bbox_inches='tight')
fig, ax = plt.subplots(nrows=1 + (perm_cls is not SimpleHebb), sharex=True)
ax = np.atleast_1d(ax)
mean = y_sparsity.mean(axis=0)
std = y_sparsity.std(axis=0)
print(f"'y' final sparsity: {mean[-1]}")
for label, (m, s) in enumerate(zip(mean.T, std.T)):
ax[0].plot(range(N_ITERS), m, label=f"$x_{label}$")
ax[0].fill_between(range(N_ITERS), m + s, m - s, alpha=0.2)
ax[0].legend()
ax[-1].set_xlabel("Epoch (~10 iterations)")
ax[-1].xaxis.set_major_locator(MaxNLocator(integer=True))
ax[0].set_ylabel("$d_y$")
ax[-1].set_xlim(xmin=0)
ax[0].set_ylim(ymin=0)
if len(ax) > 1:
ax[1].set_ylabel("Convergence")
mean = convergence.mean(axis=0)
std = convergence.std(axis=0)
ax[1].plot(range(N_ITERS), mean, label='$y$')
ax[1].fill_between(range(N_ITERS), mean + std, mean - std, alpha=0.2)
ax[1].set_ylim(ymin=0)
ax[1].legend()
plt.suptitle(f"Habituation {perm_cls.__name__}")
plt.tight_layout()
fig.savefig(results_dir / f"{perm_cls.__name__}.png", bbox_inches='tight')
plt.show()