-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfig2.py
142 lines (117 loc) · 3.7 KB
/
fig2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
"""
How weight density changes the encoding density.
"""
import matplotlib as mpl
import matplotlib.pyplot as plt
import numpy as np
from pathlib import Path
from kwta import iWTA
# mpl.rcParams['grid.color'] = 'k'
# mpl.rcParams['grid.linestyle'] = ':'
# mpl.rcParams['grid.linewidth'] = 0.5
# mpl.rcParams['figure.figsize'] = [10.0, 8.0]
# mpl.rcParams['figure.dpi'] = 80
# mpl.rcParams['savefig.dpi'] = 800
mpl.rcParams['savefig.format'] = 'png'
mpl.rcParams['font.size'] = 14
mpl.rcParams['legend.fontsize'] = 14
mpl.rcParams['figure.titlesize'] = 14
def generate_random_vector(N, a_x):
"""
Generate a binary vector of size `N` with exactly `a_x` active neurons.
"""
vector = np.zeros(N, dtype=int)
ones = np.random.choice(N, size=a_x, replace=False)
vector[ones] = 1
return vector
def generate_random_matrix(R, N, a_x):
"""
Generate a binary matrix of size (R, N) with exactly `a_x` active neurons
per row.
"""
matrix = np.zeros((R, N), dtype=int)
for i in range(R):
matrix[i] = generate_random_vector(N, a_x)
return matrix
N_x = 200
N_y = 200
N_h = 200
a_x = 20
# The no. of active synapses in a weight matrix per output neuron
a = {
'xy': 20,
'xh': 20,
'hy': 20,
'hh': 20,
'yh': 20,
'yy': 5,
}
w = {
'w_xy': generate_random_matrix(N_y, N_x, a['xy']),
'w_xh': generate_random_matrix(N_h, N_x, a['xh']),
'w_hy': generate_random_matrix(N_y, N_h, a['hy']),
'w_hh': generate_random_matrix(N_h, N_h, a['hh']),
'w_yh': generate_random_matrix(N_h, N_y, a['yh']),
'w_yy': generate_random_matrix(N_y, N_y, a['yy']),
}
# Set iters to 200 to reproduce the figure
iters = 200
def plot_w(weight, s='y'):
weight = f"w_{weight}"
print(f'plotting {weight}')
N = w[weight].shape[1]
w_range = np.arange(1, N, 5)
Y = np.zeros((w_range.size, iters, N_y))
H = np.zeros((w_range.size, iters, N_h))
d_y = np.zeros((w_range.size, iters))
d_h = np.zeros((w_range.size, iters))
for k, a_i in enumerate(w_range):
w[weight] = generate_random_matrix(w[weight].shape[0],
w[weight].shape[1], a_i)
for i in range(iters):
x = generate_random_vector(N_x, a_x)
H[k, i], Y[k, i] = iWTA(x, **w)
d_y[k, i] = np.mean(Y[k, i])
d_h[k, i] = np.mean(H[k, i])
if s == 'y':
# excitatory 'y' output population
d_mean = np.mean(d_y, axis=1)
d_std = np.std(d_y, axis=1)
else:
# inhibitory 'h' output population
d_mean = np.mean(d_h, axis=1)
d_std = np.std(d_h, axis=1)
ax.plot(w_range / N, d_mean, label='w$^{%s}$' % weight[2:])
ax.fill_between(w_range / N, d_mean + d_std, d_mean - d_std, alpha=0.5)
# return to default
w[weight] = generate_random_matrix(w[weight].shape[0], w[weight].shape[1],
a[weight[2:]])
fig, ax = plt.subplots(1)
results_dir = Path("results")
results_dir.mkdir(exist_ok=True)
plot_w('xy')
plot_w('xh')
plot_w('hy')
plot_w('hh')
plot_w('yh')
plot_w('yy')
ax.legend()
ax.set_xlabel(r'$d_w$, weights density')
ax.set_ylabel(r'$d_y$, y layer density')
plt.ylim([0, 1.05])
plt.xlim([0, 1])
fig.savefig(results_dir / 'fig2a', bbox_inches='tight')
fig, ax = plt.subplots(1)
plot_w('xy', 'h')
plot_w('xh', 'h')
plot_w('hy', 'h')
plot_w('hh', 'h')
plot_w('yh', 'h')
plot_w('yy', 'h')
ax.legend()
ax.set_xlabel(r'$d_w$, weights density')
ax.set_ylabel(r'$d_h$, h layer density')
plt.ylim([0, 1.05])
plt.xlim([0, 1])
fig.savefig(results_dir / 'fig2b', bbox_inches='tight')
plt.show()