-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathtrain.py
157 lines (128 loc) · 6.12 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
import time, os
import shutil, random
import torch
import hydra
import logging
from omegaconf import DictConfig
import lightning
# Library code
from utils.utils import count_parameters, create_subdirs
from utils.train_utils import determine_best_epoch_from_log, load_checkpoint
from model.optim import get_std_opt
from model.loss import MetricLogger
logger = logging.getLogger(__name__)
def train_loop(exp_cfg, model, optimizer, train_dataloader, valid_dataloader, metric_logger, device) -> None:
# Sanity validation run
model.eval()
with torch.no_grad():
for batch in valid_dataloader:
# Determine how many recycles to do.
if exp_cfg.n_recycle > 0:
n_cyc = exp_cfg.n_recycle
else:
n_cyc = 0
# Move batch to device.
batch = batch.to(device)
# Run through model and compute loss.
output = model(batch, n_recycle=n_cyc)
_ = model.compute_loss(output, batch, use_sc_bf_mask=True, _logger=metric_logger, _log_prefix="val")
# Perform logging.
metric_logger.log(epoch=0, precision=exp_cfg.logging_precision)
for e in range(1, exp_cfg.epochs + 1):
# Training epoch
model.train()
for batch in train_dataloader:
# Determine how many recycles to do.
if exp_cfg.n_recycle > 0:
n_cyc = random.randint(0, exp_cfg.n_recycle)
else:
n_cyc = 0
# Move batch to device.
batch = batch.to(device)
# Run through model and compute loss.
output = model(batch, n_recycle=n_cyc)
loss = model.compute_loss(output, batch, use_sc_bf_mask=exp_cfg.use_b_factor_mask, _logger=metric_logger)
# Perform backprop and update.
loss.backward()
optimizer.step()
optimizer.zero_grad()
# Validation epoch
if e % exp_cfg.validate_every_n_epochs == 0:
model.eval()
with torch.no_grad():
for batch in valid_dataloader:
# Determine how many recycles to do.
if exp_cfg.n_recycle > 0:
n_cyc = exp_cfg.n_recycle
else:
n_cyc = 0
# Move batch to device.
batch = batch.to(device)
# Run through model and compute loss.
output = model(batch, n_recycle=n_cyc)
_ = model.compute_loss(output, batch, use_sc_bf_mask=True, _logger=metric_logger, _log_prefix="val")
# Perform logging.
metric_logger.log(epoch=e, precision=exp_cfg.logging_precision)
# Save the model checkpoint.
checkpoint_filename = os.path.join(os.getcwd(), 'checkpoints', f'epoch_{e}.pt')
torch.save({
'epoch': e,
'model_state_dict': model.state_dict(),
'optimizer_state_dict': optimizer.state_dict()
}, checkpoint_filename)
@hydra.main(version_base=None, config_path="./config", config_name="train")
def main(cfg: DictConfig) -> None:
# Set up RNG and device
seed = lightning.seed_everything(cfg.experiment.seed)
logger.info(f"Using seed={seed} for RNG.")
device = torch.device("cuda:0" if (torch.cuda.is_available() and not cfg.experiment.force_cpu) else "cpu")
# Load dataset and get dataloaders
dm: lightning.LightningDataModule = hydra.utils.instantiate(cfg.dataset)
dm.prepare_data()
dm.setup("fit")
train_loader = dm.train_dataloader()
valid_loader = dm.val_dataloader()
logger.info(f'Training: {len(dm.data_train)}, Validation: {len(dm.data_val)}')
# Instantiate the model from config.
model: torch.nn.Module = hydra.utils.instantiate(cfg.model).to(device)
logger.info(f'Number of parameters: {count_parameters(model):,}')
if "weights_path" in cfg.experiment:
logger.info(f"Loading weights from {cfg.experiment.weights_path}")
# Find the checkpoint to load into model
checkpoint = os.path.join(cfg.experiment.weights_path, f'{cfg.experiment.model_name}_ckpt.pt')
load_checkpoint(checkpoint, model)
# Build optimizer
if "finetune" in cfg.experiment.name:
optimizer = torch.optim.Adam(model.parameters(), lr=1e-6)
else:
optimizer = get_std_opt(model.parameters(), cfg.model.hidden_dim)
# Build directories for experiment
create_subdirs(os.getcwd(), ['checkpoints', 'results'])
# Create metric logger
log_file = os.path.join(os.getcwd(), "results", "train_log.csv")
metrics = [mode + " " + metric for metric in model.metric_names for mode in ["train", "val"]]
metric_logger = MetricLogger(log_file, metrics).to(device)
# Train
start_train = time.time()
train_loop(cfg.experiment, model, optimizer, train_loader, valid_loader, metric_logger, device)
train_elapsed = time.time() - start_train
logger.info(f"Total training time: {train_elapsed:.2f} sec")
# Determine best model via early stopping on validation
best_results = determine_best_epoch_from_log(log_file, [model.monitor_metric], highest=False, delimiter=",")
best_ckpt = os.path.join(os.getcwd(), 'checkpoints', f"epoch_{best_results['epoch']}.pt")
best_ckpt_copy = os.path.join(os.getcwd(), 'results', f"best_ckpt_epoch_{best_results['epoch']}.pt")
shutil.copy(best_ckpt, best_ckpt_copy)
# Write results
with open(os.path.join(os.getcwd(), 'results', 'train_results.txt'), 'w') as f:
f.write(f"Best Epoch: {best_results['epoch']}")
prev_metric = ""
for metric in best_results:
if metric != "epoch":
cur_metric = " ".join(metric.split("_")[1:-1])
mode = metric.split("_")[0]
if prev_metric != cur_metric:
f.write(f"\n{cur_metric}:")
prev_metric = cur_metric
f.write(f"\n\t{mode}: {best_results[metric]}")
if __name__ == "__main__":
main()