-
Notifications
You must be signed in to change notification settings - Fork 0
/
yolov3_mobilenetv2_8xb24-320-300e_coco.py
42 lines (40 loc) · 1.47 KB
/
yolov3_mobilenetv2_8xb24-320-300e_coco.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
_base_ = ['./yolov3_mobilenetv2_8xb24-ms-416-300e_coco.py']
# yapf:disable
model = dict(
bbox_head=dict(
anchor_generator=dict(
base_sizes=[[(220, 125), (128, 222), (264, 266)],
[(35, 87), (102, 96), (60, 170)],
[(10, 15), (24, 36), (72, 42)]])))
# yapf:enable
input_size = (320, 320)
train_pipeline = [
dict(type='LoadImageFromFile', backend_args={{_base_.backend_args}}),
dict(type='LoadAnnotations', with_bbox=True),
# `mean` and `to_rgb` should be the same with the `preprocess_cfg`
dict(
type='Expand',
mean=[123.675, 116.28, 103.53],
to_rgb=True,
ratio_range=(1, 2)),
dict(
type='MinIoURandomCrop',
min_ious=(0.4, 0.5, 0.6, 0.7, 0.8, 0.9),
min_crop_size=0.3),
dict(type='Resize', scale=input_size, keep_ratio=True),
dict(type='RandomFlip', prob=0.5),
dict(type='PhotoMetricDistortion'),
dict(type='PackDetInputs')
]
test_pipeline = [
dict(type='LoadImageFromFile', backend_args={{_base_.backend_args}}),
dict(type='Resize', scale=input_size, keep_ratio=True),
dict(type='LoadAnnotations', with_bbox=True),
dict(
type='PackDetInputs',
meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape',
'scale_factor'))
]
train_dataloader = dict(dataset=dict(dataset=dict(pipeline=train_pipeline)))
val_dataloader = dict(dataset=dict(pipeline=test_pipeline))
test_dataloader = val_dataloader